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ABSTRACT 

 

 

Generalized Renewal Process (GRP) is a probabilistic model for repairable systems that can 

represent any of the five possible post-repair states of an equipment: as new condition, as old 

condition, as an intermediate state between new and old conditions, a better condition and a 

worse condition. GRP is often coupled with the Weibull distribution to model the equipment 

failure process and the Weibull-based GRP is able to accommodate three types of hazard rate 

functions: monotonically increasing, monotonically decreasing and constant. This work 

proposes a novel approach of GRP based on the q-Weibull distribution, which has the Weibull 

model as a particular case. The q-Weibull distribution has the capability of modeling two 

additional hazard rate behaviors, namely bathtub-shaped and unimodal curves. Such 

flexibility is related to a pair of parameters that govern the shape of the distribution, instead of 

a single parameter as in the Weibull model. In this way, the developed q-Weibull-based GRP 

is a more general framework that can model a variety of practical situations in the context of 

reliability and maintenance. The maximum likelihood problems associated with the q-

Weibull-based GRP using Kijima’s virtual age type I and II for the failure and time 

terminated cases are developed. The probabilistic and derivative-free heuristic Particle Swarm 

Optimization (PSO) is used to obtain the q-Weibull-based GRP paramaters’ estimates. The 

proposed methodology is applied to examples involving equipment failure data from literature 

and the obtained results indicate that the q-Weibull-based GRP may be a promising tool to 

model repairable systems. 

 

Keywords: Generalized renewal process. Kijima type I. Kijima type II.q-Weibull.Bathtub 

curve. 

  



 

 

  

 

RESUMO 

 

 

O Processo de Renovação Generalizado (PRG) pode ser definido como um modelo 

probabilístico de sistemas reparáveis capaz de representar os cinco possíveis estados do 

sistema após o reparo: condição de um equipamento novo, condição de um equipamento 

antigo, um estado intermediário entre novo e antigo, melhor do que novo e pior do que antigo. 

O PRG costuma ser comumente empregado junto com a distribuição Weibull para a 

modelagem do processo de falhas dos equipamentos, no entanto, o modelo de GRP baseado 

na distribuição Weibull é capaz de considerar três comportamentos de taxa de falha: 

monotonicamente crescente, monotonicamente decrescente e constante. Este trabalho propõe 

uma nova abordagem para o PRG baseado na distribuição q-Weibull, que apresenta como um 

de seus casos particulares a distribuição Weibull. A distribuição q-Weibull apresenta a 

capacidade de modelar dois comportamentos de falha adicionais, denominadas curva da 

banheira e curva unimodal. Esta flexibilidade está relacionada a dois parâmetros que definem 

o formato da distribuição, ao invés de um único parâmetro como no caso da Weibull. Dessa 

forma, o modelo de PRG baseado na q-Weibull pode ser considerado uma estrutura mais geral 

de modelagem de uma variedade de situações práticas no contexto da confiabilidade e 

manutenção. São desenvolvidos estimadores de máxima verossimilhança para os casos de 

PRG baseada na distribuição q-Weibull sendo utilizadas as idades virtuais Kijima tipo I e II 

para os casos de dados censurados e não censurados. A heurística probabilística e livre de 

derivadas denominada Otimização via Nuvem de Partículas (Particle Swarm Optimization - 

PSO) é utilizada para obter os estimadores de máxima verossimilhança do modelo. O modelo 

proposto é aplicado a exemplos envolvendo falhas de equipamentos retirados da literatura e os 

resultados obtidos indicam que o PRG baseado na q-Weibull é uma ferramenta promissora na 

modelagem de sistemas reparáveis. 

 

Palavras-chave: Processo de renovação generalizado. Kijima tipo I. Kijima tipo II. q-

Weibull. Curva da banheira. 
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1 INTRODUCTION 

1.1 Opening Remarks 

A repairable system, characterized as being restorable with no need of complete 

replacement, can reach different states: as new condition, as old condition, as an intermediate 

state between new and old conditions, a better condition and a worse condition. These states 

can be addressed to the repair action performed: perfect repair, whosesystem’s failure 

intensity behaves as an intensity of a brand new system; minimal repair, which the system’s 

failure intensity remain unaltered since the last failure; the imperfect repair, which is a general 

repair that represents a classification between the perfect and minimal repair and may include 

them; worse repair, characterized by a maintenance action that makes the system failure 

intensity increases but the system does not break down (Pham & Wang, 1996); better repair, 

related to a system failure intensity decrease. 

There are different point processes that can be used to model repairable systems, 

which are related to important notions of reliability analysis such as repairs, spare stocks, 

maintenance, preventive maintenance, optimal preventive maintenance and availability 

(KAMINSKIY, 2013). In all of them, repair times are supposed negligible when compared to 

operational times. 

Traditional probabilistic models in literature of repairable system analysis account for 

the states as good as new and as bad as old, which are modeled by renewal process (RP) and 

non-homogeneous Poisson process (NHPP), respectively. Nevertheless, these states are often 

exceptions rather than rule, from the standpoint of practical reliability engineering (WANG & 

YANG, 2012). 

In this context, Kijima & Sumita (1986) have proposed a probabilistic model, named 

generalized renewal process (GRP), which is able to attend all the post-repair states due to the 

inclusion of the parameter of repair effectiveness. This parameter, denoted in this work as r, 

represents the post-repair states through the notion of virtual age (JACOPINO et al., 2004). 

Kijima (1989) proposed two types of virtual age, one that compensates only the damage 

accumulated during the last time between failures – type I; and the other which compensate 

the damages since the beginning of equipment’s operation – type II (WANG & YANG, 

2012). GRP has been applied using times to failure assumed to be Weibull random variables 
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(YAÑEZ et al., 2002; WANG & YANG, 2012; KAMINSKIY & KRIVTSOV, 2000; 

MOURA et al., 2007).  

Although the Weibull distribution has been widely used along with GRP, the q-Weibull 

probability distribution appears as an interesting alternative to be used in the GRP. The q-

Weibull is proposed as a distribution that smoothly interpolates the q-Exponential and the 

Weibull distributions in order to generate a unified framework to accommodate different 

cases of data adjustment (PICOLI et al., 2003). The Weibull distribution can handle 

monotonically decreasing, constant and monotonically increasing hazard rate functions, 

whereas, besides these three behaviors, the q-Weibull distribution can model two additional 

ones with a single set of parameters: unimodal and U-shaped (bathtub curve) (ASSIS et al., 

2013). 

Using the q-Weibull distribution for reliability analysis is an important step towards an 

efficient approach to handle equipment failure process dismissing previous limitations in 

terms of modelling the whole failure intensity behavior, specifically when unimodal or 

bathtub-shaped ones are presented. This ability of the q-Weibull distribution along with the 

GRP enables the modelling and analysis of repairable systems according to more realistic 

conditions, so the q-Weibull GRP is expected to be a tool that allows decisions about 

reliability, maintenance planning and evaluation to be performed in a more accurate way.  

In this context, this research proposes a q-Weibull-based GRP model considering both 

Kijima type I and type IImodels.The time to the occurrence of the first failure is distributed 

according to a q-Weibull model, while the subsequent times to failurefollow a conditional q-

Weibull distribution, meaning that the arrival of a subsequent failure is conditional on the 

virtual age.  

Model parameters are estimated by the maximum likelihood (ML) method, due to the 

good statistical properties ofthe resulting estimators. The obtained estimators through ML are 

approximately unbiased, its limit variance is nearly as small as the variance resulting from 

other estimators(MONTGOMERY, 2003).ML estimates are obtained for both failure 

terminated and timeterminated cases.  

The ML framework, when applied to the q-Weibull-based GRP, results in an intricate 

system of first derivatives and the estimators are very difficult to be analytically obtained. 

Due to the complicated first derivatives, along with constraints over parameters’ values to 

assure the model probabilistic validity, derivative-based optimization methods may fail. 
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Alternatively, derivative-free nature-based heuristics can be used in the quest for proper 

parameters’ estimates. In this work, the chosen estimation procedure is to maximize the log-

likelihood function by means of a Particle Swarm Optimization (PSO) algorithm.  

PSO is a derivative-free probabilistic heuristic based on the social behavior of biological 

organisms which has as a basic element a particle that can fly throughout the search space of 

the problem toward an optimum using its own information and the information provided by 

other particles within its neighborhood (BRATTON & KENNEDY, 2007).PSO procedure can 

be used to solve problems where correlations between model parameters are  high, sensitivity 

of the objective function to model parameters is low and the objective function is 

discontinuous (SCHWAAB et al., 2008). PSO has been used for parameter estimation 

(Schwaab et al., 2008; Prata et al., 2009; Santos et al., 2015; Carneiro et al., 2016); in 

reliability context along with Support Vector Machine to reliability prediction (Lins et al., 

2012); to solve allocation problem in distribution systems (Ramadan et al., 2017), among 

others. 

1.2 Justification 

Reliability modeling brings more knowledge of the design and evaluation of a system 

since it allows the understanding and prediction the success-failure behavior of systems 

(JAISINGH et al., 1987).The application of GRP permits the estimate of reliability, 

maintainability of repairable systems, eolic models, atmospheric phenomena and various 

probabilistic processes (JIMÉNEZ & VILLALÓN, 2006). 

The q-Weibull distribution has its advantage on offering more flexibility by modelling 

different hazard rate’s behaviors, especially the bathtub curve, which is widely used in 

reliability engineering and that can be modelled directly instead of using three Weibull 

models to represent the lifecycle of equipment. This q-Weibull’s flexibility is related to the q 

parameter, which controls the shape of the distribution along with the β parameter, while the 

Weibull distribution has just β affecting its shape. 

GRP is able to model different post-repair states, reducing the model uncertainty from 

the repair assumptions required by NHPP and RP. Thus, attaching q-Weibull distribution to 

GRP may be an interesting approach to suit the realistic cases that are observed in practical 

situations. Thus, the proposed model in this master thesis is an evolution in terms of reliability 

and maintenance analysis, since it combines the ability of GRP in handling different repair 
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possibilities with the flexibility of the q-Weibull distribution in modeling monotone and non-

monotone failure intensities.The q-Weibull GRP is able to analyze a more diverse range of 

equipment failure-repair behaviors if compared to NHPP, RP and Weibull-based GRP. 

1.3 Objectives 

1.3.1 General Objective 

This dissertation aims to develop probabilistic models for GRP based on the q-Weibull 

distribution and to apply them to reliability-related data. 

1.3.2 Specific Objectives 

In order to achieve the general objective, some specific targets are defined: 

• Exploration of works involving probabilistic models for repairable systems, mainly 

GRP and researches about q-Weibull distribution; 

• Development of the maximum likelihood problem related to the q-Weibull GRP for 

failure and time terminated cases as well as for the Kijima types I and II. 

• Implementation of PSO algorithm to obtain the maximum likelihood estimates for the 

q-Weibull GRP parameters for each of the previous cases (failure and time terminated, 

Kijima types I and II); 

• Development of asymptotic confidence intervals for the model parameters; 

• Application of the proposed models to real data associated with reliability of equipment; 

• Comparison of the q-Weibull GRP models’ outputs with real data and with Weibull-

based GRP results by means of Monte Carlo simulation. 

1.4.      Dissertation layout 

Besides this introductory chapter, this dissertation presents four additional chapters 

briefly described in this section. 

Chapter 2 presents the theoretical background. At first, the q-Weibull distribution is 

explained. Then, the GRP is detailed and the PSO is commented. Finally, a literature review 

about is exposed. 

In Chapter 3the proposed q-Weibull-based GRP is presented for the virtual ages type I 

and type II, failure terminated and time terminated cases. The PSO methodology used in order 
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to achieve the maximum likelihood estimators, solving the maximum likelihood optimization 

problem is described. 

In Chapter 4 the model application to failure data obtained from literature is presented 

and analyzed. 

Finally, in Chapter 5a summary of the main results obtained in this master thesis is 

provided. Also, limitations and suggestions for future works are presented. 
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

This chapter presents definitions and explanation about the main topics of this 

dissertation: q-Weibull probabilistic distribution, Generalized Renewal Process and Particle 

Swarm Optimization. Also, a literature review is presented.  

2.1 q-Weibull Distribution 

Generalizations of the Weibull distribution often share the base on the exponential 

framework (Marshall & Olkin, 1997, Mudholkar & Srivastava, 1993). Exponentials are 

commonly used in non-interacting or weakly interacting systems, while power-laws 

dominates statistical distributions of complex systems, for instance systems that exhibit long-

range (spatial) interactions, long-term (temporal) memory, among others (ASSIS et al., 2013). 

System’s failure usually has multiple and interacting causes, therefore a complex 

behavior can possibly appear. Power-law like expressions are expected to substitute 

exponentials in the statistical description for these cases. The power law behavior may appear 

in the upper tail of the distributions (PRIETO & SARABIA, 2017). 

The q-distributions are appropriate to describe diverse systems due to its ability of 

exhibit heavy tails and model power law phenomena, characteristics of complex systems 

(PICOLI et al., 2009). The q-distributions emerge from nonextensive formalism proposed by 

Tsallis, a generalization of Boltzmann-Gibbs-Shannon (BGS) entropy, introducing the 

possibility to extend statistical mechanics to complex systems in a coherent and natural way 

(ASSIS et al., 2013; PICOLI et al., 2009).  

In this context, the q-Weibull distribution can be seen as natural step forward to the 

Weibull distribution in the light of nonextensive statistics, as it is derived from the 

substitution of the Exponential function by a q-Exponential in the classic Weibull model, 

represented in Equation (2.1) (ASSIS et al., 2013): 

 
𝑓𝑞(𝑡) = (2 − 𝑞)

𝛽

𝛼
(
𝑡

𝛼
)
𝛽−1

𝑒𝑥𝑝𝑞 [− (
𝑡

𝛼
)
𝛽

]. (2.1) 

in which parameters  and 𝑞, control the shape of the distribution, whereas α is the scale 

parameter and 𝑞 < 2, 𝛼, 𝛽 > 0. 

The q-Exponential function can be defined as: 
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𝑒𝑥𝑝𝑞(𝑥) = {(1 +

(1 − 𝑞)𝑥)
1

(1−𝑞), if (1 + (1 − 𝑞)𝑥) ≥ 0,
0,                       otherwise.

 (2.2) 

Differently from the classic Weibull the q-Weibull has two parameters that affect its 

shape, thus leadingto more flexibilityin modeling additional hazard rate behaviors. 

The support of Equation (2.) changes depending on the value of q: 

 
𝑡 ∈  {

[0,∞),     for 1 < 𝑞 < 2,
[0, 𝑡𝑚𝑎𝑥],         for 𝑞 < 1,

 (2.3) 

where 𝑡𝑚𝑎𝑥 = 𝛼 (1 − 𝑞)1 𝛽⁄⁄  is the maximum allowed time so as to preserve the probabilistic 

properties of Equation (2.2) when 𝑞 <  1. For these values the integration of 𝑓𝑞(𝑡) diverges 

for 𝑡 > 𝑡𝑚𝑎𝑥(ASSIS et al., 2013). 

 The q-Weibull cumulative distribution and reliability function are given by Equations 

(2.42.) and (2.5), respectively: 

 

𝐹𝑞(𝑡) = 1 − [𝑒𝑥𝑝𝑞 [− (
𝑡

𝛼
)
𝛽

]]

2−𝑞

= 1 − [1 − (1 − 𝑞) (
𝑡

𝛼
)
𝛽

]

2−𝑞

1−𝑞

. (2.4) 

 

𝑅𝑞(𝑡) = [𝑒𝑥𝑝𝑞 [− (
𝑡

𝛼
)
𝛽

]]

2−𝑞

= [1 − (1 − 𝑞) (
𝑡

𝛼
)
𝛽

]

2−𝑞

1−𝑞

. (2.5) 

 

Assis et al. (2013) list the combination of  and 𝑞 values representing the various types 

of hazard rate function behaviors that can be reproduced by the q-Weibull distribution (Table 

2.1): monotonically decreasing, constant, monotonically increasing, unimodal and U-shaped 

(bathtub curve), which are illustrated in Figure 2.1. The hazard rate function is given by 

Equation (2.6) 

 
ℎ𝑞 =

𝑓𝑞

𝑅𝑡
= (2 − 𝑞)

𝛽

𝛼
(
𝑡

𝛼
)
𝛽−1

[1 − (1 − 𝑞) (
𝑡

𝛼
)
𝛽

]

−1

. 
(2.6) 

 

The q-Weibull distribution has other probability distributions as special cases: when 

𝛽 = 1, a q-Exponential distribution; for 𝑞 → 1, a Weibull distribution; for both 𝛽 = 1 and 

𝑞 → 1, an Exponential distribution. Figure 2.2 illustrates the coverage of q-Weibull 

distribution considering its special cases distributions and possible hazard rate behaviors. 
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Table 2.1 - Behaviors of hazard rate for the q-Weibull distribution 

 

𝟎 < 𝜷 < 1 𝜷 =  𝟏 𝜷 > 𝟏 

𝒒 < 𝟏 Bathtub curve Monotonically increasing Monotonically increasing 

𝒒 =  𝟏 Monotonically decreasing Constant Monotonically increasing 

𝟏 <  𝑞 <  2 Monotonically decreasing Monotonically decreasing Unimodal 

Source: Assis et al. (2013, p. 732) 

 

Figure 2.1- Failure Intensity Behaviors Modelled By q-Weibull

 

Source: This research 

 

Figure 2.2 - q-Weibull's Distribution Coverage 

 

Source: This research 
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2.2 Generalized Renewal Process 

Different point processes can be applied to model repairable systems and in this 

context often the time of repair is considered negligible when compared with the times 

between failures. This assumption enables applying different point processes as appropriate 

models for real life failure processes. 

A point process can be defined as a mathematical model for events distributed 

randomly in time, and this notion plays the same role in the reliability of repairable systems as 

the notion of time to failure in the context of reliability of non-repairable systems. The major 

random variable of interest tothese processes is the number of failures observed in some time 

interval (0, t] (KAMINSKIY, 2013). 

The GRP, probabilistic model proposed by Kijima & Sumita (1986), is able to 

incorporate the five post-repair states that a repairable system may assume. The models that 

have been mostly used in the reliability analysis of repairable systems are the RP and the 

NHPP, which can be considered particular cases of GRP (YAÑEZ et al., 2002). However, RP 

and NHPP assume simplifying hypotheses which restrict its application to realistic cases. 

The RP assumes that the failures are independent and identically distributed.Therefore, 

the system returns to an as new condition that may only occur when the system is completely 

replaced after the failure, resembling to non-repairable systems. In the NHPP, in turn, the time 

between failures follows a conditional Exponential probability distribution, meaning that the 

arrival of the 𝑖th failure is conditional on the cumulative operation time up to the failure 𝑖 − 1. 

It is assumed that the system condition after repair is the same as the one immediately before 

occurrence of 𝑖th failure.  

In contrast to the NHPP, the GRP considers a conditional probability function based on 

the system’s virtual age, therefore the time to the next failure is related to the virtual age, 

instead of the real age used in NHPP. By covering major repair assumptions encountered in 

practice, GRP provides more flexibility in modeling real life failure occurrence processes 

(KAMINSKIY & KRIVTSOV, 2000). Figure 2.3 presents a categorization of stochastic point 

processes for modelling repairable systems. 
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Figure 2.3 - Categories of Stochastic Point Processes for Repairable systems 

 

Source: Yañez et al. (2002, p. 168) 

 

GRP presents the concept of virtual age, which is illustrated in Figure 2.4. If 𝑌𝑖 and 𝑉𝑖, 

in Figure 2.4, are the equipment’s calculated age before and after repair, respectively, and 𝑇𝑖 

is the chronological time, it is possible to verify the relation between virtual and real ages of 

the system, according to parameter 𝑟, defined as the repair effectiveness (MOURA et al., 

2007). 

 

Figure 2.4 - Virtual Age and the Repair Effectiveness Parameter 

 

Source: Adapted from Moura et al. (2007) 

 

Pham & Wang (1996) classify the maintenance according to the degree to which the 

operating conditions of an item is restored. The perfect repair/maintenance is related to a 

system that after a repair has the same lifetime distribution and failure intensity as a brand 

new, generally there is a replacement of the failed item. The minimal repair/maintenance 

restores the system to the failure intensity it had just before it failed. The imperfect 
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repair/maintenance is a general repair that can include the two extreme cases of minimal and 

perfect repair. 

The values of the parameter 𝑟 can be seen as an index for representing effectiveness and 

quality of repair. Assuming 𝑟 =  0 leads to an RP (like new condition), while 𝑟 =  1 leads to 

an NHPP (like old condition). The intermediate values 0 < 𝑟 <  1 lead to an intermediate 

condition between like old and like new ones and is related to imperfect repair (PHAM & 

WANG, 1996). When 𝑟 >  1, the equipment’s condition is worse than old; and when 𝑟 <  0, 

the equipment’s associated condition is better than new (MOURA, 1997; YAÑEZ et al, 

2002). 

According to Kijima (1989), two models can be constructed depending on how the 

repair activities affect the virtual age process. In the first model, it is assumed that the 𝑖th 

repair cannot remove the damages incurred before the (𝑖 − 1)th repair. The virtual age type I 

is given by Equation (2.7): 

 𝑉𝑖 = 𝑉𝑖−1 + 𝑟𝑇𝑖. (2.7) 

 

In the second model, virtual age type II, at the 𝑖th failure the virtual age has been 

accumulated to 𝑉𝑖−1 + 𝑇𝑖, which means that the repair can compensate the accumulated 

damage, as defined in Equation (2.8): 

 𝑉𝑖 = 𝑟(𝑉𝑖−1 + 𝑇𝑖). (2.8) 

 

Kijima type I assumes that the 𝑖th repair can only compensate for the damage 

accumulated during the period of time between the 𝑖th and (𝑖 − 1)th failure, while Kijima type 

II assumes that the repair can compensate the system damage since the beginning of its 

operation (WANG & YANG, 2012). Jacopino et al. (2004) recommends that Kijima type II 

GRP should be used for complex systems, while individual components should be modelled 

using Kijima type I GRP model. Complex systems can be considered as a number of sub-

systems and components which are purely mechanical, electrical/electronic or a hybrid of 

both elements such as, respectively, a landing gear, the flight computer and control actuators 

of an aircraft which combine electronic controllers and mechanical actuators. Therefore, the 

selection of the model is related to the physical failure modes that the component or system 

reaches over the number of renewals performed. 
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2.3 Maximum Likelihood Method 

According to Montgomery (2003), the maximum likelihood method, proposed by 

Fisher, is one of the best methods of obtaining a point estimator of a parameter and can be 

used in situations where there are several unknown parameters to estimate. The optimal 

estimator that maximizes the likelihood functionis obtained by equating the first order partial 

derivatives to zero and solving the resulting system of equations. 

Consider X as a random variable with probability density function𝑓(𝑥|𝜽), where 𝜽 is a 

vector of parameters. Let 𝑥1, 𝑥2, … , 𝑥𝑛be the observed values in a random sample of size 𝑛. 

The likelihood function of the sample is given by: 

 𝐿(𝜽|𝑥) =  𝑓(𝑥1|𝜽) ∙ 𝑓(𝑥2|𝜽) ∙ … ∙  𝑓(𝑥𝑛|𝜽). (2.9) 

Under general conditions, when the sample size 𝑛 is large and 𝜽̂ is the maximum 

likelihood estimator of 𝜽, the properties of 𝜽̂ are that 𝜽̂ is an approximately unbiased 

estimator for 𝜽; the variance of 𝜽̂ is nearly as small as the variance that could be obtained 

from other estimator and 𝜽̂  has an approximate normal distribution. 

Although the maximum likelihood estimator is one of the most applied techniques, 

complications may occur in its use. Sometimes it is not easy to maximize the likelihood 

function because the partial derivatives obtained can be difficult to solve. In addition, it may 

not always be possible to determine the maximum of the likelihood function directly using 

calculus methods. 

2.3.1 Failure Terminated and Time Terminated GRP Likelihood Functions 

Failure terminated cases are the occasions when failure data are available up to the time 

of the last failure occurrence. Considering that the first failure does not attend to the 

conditional probability function, then, the likelihood function is given by: 

 

 𝐿𝐹𝑇 = 𝑓(𝑡1) ∏ 𝑓(𝑡𝑖|𝑣𝑖−1)
𝑛
𝑖=2 . (2.10) 

 

Time terminated cases are related to an estimation at a time 𝑡after the occurrence of the 

last failure and before the next failure happens. In this case,a term related to the conditional 

reliability of the system at a time 𝑡is included. The maximum likelihood function is given by: 
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 𝐿𝑇𝑇 = 𝑓(𝑡1) ∏ 𝑓(𝑡𝑖|𝑣𝑖−1)𝑅(𝑡|𝑣𝑛)
𝑛
𝑖=2 . (2.11) 

   

2.3.2 Variability Assessment of the Maximum Likelihood Estimators 

Asymptotic confidence intervals are developed to evaluate the precision of the obtained 

maximum likelihood parameters’ estimates of the proposed GRP based on the q-Weibull 

distribution. Asymptotic intervals rely on the central limit theorem, which means that they are 

suited for large samples and for small ones they may present inconsistent results. 

Considering  𝜃as a parameter and 𝜃as its estimator, if 𝜃 has an approximate normal 

distribution, is approximately unbiased for 𝜃 and has standard error 𝜎𝜃̂ that can be estimated 

from the sample data, the quantity (𝜃 − 𝜃)/𝜎𝜃̂ has an approximate standard normal 

distribution. Thus, an approximate confidence interval (CI) for 𝜃 with (1 − 𝛾) ∙ 100%of 

confidence is given by Equation (2.12) (MONTGOMERY, 2003).  

 

 𝐶𝐼[𝜃, (1 − 𝛾) ∙ 100%] = [𝜃 + 𝑧𝛾
2
𝜎𝜃̂; 𝜃 + 𝑧1−𝛾

2
𝜎𝜃̂] 

(2.12) 

 

Maximum likelihood estimators usually present the necessary characteristics to use 

Equation (2.12) and the process of obtaining the confidence intervals are detailed 

thereafter.Asymptotic confidence intervals can be constructed for the parameters using the 

asymptotic normality property of maximum likelihood estimators. For the q-Weibull GRP, the 

asymptotic confidence intervals with (1 − 𝛾) ∙ 100% of confidence for 𝛼, 𝛽, 𝑞, 𝑟  are given 

by, respectively: 

 

 𝐶𝐼[𝛼, (1 − 𝛾) ∙ 100%] = [𝛼̂ + 𝑧𝛾
2
√𝑣𝑎𝑟̂11; 𝛼̂ + 𝑧1−𝛾

2
√𝑣𝑎𝑟̂11], 

 

(2.13) 

 𝐶𝐼[𝛽, (1 − 𝛾) ∙ 100%] = [𝛽̂ + 𝑧𝛾
2
√𝑣𝑎𝑟̂22; 𝛽̂ + 𝑧1−𝛾

2
√𝑣𝑎𝑟̂22], 

 

(2.14) 

          𝐶𝐼[𝑞, (1 − 𝛾) ∙ 100%] = [𝑞̂ + 𝑧𝛾
2
√𝑣𝑎𝑟̂33; 𝑞̂ + 𝑧1−𝛾

2
√𝑣𝑎𝑟̂33], 

(2.15) 

 𝐶𝐼[𝑟, (1 − 𝛾) ∙ 100%] = [𝑟̂ + 𝑧𝛾
2
√𝑣𝑎𝑟̂44; 𝑟̂ + 𝑧1−𝛾

2
√𝑣𝑎𝑟̂44], 

(2.16) 
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where 𝑧𝛾
2
, 𝑧1−𝛾

2
 are the 

𝛾

2
 and 1 −

𝛾

2
 quantiles of the standard normal distribution and √𝑣𝑎𝑟̂11, 

√𝑣𝑎𝑟̂22, √𝑣𝑎𝑟̂33 and √𝑣𝑎𝑟̂44 are the diagonal elements of the covariance matrix associated 

with the maximum likelihood estimators 𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂presented in Equation 2.17. 

 

 𝑣𝑎𝑟̂(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡) = 𝐼−1(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

= −

[
 
 
 
 
 
 
 
 
 
𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛼2
𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛼𝜕𝛽

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛼𝜕𝑞

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛼𝜕𝑟

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛽𝜕𝛼

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛽2
𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛽𝜕𝑞

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝛽𝜕𝑟

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑞𝜕𝛼

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑞𝜕𝛽

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑞2
𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑞𝜕𝑟

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑟𝜕𝛼

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑟𝜕𝛽

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑟𝜕𝑞

𝜕2ℒ(𝛼̂, 𝛽̂, 𝑞̂, 𝑟̂|𝑡)

𝜕𝑟2 ]
 
 
 
 
 
 
 
 
 
−1

. 

(2.17) 

 

The covariance matrix is approximated by the negative of the inverted Hessian (Millar, 

2011), which is related to the second derivatives of the log-likelihood function with respect to 

each of the q-Weibull GRP parameters. The second-order derivatives will be detailed for each 

case of the q-Weibull GRP – failure terminated and time terminated using virtual ages Kijima 

type I and type II – in AppendicesA toD. 

 

2.4 Particle Swarm Optimization 

PSO is a probabilistic optimization heuristic inspired by the social behavior of 

biological organisms, specifically the ability of animal groups to work as a whole in order to 

find some desirable position. This seeking behavior is artificially modeled by PSO, which has 

been mainly used in the quest for solutionsfor non-linear optimization problems in a real-

valued search space (BRATTON & KENNEDY, 2007).   

For a problem with 𝑛-variables, each possible solution can be considered as a particle 

with a position vector of dimension 𝑛 and the population of particles is defined as swarm 

(SAMANTA & NATARAJ, 2009). Each particle, represented by 𝑗, 𝑗 = 1,… , 𝑛𝑝𝑎𝑟𝑡 is 

composed by the following features: current position in the search space (𝑠𝑗), best position it 

has visited so far (𝑝𝑗), velocity (𝑣𝑗) and fitness, which is the value of the considered objective 

function (BRATTON & KENNEDY, 2007) 
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In PSO, particles move through the search space accordingly to the combination of the 

best solution they individually found and the best solution that any particle in the 

neighborhood found. A neighborhood can be defined as the subset of particles with which a 

given particle is able to communicate.  

There are two approaches for the PSO algorithm, gbestandlbest, presented in Figure 2.5, 

according to the ability of particle’s communication with its neighborhood. In the case where 

every particle can communicate with every other particle, the gbest approach is adoptedand 

the number of particle’s neighbors is equal to the total number of particles.The lbest approach 

is adoptedwhen a particle can obtain information only from a subset of particles, thus the 

number of particle’s neighbors is less than the total number of particles in the swarm. 

 

Figure 2.5 - PSO topologies

 

Source: Adapted from Bratton & Kennedy (2007) 

 

During the iterative process, the swarm evolution occurs as every particle has the 

velocity and position update equations applied to each dimension 𝑘, with 𝑘 =  1, … , 𝑛(SHI & 

EBERHART, 1998; BRATTON & KENNEDY, 2007): 

 𝑣𝑗𝑘(𝑚 + 1) =  𝜒{𝑣𝑗𝑘(𝑚) + 𝑐1𝑢1 [𝑝𝑗𝑘(𝑚) − 𝑠𝑗𝑘(𝑚)]

+ 𝑐2𝑢2 [𝑝𝑔𝑘(𝑚) − 𝑠𝑗𝑘]},        
(2.18) 

   

 𝑠𝑗𝑘(𝑚 + 1) =  𝑠𝑗𝑘(𝑚) + 𝑣𝑗𝑘(𝑚 + 1), (2.19) 

 

where 𝑚 is the iteration number, 𝜒 is the constriction factor that avoids velocity explosion 

during iterations, 𝑐1 and 𝑐2 are positive constants, 𝑢1 and 𝑢2 are independent uniform random 
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numbers between 0 and 1, 𝑝𝑔𝑘 is the 𝑘th entry of vector 𝑝𝑔 related to the best position that has 

been found by any neighbor of particle 𝑗. The updates of velocities and positions happen until 

a stop criterion is met. 

During PSO iterations, particles may go outside the search space, then become 

infeasible. To confront that, the “let particles fly” procedure is adopted: their velocities and 

positions remain unaltered and the fitness evaluation step is skipped to avoid infeasible 

particles assuming best but non-acceptable positions. Thereby, infeasible particles may be 

drawn back to the search space by the influence of their own best or their neighborhood’s and 

the algorithm performance is not affected (LINS et al., 2012; BRATTON & KENNEDY, 

2007). Details of the PSO algorithm used in this master thesis are given in Section 3.3. 

2.5 Literature Review 

GRP has been used for repairable system analysis, providing quantitative metrics for 

system evaluation andmaintenance planning.Various researches about GRP has utilized the 

Weibull distribution as the probability distribution for the times between failures, although 

modifications have been performed to the Weibull distribution in order to allow for non-

monotone hazard rate functions. 

Yañez et al. (2002), developed the maximum likelihood estimators of the parameters of 

the Weibull based GRP using virtual age Kijima type I and also proposed a Bayesian 

approach to estimate the parameters in cases where limited equipment failuredata is available. 

Wang & Yang (2012) explore GRP model using Kijima type I and type II virtual ages 

through a nonlinear constrained programming numerical method and analyzes complex 

repairable systems with conditional Weibull distribution. 

Ferreira et al. (2015) affirms that the traditional GRP modelling does not allow the 

weight of both models of Kijima type I and II in the analysis and historical data might involve 

an impact between short and long memory-impact interventions, referred to Kijima type I and 

II respectively. 

To confront this, the authors developed a GRP model based on the Weibull distribution 

through a perspective of a mixed GRP, where the virtual age is constructed by coupling 

Kijima type I and type II virtual ages. This idea is justified by the different classes of 

intervention that the systems frequently suffer in a real context and the model proposed allows 

comparing the quality of the existing intervention types. 
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The coupling of the virtual ages is performed by appending the class label of each 

intervention and the respective coefficient in a linear combination between Kijima type I and 

II models using a variable that belongs to the interval [0,1].  If this variable assumes the value 

1, it may characterize a corrective intervention and Kijima type I is applied, if it assumes 0, it 

may characterize a preventive intervention and Kijima type II is used and finally if it assumes 

a value between 0 and 1 the influence of the intervention impacts on the history of the system. 

The adherence of the GRP model to the available performance data set plays the role for 

adequate support decision (OLIVEIRA et al, 2016). Although the Weibull distribution is 

widely used along with GRP, the authors of these researches have inadvertently assumed the 

Weibull distribution. Therefore, the authors perform a goodness of fit test, GOFT, of the 

Weibull-based GRP by transforming the times between interventions and the respective 

virtual ages via a power law function. The transformation generalizes the relationship between 

Weibull variables with scale and shape, α and β, and exponential ones in order to apply a 

GOFT for an exponential distribution. 

Jiménez & Villalón (2006) developed a MAPLE coded algorithm to solve the maximum 

likelihood parameter estimation of the Weibull based GRP and applied the model to an 

electrical and eolic system. 

Moura et al. (2014) developed a combined approach between GRP and the intensity 

proportional repair alert in order to turn the traditional GRP able to distinguish how different 

types of maintenance influence each other in addition to the already existent ability of capture 

the quality of the maintenance actions performed through the evaluation of the rejuvenation 

parameter.The competing risks is used to identify how preventive maintenance can modify the 

distribution of the time between corrective maintenances, how corrective maintenances can 

change the frequency of failures and the GRP is used to incorporate the possibility of an 

imperfect repair condition. 

The above-mentioned works present different GRP models, but all of them have the 

characteristic of being based on times between failures governed by the Weibull probability 

distribution. 

Modelling equipment’s through GRP enables decisions about maintenance planning and 

system evaluation:Pham & Wang (1996) relates directly the maintenance to the equipment 

condition in order to establish maintenance planning strategies;Stadje & Zuckerman (1992) 

elaborate optimal maintenance strategies that accounts to the possibilities of actions related to 
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general maintenance/repair; Makis & Jardine (1993) formulate an optimal replacement policy 

through a replacement model with general repair; Kobbacy & Jeon (2002) uses the renewal 

process in order to model a preventive maintenance scheduling model. 

Probabilistic approaches to handle non-monotone hazard rate functions have been 

proposed adapting the already stablished models of NHPP and RP, modifying the hazard rate 

function, adopting different virtual ages during the equipment’s lifetime 

Dijoux (2009) proposed a reliability model for complex systems that concerns a 

bathtub shaped ageing and imperfect maintenance. The models that consider perfect and 

minimal repair are suitable for reliability models with increasing initial failure intensity, but in 

practice the failure behavior can be decreasing or even present the bathtub shaped intensity. 

The author presents a model based on virtual age when the bathtub curve appears on the 

initial intensity. 

The model makes an adaptation of the usual assumption on virtual ages, since the 

reduction of the Kijima virtual age leads to efficient maintenance only for degrading systems. 

For each period of the bathtub curve, a different virtual age is used. For the burn-in period, the 

minimal repair is considered; during the useful life and the wear-out period, Kijima virtual 

age I is used; and during the interfailure time overlapping the burn-in period and the useful 

lifethe reduction of age is assumed to be proportional to the time elapsed from the time of the 

end of the burn-in period.ML estimation is performed in order to obtain the parameters’ 

estimates of the model. Due to the large number of parameters to be estimated, it is not 

possible to achieve consistent results. 

Jiang et al. (2003) proposed a way to determine the aging property of a given 

unimodal failure rate model that can be extended to study other non-monotonic failure rate 

models. By doing this, the effectiveness of a burn-in or preventive maintenance procedure for 

a product whose lifetime can be represented by a unimodal failure rate can be judged.  

The failure pattern of many products or systems can be represented by the bathtub 

curve, that includes an early failure phase represented by a decreasing failure rate; a normal 

use phase which is related to a constant failure rate and the wear-out phase that presents an 

increasing failure rate (Jiang et al., 2003). Otherwise, when failures are caused by factors such 

as fatigue and corrosion, the failure times often follow models with the unimodal or reverse 

bathtub-shaped hazard rate behavior.  
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Considering a unimodal hazard rate behavior and 𝑡𝑐its mode, denoted as critical time. 

The failure rate function consists of two parts: an increasing part over the interval (0, 𝑡𝑐) and a 

decreasing part over the interval (𝑡𝑐, ∞).The unimodal hazard rate can be seen as 

approximately decreasing if 𝑡𝑐 is small, then the system can be defined as anti-aging; 

approximately increasing if 𝑡𝑐 is large, the then the system can be classified as aging; and 

approximately constant if 𝑡𝑐is a midterm between the previous mentioned and when the curve 

is relatively flat. The quantitative analysis is made through the concept of aging intensity, 

which is defined as the ratio of instantaneous failure rate and a baseline future rate. Along 

with the notion of peakedness, which the smaller it is, the closer to a constant failure rate the 

unimodal failure rate is, depending on the model parameters, a unimodal can be related to the 

behaviors above-mentioned. 

Spinato et al. (2009) presents a model for reliability analysis of wind turbines based on 

the concept of the bathtub shaped curve for a repairable system and the Power Law Process 

(PLP), its mathematical formulation.  

In the proposed model a reliability growth analysis is performed based on the PLP, a 

specific case of NHPP, to analyze reliability of three subassemblies: generator, gearbox and 

converter. The PLP is used because of its flexibility to represent the three phases of the 

bathtub curve. The choice of the equipment was based on its crucial role in the operation of 

wind turbines. Through the results of the improving reliability of generators and converters, 

the operations and maintenance activities can be seen as effective and some other 

observations can be taken to improve some aspects of the machines. Although the reliability 

lead to conclusions about the activities performed by operations and maintenance, the NHPP 

model does not consider the imperfect repair, which could represent a quantitative evidence of 

the repair’s effectiveness. 

Wang et al. (2002) developed a model that is concerned with the behavior of hazard 

rate based on the failure mechanisms along the whole range of bathtub curve. The hazard rate 

function is composed by a summation of the terms based on unpredictable failure occurrence 

due to the intrinsic weakness or/and sudden changes in the environmental conditions, 

cumulative damage, machine interference and adaptation. 

Jaisingh et al. (1987) proposed a model to predict the reliability of nonrepairable 

systems with uncensored data that present its hazard rate behavior as a bathtub curve through 

ML estimators and the least-squares methods. 
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Guida & Pulcini (2009) proposed the Bounded Bathtub Intensity Process (BIPP), a 

four-parameter NHPP model to analyze systems that experiences early failures, degradation 

phenomena and operating time so long that the intensity function approaches a finite 

asymptote. 

The q-distributions, such as q-Exponential, q-Gaussian and q-Weibull, have been 

applied to various problems in the interdisciplinary field of complex systems (PICOLI et al., 

2009). These distributions have been used to model variables in different contexts: basketball 

baskets, cyclone victims, time to breakdown, brand name drugs by retail sales, highway 

length (NADARAJAH & KOTZ, 2006). 

Complex systems have been successfully described by q-distributions, such as 

cyclones (Reynolds & Veneziani, 2004), gravitational systems (Abreu et al., 2014), stock 

market (Ivanov et al,2014; Gu et al., 2014), journal citations (Anastasiadis et al. 2010),cosmic 

rays (Beck, 2004), earthquakes (Vallianatos et al., 2014), financial markets (Namaki et al, 

2013), internet (Li et al., 2006), mechanical stress (Vallianatos &Triantis, 2013), reliability 

(Sales Filho, 2016). 

The q-Weibull distribution can be adopted to reliability issues such as stress-strengh 

analysis, optimal preventive maintenance problems, optimal system design and competitive 

risks (Xu et al., 2017).It has been used in reliability context to describe time-to-breakdown 

data of electronic devices (Costa et al., 2006), failure rate of a compression unit in a natural 

gas recovery plant (Sartori et al., 2009), failure data of components of oil wells: oil pumps, 

pumping rods and production tubings (Assis et al., 2013).  

In order to achieve MLestimates for the q-Weibull parameters, Xu et al. (2017) 

proposed an adaptative hybrid artificial bee colony (AHABC) algorithm and Lins et al.(2015) 

used PSO. 

Considering the limitations of the Weibull distribution in modelling non-monotone 

failure intensities and the different possibilities of approaches proposed in literature to model 

the unimodal and bathtub curve behavior, which needs many variables and considerations to 

be incorporated to the model, bringing complexity, the q-Weibull represents an efficient and 

simple alternative due to its three parameters and its suitability to model complex systems, 

such as equipment’s failure occurrence. Additionally, the q-Weibull distribution has already 

been successfully used to model equipment lifetime data, representing a natural choice to be 

attached to GRP. 
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3 PROPOSED Q-WEIBULL GENERALIZED RENEWAL PROCESS 

In this section, the basis to model the q-Weibull GRP is presented. Both Kijima types I 

and II approaches are considered. In order to estimate the model parameters and to obtain the 

related asymptotic confidence intervals, the maximum likelihood problem is formulated for 

the q-Weibull GRP and adapted for each Kijima model and for failure terminated and time 

terminated data.Additionally, a Monte Carlo procedure is devised to obtain the simulated 

expected number of failures within a given time interval, based on the parameters’ estimates, 

so as to be compared with experimental data.  

3.1 Conditional Probability Functions 

The proposed q-Weibull GRP is based on the definition of conditional probability: 

 
𝑃(𝑇 ≤ 𝑡|𝑇 > 𝑡1) =  

𝐹(𝑡) − 𝐹 (𝑡1)

𝑅(𝑡1)
=
1 − 𝑅(𝑡) − 1 + 𝑅(𝑡1)

𝑅(𝑡1)
= 1 −

𝑅(𝑡)

𝑅(𝑡1)
. 

(3.1) 

 

Where 𝐹(∙) and 𝑅(∙) are, respectively, the cumulative probability functionfor failure 

times and the reliability function. Assuming a q-Weibull distribution, Equation (3.1) turns 

into: 

 

𝐹(𝑡𝑖|𝑣𝑖−1) = 1 − {
[1 − (1 − 𝑞) (

𝑡𝑖+𝑣𝑖−1

𝛼
)
𝛽

]

[1 − (1 − 𝑞) (
𝑣𝑖−1

𝛼
)
𝛽

]

}

2−𝑞

1−𝑞

. 

(3.2) 

 

The conditional q-Weibull probability density function is: 

 

𝑓(𝑡𝑖|𝑣𝑖−1) = (2 − 𝑞)
𝛽

𝛼𝛽
(𝑡𝑖)

𝛽−1 [1 − (1 − 𝑞) (
𝑡𝑖 + 𝑣𝑖−1

𝛼
)
𝛽

]

1

1−𝑞

 

[1 − (1 − 𝑞) (
𝑣𝑖−1
𝛼
)
𝛽

]

𝑞−2

1−𝑞

.  

(3.3) 

Equations (3.1)-(3.3) are valid for the subsequent 𝑖 − 1 observations after the first 

failure occurrence. 

When Kijima virtual age type I (Equation 2.7) is introduced to Equation (3.3), it 

becomes: 
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𝑓(𝑡𝑖|𝑣𝑖−1) = (2 − 𝑞)
𝛽

𝛼𝛽
(𝑡𝑖 + 𝑟∑𝑡𝑗

𝑖−1

𝑗=1

)

𝛽−1

[1 − (1 − 𝑞) (
𝑡𝑖 + 𝑟∑ 𝑡𝑗

𝑖−1
𝑗=1

𝛼
)

𝛽

] 

[1 − (1 − 𝑞) (
𝑟 ∑ 𝑡𝑗

𝑖−1
𝑗=1

𝛼
)

𝛽

]

𝑞−2

. 

(3.4) 

The same can be performed to Kijima virtual age type II (Equation 2.8). Using the 

expression, the Equation (3.3) turns: 

 

𝑓(𝑡𝑖|𝑣𝑖−1) = (2 − 𝑞)
𝛽

𝛼𝛽
(𝑡𝑖 +∑𝑡𝑗

𝑖−1

𝑗=1

𝑟𝑖−𝑗)

𝛽−1

 

[1 − (1 − 𝑞) (
𝑡𝑖 + ∑ 𝑡𝑗

𝑖−1
𝑗=1 𝑟𝑖−𝑗

𝛼
)

𝛽

] [1 − (1 − 𝑞) (
∑ 𝑡𝑗
𝑖−1
𝑗=1 𝑟𝑖−𝑗

𝛼
)

𝛽

]

𝑞−2

. 

(3.5) 

The failure intensity considering the conditional probabilities is obtained for both 

models Kijima type I and II are given by Equations (3.6) and (3.7), respectively: 

 

ℎ𝑞 =
𝑓𝑞

𝑅𝑡
= (2 − 𝑞)

𝛽

𝛼𝛽
(𝑡𝑖 + 𝑟∑𝑡𝑗

𝑖−1

𝑗=1

)

𝛽−1

[1 − (1 − 𝑞) (
𝑡𝑖 + 𝑟∑ 𝑡𝑗

𝑖−1
𝑗=1

𝛼
)

𝛽

]

−1

, 

 

(3.6) 

 

 

ℎ𝑞 =
𝑓𝑞

𝑅𝑡
= (2 − 𝑞)

𝛽

𝛼𝛽
(𝑡𝑖 +∑𝑡𝑗

𝑖−1

𝑗=1

𝑟𝑖−𝑗)

𝛽−1

 

[1 − (1 − 𝑞) (
𝑡𝑖 + ∑ 𝑡𝑗

𝑖−1
𝑗=1 𝑟𝑖−𝑗

𝛼
)

𝛽

]

−1

. 

 

(3.7) 

3.2 q-Weibull GRP Maximum Likelihood Problem 

The q-Weibull GRP maximum likelihood problemsare developed for failure terminated 

and time terminated data using the conditional q-Weibull density functions obtained for both 

virtual ages. They are presented inTables 3.1 and 3.2, respectively.The constraints utilized for 
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the developed optimization problems are related to the validity of the q-Weibull probabilistic 

model: (i) non-negativity of the q-Weibull parameters (otherwise, negative probability 

densities would be obtained contradicting their definition); (ii) non-negativity of the argument 

of q-Exponential function. 

The procedure adopted to find the maximum likelihood estimators would be to 

differentiate the log-likelihood function obtained from the maximum likelihood function with 

respect to each of the parameters, make the derivatives equal to zero and solve the resulting 

system of equations. However, the resulting system (AppendicesA toD) involves intricate 

nonlinear equations and analytical expressions for the estimators are very difficult to be 

obtained. Therefore, in this work, a constrained optimization method based on PSO heuristic 

is adopted. 

 

 

 

 

 

 

 

Table 3.1 - Failure Terminated Optimization Problems 

F
ai
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re

 T
er

m
in

at
ed

 

C
o

n
st

ra
in

ts
 

( 2
−
𝑞
)
>
0
,(

3
.1

0
) 

𝛼
,𝛽
>
0
,(

3
.1

1
) 

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]
≥
0
,∀
𝑖,

(3
.1

2
) 

𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

≥
0
,∀
𝑖,

 (
3
.1

3
) 

[1
−
(1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]
,∀
𝑖.

(3
.1

4
) 

 

( 2
−
𝑞
)
>
0
,  

  
  

  
  

  
  

  
  
  

  
  

  
  

  
  

 (
3
.1

6
) 

𝛼
,𝛽
>
0
,  

  
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

(3
.1

7
) 

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]
≥
0
,∀
𝑖,
   

(3
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8
) 

𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗
≥
0
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𝑖,
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9
) 
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−
(1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]
,∀
𝑖.
   
   

(3
.2

0
)  
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𝑚
𝑎
𝑥

𝛼
,𝛽
,𝑞
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 (
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𝑛
𝛽
)
ln
𝛼
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𝑛
 (
ln
𝛽
+
ln
(2
−
𝑞
))
+

 ∑
{

1

( 1
−
𝑞
)
ln
[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1
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1

𝛼
)𝛽

]
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1

( 𝛽
−
1
)
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𝑖
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𝑗
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1
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2
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−
𝑞
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−
𝑞
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∑
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𝛼
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𝑚
𝑎
𝑥

𝛼
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𝑛
𝛽
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ln
𝛼
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𝑛
 (
ln
𝛽
+
ln
(2
−
𝑞
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+
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{

1

(1
−
𝑞
)
ln
[1
−
(1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
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1
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1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]
+

𝑛 𝑖=
1

( 𝛽
−
1
)
ln
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗
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1

𝑟
𝑖−
𝑗
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 ∑

(𝑞
−
2
)

(1
−
𝑞
)
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−
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−

𝑛 𝑖=
2

𝑞
)
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𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽
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Table 3.2 - Time Terminated Optimization Problems 

T
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e 
T

er
m

in
at

ed
 

C
o
n
st

ra
in

ts
 

( 2
−
𝑞
)
>
0
,(

3
.2

2
) 

𝛼
,𝛽
>
0
,(

3
.2

3
) 

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]
≥
0
,∀
𝑖,

(3
.2

4
) 

𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

≥
0
,∀
𝑖,

(3
.2

5
) 

[1
−
(1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1
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1

𝛼
)𝛽
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(3
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6
) 
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−
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−
𝑞
)
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−
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3
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) 
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𝛼
)𝛽
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3
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3
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−
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3.3 PSO Algorithm to Solve the q-Weibull GRP ML Problem 

In this work, the objective function used in PSO algorithm is the q-Weibull GRP log-

likelihood function associated with the specific data type and virtual age model (e.g., failure 

terminated and Kijima type I). It has to be maximized by choosing optimal parameters’ 

estimates 𝛼̂,  𝛽̂,  𝑞̂, 𝑟̂.The considered problem involves a four-dimensional search space where 

each dimension is related to the decision variables 𝛼, 𝛽, 𝑞 and 𝑟. Therefore, each particle 𝑗 =

 1, … , 𝑛𝑝𝑎𝑟𝑡has 𝑠𝑗,𝑝𝑗,𝑣𝑗  as four-dimensional vectors that have their entries associated with 𝛼, 

𝛽, 𝑞 and 𝑟. The lbest PSO and “let particles fly strategy” are used. Finally, two stop criteria 

are adopted: (i) maximum number of iterations and (ii) the global best particle is the same for 

10% of the maximum number of iterations. 

The steps of the PSO algorithm applied in this research are summarized in the flow 

chart presented in Figure 3.1. The particles’ initialization procedure involves the random 
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generation of particles’ positions within ranges defined in the previous step (“Define 

variables’ initial bounds”, Figure 3.1). However, some combinations of values for 𝛼, 𝛽, 𝑞 and 

𝑟 may result in infeasible particles with respect to the constraints related to the maximum log-

likelihood problem considered (e.g. failure terminated and Kijima type I). In the initialization 

step, whenever an infeasible position is generated it is immediately discarded and a new 

position is then created. This stage ends when all particles’ positions are feasible in the initial 

swarm.  

The maximum velocities are defined as a fraction of 0.1 of the position limits of the 

parameters and the velocities are obtained from uniform random numbers in the maximum 

velocities interval defined. The positions and velocities are obtained from uniform 

distributions over the intervals of definition of the decisions variables and by setting a 

maximum velocity value vmax, respectively.  

The particles’ neighbors are defined considering the particles’ generation order and not 

taking into account any sort of distance metrics.  The particle 𝑖 has 𝑖 − 1 and 𝑖 + 1 as 

neighbors. If 𝑖 =  1, then the “left” neighbor is the last particle and, conversely, if the last 

particle is considered, its “right” neighbor is the first particle.  

After the definition of particles’ neighbors, the fitness evaluation step takes place. It 

consists in evaluating the log-likelihood function for each particle’s position. Then, each 

particle has its own best position updated if such if the current position returns a better log-

likelihood value. After the entire swarm is evaluated, the best neighbors and global best are 

updated. If any of the stop criteria is met, new velocities and positions are calculated through 

equations (2.9) and (2.10) and the fitness evaluation step is repeated only for feasible particles 

(“let particles fly” strategy). This procedure is repeated until a stop criterion is met. The 

algorithm’s output of the best particle are the ML estimates. 

 

Figure 3.1 - PSO flowchart 
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Source: This research 

3.4 Monte Carlo Simulation Procedure for Model Validation 

The parameters’ estimates obtainedvia PSO are used in a Monte Carlo procedureto 

simulate the expected number of failures. The simulation results can be used to compare real 

data and the q-Weibull GRP response as a mode to evaluate its performance. 

Consider a time interval (𝑡𝑙, 𝑡𝑢), which is of interest to estimate the expected number 

of failures. The Monte Carlo simulation starts by the generation of uniform random numbers 

between 0 and 1 for the cumulative distribution function𝐹(𝑡𝑖|𝑣𝑖−1). 

The cumulative distribution function of the q-Weibull distribution solved for 𝑡𝑖for 

each virtual age model is shown in Table 3.3. 

 

 

 

Table 3.3 - Cumulative Distribution Functions 

Virtual age model Cumulative Distribution Function (CDF) 

Kijima type I 

𝑡𝑖 =  𝛼

{
 
 

 
 1− (1− 𝐹(𝑡𝑖|𝑡𝑖−1))

1−𝑞
2−𝑞[1−(1−𝑞)(

𝑟∑ 𝑡𝑗
𝑖−1
𝑗=1

𝛼
)

𝛽

]

(1−𝑞)

}
 
 

 
 

1

𝛽

−  𝑟 ∑ 𝑡𝑗
𝑖−1
𝑗=1 (3.36) 
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Kijima type II 

𝑡𝑖 =  𝛼

{
 
 

 
 1− (1− 𝐹(𝑡𝑖|𝑡𝑖−1))

1−𝑞
2−𝑞[1−(1−𝑞)(

∑ 𝑟𝑖−𝑗𝑡𝑗
𝑖−1
𝑗=1

𝛼
)

𝛽

]

(1−𝑞)

}
 
 

 
 

1

𝛽

− ∑ 𝑟𝑖−𝑗𝑡𝑗
𝑖−1
𝑗=1 (3.37) 

Source: This research 

 

The uniform distribution is used for generating random values of𝐹(𝑡𝑖|𝑡𝑖−1), 

considering the intervals composed by the accumulated failure time, and then random 

numbers of 𝑡𝑖 are obtained through the Equations presented in Table 3.3. This value is added 

to the previous sum of generated times and compared to the period of interest (𝑡𝑙, 𝑡𝑢) 

accordingto the rules of the pseudocode in Figure 3.2. 

Figure 3.2 - Monte Carlo Simulation Pseudocode 

Procedure MONTECARLOSIMULATION (𝛼̂,  𝛽̂, 𝑞̂,  𝑟̂, 𝑚, 𝑡, 𝑛𝐹𝑎𝑖𝑙) 

► Monte Carlo simulation initialization  

for 𝑖 = 0,… , 𝑛𝐹𝑎𝑖𝑙 − 1do  

for 𝑘 = 1,… ,𝑚do  

set time interval of interest (𝑡𝑙 , 𝑡𝑢) ← (𝑡𝑖 , 𝑡𝑖+1)  

𝑡𝑎𝑐 =  𝑡𝑙  

while 𝑡𝑎𝑐 < 𝑡𝑢  

calculate virtual age  

generate cdf from a uniform distribution  

calculate time of failure 𝑋 based on 𝛼̂,  𝛽̂, 𝑞̂,  𝑟̂  

                        𝑡𝑎𝑐 =  𝑡𝑎𝑐 +  𝑋  

if 𝑡𝑎𝑐 < 𝑡𝑢  

𝑛𝐹 = 𝑛𝐹 + 1 ►Failure number update 

else  

break  

end if  

end while  

end for  

         𝑁𝐹 =  𝑛𝐹/𝑚 ►Expected number of failures 

end for  

end procedure  

Source: This research 
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The flowchart representing the algorithm of the Monte Carlo Simulation for each of 

the 𝑚 repetitions is given in Figure 3.3. 

Figure 3.3 - Monte Carlo Simulation Flowchart 

 

Source: This research 
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4 RELIABILITY APPLICATIONS OF THE Q-WEIBULL GRP 

This section presents the applications of the proposed q-Weibull based GRP models to 

reliability data of engineered systems taken from literature. More specifically there are 

threeapplication examples, both involving failure terminated data but one considers Kijima 

type I and the other is related to Kijima type II as virtual age model and the last one concerns 

a time terminated case of Kijima type I model. 

The PSO implementation, which was performed using the parameters presented in 

Table 4.1 (𝜒, 𝑐1 and 𝑐2 values are from Bratton & Kennedy (2007)) and Monte Carlo 

simulations, repeated 10000 times, were conducted using MATLAB version 7.7. All 

experiments were run in a personal computer with 2.4 GHz, 8Gb of RAM and Windows 10 

operating system. 

 

Table 4.1 - PSO Parameters 

Parameter Value 

Number of particles 30 

Number of neighbors 2 

Number of iterations 10000 

Number of algorithm’s replication 30 

𝑐1 = 𝑐2 2,050 

𝜒 7,298 ∙ 10−1 

Source: This research 

4.1 Example 1:   Failure Times of the Powertrain System of Bus #514 

In this first example, the data regard the failure times of the powertrain system of a bus 

that was employed in urban routes of the city of Naples extracted from Guida & Pulcini 

(2009). The data are referred to a failure terminated case andare presented in Table 4.2. The 

virtual age model applied is Kijima type I. 
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Table 4.2 - Powertrain of Bus #514 Failure Data 

Failure 

number 
TBF 

(km) 
Failure 

number 
TBF 

(km) 
Failure 

number 
TBF 

(km) 

1 2.412 12 16.096 23 5.094 

2 0.794 13 27.218 24 16.006 

3 1.184 14 0.907 25 0.816 

4 8.194 15 10.496 26 32.941 

5 17.325 16 2.11 27 2.293 

6 20.803 17 0.343 28 6.662 

7 47.838 18 2.181 29 1.938 

8 2.522 19 2.814 30 4.174 

9 43.421 20 6.646 31 20.765 

10 14.723 21 2.056 32 2.279 

11 3.201 22 7.544 33 3.756 
Source: Guida & Pulcini (2009, p.438) 

 

The descriptive statistics of the results and the response of PSO’s best particle are 

presented in Tables 4.3 and 4.4. The obtained failure intensity behavior of the model is a 

bathtub curve presenting 𝛽̂ = 0.5846 and 𝑞̂ = 0.9314, the repair effectiveness parameter 𝑟̂ =

0.999 is and approximately denotes minimal repair. 

From the descriptive statistics (Table 4.3) small standard deviations are observed, which 

indicates the robustness of the PSO algorithm in providing approximately the same response 

in different algorithm replications. 

 

Table 4.3 - Powertrain of Bus #514 PSO Descriptive Statistics 

Powertrain Bus #514 Minimum Maximum Mean Std. Dev 

 
Parameters 

𝛼̂ 4.3548 4.3548 4.3548 1.74E-06 

𝛽̂ 0.5846 0.5846 0.5846 7.42E-08 

𝑞̂ 0.9314 0.9314 0.9314 9.67E-09 

𝑟̂ 0.9999 0.9999 0.9999 1.91E-13 

Maximum log-likelihood -110.1458 -110.1458 -110.1458 1.91E-13 
Source: This research 
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Table 4.4 - Powertrain of Bus #514 PSO Best Particle 

Powertrain Bus #514 q-Weibull GRP ACI Weibull GRP 

 
Parameters 

𝛼̂ 4.3548 [-1.1375, 9.8471] 8.4639 

𝛽̂ 0.5846 
[-184.2154, 

185.3846] 
0.8045 

𝑞̂ 0.9314 
[-490.0621, 

491.9249] 
- 

𝑟̂ 0.9999 
[-15.2056, 

17.2054] 
0.0041 

Hazard Rate Bathtub Curve 
- Monotonically 

decreasing 
Source: This research 

 

In the case of the bathtub curve, the relation between the repair effectiveness parameter to 

the equipment’s condition depends on each phase of the function. The parameters’ estimates 

are the obtained by the PSO’s best particle and its asymptotic confidence intervals with 90% 

of confidence are presented in Table 4.4. The intervals related to 𝛼 and 𝛽 contain invalid 

parameters’ values, since them cannot be negative, the  𝑟interval includes all post repair 

states. The large range of the intervals may be justified by the asymptotic confidence intervals 

suitability for large samples and thus for small ones, such the presented case, they may 

present inconsistent results. 

The unconditional failure intensity function (associated with the time to first failure) and 

the conditional behavior resulting from the virtual age considerationare illustratedin Figure 

(4.1). 

 

Figure 4.1 - Failure intensity for the case of Powertrain of Bus #514. (a) First failure; (b) Conditional failures. 

                               (a)                                                                                      (b) 

 

Source: This research 
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Monte Carlo simulations were performed to stablish a comparison between the model 

proposed and the real failure occurrence and is presented in Figure 4.2. From the simulation’s 

result, a similarity between the real and simulated failure occurrence can be noted, which 

indicates a good adjustment of the q-Weibull GRP model for this case, especially compared to 

the results obtained with Weibull GRP model, which presents a totally different effectiveness 

repair value and classification. 

 

Figure 4.2 - Expected Number of Failures of Powertrain of Bus #514 

 

Source: This research 

 

4.2 Example 2:  Failure Times of an NC Machine Tool 

The second example comprehends the application of the Kijima type II model using the 

failure times encountered in Wang & Yang (2012), a failureterminated case. 

The estimated parameters for the NC machine tool case from the best scenario of Wang 

& Yang (2012), which uses a GRP Kijima type I based on the Weibull distribution, were 

30.58  , 0.766  and 0.109r   that suggests a post-repair condition of better than new 

but worse than old since it has a monotonically decreasing failure intensity. The results 

obtained with q-Weibull, which are presented in Tables 4.6 and 4.7, of 𝛽 = 0.4502 and 𝑞 =

0
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−2.1489 leads to a bathtub curve hazard rate (Figure 4.3) and 𝑟 = 0.2155to the same repair 

effectiveness category as the work in comparison. 

 

Table 4.5 - NC Machine Tool Failure Data 

Failure 

number TBF (h) 
Failure 

number TBF (h) 
Failure 

number TBF (h) 
Failure 

number TBF (h) 

1 27.51 8 341.4 15 76.43 22 432.42 

2 340.01 9 9.28 16 471.23 23 87.75 

3 27 10 88.17 17 32.4 24 81.01 

4 1.12 11 86.34 18 86.43 25 220.05 

5 11.11 12 318.44 19 83.18 26 91.7 

6 25.74 13 323.12 20 196.27 27 82.17 

7 81.68 14 169.63 21 70.91 28 92.98 
Source: Wang & Yang (2012, p.1131) 

 

Figure 4.3 - Failure intensity for the case NC Machine Tool for q-Weibull GRP Kijima type II and Weibull GRP. 

(a) First failure; (b) Conditional failures. 

                                        (a) (b) 

 

Source: This research 

 

The descriptive statistics for the parameters and the maximum log-likelihood estimates 

for the 30 runs are presented in Table 4.6. The best particle’s results were utilized for the 

estimates. The descriptive statistics of the NC machine tool presents relatively high standard 

deviations, even though they are still small when compared to the respective mean values. 

This may be explained by the estimates of q  and  parameters, which satisfy 1q   and 0 << 

1. According to experiments, values in these ranges for the shape parameters may incorporate 

instability to the log-likelihood function and make the search for the optimum more difficult. 

Current researches are focused on investigating these variations.  
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Table 4.6 - NC Machine Tool PSO Descriptive Statistics 

NC Machine Tool Minimum Maximum Mean Std. Dev 

 
Parameters 

𝛼̂ 6206.5712 6587.8891 6358.8070 87.8355 

𝛽̂ 0.4502 0.4526 0.4517 5.61E-04 

𝑞̂ -2.1489 -2.0829 -2.1102 1.58E-02 

𝑟̂ 0.2148 0.2168 0.2158 1.53E-03 

Maximum log-likelihood -165.6476 -165.6475 -165.6476 4.23E-04 
  

Source: This research 

 

Table 4.7 - NC Machine Tool Comparison Between q-Weibull GRP and Weibull GRP 

NC Machine Tool q-Weibull GRP ACI Weibull GRP 

 
Parameters 

𝛼̂ 6587.8891 [6587.88, 6587.89] 0.0199 

𝛽̂ 0.4502 [-177.53, 178.43] 0.870 

𝑞̂ -2.1489 [-23.59, 19.29] - 

𝑟̂ 0.2155 [-4.67, 5.10] 1 

Hazard Rate Bathtub Curve 
- Monotonically 

decreasing 
Source: This research 

 

The best particle’s results, presented in Table 4.7 along with its asymptotic confidence 

intervals with 90% of confidence, were utilized for the estimates. As previously commented 

in Example 1, the intervals present a large range, providing invalid parameter’s values for 

𝛽and comprehending different post repair states. 

The influence of the virtual age in the intensity failure rate can be observed in Figure 

4.3 and the expected number of failures in Figure 4.4.  The adjustment of the q-Weibull model 

has proven to be not so effective when compared to the real failure occurrence, but comparing 

to the results obtained with the Weibull based model the proposed model can be considered 

efficient. 
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Figure 4.4 - Expected Number of Failures of NC Machine Tool 

 

Source: This research 

 

4.3 Example 3: Failure Times of a Propulsion Motor 

This example of a time terminated case using Kijima type I modeluses failure data 

encountered in Yañez et al. (2002) of the U.S.S. Halfbeak No. 3 main propulsion motor. The 

data is given in Table 4.8. 

 

Table 4.8 - Propulsion Motor Failure Data 

Failure 

number TBF (h) 
Failure 

number TBF (h) 
Failure 

number TBF (h) 
Failure 

number TBF (h) 

1 860 7 1278 13 367 19 490 

2 1608 8 605 14 2758 20 945 

3 1134 9 344 15 355 21 105 

4 2703 10 1054 16 1084 22 127 

5 645 11 680 17 855 23 61 

6 95 12 405 18 280 24 326 
Source: Yañez et al. (2012, p.177) 

 

Tables 4.9 and 4.10 present the descriptive statistics of the results and the response of 

PSO’s best particle along with the 90% asymptotic confidence intervals. The obtained failure 

intensity behavior of the model is a bathtub curve presenting 𝛽̂ = 0.5424 and 𝑞̂ = 0.8783, 
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the repair effectiveness parameter 𝑟̂ = 0.0058  approximately denotes perfect repair. The 

inconsistencies encountered around the ACI in the previous examples remains in this case. 

As observed in Example 2, the descriptive statistics of the propulsion motor presents 

relatively high standard deviations, even though they are still small when compared to the 

respective mean values. The estimated values of q  and  parameters, which satisfy 1q   and 0 

<< 1, are in the ranges where the log-likelihood may present instabilities that difficult the 

quest for optimal estimates. 

 

Table 4.9 -  Propulsion Motor PSO Descriptive Statistics 

Propulsion Motor Minimum Maximum Mean Std. Dev 

 
Parameters 

𝛼̂ 790.5135 2551.7426 1782.9440 5.09E+02 

𝛽̂ 0.3088 0.6282 0.4518 9.53E-02 

𝑞̂ 0.5699 0.8928 0.7889 9.79E-02 

𝑟̂ 0.0004 0.0119 0.0050 3.00E-03 

Maximum log-likelihood -165.6476 -198.2526 -196.6727 5.18E-01 

Source: This research 

 

Table 4.10 – Propulsion Motor Comparison Between q-Weibull GRP and Weibull GRP 

Propulsion Motor q-Weibull GRP ACI Weibull GRP 

 
Parameters 

𝛼̂ 1479.2134 
[1479.21, 

1479.22] 
1828 

𝛽̂ 0.5424 [-20.42, 21.51] 2.026 

𝑞̂ 0.8783 [-26.78, 28.53] - 

𝑟̂ 0.0058 [-70.68, 70.69] 0.146 

Hazard Rate Bathtub Curve 
- Monotonically 

increasing 
Source: This research 

 

The influence of the repair effectiveness parameter close to 0, which indicates an as 

new condition to the equipment after repair and the expected number of failures can be 

observed in Figures 4.5 and 4.6, respectively. The difference between the expected number of 

failures and the real failure occurrence can be related to the difficulties around the 

optimization of the maximum log-likelihood function, mentioned previously. Although the 

total predicted number of failures in q-Weibull GRP model is smaller compared to the 

Weibull GRP model, the proposed model presents a good adjustment in almost a half of the 

first failures, while the Weibull model presents a better adjustment in the last failures.Due to 

the 𝑟̂ = 0.0058 and the constant behavior phase of the bathtub curve until 60000h, the linear 
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behavior encountered in the Monte Carlo simulation of q-Weibull GRP is 

understandable.When compared to real data, the proposed model super estimates the 

beginning of equipment’s deterioration stage. The q-Weibull GRP would become more 

adequate if a larger number of failure occurrence data were provided. 

Figure 4.5 - Failure intensity for the case Propulsion Motor for q-Weibull GRP Kijima type I and Weibull GRP. 

(a) First failure; (b) Conditional failures. 

(a)                                                                                      (b) 

 

Source: This research 

 

 

Figure 4.6 - Expected Number of Failures of Propulsion Motor 

 

Source: This research 
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4.4 Results Discussion 

Through the different experiments performed in order to obtain the parameters’ 

estimates of the model, a limitation regarding the ability of the model arise. For various 

failure data tested, the model’s response of the effectiveness repair parameter, 𝑟 , was near the 

values 0 or 1. This results leads to the cases of the RP and NHPP and may occur due to a 

limitation of the proposed model to evaluate the whole behavior of the failure intensity. 

Dijoux (2009) confronted this problem with the Weibull based GRP making 

assumptions of repairs and using different virtual ages to each phase of the bathtub curve 

resulting in a complex system with an elevated number of parameters to be estimated, which 

is not viable. 

The value of the repair effectiveness parameter 𝑟 was constrained to the interval [0,1], 

but it is not necessarily in this interval, although it is rather common in practical situations and 

literature, leading to the situations where the system condition is restored to an intermediate 

state, depending on the failure intensity considered. Values of 𝑟 < 0 may result in complex 

numbers in the Monte Carlo simulation and it would be an issue to be solved in future 

applications. 

There are different interpretations to the repair, which is assumed as a unique value and 

may not be the same for all periods of equipment’s lifecycle. The different interpretations are 

described in Table 4.11. 

 

Table 4.11 - Different Repair Effectiveness Interpretations 

Failure Intensity 𝑟value Interpretation 

Bathtub curve 
𝑟 = 0 and 𝑟 < 0 

Burn-in phase: non effective repair;  
Wear out phase: effective repair; 

𝑟 = 1 and 𝑟 > 1 
Burn-in phase: effective repair;  
Wear out phase: non effective repair; 

Unimodal 
𝑟 = 0 and 𝑟 < 0 

Decreasing phase: non effective repair; 
Increasing phase: effective repair; 

𝑟 = 1 and 𝑟 > 1 
Decreasing phase: effective repair; 
Increasing phase: non effective repair 

Monotonically Increasing 
𝑟 = 0 and 𝑟 < 0 Effective repair 

𝑟 = 1 and 𝑟 > 1 Non effective repair 

Monotonically Decreasing 
𝑟 = 0 and 𝑟 < 0 Non effective repair 

𝑟 = 1 and 𝑟 > 1 Effective repair 
Source: This research 
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Regarding the asymptotic confidence intervals, the obtained results of the application 

examples may be considered inaccurate due to the reduced sample size of failure times data 

that indicates the requirement of developing an alternative confidence interval such as 

bootstrap-based ones, which can be combined to PSO to provide interval estimates. 
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5 CONCLUDING REMARKS 

5.1 Conclusions 

In this master thesis, a GRP elaborated using a q-Weibull distribution for the timesto 

failure is proposed. In fact, a total of four models were developed, since failure and time 

terminated data were considered along with Kijima type I and type II virtual ages. In order to 

obtain the q-Weibull GRP parameters’ estimates, the maximum log-likelihood problem 

associated with each data type and virtual age model was derived. 

Although the Weibull distribution has been widely used with GRP, the q-Weibull brings 

more flexibility to the model because of the  q  parameter affecting the shape as well as   

parameter. Therefore, the GRP becomes able to incorporate additional failure intensity 

behaviors that could not be modelled with the Weibull based GRP. 

Due to the complexity of the maximum log-likelihood optimization problem, a 

probabilistic heuristic is used instead of numerically solving the corresponding system of 

derivatives. The chosen method, PSO, proved to be a great tool in this context of application: 

it provided coherent estimates for the parameters of the q-Weibull GRP and several 

replications for a given example indicated small variations for the estimates. 

Some results found in the applications performed were compared with Weibull GRP 

applications and differences between the hazard rate’s behaviors were observed.The 

numerical experiments indicate the PSO ability in providing very similar solutions for the q-

Weibull maximum log-likelihood problem related to a specific failure data set in different 

runs. 

Moreover, Monte Carlo simulations were developed to compare the outputs of the 

estimated q-WeibullGRP model against the real failure occurrences. For the application 

examples considered in this work, the proposed model presented relatively good data 

adjustment compared to the results obtained in previous works based on Weibull GRP model. 
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5.2 Limitations and Future Works 

A step forward to the q-Weibull based GRP proposed in this master thesis is to evaluate 

manners to consider the different failure intensity behaviors in order to obtain the most 

realistic parameters to represent equipment’s conditions during its life cycle. 

The PSO is also a subject of possible improvement, such as the initialization to reduce 

time and computational effort; and the evaluation of the optimization when complex log-

likelihood functions occurs. 

A step forward to this research would be to numerically validate the model to evaluate 

its accuracy and precision and develop confidence intervals using methods such as Bootsrap, 

Jackknife, Nelder Mead and Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm, since 

the obtained asymptotic confidence intervals rely on the central limit theorem, suited for large 

samples, and for small ones may present inconsistent results. 

The obtained results from q-Weibull GRP can be used in practical enterprise situations 

to maintenance planning and evaluation,representing an interesting tool to support operational 

decisions.  
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𝜕
ln
𝐿

𝜕
𝛽
𝜕
𝑟
=
𝜕
ln
𝐿

𝜕
𝑟𝜕
𝛽
=
∑

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)

𝑛

𝑖=
1

−
1 𝛼
𝛽
∑

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)𝛽
−
1
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2
{
[𝛽
ln
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)
+
1
]
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]

𝑛

𝑖=
1

−
( 𝑞
−
1
)
𝛽 𝛼
𝛽
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗

𝑖−
1

𝑗
=
1

)

𝛽

ln
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)
}

−
( 𝑞
−
2
)

𝛼
𝛽

∑
(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)𝛽
−
1
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]2
{
[𝛽
ln
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)
+
1
]
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]

𝑛

𝑖=
2

−
( 𝑞
−
1
)
𝛽 𝛼
𝛽
(
𝑟
∑

𝑡 𝑗

𝑖−
1

𝑗
=
1

)

𝛽

ln
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)
}

 

𝜕
𝑙𝑛
𝐿

𝜕
𝑟
2
=
∑

(   
−
( 𝛽
−
1
) (
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2

−
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

(∑
𝑡 𝑗

𝑖−
1

𝑗=
1
)2
𝛽
2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
1

+
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2
( 1
−
𝑞
)

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
∑

(   
−

( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2

𝑟
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝑟
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
( 1
−
𝑞
)

𝑟
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2
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𝜕
ln
𝐿

𝜕
𝑞
2
=

−
𝑛

( 2
−
𝑞
)2
+
( 1
−
𝑞
)

( 1
−
𝑞
)4
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
+

( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

] }    
𝑛

𝑖=
1

+
∑

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

( 1
−
𝑞
)
[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

{    
[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]

( 1
−
𝑞
)

−
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

}    
𝑛

𝑖=
1

+
1

( 1
−
𝑞
)4
∑

{    

[    ln
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
+

( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

] ]    
𝑛

𝑖=
2

−
2
( 𝑞
−
1
)(
𝑞
−
2
)
ln
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

] }    

+
1

( 1
−
𝑞
)2
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
+

( 𝑞
−
1
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

] }    
𝑛

𝑖=
2

+
∑

(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

{    

−

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]

( 1
−
𝑞
)2

−
( 𝑞
−
2
)

( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

}    
𝑛

𝑖=
2

 

𝜕
𝑙𝑛
𝐿

𝜕
𝑞
𝜕
𝑟
=
𝜕
𝑙𝑛
𝐿

𝜕
𝑟𝜕
𝑞
=
∑

(   
(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
) )   

𝑛

𝑖=
1

+
∑

(   
−

(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝑟
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝑟
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

 

 

 

 



Appendix  64 

 

  

 

S
ec

o
n
d
 p

ar
ti

al
 d

er
iv

at
iv

es
 f

ai
lu

re
 t

er
m

in
at

ed
 K

ij
im

a 
ty

p
e 

I 

 𝜕
𝑙𝑛
𝐿

𝜕
𝛼
2
=
𝑛
𝛽

𝛼
2
+
∑

(   
−

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
−

( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

 

𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝛽
=
𝜕
𝑙𝑛
𝐿

𝜕
𝛽
𝜕
𝛼
=
−
𝑛 𝛼

+
∑

(   
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
1

+

(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
∑

(   
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

+

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
 

𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝑞
=
𝜕
𝑙𝑛
𝐿

𝜕
𝑞
𝜕
𝛼
=
∑

(   
−

(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2
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𝜕
𝑙𝑛
ℒ

𝜕
𝛼
=
 −
𝑛
𝛽

𝛼
+
𝛽 𝛼
∑

(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
𝑛

𝑖=
1

1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

+
( 𝑞
−
2
)
𝛽 𝛼
∑

(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
𝑛

𝑖=
2

1

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

] 

𝜕
𝑙𝑛
ℒ

𝜕
𝛽
=
 𝑛 𝛽
−
𝑛
ln
( 𝛼
)
+
∑

ln
(
𝑡 𝑖
+
∑

𝑡 𝑗

𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗
)

𝑛

𝑖=
1

−
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

ln
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

−
( 𝑞
−
2
)
∑

(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
𝑛

𝑖=
2

1

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

ln
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)
, 

𝜕
𝑙𝑛
ℒ

𝜕
𝑞
=

−
𝑛

(2
−
𝑞
)
+

1

(1
−
𝑞
)2
∑

𝑙𝑛

𝑛

𝑖=
1

[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]

+
1

(1
−
𝑞
)
∑

(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

𝑛

𝑖=
1

+
(𝑞
−
2
)

(1
−
𝑞
)2
∑

𝑙𝑛

𝑛

𝑖=
2

[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]

+
1

(1
−
𝑞
)
∑

{    

𝑙𝑛
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

(𝑞
−
2
)

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]

(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}    
𝑛

𝑖=
2

 

𝜕
𝑙𝑛
𝐿

𝜕
𝑟
=
∑

(    
( 𝛽
−
1
)
(∑

𝑡 𝑗
𝑟𝑖
−
𝑗 (
𝑖−
𝑗)

𝑟
𝑖−
1

𝑗=
1

)

𝑡 𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

−

(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛽

𝛽
(∑

𝑡 𝑗
𝑟𝑖
−
𝑗 (
𝑖−
𝑗)

𝑟
𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛽

)
)

)    
𝑛

𝑖=
1

+
∑

(    

−

( 𝑞
−
2
)
(
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛽

𝛽
(∑

𝑡 𝑗
𝑟𝑖
−
𝑗 (
𝑖−
𝑗)

𝑟
𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(
(
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛽

)
)

)    
𝑛

𝑖=
2
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟𝜕
𝛼
=
∑

(   
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

+

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)
( 1
−
𝑞
)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

+

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)
( 1
−
𝑞
)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
 

𝜕
ln
𝐿

𝜕
𝛽
2
=
−
𝑛 𝛽
2
−
∑

[𝑙
𝑛
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)]
2

(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

𝑛

𝑖=
1

{
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
−
( 𝑞
−
1
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}

−
( 𝑞
−
2
)
∑

[𝑙
𝑛
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)]
2

(∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

𝑛

𝑖=
2

{
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
−
( 𝑞
−
1
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}
 

𝜕
ln
𝐿

𝜕
𝛽
𝜕
𝑞
=
𝜕
ln
𝐿

𝜕
𝑞
𝜕
𝛽
=
∑

(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)2
𝛽

ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

𝑛

𝑖=
1

−
 ∑

(∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

𝑛

𝑖=
2

{
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
−
( 𝑞
−
2
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

}
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟𝜕
𝛽
=
∑

(   
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)
𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

−

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)
( 1
−
𝑞
)
ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   

+
∑

(   
−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)
𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

−

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)
( 1
−
𝑞
)
ln
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
 

 

𝜕
𝑙𝑛
𝐿

𝜕
𝑟𝜕
𝑞
=
∑

(   
(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
−

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2
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𝜕
ln
𝐿

𝜕
𝑞
2
=

−
𝑛

( 2
−
𝑞
)2
+
( 1
−
𝑞
)

( 1
−
𝑞
)4
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

] }    
𝑛

𝑖=
1

+
∑

(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

( 1
−
𝑞
)
[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

{    
[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

( 1
−
𝑞
)

−
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}    
𝑛

𝑖=
1

+
1

( 1
−
𝑞
)4
∑

{    

[    ln
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

] ]    
𝑛

𝑖=
2

−
2
( 𝑞
−
1
)(
𝑞
−
2
)
ln
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

] }    

+
1

( 1
−
𝑞
)2
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

( 𝑞
−
1
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

] }    
𝑛

𝑖=
2

+
∑

(∑
𝑡 𝑗

𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

{    

−

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

( 1
−
𝑞
)2

−
( 𝑞
−
2
)

( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}    
𝑛

𝑖=
2
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𝜕
𝑙𝑛
𝐿

𝜕
𝛼
2
=
𝑛
𝛽

𝛼
2
+
∑

(   
−

(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   

+
∑

(   
−

( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

−
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
 

𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝛽
=
−
𝑛 𝛼
+
∑

(   
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

+
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1 𝛼

)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

+

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   

+
∑

(   
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

+

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
 

𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝑞
=
∑

(   
−

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟
2
=
∑

(   
( 𝛽
−
1
)
(∑

(𝑡
𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)
2

𝑟
2

−
𝑡 𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)

𝑟
2

)
𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
−
( 𝛽
−
1
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)2

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)2

𝑛

𝑖=
1

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)2

𝛽
2

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽
(∑

(𝑡
𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)
2

𝑟
2

−
𝑡 𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)

𝑟
2

)
𝑖−
1

𝑗
=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

+
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)2

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

−

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)2

( 1
−
𝑞
)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   

+
∑

(   
−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)2

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

(𝑡
𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)
2

𝑟
2

−
𝑡 𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)

𝑟
2

)
𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)2

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)2

( 1
−
𝑞
)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
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APPENDIX C – Kijima type I – Time terminated case 
F

ir
st

 p
ar

ti
al
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er

iv
at

iv
es

 t
im

e 
te

rm
in

at
ed

 K
ij

im
a 

I 

𝜕
ℒ

𝜕
𝛼
=
 −
𝑛
𝛽

𝛼
+
𝛽 𝛼
∑

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

]

𝑛

𝑖=
1

+
( 𝑞
−
2
)
𝛽 𝛼
∑

(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗
=
1

𝛼
)𝛽

]

𝑛

𝑖=
2

+

( 2
−
𝑞
)

(  
−

( 1
−
𝑞
) (
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
) (
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽

)

+
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

)

)  

1
−
𝑞

 

 

𝜕
ℒ

𝜕
𝛽
=
 𝑛 𝛽
−
𝑛
ln
( 𝛼
)
+
∑

ln
(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)

𝑛 𝑖=
1

−
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

ln
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

[ 1
−
( 1
−
𝑞
) (
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]

−
(𝑞
−

2
)
∑

(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

ln
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

[ 1
−
( 1
−
𝑞
) (
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]

𝑛 𝑖=
2

+

( 2
−
𝑞
) (   

( 1
−
𝑞
) (
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽

ln
(
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽

1
−
( 1
−
𝑞
) (
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽
−

( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

ln
(
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

1
−
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

)   

1
−
𝑞
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F
ir

st
 p

ar
ti

al
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er
iv

at
iv

es
 t

im
e 

te
rm

in
at

ed
 K

ij
im

a 
I 

𝜕
ℒ

𝜕
𝑞
=

−
𝑛

( 2
−
𝑞
)
+

1

(1
−
𝑞
)2
∑

𝑙𝑛

𝑛

𝑖=
1

[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]
+

1

(1
−
𝑞
)
∑

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]

𝑛

𝑖=
1

+
(𝑞
−
2
)

(1
−
𝑞
)2
∑

𝑙𝑛

𝑛

𝑖=
2

[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]

+
1

(1
−
𝑞
)
∑

{    

𝑙𝑛
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]
+

(𝑞
−
2
)

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]

(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

}    
𝑛

𝑖=
2

−

−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)
+
ln
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

1
−
𝑞

+

( 2
−
𝑞
)
(
−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)
)
+
ln
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

( 1
−
𝑞
)2

+

( 2
−
𝑞
)
(
−

(
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽

1
−
( 1
−
𝑞
) (
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽
+

(
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

1
−
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽
)

1
−
𝑞

 

 

𝜕
ℒ 𝜕
𝑟
=
( 𝛽
−
1
)
∑

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)

𝑛

𝑖=
1

−
𝛽 𝛼
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽
−
1

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]

−
(𝑞

−
2
)
𝛽 𝛼
∑

(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽
−
1

∑
𝑡 𝑗

𝑖−
1

𝑗
=
1

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]

𝑛

𝑖=
2

−
( 2
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)
𝛽
∑

𝑡 𝑗
𝑛 𝑗
=
1

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

)
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I 

𝜕
ln
𝐿

𝜕
𝛼
𝜕
𝑟
=
𝜕
ln
𝐿

𝜕
𝑟𝜕
𝛼
=
−
𝛽
∑

∑
𝑡 𝑗

𝑖−
1

𝑗
=
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2
{
[−
(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)𝛽
−
1

𝛼
𝛽
+
1

−
( 𝛽
−
1
) (
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)𝛽
−
1

𝛼
𝛽
+
1

]
[1

𝑛

𝑖=
1

−
( 1
−
𝑞
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
+
𝛽
( 𝑞
−
1
) (
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2
𝛽
−
1

𝛼
2
𝛽
+
1

}

−
( 𝑞

−
2
)
∑

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]2
{
[−
(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)𝛽
−
1

𝛼
𝛽
+
1

−
( 𝛽
−
1
) (
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)𝛽
−
1

𝛼
𝛽
+
1

]
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]

𝑛

𝑖=
2

+
𝛽
( 𝑞
−
1
) (
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2
𝛽
−
1

𝛼
2
𝛽
+
1

}

+
( 2
−
𝑞
)

( 1
−
𝑞
)

(    
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑛 𝑗
=
1
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1
)𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+

( 1
−
𝑞
)2
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑛 𝑗=
1
)

𝛼
(
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1
))

)    
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𝜕
ln
𝐿

𝜕
𝛽
𝜕
𝑟
=
𝜕
ln
𝐿

𝜕
𝑟𝜕
𝛽
=
∑

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)

𝑛

𝑖=
1

−
1 𝛼
𝛽
∑

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)𝛽
−
1
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2
{
[𝛽
ln
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)
+
1
]
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]

𝑛

𝑖=
1

−
( 𝑞
−
1
)
𝛽 𝛼
𝛽
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗

𝑖−
1

𝑗
=
1

)

𝛽

ln
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)
}

−
( 𝑞
−
2
)

𝛼
𝛽

∑
(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)𝛽
−
1
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]2
{
[𝛽
ln
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)
+
1
]
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]

𝑛

𝑖=
2

−
( 𝑞
−
1
)
𝛽 𝛼
𝛽
(
𝑟
∑

𝑡 𝑗

𝑖−
1

𝑗
=
1

)

𝛽

ln
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)
}

+
1

( 1
−
𝑞
)

(   
( 2
−
𝑞
)

(  
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑛 𝑗=
1
)
ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

(∑
𝑡 𝑗

𝑛 𝑗
=
1
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−

( 1
−
𝑞
)2
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑛 𝑗=
1
)
ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

)

2

)  

)   
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𝜕
ln
𝐿

𝜕
𝑞
2
=

−
𝑛

( 2
−
𝑞
)2
+
( 1
−
𝑞
)

( 1
−
𝑞
)4
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
+

( 1
−
𝑞
)
(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

] }    
𝑛

𝑖=
1

+
∑

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

( 1
−
𝑞
)
[1
−
( 1
−
𝑞
)
(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]2

{    
[1
−
( 1
−
𝑞
)
(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]

( 1
−
𝑞
)

−
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

}    
𝑛

𝑖=
1

+
1

( 1
−
𝑞
)4
∑

{    

[    ln
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

]
+

( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

] ]    

−
2
( 𝑞
−
1
)(
𝑞
−
2
)
ln
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

] }    
𝑛

𝑖=
2

+
1

( 1
−
𝑞
)2
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
+

( 𝑞
−
1
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

] }    
𝑛

𝑖=
2

+
∑

(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

{    

−

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]

( 1
−
𝑞
)2

−
( 𝑞
−
2
)

( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

}    
𝑛

𝑖=
2

−
2

( 1
−
𝑞
)

(  
−

(
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  

−

2
(
−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)
+
ln
(
1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)

( 1
−
𝑞
)2

+
2
( 2
−
𝑞
)

( 1
−
𝑞
)2

(  
−

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)
𝛽

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  

+

2
( 2
−
𝑞
)
(
−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)
+
ln
(
1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)

( 1
−
𝑞
)3

+
( 2
−
𝑞
)

( 1
−
𝑞
)

(  
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2
−

(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)
𝛽

)

2

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)  
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 𝜕
𝑙𝑛
𝐿

𝜕
𝛼
2
=
𝑛
𝛽

𝛼
2
+
∑

(   
−

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
−

( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

+
1

(1
−
𝑞
)

(   
( 2
−
𝑞
)

(  
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

)

+

( 1
−
𝑞
)2
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2
−

( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

−

( 1
−
𝑞
)2
(
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)

2

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)

2

)  

)   
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𝜕
ln
𝐿

𝜕
𝛽
2
=
−
𝑛 𝛽
2
−
∑

[𝑙
𝑛
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)]
2

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

𝑛

𝑖=
1

{
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
−
( 𝑞
−
1
)
(
𝑡 𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

𝛽

}

−
( 𝑞
−
2
)
∑

[𝑙
𝑛
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)]
2

(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

𝑛

𝑖=
2

{
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
−
( 𝑞
−
1
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

}

+
1

( 1
−
𝑞
)

(   
( 2
−
𝑞
)

(  
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)2

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+

( 1
−
𝑞
)2
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)2

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)2

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

−

( 1
−
𝑞
)2
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)2

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)  

)   
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𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝑞
=
∑

(   
−

(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

−
1

( 1
−
𝑞
)

(  
−

( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)
𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  

+
( 2
−
𝑞
)

( 1
−
𝑞
)

(  
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+

( 1
−
𝑞
)
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2
−

(∑
𝑡 𝑗

𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)

−

( 1
−
𝑞
)
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)  
+
( 2
−
𝑞
)

( 1
−
𝑞
)2

(  
−

( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

)

+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  
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I 

𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝛽
=
−
𝑛 𝛼
+
∑

(   
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
1

+

(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
∑

(   
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

+

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛼
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
1

(1
−
𝑞
)

(   
( 2
−
𝑞
)

(  
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

)

−

( 1
−
𝑞
)2
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)
𝛽

)

2

𝛽
ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2
+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

+

( 1
−
𝑞
)2
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

𝛽
ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)  

)   
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𝜕
𝑙𝑛
𝐿

𝜕
𝑞
𝜕
𝑟
=
∑

(   
(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
) )   

𝑛

𝑖=
1

+
∑

(   
−

(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

𝛽

𝑟
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝑟
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

+
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑛 𝑗=
1
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 2
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑛 𝑗=
1
)

( 1
−
𝑞
) (
𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

)

+
( 2
−
𝑞
)

( 1
−
𝑞
)

(  
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑛 𝑗=
1
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+

(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

( 1
−
𝑞
) 𝛽
(∑

𝑡 𝑗
𝑛 𝑗=
1
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1
)
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

)  
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟
2
=
∑

(   
−
( 𝛽
−
1
) (
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2

−
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

(∑
𝑡 𝑗

𝑖−
1

𝑗=
1
)2
𝛽
2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
1

+
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

(
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1
)2
( 1
−
𝑞
)

(𝑡
𝑖
+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
∑

(   
−

( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2

𝑟
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
( 𝑞
−
2
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝑟
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
( 1
−
𝑞
)

𝑟
2
(
1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

+
( 2
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑛 𝑗
=
1
)2

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 2
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑛 𝑗=
1
)2

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 2
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑛 𝑗=
1
)2
( 1
−
𝑞
)

(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗
=
1
)2
(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2
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𝜕
ln
𝐿

𝜕
𝛽
𝜕
𝑞
=
𝜕
ln
𝐿

𝜕
𝑞
𝜕
𝛽
=
∑

(𝑡
𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)2
𝛽

ln
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

𝑛

𝑖=
1

−
 ∑

(𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)

[1
−
( 1
−
𝑞
)
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

𝑛

𝑖=
2

{
[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

]
−
( 𝑞
−
2
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

}

−
1

( 1
−
𝑞
)

(  
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)
𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  

+
1

( 1
−
𝑞
)

(   
( 2
−
𝑞
)

(  
−
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−

( 1
−
𝑞
)
(
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

2

+
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

+

( 1
−
𝑞
)
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

ln
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)  

)   

+
( 2
−
𝑞
)

( 1
−
𝑞
)2

(  
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)
)  
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APPENDIX D – Kijima type II – Time Terminated case 
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𝜕
ℒ

𝜕
𝛼
=
 −
𝑛
𝛽

𝛼
+
𝛽 𝛼
∑

(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
𝑛

𝑖=
1

1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

+
( 𝑞
−
2
)
𝛽 𝛼
∑

(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
𝑛

𝑖=
2

1

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

+

( 2
−
𝑞
)

(  
−

( 1
−
𝑞
) (
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
) (
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

𝛽

)

+
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

)

)  

1
−
𝑞

 

 

𝜕
ℒ

𝜕
𝛽
=
 𝑛 𝛽
−
𝑛
ln
( 𝛼
)
+
∑

ln
(
𝑡 𝑖
+
∑

𝑡 𝑗

𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗
)

𝑛

𝑖=
1

−
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

ln
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

−
( 𝑞
−
2
)
∑

(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
𝑛

𝑖=
2

1

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

ln
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

+

( 2
−
𝑞
)

(  
( 1
−
𝑞
) (
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

𝛽

ln
(
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

𝛽

1
−
( 1
−
𝑞
) (
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

𝛽
−
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

ln
(
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

1
−
( 1
−
𝑞
) (
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼

)

𝛽

)  

1
−
𝑞
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𝜕
ℒ

𝜕
𝑞
=

−
𝑛

(2
−
𝑞
)
+

1

(1
−
𝑞
)2
∑

𝑙𝑛

𝑛

𝑖=
1

[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]

+
1

(1
−
𝑞
)
∑

(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽
1

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

𝑛

𝑖=
1

+
(𝑞
−
2
)

(1
−
𝑞
)2
∑

𝑙𝑛

𝑛

𝑖=
2

[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]

+
1

(1
−
𝑞
)
∑

{    

𝑙𝑛
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

(𝑞
−
2
)

[1
−
( 1
−
𝑞
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝛼
)𝛽

]

(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}    
𝑛

𝑖=
2

−

−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)
+
ln
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)
𝛽

)

1
−
𝑞

+

( 2
−
𝑞
)
(
−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)
)
+
ln
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

( 1
−
𝑞
)2

+

( 2
−
𝑞
)

(  
−

(
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

𝛼
)

𝛽

1
−
( 1
−
𝑞
) (
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

𝛽
+

(
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽

1
−
( 1
−
𝑞
) (
𝑟
∑

𝑡 𝑗
𝑛 𝑗=
1

𝛼
)

𝛽

)  

1
−
𝑞

 

𝜕
𝐿

𝜕
𝑟
=
∑

(    
( 𝛽
−
1
)
(∑

𝑡 𝑗
𝑟𝑖
−
𝑗 (
𝑖−
𝑗)

𝑟
𝑖−
1

𝑗=
1

)

𝑡 𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

−

(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛽

𝛽
(
∑

𝑡 𝑗
𝑟𝑖
−
𝑗 (
𝑖−
𝑗)

𝑟
𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛽

)
)

)    
𝑛

𝑖=
1

+
∑

(    

−

( 𝑞
−
2
)
(
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛽

𝛽
(∑

𝑡 𝑗
𝑟𝑖
−
𝑗 (
𝑖−
𝑗)

𝑟
𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(
(
∑

𝑡 𝑗
𝑟𝑖
−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛽

)
)

)    
𝑛

𝑖=
2

−
( 2
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟𝑛
−
𝑗+
1

𝑛 𝑗=
1 𝛼

)𝛽

𝛽
(∑

𝑡 𝑗
𝑟𝑛
−
𝑗+
1
( 𝑛
−
𝑗+
1
)

𝑟
𝑛 𝑗=
1

)

(𝑇
−
∑

𝑡 𝑗
𝑟𝑛
−
𝑗+
1

𝑛 𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟𝑛
−
𝑗+
1

𝑛 𝑗=
1 𝛼

)𝛽

)
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟𝜕
𝛼
=
𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝑟
=
∑

(   
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

+

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)
( 1
−
𝑞
)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   

+
∑

(   
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

+

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)
( 1
−
𝑞
)

𝛼
(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

−
( 2
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)

𝛼
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−

( 2
−
𝑞
)
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)
( 1
−
𝑞
)

𝛼
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟𝜕
𝛽
=
∑

(   
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)
𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

−

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)
( 1
−
𝑞
)
ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   

+
∑

(   
−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)
𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

−

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)
( 1
−
𝑞
)
ln
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
( 2
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)
𝛽
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 2
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

(∑
𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+

( 2
−
𝑞
)
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗
=
1

𝛼
)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗
=
1

( 𝑛
−
𝑗
+
1
)

𝑟
)
( 1
−
𝑞
)
ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗
=
1

𝛼
)

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

𝛼
)𝛽

)
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𝜕
ln
𝐿

𝜕
𝑞
2
=

−
𝑛

( 2
−
𝑞
)2
+
( 1
−
𝑞
)

( 1
−
𝑞
)4
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

[1
−
( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

] }    
𝑛

𝑖=
1

+
∑

(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

( 1
−
𝑞
)
[1
−
( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

{    
[1
−
( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]

( 1
−
𝑞
)

−
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}    
𝑛

𝑖=
1

+
1

( 1
−
𝑞
)4
∑

{    

[    ln
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

] ]    
𝑛

𝑖=
2

−
2
( 𝑞
−
1
)(
𝑞
−
2
)
ln
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

] }    

+
1

( 1
−
𝑞
)2
∑

{    

ln
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
+

( 𝑞
−
1
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

] }    
𝑛

𝑖=
2

+
∑

(∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

{    

−

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]

( 1
−
𝑞
)2

−
( 𝑞
−
2
)

( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}    
𝑛

𝑖=
2

−
2

( 1
−
𝑞
)

(  
−

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)
𝛽

)

+
(
∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)
𝛽

)
)  

−

2
(
−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)
+
ln
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)

( 1
−
𝑞
)2

+
2
( 2
−
𝑞
)

( 1
−
𝑞
)2

(  
−

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  

+

2
( 2
−
𝑞
)
(
−
ln
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)
+
ln
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)

( 1
−
𝑞
)3

+
( 2
−
𝑞
)

( 1
−
𝑞
)

(   
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
−

(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)
𝛽

)

2

)   
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𝜕
𝑙𝑛
𝐿

𝜕
𝛼
2
=
𝑛
𝛽

𝛼
2
+
∑

(   
−

(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

−
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   

+
∑

(   
−

( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)
𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

−
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)2
𝛽

𝛽
2
( 1
−
𝑞
)

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
1

(1
−
𝑞
)

(   
( 2
−
𝑞
)

(   
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+

( 1
−
𝑞
)2
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
−

( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

−

( 1
−
𝑞
)2
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

𝛽
2

𝛼
2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)   

)   
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟
2
=
∑

(   
( 𝛽
−
1
)
(∑

(𝑡
𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗
)2

𝑟
2

−
𝑡 𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)

𝑟
2

)
𝑖−
1

𝑗
=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
−
( 𝛽
−
1
)
(
∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)2

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
−

(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛽

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)2

𝛽
2

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

−
(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛽
(
∑

(𝑡
𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)
2

𝑟
2

−
𝑡 𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)

𝑟
2

)
𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

+
(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)2

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)2
(
1
−
( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

−

(
(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗
=
1

)2

( 1
−
𝑞
)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)2
(
1
−
( 1
−
𝑞
)
(𝑡
𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛽

)

2

)   

+
∑

(   
−
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)2

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−
( 𝑞
−
2
)
(
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

(𝑡
𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗)
2

𝑟
2

−
𝑡 𝑗
𝑟
𝑖−
𝑗
( 𝑖
−
𝑗
)

𝑟
2

)
𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

+
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)2

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

)2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗
=
1

)2

( 1
−
𝑞
)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

−
( 2
−
𝑞
)
(
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)2

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 2
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)
𝛽

𝛽
(∑

(𝑡
𝑗
𝑟
𝑛
−
𝑗+
1
( 𝑛
−
𝑗
+
1
)2

𝑟
2

−
𝑡 𝑗
𝑟
𝑛
−
𝑗+
1
( 𝑛
−
𝑗
+
1
)

𝑟
2

)
𝑛 𝑗=
1

)

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 2
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)2

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−

( 2
−
𝑞
)
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽
2
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)2

( 1
−
𝑞
)

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

)2
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
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𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝛽
=
𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝛽
=
−
𝑛 𝛼

+
∑

(   
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

+
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

𝑛

𝑖=
1

+

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)
𝛽

)

2

)   

+
∑

(   
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)
𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+
( 𝑞
−
2
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

𝑛

𝑖=
2

+

( 𝑞
−
2
)
(
(𝑟

∑
𝑡 𝑗

𝑖−
1

𝑗
=
1

𝛼
)𝛽

)

2

𝛽
( 1
−
𝑞
)
ln
(
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   

+
1

(1
−
𝑞
)

(   
( 2
−
𝑞
)

(   
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−

( 1
−
𝑞
)2
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗
=
1

𝛼
)𝛽

)

2

𝛽
ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

+

( 1
−
𝑞
)2
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

𝛽
ln
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)   

)   
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𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝑞
=
𝜕
𝑙𝑛
𝐿

𝜕
𝛼
𝜕
𝑞
=
∑

(   
−

(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

−

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗
=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

−
1

( 1
−
𝑞
)

(  
−

( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)
)  

+
( 2
−
𝑞
)

( 1
−
𝑞
)

(   
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+

( 1
−
𝑞
)
(
(
𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

−
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)
𝛽

)

−

( 1
−
𝑞
)
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)

2

)   

+
( 2
−
𝑞
)

( 1
−
𝑞
)2

(  
−

( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

𝛽

𝛼
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  
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𝜕
𝑙𝑛
𝐿

𝜕
𝑟𝜕
𝑞
=
𝜕
𝑙𝑛
𝐿

𝜕
𝑞
𝜕
𝑟
=
∑

(   
(
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗)

𝑟

𝑖−
1

𝑗=
1

)

(𝑡
𝑖
+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1 𝛼

)𝛽

)

2

)   
𝑛

𝑖=
1

+
∑

(   
−

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

+

( 𝑞
−
2
)
(
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗
(𝑖
−
𝑗
)

𝑟

𝑖−
1

𝑗=
1

)

(∑
𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑟
𝑖−
𝑗

𝑖−
1

𝑗=
1

𝛼
)𝛽

)

2

)   
𝑛

𝑖=
2

−
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

𝛽
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−

( 2
−
𝑞
)
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

𝛽
(∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

( 𝑛
−
𝑗+
1
)

𝑟
)

(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

)
(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
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𝜕
ln
𝐿

𝜕
𝛽
2
=
−
𝑛 𝛽
2
−
∑

[𝑙
𝑛
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)]
2

(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)𝛽

]2

𝑛

𝑖=
1

{
[1
−
( 1
−
𝑞
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
−
( 𝑞
−
1
)
(
𝑡 𝑖
+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}

−
( 𝑞
−
2
)
∑

[𝑙
𝑛
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)]
2

(∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

𝑛

𝑖=
2

{
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]

−
( 𝑞
−
1
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗
=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

}
1

( 1
−
𝑞
)

(   
( 2
−
𝑞
)

(   
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)2

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

+

( 1
−
𝑞
)2
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)2

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)2

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

−

( 1
−
𝑞
)2
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)2

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)

2

)   

)   
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𝜕
ln
𝐿

𝜕
𝛽
𝜕
𝑞
=
𝜕
ln
𝐿

𝜕
𝑞
𝜕
𝛽
=
∑

(𝑡
𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)2
𝛽

ln
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

[1
−
( 1
−
𝑞
)
(𝑡

𝑖+
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

𝑛

𝑖=
1

−
 ∑

(∑
𝑡 𝑗

𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

[1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)𝛽

]2

𝑛

𝑖=
2

{
[1
−
( 1
−
𝑞
)
(
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝑟
𝑖−
𝑗

𝛼
)

𝛽

]
−
( 𝑞
−
2
)
(
𝑟
∑

𝑡 𝑗
𝑖−
1

𝑗=
1

𝛼
)

𝛽

}

−
1

( 1
−
𝑞
)

(  
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)
)  

+
1

( 1
−
𝑞
)

(   
( 2
−
𝑞
)

(   
−
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−

( 1
−
𝑞
)
(
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

2
+

(∑
𝑡 𝑗

𝑛 𝑗=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

+

( 1
−
𝑞
)
(
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

)

2

)   

)   

+
( 2
−
𝑞
)

( 1
−
𝑞
)2

(  
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

ln
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗
+
1

𝑛 𝑗=
1

𝛼
)

(
1
−
( 1
−
𝑞
)
(𝑇
−
∑

𝑡 𝑗
𝑟
𝑛
−
𝑗+
1

𝑛 𝑗=
1

𝛼
)𝛽

)

−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)𝛽

ln
(∑

𝑡 𝑗
𝑛 𝑗=
1 𝛼
)

(
1
−
( 1
−
𝑞
)
(∑

𝑡 𝑗
𝑛 𝑗
=
1 𝛼
)𝛽

)
)  

 

   

 

 


