Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/39037
Comparte esta pagina
Título : | Irreducible classes and barycentric subdivision on triangle-free 3 connected matroids |
Autor : | SANTOS FILHO, Jaime Cesar dos |
Palabras clave : | Combinatória; Matroides |
Fecha de publicación : | 30-ene-2020 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | SANTOS FILHO, Jaime Cesar dos. Irreducible classes and barycentric subdivision on triangle-free 3 connected matroids. 2020. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2020. |
Resumen : | The 3-connected matroids, fundamental in matroid theory, have two families of irreducible matroids with respect to the operations of deletion and contraction. This result is known as Tutte’s Wheels and Whirls Theorem, established in [11]. Lemos, in [4], considered seven reduction operations to classify the triangles-free 3-connected matroids, five in addition to the two considered by Tutte. The results obtained by Lemos generalize those obtained by Kriesell [2]. Considering only the first three reduction operations defined in [4], we prove that 4 local structures formed by squares and triads behave like "building blocks" for these families of irreducible. Subdividing the seventh reduction, we add another family of triangle-free 3-connected matoids: diamantic matroids. We have established, in a constructive way, that for each matroid in this family there is a unique totally triangular matoid associated. The construction of this one-to-one correspondence is based on the generalized parallel connection and passes through a matroid, unique up to isomorphisms, which corresponds to the barycentric subdivision in the case of graphic matroids. |
URI : | https://repositorio.ufpe.br/handle/123456789/39037 |
Aparece en las colecciones: | Teses de Doutorado - Matemática |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TESE Jaime Cesar dos Santos Filho.pdf | 2,19 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons