Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/24934
Compartilhe esta página
Título: | Q-weibull generalized renewal process with reliability applications |
Autor(es): | CORRÊA, Thaís Lima |
Palavras-chave: | Engenharia de Produção; .Generalized renewal process; Kijima type I; Kijima type II; q-Weibull; Bathtub curve. |
Data do documento: | 21-Fev-2017 |
Editor: | Universidade Federal de Pernambuco |
Abstract: | Generalized Renewal Process (GRP) is a probabilistic model for repairable systems that can represent any of the five possible post-repair states of an equipment: as new condition, as old condition, as an intermediate state between new and old conditions, a better condition and a worse condition. GRP is often coupled with the Weibull distribution to model the equipment failure process and the Weibull-based GRP is able to accommodate three types of hazard rate functions: monotonically increasing, monotonically decreasing and constant. This work proposes a novel approach of GRP based on the q-Weibull distribution, which has the Weibull model as a particular case. The q-Weibull distribution has the capability of modeling two additional hazard rate behaviors, namely bathtub-shaped and unimodal curves. Such flexibility is related to a pair of parameters that govern the shape of the distribution, instead of a single parameter as in the Weibull model. In this way, the developed q-Weibull-based GRP is a more general framework that can model a variety of practical situations in the context of reliability and maintenance. The maximum likelihood problems associated with the qWeibull-based GRP using Kijima’s virtual age type I and II for the failure and time terminated cases are developed. The probabilistic and derivative-free heuristic Particle Swarm Optimization (PSO) is used to obtain the q-Weibull-based GRP paramaters’ estimates. The proposed methodology is applied to examples involving equipment failure data from literature and the obtained results indicate that the q-Weibull-based GRP may be a promising tool to model repairable systems. |
URI: | https://repositorio.ufpe.br/handle/123456789/24934 |
Aparece nas coleções: | Dissertações de Mestrado - Engenharia de Produção |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Thaís Lima Corrêa.pdf | 1,78 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons