
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

JAIME CESAR DOS SANTOS FILHO

Irreducible classes and barycentric subdivision on triangle-free 3-connected
matroids

Recife
2020



JAIME CESAR DOS SANTOS FILHO

Irreducible classes and barycentric subdivision on triangle-free 3-connected
matroids

Thesis presented to the Postgraduate Program in
Mathematics of the Department of Mathematics
of the Universidade Federal de Pernambuco as
a partial requirement for obtaining the Doctor
degree in math.

Área de Concentração: Combinatória

Orientador (a): Manoel José Machado Soares
Lemos

Recife
2020



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                                        Catalogação na fonte 

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217                  
  

   
  
S237i Santos Filho, Jaime Cesar dos 

Irreducible classes and barycentric subdivision on triangle-free 3 connected 
matroids / Jaime Cesar dos Santos Filho. – 2020. 

  75 f.: il., fig. 
 
  Orientador: Manoel José Machado Soares Lemos. 
  Tese (Doutorado) – Universidade Federal de Pernambuco. CCEN, 

Matemática, Recife, 2020. 
                       Inclui referências. 
 

  1. Combinatória. 2. Matroides. I. Lemos, Manoel José Machado Soares 
(orientador). II. Título. 
 
      511.6                   CDD (23. ed.)                          UFPE- CCEN  2020 - 193 
 
                             
       

 
 



JAIME CÉSAR DOS SANTOS FILHO 
 

 

IRREDUCIBLE CLASSES AND BARYCENTRIC SUBDIVISION ON TRIANGLE-FREE 3-
CONNECTED MATROIDS. 

 

 

Tese apresentada ao Programa de Pós-

graduação do Departamento de Matemática 

da Universidade Federal de Pernambuco, 

como requisito parcial para a obtenção do 

título de Doutorado em Matemática. 

 

 

Aprovado em: 30/01/2020 

 

 

 

BANCA EXAMINADORA 

 

 

 
 

________________________________________________________ 

Prof. Dr. Manoel José Machado Soares Lemos (Orientador) 

Universidade Federal de Pernambuco 
 

 

 

 _________________________________________________________ 

Prof. Dr. Eduardo Shirlippe Goes Leandro (Examinador Interno) 

Universidade Federal de Pernambuco 
 

 

________________________________________________________ 

Prof. Dr. Henrique de Barros Correia Vitório (Examinador Interno) 

Universidade Federal de Pernambuco 

 

 
__________________________________________________________ 

Prof. Dr. Sóstenes Luiz Soares Lins (Examinador Externo) 

Universidade Federal de Pernambuco 

 

 
__________________________________________________________ 

Prof. Dr. Silvio de Barros Melo (Examinador Externo) 

Universidade Federal de Pernambuco 

 



Dedicado a Maria de Lourdes e a Elaine, Lisie e Athos. Em memória de Krishna e
Lindalva.



AGRADECIMENTOS

Agradeço a Manoel Lemos pela orientação doutoral, revisão e numerosas contribui-
ções a este trabalho. Ele não têm nenhuma responsabilidade com relação aos erros de
inglês que persintem nesta tese. Agradeço também à Universidade Federal de Pernam-
buco, em particular ao Departamento de Matemática, pelos mais de 10 anos de vivência
e aprendizagem na instituição.



ABSTRACT

The 3-connected matroids, fundamental in matroid theory, have two families of ir-
reducible matroids with respect to the operations of deletion and contraction. This result
is known as Tutte’s Wheels and Whirls Theorem, established in [11]. Lemos, in [4], con-
sidered seven reduction operations to classify the triangles-free 3-connected matroids, five
in addition to the two considered by Tutte. The results obtained by Lemos generalize
those obtained by Kriesell [2]. Considering only the first three reduction operations de-
fined in [4], we prove that 4 local structures formed by squares and triads behave like
"building blocks" for these families of irreducible. Subdividing the seventh reduction, we
add another family of triangle-free 3-connected matoids: diamantic matroids. We have
established, in a constructive way, that for each matroid in this family there is a unique
totally triangular matoid associated. The construction of this one-to-one correspondence
is based on the generalized parallel connection and passes through a matroid, unique up
to isomorphisms, which corresponds to the barycentric subdivision in the case of graphic
matroids.

Keywords: Matroids. 3-connectivity. Triangles. Triads. Squares.



RESUMO

As matroides 3-conexas, fundamentais na teoria das matroides, possuem duas família
de irredutíveis com relação às operações de deleção e contração. Este resultado é conhe-
cido como Teorema da Roda e do Redemoinho de Tutte [11]. Lemos, em [4], considerou
sete operações de redução para classificar as matroides 3-conexas livre de triângulos irre-
dutíveis, cinco além das duas consideradas por Tutte. Os resultados obtidos por Lemos
generalizam os obtidos por Kriesell [2]. Considerando apenas as três primeiras operações
de redução definidas em [4], provamos que 4 estruturas locais formadas por quadrados e
triades se comportam como "blocos construtores" para estas famílias de irredutíveis. Sub-
dividindo a sétima redução, acrescentamos mais uma família de matroides 3-conexas livre
de triângulos irredutíveís: diamantic matroids, em inglês. Estabelecemos, de uma forma
construtiva, que para cada matroide nesta família existe um única matroide totalmente
triangular associada. A construção desta correspondência biunívoca é baseada na conexão
em paralelo generalizada e passa por uma matroide, única a menos de isomorfismos, que
corresponde a subdivisão baricêntrica no caso de matroides gráficas.

Palavras-chaves: Matroides. 3-conectividade. Triângulos. Triades. Quadrados.
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1 INTRODUCTION

1.1 THE ORIGIN OF THE PROBLEM

With rare exceptions, for matroid theory we use the notations and terminologies set
in [10]. An edge of a 3-connected graph 𝐺 is called essential if the 3-connection of 𝐺 is
destroyed both when the edge is deleted and when it is contracted to a single vertex. In
paper A theory of 3-connected graphs, 1961, W. T. Tutte established the Wheel Theorem
for graphs:

Theorem 1.1.1. Let 𝐺 be a 3-connected finite graph with at least 4 edges. Each edge
𝑒 ∈ 𝐸 (𝐺) is essential if and only if 𝐺 is isomorphic to a wheel.

The Wheel: Let 𝐶 be a cycle with length 𝑛 ≥ 3. Adding a new vertex 𝑥 incident to all
vertices of 𝐶, we obtain a plane graph 𝑊𝑛 with 𝑉 (𝑊𝑛) = 𝑉 (𝐶)∪{𝑥} and |𝐸 (𝑊𝑛)| = 2𝑛.
This graph is known as the n-wheel. We will also call n-wheel the cycle matroid 𝑀 (𝑊𝑛)
and will abuse of notation 𝑊𝑛 to refer to both. The edges set 𝐸 (𝐶) is a circuit-hyperplane
of matroid 𝑊𝑛, called rim of 𝑊𝑛, and 𝐸 (𝑊𝑛) − 𝐶 is the spokes set.

Figure 1 – 𝑊5 denotes both this graph and its cycle matroid. Dashed edges are the spokes.

In 1966 Tutte established, in [11], the Wheels and Whirls Theorem, generalizing the
previous theorem to matroids.

Theorem 1.1.2. Let 𝑀 be a non-empty 3-connected matroid. For each element 𝑒 ∈ 𝐸 (𝑀)
we have that both 𝑀∖𝑒 and 𝑀/𝑒 are not 3-connected if and only if 𝑀 is isomorphic to
either the cycle matroid of a wheel or isomorphic to a whirl.

The Whirl: If 𝑊𝑛 is a 𝑛-wheel, we denote by 𝒲𝑛 the matroid obtained from 𝑊𝑛 by
relaxing its rim. The rank of 𝒲𝑛 is the same of 𝑊𝑛, which is 𝑛. More information on the
relaxation operation, see Oxley’s [10].
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In many situations, we must avoid triangles. The question of classifying triangle-free
3-connected graphs and matroids comes up. On the class of triangle-free 3-connected
graphs, in [2], M. Kriesell considered the following reduction operations (in the sense that
they decrease the number of edges of the graph without leaving the class of triangle-free
3-connected graphs):

i) Deletion of an edge that is not incident with any vertex of degree 3;
ii) Contraction of an edge that is not in a cycle with length 4;
iii) Suppose that 𝑒 is an edge incident with just one vertex of degree 3, say 𝑣. Let 𝑓

be another edge incident with 𝑣. Then we delete 𝑒 and contract 𝑓 ;
iv) Suppose that 𝑒 is an edge incident with two vertices of degree 3 , say 𝑣 and 𝑣′. Let

𝑓 and 𝑓 ′ be edges, distinct from 𝑒, incidents on 𝑣 and 𝑣′, respectively. So we delete 𝑒 and
we contract {𝑓, 𝑓 ′};

v) Deletion of a degree-3 vertex;
vi) Contraction of the peak in a cube fragment; A cube fragment is a set 𝐹 of four

vertices of degree 3 in a graph 𝐺 such that the graph obtained from 𝐺| (𝐹 ∪ 𝑁𝐺 (𝐹 )) by
adding a new vertex at 𝑁𝐺 (𝐹 ) is a cube. Here, 𝑁𝐺 (𝐹 ) denotes the set of neighbours of
𝐹 in 𝐺. If 𝐹 is a cube fragment then 𝐹 contains exactly one vertex 𝑥 not adjacent to any
vertex in 𝑁𝐺 (𝐹 ), which is called its peak.

In this context, a triangle-free 3-connected graph 𝐺 is said to be irreducible, according
to Kriesell, if in performing any of the above operations on elements of 𝐺 we leave the
class of triangle-free 3-conected graphs. Kriesell [2] states the following results:

Theorem 1.1.3. Let 𝐺 be a triangle-free 3-connected finite graph. If 𝐺 is irreducible,
then 𝐺 is isomorphic to 𝐾3,3 or to a double-wheel 𝐷𝑛. Moreover, all these reductions are
necessary.

Double-wheel: Let 𝑊𝑛 be a n-wheel of even rank 𝑛 ≥ 6. There is just one 3-connected
graph 𝑁 with edges set 𝐸 (𝑁) = 𝐸 (𝑊𝑛)∪{𝑒}, for a new element 𝑒, such that 𝑁 is triangle-
free and 𝑁/𝑒 = 𝑊𝑛. The graph 𝒟𝑛 = 𝑁∖𝑒 is called double-wheel with rank 𝑛 + 1. In [2],
𝐷𝑛 is called by biwheel. By abuse of notation, we let 𝐷𝑛 to refer to both the graph and
the cycle matroid associated to 𝐷𝑛.
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Figure 2 – 𝐷8 denotes both this graph, deleting dashed edge 𝑒, and its cycle matroid.

1.2 A BRIEF RESUME OF LEMOS’S RESULTS ON TRIANGLE-FREE 3-CONNECTED
MATROIDS

Circuits with 4 elements will be called by squares and cocircuits with 3 elements
by triads. In order to extend Kriesell’s result to matroids, Lemos considered, in [4], the
following reductions on a triangle-free 3-connected matroid 𝑀 :

First reduction: A triangle-free 3-connected matroid 𝑀 is said 1-reducible if there is
an element 𝑒 such that 𝑀∖𝑒 is a triangle-free 3-connected matroid. Since the deletion of
an element does not create triangles, 𝑀∖𝑒 is triangle-free. Therefore, a matroid is said to
be 1-irreducible if the deletion of any element of the matroid destroys its 3-connectivity.
In the case of 𝑀 be graphic, this reduction corresponds to reduction (i) used by Kriesell.

Second reduction: A triangle-free 3-connected matroid 𝑀 is said 2-reducible if there
is 𝑒 ∈ 𝐸 (𝑀) such that 𝑀/𝑒 is a triangle-free 3-connected matroid. Note that when 𝑒 is
in some square then 𝑀/𝑒 is not triangle-free. In the case of 𝑀 be graphic, this reduction
corresponds to reduction (ii) used by Kriesell.

Third reduction: A triangle-free 3-connected matroid 𝑀 is said 3-reducible when
there are squares 𝑄1 and 𝑄2 such that 𝑄1 ∩ 𝑄2 = {𝑓} and 𝑓 belongs to a unique triad
𝑇 * = {𝑒, 𝑓, 𝑔} such that 𝑀∖𝑓/𝑒 is triangle-free 3-connected matroid. If 𝑀 have a square
𝑄 that contains 𝑒 and avoid 𝑓 then this matroid will not be triangle-free. On graphs this
reduction is more restrictive than the reduction (iii) of Kriesell since his does not require
the existence of squares.

Fourth reduction: A triangle-free 3-connected matroid 𝑀 is said 4-reducible when
has squares 𝑄1 and 𝑄2 such that 𝑄1 ∩ 𝑄2 = {𝑓} and 𝑓 is contained in exactly two triads
𝑇 * = {𝑒, 𝑓, 𝑔} and 𝑇 ′* = {𝑒′, 𝑓, 𝑔′}, satisfying that 𝑀∖𝑓/ {𝑒, 𝑒′} is a triangle-free 3-
connected matroid. The reduction (iv) of Kriesell resembles this reduction, except for the
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existence of the squares 𝑄1 and 𝑄2.
Fifth reduction: We say that a triangle-free 3-connected matroid 𝑀 is 5-reducible

when 𝑀 has squares 𝑄1 and 𝑄2 such that 𝑄1 ∩ 𝑄2 = {𝑓}, for some element 𝑓 belonging
to just three triads 𝑇 * = {𝑒, 𝑓, 𝑔}, 𝑇 ′* = {𝑒′, 𝑓, 𝑔′} and 𝑇 ′′* = {𝑒′′, 𝑓, 𝑔′′} of 𝑀 and 𝑁

is a triangle-free 3-connected matroid, where 𝑁 is obtained from 𝑀∖𝑓/ {𝑒, 𝑒′, 𝑒′′} after a
Δ−𝑌 operation along the triangle {𝑔, 𝑔′, 𝑔′′}. As 𝑓 belongs to three triads, this reduction
is not necessary in graphic matroids. We will deal with Δ − 𝑌 operation in the chapter 6.

Sixth reduction: If there is a triad 𝑇 * and pairwise disjoint triads 𝑇 *
0 , 𝑇 *

1 and 𝑇 *
2 such

that |𝑇 *
𝑖 ∩ 𝑇 *| = 1, say 𝑇 * ∩ 𝑇 *

𝑖 = {𝑒𝑖}, 𝑇 *
𝑖 − 𝑇 * = {𝑓𝑖, 𝑔𝑖} and 𝑄𝑖 = {𝑒𝑖, 𝑔𝑖, 𝑒𝑖+1, 𝑓𝑖+1}

is a square of 𝑀 , for every 𝑖 ∈ {1, 2, 3} where the indices are taken modulus 3, and 𝑁 is
a triangle-free 3-connected matroid, where 𝑁 i obtained from 𝑀/ {𝑔0, 𝑔1, 𝑔2} ∖𝑇 * after a
Δ − 𝑌 operation along the triangle {𝑓0, 𝑓1, 𝑓2}, then we say that 𝑀 is 6-reducible.

Seventh reduction: We say that a triangle-free 3-connected matroid 𝑀 is 7-reducible
when:

i) There are disjoint triads 𝑇 * = {𝑒0, 𝑒1, 𝑒2} and 𝑇 ′* = {𝑒′
0, 𝑒′

1, 𝑒′
2} such that 𝑄0 =

{𝑒0, 𝑒1, 𝑒′
0, 𝑒′

1} and 𝑄1 = {𝑒1, 𝑒2, 𝑒′
1, 𝑒′

2} are squares of 𝑀 and 𝑀∖𝑇 * is 3-connected; or
ii) There are pairwise different elements 𝑒0, 𝑒1, 𝑒2, 𝑓0, 𝑓1, 𝑓2, 𝑔0, 𝑔1 and 𝑔2 of 𝑀 such

that 𝑇 * = {𝑒0, 𝑒1, 𝑒2}, 𝑄𝑖 = {𝑒𝑖, 𝑔𝑖, 𝑒𝑖+1, 𝑓𝑖+1} is a square of 𝑀 and 𝑄𝑖 − 𝑇 * ⊆ 𝑇 *
𝑖 for

some triad 𝑇 *
𝑖 of 𝑀 , for 𝑖 = {0, 1, 2}, where the indices are taken modulus 3, and 𝑀∖𝑇 *

is 3-connected;
When 𝐼 ⊆ {1, 2, 3, 4, 5, 6, 7}, we say that a matroid 𝑀 is 𝐼-irreducible provided 𝑀

is a triangle-free 3-connected and is not 𝑖-reducible for all 𝑖 ∈ 𝐼. We will use abc...-
irreducible instead {𝑎, 𝑏, 𝑐, ...}-irreducible. We will say that 𝑀 is irreducible when is
1234567-irreducible.

Squares and triads plays a very important role in classifying irreducible classes of
triangle-free 3-connected matroid. In the process of generalizing Kriesell’s result to ma-
troids, Lemos had to consider a possibility that does not occur in graphic matroids: a
triad contained in a square.

Definition. A matroid 𝑀 is said to be semi-binary provided 𝑇 * * 𝑄 for every triad 𝑇 *

and every square 𝑄 of 𝑀 . Otherwise its said non-semi-binary.

The main result of [4] on semi-binary matroids is:

Theorem 1.2.1. Suppose that 𝑀 is semi-binary with at least 14 elements. Then 𝑀 is
irreducible if, and only if, 𝑀 is isomorphic to the graphic matroid of a double-wheel, when
it’s rank is an odd integer exceeding 7, or to a matroid obtained from a triadic Mbius
matroid deleting it’s tip with even rank at least 8.

Triadic Mbius matroids: For 𝑛 ≥ 7, there is just one 3-connected binary matroids
𝑁 whose ground set 𝐸 (𝑁) = 𝐸 (𝑊𝑛) ∪ {𝑒}, for a new element 𝑒, such that 𝑁 is triangle-
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free and 𝑁/𝑒 = 𝑊𝑛. When 𝑛 is odd, the matroid 𝑁 is called triadic Mbius matroid and
the element 𝑒 called tip of 𝑁 . Mayhew, Royle and Whittle [6] denoted 𝑁 by 𝑛. Its rank
is 𝑛 + 1.

The previous theorem generalizes the Kriesell’s Theorem 1.1.3 in the same way as the
Tutte’s Wheels and Whirls Theorem generalize the Wheels Theorem. The main results
on non-semi-binary matroids of Lemos [4] is:

Theorem 1.2.2. Suppose that 𝑀 is a 1234-irreducible matroid with at least 10 elements.
The matroid 𝑀 is non-semi-binary if, and only if, 𝑀 is isomorphic to an almost-double-
wheel or an almost-double-whirl having rank at least 6.

The almost-double-wheel and almost-double-whirl are non-semi-binary matroids defi-
ned and constructed by Lemos in Section 5 of the above-cited article.

Almost-double-wheel and Almost-double-whirl: Let 𝐸 = {1, 2, ..., 2𝑚, 2𝑚 + 1}
with 𝑚 ≥ 5. Then there are exactly two non-isomorphic triangle-free 3-connected matroids
over 𝐸 having:
i) {1, 2, 3, 4} as a square; and
ii) for every 𝑖 ∈ {1, 2, ..., 𝑚}, {2𝑖 − 1, 2𝑖, 2𝑖 + 1} as a triad; and
iii) for every 𝑖 ∈ {2, 3, ..., 𝑚 − 1}, {2𝑖 − 2, 2𝑖 − 1, 2𝑖 + 1, 2𝑖 + 2} as a square;

The subset 𝐼 = {𝑖 ∈ 𝐸 : 𝑖 is odd} is a circuit-hyperplane of one of theses matroids,
say 𝑀 . We say that 𝑀 is an almost-double-wheel and the matroid obtained from 𝑀

relaxing the circuit-hyperplane 𝐼 is called an almost-double-whirl. Moreover, we have that
𝑟 (𝑀) = 𝑚 + 1, 𝐼 is a Hamiltonian circuit of 𝑀* and 𝑃 = {𝑖 ∈ 𝐸 : 𝑖 is even} is an
independent-hyperplane of 𝑀 .

Follows an auxiliary graph to illustrate these squares and triads:

Figure 3 – The 3-set of edges incident with vertices of degree 3 illustrate the triads and the 4-set of dashed
lines is a square containing the triad {1, 2, 3}.
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Lemos realized that certain configurations of triads and squares are like building blocks
for the irreducible matroids. These configurations of triads and squares have already
appeared in the description of the reduction operations:

Sapphire
A sapphire with nucleus 𝑓 is a union of two squares 𝑄1 and 𝑄2 such that 𝑄1∩𝑄2 = {𝑓}

and 𝑓 is contained in two triads, say 𝑇 * = {𝑒, 𝑓, 𝑔} and 𝑇 ′* = {𝑒′, 𝑓, 𝑔′}. Denoting
{𝑓𝑖} = 𝑄𝑖 − (𝑇 * ∪ 𝑇 ′*), for 𝑖 = 1 and 2, we will say that the sapphire 𝑆 = 𝑄1 ∪ 𝑄2 is pure
provided 𝑆 is fullclosed, that is closed in both 𝑀 and 𝑀*, and 𝑇 ′′* = {𝑓, 𝑓1, 𝑓2} is also a
triad of 𝑀 . Note that a non-pure sapphire is the configuration of triads and squares where
it is possible to apply the 4-reduction and the pure sapphire where it is possible to apply
the 5-reduction. A pure sapphire does not occur in graphics matroids. A matroid 𝑀 is
called sapphire-free if has not sapphire. The squares 𝑄1 and 𝑄2 are the faces of sapphire
𝑆.

Sapphires enjoy an important role in the structure of the triangle-free 3-connected
matroids. For example, all the irreducible classes that we have described so far are full of
sapphires: 𝑀 (𝐾3,3), double-wheels and triadic Mbius matroid, even deleting its tip, just
like the almost-double-wheels and almost-double-whirls. All these matroids are made of
sapphire.

In the main results of [5], Lemos prove that the 4-reduction can be avoided provided
the number of families of irreducible matroids is increased by four:

Theorem 1.2.3. Let 𝑀 be a 123-irreducible matroid with at least 11 elements. If 𝑀 is
4-reducible, then 𝑀 is isomorphic to 𝑀 (𝐺), where 𝐺 is a ladder or a Mbius ladder graph,
or 𝑀 is isomorphic to a non-binary ladder or to a relaxed non-binary ladder.

These four matroids cited in the above theorem was studied by Lemos in [5].
Ladder: For 𝑛 ≥ 4, the ladder 𝐿𝑛 with 2𝑛 vertices is the graph illustrated in Figure

4, just like 𝐿𝑛 denotes its cycle matroid.

Figure 4 – Ladder 𝐿𝑛 with 2𝑛 vertices. The 3-set of edges incident in a vertex of degree 3 are triads of
cycle matroid associated to 𝐿𝑛.
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Mbius Ladder: If in Figure 4, we delete the edges 𝑇 *
1 𝑇 *

𝑛 and 𝑇 ′
1

*𝑇 ′
𝑛

*, and we add an
edge incident with both 𝑇 ′

1
* and 𝑇 *

𝑛 and other incident with 𝑇 *
1 and 𝑇 ′

𝑛
* then we get the

Mbius ladder ℒ𝑛 with 2𝑛 vertices.

Non-binary ladder and relaxed non-binary ladder: For 𝑛 ≥ 4, let 𝐺𝑛 be the
auxiliary graph displayed in Figure 5. Set

𝐷 = {𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑛}

Then the relaxed non-binary ladder 𝑅𝑛 of rank 2𝑛 is a matroid over 𝐸 (𝐺𝑛) such that
𝒞 (𝑅𝑛) = 𝒞 ∪ 𝒟, where

i) 𝐶 ∈ 𝒞 if and only if 𝐶 is a circuit of the cycle matroid associated with 𝐺𝑛 and
𝐶 ̸= 𝐷 ∪ {𝑐0, 𝑐𝑛}; and

ii) 𝐶 ∈ 𝒟 if and only if 𝐶 = 𝐸 (𝑇 ), where 𝑇 is a tree of 𝐺𝑛 such that: each leaf vertex
of 𝑇 is incident in 𝐺𝑛 with 𝑐0 or 𝑐𝑛, and every vertex incident with 𝑐0 or 𝑐𝑛 in 𝐺𝑛 is a
vertex of 𝑇 .

Figure 5 – Auxiliary graph 𝐺𝑛

The 2n-set 𝐷 is a basis of 𝑅𝑛. There is a matroid 𝑃𝑛 over 𝐸 (𝐺𝑛) such that

𝒞 (𝑃𝑛) = [𝒞 (𝑅𝑛) − {𝐷 ∪ 𝑐𝑖 | 0 ≤ 𝑖 ≤ 𝑛}] − {𝐷}

and 𝑅𝑛 is obtained from 𝑃𝑛 by relaxing the circuit-hyperplane 𝐷. We say that 𝑃𝑛 is the
non-binary ladder of rank 2𝑛.

The next result, due to Lemos [4], deals with sapphires in semi-binary 123-irreducible
matroids:

Theorem 1.2.4. Suppose that 𝑀 is a semi-binary 123-irreducible matroid with at least
12 elements. If 𝑆 is a sapphire whose nucleus belongs to 3 triads of 𝑀 , then 𝑆 is pure
and 𝑀 is 5-reducible.
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Rubies
Suppose that 𝑀 has triads 𝑇 *, 𝑇 *

0 , 𝑇 *
1 and 𝑇 *

2 , such that 𝑇 *
𝑖 ∩ 𝑇 *

𝑗 = ∅, for 𝑖 ̸= 𝑗, and
let’s denote 𝑇 * ∩ 𝑇 *

𝑖 = {𝑒𝑖}, 𝑇 *
𝑖 − 𝑇 * = {𝑓𝑖, 𝑔𝑖} and 𝑄𝑖 = {𝑒𝑖, 𝑔𝑖, 𝑒𝑖+1, 𝑓𝑖+1} is a square of

𝑀 , where the indices are taken modulus 3. So 𝑅 =
2⋃︀

𝑖=0
𝑇 *

𝑖 is called to ruby with nucleus
𝑇 *. We say that 𝑅 is pure provided is fullclosed. Note that a ruby is the configuration of
triads and squares where it is possible to apply the 6-reduction. Lemos verified that when
𝑀 is 1-irreducible with at least 12 elements then the circuits of 𝑀 contained in 𝑅 are
the graphic circuits of 𝑅. When 𝑀 is graphic, a ruby 𝑅 is the cube fragment referred to
Kriesell.

The following result obtained by Lemos, Lemma 6.2 of [4], shows that rubies occur
quite rigidly in triangle-free semi-binary 3-connected matroids:

Theorem 1.2.5. Let 𝑀 be a semi-binary 123-irreducible matroid with at least 14 ele-
ments. If 𝑅 it is a ruby then 𝑅 is pure and 𝑀 is 6-reducible.

According to Theorem 7.29 of [4]:

Theorem 1.2.6. Suppose that 𝑀 is a semi-binary 1234-irreducible matroid with at least
14 elements. If 𝑀 has a sapphire, then

i) 𝑀 is isomorphic to the graphic matroid of a double-wheel, or to a matroid obtained
from a triadic Mbius matroid deleting it’s tip; or
ii) Every sapphire of 𝑀 is pure or is contained in a pure ruby.

The Theorem 1.7 of [4] deals with the structures mentioned above:

Theorem 1.2.7. Suppose that 𝑀 is a 12347-irreducible matroid with at least 14 elements.
Then:

(i) 𝑀 is isomorphic to an almost-double-wheel to an almost-double-whirl having rank
at least 8;
(ii) 𝑀 is isomorphic to the graphic matroid of a double-wheel, or to a matroid obtained
from a triadic Mbius matroid deleting it’s tip; or
(ii) 𝑀 is (m, n)-triangular;

The family of (m, n)-triangular matroids is a huge class of triangle-free 3-connected
matroids described by Lemos in [4]:

(m, n)-triangular matroid: A matroid 𝑀 is said to be (m,n)-triangular, for non-
negative integers 𝑚 and 𝑛 such that 𝑚 + 𝑛 ≥ 2, when 𝑀 is obtained from a matroid 𝑁

whose ground set is partitioned into 𝑚+𝑛 triangles, say 𝑇1, . . . , 𝑇𝑚, 𝑇 ′
1, . . . 𝑇 ′

𝑛, and whose
simplification is 3-connected by
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(i) adding an element 𝑒′ in series with each element 𝑒 of 𝑁 ;
(ii) for each 𝑖 ∈ {1, . . . , 𝑚}, adding an element 𝑒𝑖 such that, for every 𝑒 ∈ 𝑇𝑖, {𝑒𝑖, 𝑒, 𝑒′}
is a triad of 𝑀 ; and
(iii) for each 𝑖 ∈ {1, . . . , 𝑛}, adding elements 𝑒𝑖, 𝑓𝑖, 𝑔𝑖 such that {𝑒𝑖, 𝑓𝑖, 𝑔𝑖}, {𝑒𝑖, 𝑎𝑖, 𝑎′

𝑖},
{𝑓𝑖, 𝑏𝑖, 𝑏′

𝑖} and {𝑔𝑖, 𝑐𝑖, 𝑐′
𝑖} are triads of 𝑀 , where 𝑇 ′

𝑖 = {𝑎𝑖, 𝑏𝑖, 𝑐𝑖}.
Every (m, n)-triangular matroid is a semi-binary 12347-irreducible matroid such that

is 5-reducible or 6-reducible provides 𝑚 ̸= 0 or 𝑛 ̸= 0 respectively.

1.3 DIAMANTIC MATROID AND TOTALLY TRIANGULAR MATROID: AN IDENTIFICA-
TION THEOREM

Lemos described most of the 123-irreducible matroids. Grouping Lemos results, we
have the following theorem.

Theorem 1.3.1. Let 𝑀 be a 123-irreducible matroid. Then:
i) If 𝑀 is non-semi-binary and 4-reducible with at least 11 elements then 𝑀 is iso-

morphic to a non-binary ladder or to a relaxed non-binary ladder;
ii) If 𝑀 is non-semi-binary and 4-irreducible with at least 10 elements then 𝑀 is iso-
morphic to an almost-double-wheel or an almost-double-whirl having rank at least 6;
iii) If 𝑀 is semi-binary and 4-reducible with at least 11 elements then 𝑀 is isomorphic
to 𝑀 (𝐺), where 𝐺 is a ladder or 𝐺 is a Mbius ladder graph;
iv) If 𝑀 is semi-binary and 4-irreducible with |𝐸 (𝑀)| ≥ 14 and:
iv.1) 𝑀 is 567-irreducible, then 𝑀 is isomorphic to the graphic matroid of a double-wheel,
or to a matroid obtained from a triadic Mbius matroid deleting it’s tip;
iv.2) 𝑀 is 7-irreducible, then 𝑀 is (m, n)-triangular.

Note that all non-semi-binary 123-irreducible matroids with at least 11 elements are
described by Lemos, just like every semi-binary 4-reducible matroid. But not all semi-
binary 1234-irreducibel matroids is described. In this work we will describe other class of
semi-binary 1234-irreducible matroid.

For this purpose, we studied the effect of 7-reduction by dismembering it into two
cases. In order not to change the nomenclature given by Lemos, we name these cases as
eighth reduction and ninth reduction:

Eighth reduction: Let 𝑀 be a triangle-free 3-connected matroid. If there are disjoint
triads 𝑇 * = {𝑒0, 𝑒1, 𝑒2} and 𝑇 ′* = {𝑒′

0, 𝑒′
1, 𝑒′

2} such that 𝑄0 = {𝑒0, 𝑒1, 𝑒′
0, 𝑒′

1} and 𝑄1 =
{𝑒1, 𝑒2, 𝑒′

1, 𝑒′
2} are squares of 𝑀 and 𝑀∖𝑇 * is 3-connected, then 𝑀 is said 8-reducible and

𝑀∖𝑇 * a 8-reduction of 𝑀 . This reduction corresponds to the part (i) of the 7-reduction.
Ninth reduction: Let 𝑀 be a triangle-free 3-connected matroid. Suppose that there

are pairwise different elements 𝑒0, 𝑒1, 𝑒2, 𝑓0, 𝑓1, 𝑓2, 𝑔0, 𝑔1 and 𝑔2 of 𝑀 such that 𝑇 * =
{𝑒0, 𝑒1, 𝑒2} is a triad, 𝑄𝑖 = {𝑒𝑖, 𝑔𝑖, 𝑒𝑖+1, 𝑓𝑖+1} is a square of 𝑀 and 𝑄𝑖 − 𝑇 * ⊆ 𝑇 *

𝑖 for
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some triad 𝑇 *
𝑖 of 𝑀 , for 𝑖 = {0, 1, 2}, where the indices are taken modulus 3, and 𝑀∖𝑇 *

is 3-connected. Then 𝑀 is said 9-reducible. This reduction corresponds to the part (ii) of
the 7-reduction.

For future gain in text simplicity, we will name these two structures described in the
reductions above. Note that a matroid 𝑀 is 7-irreducible if and only if is 89-irreducible.

Diamond: Let 𝑄𝑖, 𝑖 ∈ {0, 1, 2}, be squares as described in the ninth reduction. The
union 𝐷 =

2⋃︀
𝑖=0

𝑄𝑖 was called diamond by Lemos [4] . The triad

𝑇 * = (𝑄0 ∩ 𝑄1) ∪ (𝑄0 ∩ 𝑄2) ∪ (𝑄1 ∩ 𝑄2)

is the nucleus of 𝐷. A diamond 𝐷 is said pure when its nucleus 𝑇 * does not intersect
another triad of 𝑀 . A matroid 𝑀 is said diamond-free if it has not diamond. The squares
𝑄𝑖, 𝑖 ∈ {0, 1, 2}, are the faces of 𝐷.

Emerald: Let 𝑇 * and 𝑇 ′* be the triads, 𝑄0 and 𝑄1 the squares as described in the
eighth reduction. Then

ℰ = 𝑇 * ∪ 𝑇 ′* = 𝑄0 ∪ 𝑄1

will be called an emerald. When 𝑄0△𝑄1 is a square, the emerald ℰ is said pure. A matroid
𝑀 is said emerald-free if it has not emerald. The squares 𝑄0 and 𝑄1 are the faces of ℰ .

On diamonds, Lemma 6.3 of [4] establish that:

Lemma 1.3.2. Let 𝑀 be a semi-binary 7-irreducible matroid. If 𝐷 is a diamond with
nucleus 𝑇 * then there is a triad 𝑇 ′* distinct of 𝑇 * such that 𝑇 * ∩ 𝑇 ′* ̸= ∅.

With this results, if 𝑀 is semi-binary and has a pure diamond 𝐷 with nucleus 𝑇 *

then 𝑀∖𝑇 * is 3-connected and 𝑀 is 7-reducible. We will prove a similar result to this for
emeralds in Lemma 3.2.3.

Our first result is a covering theorem to semi-binary 123-irreducible matroid. In Chap-
ter 4 we will establish the following result:

Theorem 4.1.6. Suppose that 𝑀 is a semi-binary 123-irreducible matroid with at
least 11 elements. Then each element of 𝑀 belongs to a triad contained in a sapphire, an
emerald or to a nucleus of a pure diamond.

As corollary, we have:
Theorem 4.2.1. Let 𝑀 be a semi-binary 1234568-irreducible matroid with at least 11

elements. Then each element of 𝑀 belongs to a nucleus of a pure diamond.

Definition. A diamantic matroid 𝑀 is an emerald-free 3-connected matroid such that
each element of 𝑀 belongs to a nucleus of a pure diamond.
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We will see in Chapter 5 that Lemma 5.1.1 implies that there is no diamantic matroid
with less than 12 elements. Diamantic matroids are 1234568-irreducible, only 9-reduction
can be applied.

So, there is no coincidence in the fact that for each matroid cited in Theorem 1.3.1,
its elements belongs to sapphires. As consequence, every 12389-irreducible matroid with
at least 14 elements is described in Theorem 1.3.1.

To prove Theorem 4.1.6 it was necessary to develop certain configurations consisting
by triads and squares, and this is done in Chapter 3.

And, in Chapter 6, we will prove the following identification theorem:
Theorem 6.3.7.If 𝑀 is a rank 𝑚 diamantic matroid with 𝑛 ≥ 4 triads, |𝐸 (𝑀)| = 3𝑛,

then 𝑀 ♭ is a totally triangular 3-connected matroid with rank 𝑚 − 𝑛 and 𝑛 triangles.
Conversely, if 𝑀 is a rank 𝑚 totally triangular matroid with 𝑛 triangles, 𝑛 ≥ 4, then 𝑀 ♯

is a diamantic matroid with 𝑛 triads,
⃒⃒⃒
𝐸
(︁
𝑀 ♯

)︁⃒⃒⃒
= 3𝑛, and 𝑟

(︁
𝑀 ♯

)︁
= 𝑛 + 𝑚. Moreover,(︁

𝑀 ♭
)︁♯

= 𝑀 and
(︁
𝑀 ♯

)︁♭
= 𝑀 .

Definition. A 3-connected matroid 𝑀 is said totally triangular if:
i) Each element belongs to at least 2 triangles; and
ii) Every pair of triangles intersects in at most 1 element; and
iii) 𝑀 has no triads.

The previous result was obtained through successive operations involving triads and
triangles. These operations are based on the generalized parallel connection operation.
This process involves the generalization of the barycentric subdivision operation for ma-
troids.

Barycentric subdivision is a graph operation that involves the notion of vertex. Here
resides the difficulty of extending it to matroids: there is no notion of vertex in matroid
theory. We did this for the case where it involves triangles, circuits of length 3. Unfortu-
nately, we cannot apply the same process to circuits with length 𝑛 ≥ 4.
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2 PRELIMINARY RESULTS

As mentioned earlier, we are using terminologies and notations set in [10], with rare
exceptions. One of these exceptions will be the connectivity function: If 𝑀 denotes a
matroid, its connectivity function is

𝜉 : 2𝐸(𝑀) −→ N

such that
𝜉 (𝑋) = 𝑟 (𝑋) + 𝑟 (𝐸 (𝑀) − 𝑋) − 𝑟 (𝑀) + 1

= 𝑟 (𝑋) + 𝑟* (𝑋) − |𝑋| + 1

where 𝑟 is the rank function of 𝑀 and 𝑟* of 𝑀*. A subset 𝑋 ⊆ 𝐸 (𝑀) is a k-separating
set, for 𝑘 ≥ 1, if

𝜉 (𝑋) ≤ 𝑘 ≤ 𝑚𝑖𝑛 {|𝑋| , |𝐸 (𝑀) − 𝑋|}

As 𝜉 (𝑋) = 𝜉 (𝐸 (𝑀) − 𝑋), we have that 𝑋 is a k-separating set if and only if 𝐸 (𝑀)−
𝑋 is too. If 𝑋 is a k-separating set, the partition {𝑋, 𝐸 (𝑀) − 𝑋} is said a k-separation.
A k-separation {𝑋, 𝐸 (𝑀) − 𝑋} is exact if 𝜉 (𝑋) = 𝜉 (𝐸 (𝑀) − 𝑋) = 𝑘.

A matroid 𝑀 is said n-connected if there is no k-separation for 𝑘 < 𝑛

In this chapter we will discuss important results on 3-connected matroids. Are results
that deal with circuits and cocircuits in 3-connected matroids and how the connectivity
is affected by deletions or contractions of certain elements.

2.1 KNOWNS RESULTS ON 3-CONNECTED MATROIDS

We start with some key results on 3-connected matroids.
From Lemos [3], we use the following result:

Theorem 2.1.1. Let 𝑀 be a 3-connected matroid and 𝐶 a circuit of 𝑀 such that 𝑀∖𝑒

is not 3-connected for all 𝑒 ∈ 𝐶. Then there are at least two triads of 𝑀 intersecting 𝐶.

Most times we only need a weaker version of the above result, due to Oxley [7]:

Theorem. Each circuit of a minimally 3-connected matroid meets at least two triads.

The main result of Bixby [1]:

Theorem 2.1.2. (Bixby’s Theorem) If 𝑀 is 3-connected and 𝑒 ∈ 𝑀 , then:
i) Every 2-separation for 𝑀∖𝑒 is trivial and so 𝑐𝑜 (𝑀∖𝑒) is 3-connected; or

ii) Every 2-separation for 𝑀/𝑒 is trivial and so 𝑠𝑖 (𝑀/𝑒) is 3-connected.

The Tuttes’s Triangle Lemma:
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Lemma 2.1.3. (Tutte’s Triangle Lemma) Let 𝑀 be a 3-connected matroid having at least
4 elements and suppose that {𝑒, 𝑓, 𝑔} is a triangle of 𝑀 such that neither 𝑀∖𝑒 nor 𝑀∖𝑓

is 3-connected. Then 𝑀 has a triad that contains 𝑒 and exactly one of 𝑓 and 𝑔.

Following are two auxiliary results that is widely used throughout this text.
From Oxley [8], we use the result:

Lemma 2.1.4. Suppose that 𝑒 and 𝑓 are distinct elements of a 𝑛-connected matroid 𝑀

with |𝐸 (𝑀)| ≥ 2 (𝑛 − 1), 𝑛 ≥ 2. Assume that 𝑀/𝑒 ∖ 𝑓 is 𝑛-connected but 𝑀 ∖ 𝑓 is not.
Then 𝑀 has a cocircuit with length 𝑛 containing 𝑒 and 𝑓 .

Lemma 2.1.5. Suppose that 𝑇 is a triangle and 𝑇 * is a triad of a 3-connected matroid
𝑀 such that {𝑒} = 𝑇 * − 𝑇 . Then 𝑠𝑖 (𝑀/𝑒) is 3-connected.

Demonstração. 𝑐𝑜 (𝑀∖𝑒) can not be 3-connected because the cosimplification of 𝑀∖𝑒

involves the contraction of an element of 𝑇 ∩𝑇 *. Then Theorem 2.1.2 implies that 𝑠𝑖 (𝑀/𝑒)
is 3-connected.

The following Lemmas are in Section 2 of Lemos [4]:

Lemma 2.1.6. Let 𝑀 a 1-irreducible matroid with |𝐸 (𝑀)| ≥ 7. If 𝑄1 and 𝑄2 are different
squares of 𝑀 , then |𝑄1 ∩ 𝑄2| ≤ 2.

Lemma 2.1.7. Suppose that 𝑀 is a semi-binary 2-irreducible matroid. Then each coline
of 𝑀 has at most 3 elements.

2.2 FULLCLOSURE OPERATOR AND SEQUENTIAL SEPARATION

The terminologies for fullclosure operator and sequential separations was introduced
by Oxley, Semple and Whittlel [9]. Let 𝑀 be a matroid. We define the fullclosure operator
as the function

𝑓𝑐𝑙𝑀 : 2𝐸(𝑀) −→ 2𝐸(𝑀)

such that
𝑓𝑐𝑙𝑀 (𝑋) = 𝑚𝑖𝑛 {𝑍 ⊆ 𝐸 (𝑀) | 𝑋 ⊆ 𝑍 = 𝑐𝑙 (𝑍) = 𝑐𝑙* (𝑍)}

Where 𝑐𝑙 denotes the closure operator of 𝑀 and 𝑐𝑙* of 𝑀*. Note that 𝑓𝑐𝑙𝑀 (𝑋) =
𝑓𝑐𝑙𝑀* (𝑋). We denote by 𝑓𝑐𝑙 (𝑋) when it does not cause confusion.

One way of obtaining the fullclosure of a subset 𝑋 ⊆ 𝐸 (𝑀) is to take alternately
closure and coclosure and so on until neither the closure nor the coclosure operator adds
new elements. Consequently, the elements of 𝑓𝑐𝑙 (𝑋) − 𝑋 can be ordered

𝑓𝑐𝑙 (𝑋) − 𝑋 = {𝑥1, . . . , 𝑥𝑛}

such that 𝑥𝑖 ∈ 𝑐𝑙 (𝑋 ∪ {𝑥1, . . . , 𝑥𝑖−1}) or 𝑥𝑖 ∈ 𝑐𝑙* (𝑋 ∪ {𝑥1, . . . , 𝑥𝑖−1}).
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The following results holds for 𝑘-separating sets with 𝑘 ≥ 1, but our only interest is
in the case 𝑘 = 2 and 3:

Lemma 2.2.1. (Lemma 3.1 - [9]) Let {𝑋, 𝑌 } be an exact k-separation for a matroid 𝑀 .
i) For 𝑒 ∈ 𝑌 , the partition {𝑋 ∪ 𝑒, 𝑌 − 𝑒} is a k-separation iff 𝑒 ∈ 𝑐𝑙 (𝑋) or 𝑒 ∈

𝑐𝑙* (𝑋);
ii) For 𝑒 ∈ 𝑌 , the partition {𝑋 ∪ 𝑒, 𝑌 − 𝑒} is an exact k-separation iff

𝑒 ∈ [𝑐𝑙 (𝑋) ∩ 𝑐𝑙 (𝑌 − 𝑒)] △ [𝑐𝑙* (𝑋) ∩ 𝑐𝑙* (𝑌 − 𝑒)] ;

iii) The elements of 𝑓𝑐𝑙 (𝑋) − 𝑋 can be ordered {𝑥1, . . . , 𝑥𝑛} such that 𝑋 ∪ {𝑥1, . . . , 𝑥𝑖}
is k-separating for all 𝑖 ∈ {1, . . . , 𝑛}.

Definition. A 𝑘-separation {𝑋, 𝑌 } for a matroid 𝑀 is said sequential provided 𝑓𝑐𝑙 (𝑋) =
𝐸 (𝑀) or 𝑓𝑐𝑙 (𝑌 ) = 𝐸 (𝑀). Otherwise, {𝑋, 𝑌 } is said non-sequential.

Example 2.2.2. A trivial 2-separation {𝑋, 𝑌 } for a connected matroid 𝑀 is also se-
quential. Indeed, suppose that |𝑌 | = 2, where 𝑌 = {𝑦1, 𝑦2}. Since that 𝑀 is connected,
𝑌 is a parallel or a series class. Hence 𝑦2 ∈ 𝑐𝑙 (𝑦1) or 𝑦2 ∈ 𝑐𝑙* (𝑦1). If 𝑦2 ∈ 𝑐𝑙 (𝑦1) then
𝑦2 ∈ 𝑐𝑙 (𝑋), otherwise 𝑦2 ∈ 𝑐𝑙* (𝑦1) and 𝜉 (𝑌 ) = 1, contradicting the connectivity of 𝑀 . So
we have that 𝑌 ⊆ 𝑐𝑙 (𝑋). By duality, if 𝑦2 ∈ 𝑐𝑙* (𝑦1) then 𝑦2 ∈ 𝑐𝑙* (𝑋) and so 𝑌 ⊆ 𝑐𝑙* (𝑋).

Lemma 2.2.3. Suppose that 𝑀 is a triangle-free 3-connected matroid with at least 5
elements. Given 𝑒 ∈ 𝐸 (𝑀), every 2-separation for 𝑀/𝑒 is non-sequential.

Lemma 2.2.4. Suppose that 𝑀 is a triangle-free 3-connected matroid and 𝑒 ∈ 𝐸 (𝑀). If
{𝑋, 𝑌 } is a non-trivial 2-separation for 𝑀∖𝑒 then {𝑋, 𝑌 } is non-sequential or 𝑒 belongs to
a coline with at least 4 elements. Moreover, when 𝑀 is also semi-binary and 2-irreducible,
{𝑋, 𝑌 } is non-sequential.

2.3 FORCED SETS

This section is based on section 4 of Lemos [4].

Definition. Let 𝑀 be a matroid with ground set 𝐸 (𝑀). A subset 𝐹 ⊆ 𝐸 (𝑀) is forced
provided, for every 𝑒 ∈ 𝐸 (𝑀) − 𝐹 and 2-separation {𝑋, 𝑌 } for any 𝑁 ∈ {𝑀∖𝑒, 𝑀/𝑒},
there is 𝑍 ∈ {𝑋, 𝑌 } such that 𝐹 ⊆ 𝑓𝑐𝑙𝑁 (𝑍).

Forced sets are not separated by 2-separations on matroids resulting from contraction
or deletion of elements outside 𝐹 . If 𝐹 intersects both sets of a 2-separation, the elements
of one can be pulled to the other using the closure and coclosure operators.

Example 2.3.1. If for every 𝑊 ⊆ 𝐹 , 𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝑊 ) or 𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝐹 − 𝑊 ) then 𝐹

is a forced set of 𝑀 . Take 𝑒 ∈ 𝐸 (𝑀) − 𝐹 and let {𝑋, 𝑌 } be a 2-separation of 𝑁 ∈
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{𝑀∖𝑒, 𝑀/𝑒}. We can suppose that 𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝑋 ∩ 𝐹 ) and denote 𝑊 = 𝑋 ∩ 𝐹 . We can
take 𝐹 = 𝑊 ∪ {𝑥1, . . . , 𝑥𝑛} such that 𝑥1 ∈ 𝑐𝑙 (𝑊 ) ∪ 𝑐𝑙* (𝑊 ) and

𝑥𝑖 ∈ 𝑐𝑙 (𝑊 ∪ {𝑥1, . . . , 𝑥𝑖−1}) ∪ 𝑐𝑙* (𝑊 ∪ {𝑥1, . . . , 𝑥𝑖−1})

for 𝑖 > 1. Let 𝐶𝑖 be a circuit or cocircuit contained in 𝑊 ∪ {𝑥1, . . . , 𝑥𝑖} and contains 𝑥𝑖,
for 𝑖 ≥ 1. So 𝐶𝑖 is a circuit or cocircuit of 𝑁 , since 𝑒 /∈ 𝐶𝑖, and then 𝐹 ⊆ 𝑓𝑐𝑙𝑁 (𝑋).

Lemma 2.3.2. (Lemma 4.1 - Lemos [4]) If 𝐹 is a forced set of 𝑀 and 𝑒 is spanned by
𝐹 in 𝑀 or 𝑀* then 𝐹 ∪ 𝑒 is a forced set in 𝑀 .

Demonstração. It follows from the fact that 𝑓𝑐𝑙𝑀 (𝐹 ∪ 𝑒) = 𝑓𝑐𝑙𝑀 (𝐹 ).

Lemma 2.3.3. (Lemma 4.2 - Lemos [4]) Suppose that 𝑀 is a triangle-free 3-connected
matroid with at least 5 elements and 𝐹 is a forced set of 𝑀 . If 𝑒 ∈ 𝑐𝑙* (𝐹 ) − 𝐹 then 𝑀/𝑒

is 3-connected. Moreover, when 𝑀 is 2-irreducible there is a square 𝑄 of 𝑀 that contains
𝑒.

Lemma 2.3.4. (compare with Lemma 4.3 - Lemos [4]) Suppose that 𝐹 is a forced set of
a triangle-free 3-connected matroid 𝑀 . If 𝑒 ∈ 𝑐𝑙 (𝐹 ) − 𝐹 then:

i) Every 2-separation for 𝑀∖𝑒 is trivial and so 𝑐𝑜 (𝑀∖𝑒) is 3-connected; or exclusively
ii) 𝑒 belongs to a coline with at least 4 elements.

Moreover:
iii) When (ii) occurs, 𝑒 is spanned by 𝐹 in 𝑀 and 𝑀*;

iv) When 𝑀 is semi-binary and 2-irreducible, (i) happens.

Demonstração. Suppose that (i) is false. Theorem 2.1.2 implies that every 2-separation for
𝑀/𝑒 is trivial and so 𝑠𝑖 (𝑀/𝑒) is 3-connected. Since 𝑀 is triangle-free 𝑠𝑖 (𝑀/𝑒) = 𝑀/𝑒. Let
{𝑋, 𝑌 } be a non-trivial 2-separation for 𝑀∖𝑒. By Lemma 2.2.4, {𝑋, 𝑌 } is non-sequential
or 𝑒 belongs to a coline with at least 4 elements.

Suppose that {𝑋, 𝑌 } is non-sequential. We can take 𝑍 = 𝑓𝑐𝑙𝑀∖𝑒 (𝑋) such that 𝐹 ⊆ 𝑍.
So {𝑍, 𝑌 − 𝑍} is a 2-separation for 𝑀∖𝑒 and |𝑌 − 𝑍| ≥ 3, then 𝑍 ∪ 𝑒 is a 2-separating
set for 𝑀 ; a contradiction. Hence, there is a coline with at least 4 elements containing 𝑒.

Take 𝐿* a coline containing 𝑒 with at least 4 elements. {𝐿* − 𝑒, 𝐸 (𝑀) − 𝐿*} is a
non-trivial 2-separation for 𝑀∖𝑒.

When (ii) occurs, if 𝐶 denote a circuit of 𝑀 such that 𝑒 ∈ 𝐶 ⊆ 𝐹 ∪ 𝑒, there is a
triad 𝑇 * = {𝑒, 𝑓, 𝑔} ⊆ 𝐿* such that 𝑓 ∈ (𝑇 * ∩ 𝐶) − 𝑒. There is ℎ ∈ 𝐿* − 𝑇 * such that
𝑇 ′* = {𝑓, 𝑔, ℎ} is a triad of 𝑀 and 𝑓 ∈ 𝐶. Then 𝑔 or ℎ belongs to 𝐶, say ℎ, and so
{𝑒, 𝑓, ℎ} is a triad of 𝑀 intersecting 𝐹 in at least 𝑓 and ℎ. Hence 𝑒 ∈ 𝑐𝑙* (𝐹 ). (iv) is
consequence of Lemma 2.1.7.

Corollary 2.3.5. If 𝑀 is 1-irreducible, 𝐹 a forced set of 𝑀 and 𝑒 ∈ 𝑐𝑙 (𝐹 ) − 𝐹 then 𝑒

belongs to a triad of 𝑀 .
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Lemma 2.3.6. (compare with Lemma 4.5 - Lemos [4]) Let 𝑀 be a triangle-free 3-
connected matroid, 𝐹 a 3-separating and forced set of 𝑀 . If there is a triad 𝑇 * = {𝑒, 𝑓, 𝑔}
such that:

i) 𝑇 * is the unique triad containing 𝑓 and 𝑇 * ∩ 𝐹 = {𝑒, 𝑓};
ii) There is a square 𝑄 of 𝑀 such that {𝑒, 𝑓} ⊆ 𝑄 ⊆ 𝐹 ;
iii) Each elements of 𝑄 − {𝑒, 𝑓} belongs to a triad contained in 𝐹 ;
iv) Every square of 𝑀 containing 𝑔 avoids 𝑒; and
v) 𝑐𝑜 (𝑀∖𝑓) is 3-connected.

Then 𝑀 is 2-reducible or 3-reducible.

Demonstração. By (i), 𝑇 * is the unique triad that contains 𝑓 and so 𝑐𝑜 (𝑀∖𝑓) = 𝑀∖𝑓/𝑔.
By (v), 𝑀∖𝑓/𝑔 is 3-connected. The dual form of the Lemma 2.1.4 implies that 𝑀/𝑔 is
3-connected. So 𝑀 is 2-reducible or there is a square 𝑄′ of 𝑀 containing 𝑔. If 𝑀 is 2-
irreducible, by orthogonality and by (iv), we have that 𝑓 belongs to 𝑄′ too. Suppose that
𝑄′ − 𝑔 ⊆ 𝐹 , then 𝑔 ∈ 𝑐𝑙 (𝐹 ) ∩ 𝑐𝑙* (𝐹 ) and so 𝐹 ∪ 𝑔 is 2-separating for 𝑀 ; a contradiction.
Hence there is 𝑔′ ∈ 𝑄′ − (𝐹 ∪ 𝑔). If |𝑄 ∩ 𝑄′| = 2, then there is a triad 𝑇 ′* contained in 𝐹

intersecting 𝑄′ and, since (i), we have that 𝑔′ ∈ 𝐹 ; a contradiction. So 𝑄 ∩ 𝑄′ = {𝑓} and
𝑀 is 3-reducible.

Lemma 2.3.7. (compare with Lemma 4.6 - Lemos [4]) Let 𝑀 be a triangle-free 3-
connected matroid and 𝐹 a 3-separating forced set of 𝑀 . Suppose that 𝑀 |𝐹 is coloopless
and |𝐸 (𝑀) − 𝐹 | ≥ 5. If 𝐶* is a cocircuit of 𝑀 such that |𝐶* − 𝐹 | = 1 and each element
of 𝐶* ∩ 𝐹 belongs to a triad contained in 𝐹 then 𝑀 is (1 or 2 or 3)-reducible.

Demonstração. Let 𝑒 be the element in 𝐶* − 𝐹 . The Lemma 2.3.3 implies that 𝑀/𝑒 is
3-connected and 𝑀 is 2-reducible or there is a square 𝑄 of 𝑀 containing 𝑒. Suppose that
𝑀 is 2-irreducible. By orthogonality with 𝐶*, there are distinct elements 𝑥 and 𝑦 belongs
to 𝑄 ∩ 𝐶* ∩ 𝐹 . So there are triads of 𝑀 contained in 𝐹 that contains 𝑥 and 𝑦. If 𝑄 is
contained in 𝐹 ∪ 𝑒, then 𝑒 is spanned by 𝐹 in both 𝑀 and 𝑀*, a contradiction. So 𝑄 − 𝐹

has just two elements, say {𝑒, 𝑓}.
We have that 𝐹 ′ = 𝐹 ∪ {𝑒, 𝑓} is a 3-separating set of 𝑀 , provided |𝐸 (𝑀) − 𝐹 ′| ≥ 3,

and forced. Moreover, 𝑓 can’t be spanned by 𝐹 ∪ 𝑒 in both 𝑀 and 𝑀*, otherwise 𝐹 ′ will
be 2-separating. Then Lemma 2.3.4 implies that every 2-separation for 𝑀∖𝑓 is trivial and
𝑐𝑜 (𝑀∖𝑓) is 3-connected.

If 𝑐𝑜 (𝑀∖𝑓) = 𝑀∖𝑓 , 𝑀 is 1-reducible. Otherwise, there is a triad 𝑇 * containing 𝑓 and
this triad can’t be contained in 𝐹 ′, and so |𝑇 * ∩ 𝑄| = 2. This triad do not intersect 𝐹 :
suppose that 𝑇 * ∩ 𝑄 = {𝑓, 𝑥} and 𝑥 ̸= 𝑒. Since 𝑀 is coloopless, 𝐹 is dependent on 𝑀 |𝐹
that has a circuit containing 𝑥 and, by orthogonality, 𝑇 * is contained in 𝐹 ′.

So 𝑇 * ∩ 𝑄 = {𝑓, 𝑒} and 𝑇 * is the unique triad that contains 𝑓 . Let 𝑔 be the element
in 𝑇 * − 𝑄, hence 𝑐𝑜 (𝑀∖𝑓) = 𝑀∖𝑓/𝑔. The Lemma 2.3.3 implies that there is a square
𝑄′ of 𝑀 containing 𝑔. By orthogonality with 𝑇 *, 𝑒 or 𝑓 belongs to 𝑄′. If 𝑒 ∈ 𝑄′, the



26

orthogonality with 𝐶* and the hypothesis that each element of 𝐶* ∩ 𝐹 belongs to a triad
contained in 𝐹 implies that 𝑄′ ⊆ 𝐹 ′∪𝑔 and so 𝐹 ′∪𝑔 is 2-separating for 𝑀 , a contradiction.
So 𝑄′ ∩ 𝑄 = {𝑓} then 𝑀 is 3-reducible, since every square containing 𝑔 intersects 𝑄 only
in 𝑓 .
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3 ON INTERSECTION OF SQUARES

In this section we will describe the behaviour of squares and triads in some specific
configurations of intersection of squares. Sapphires, emeralds and pure diamonds will
naturally appear in the study of these structures. The results of this section will be useful
in the proof of the covering theorem, which we will see in the next chapter.

3.1 SQUARES HAVING JUST ONE ELEMENT IN COMMON

This section contains an auxiliary result that will be very useful in the course of this
work.

Lemma 3.1.1. Let 𝑀 be a minimally 3-connected matroid with 𝑄1 and 𝑄2 squares of
𝑀 such that 𝑄1 ∩ 𝑄2 = {𝑓}. Suppose that 𝑓 belongs to a unique triad 𝑇 * = {𝑒, 𝑓, 𝑔}.
We can assume that 𝑒 ∈ 𝑄1 and 𝑔 ∈ 𝑄2. If 𝑀/𝑒 is 3-connected and if there is a triad 𝑇 ′*

containing 𝑄2 − 𝑇 * then 𝑐𝑜 (𝑀∖𝑓) = 𝑀∖𝑓/𝑒 is 3-connected.

Figure 6 – Setup quoted in the following demonstration.

Demonstração. Suppose that 𝑐𝑜 (𝑀∖𝑓) = 𝑀∖𝑓/𝑒 is not 3-connected. Denote by {𝑥, 𝑦} =
𝑄1 − 𝑇 *. As 𝑇 * is the unique triad containing 𝑓 , there is no triad of 𝑀/𝑒 that contains
𝑓 . We have that 𝑄1 − 𝑒 = {𝑓, 𝑥, 𝑦} is a triangle of 𝑀/𝑒, 𝑀/𝑒 is 3-connected and 𝑀∖𝑓/𝑒

is not 3-connected. Tutte’s Triangle Lemma implies that 𝑀/𝑒∖𝑥 and 𝑀/𝑒∖𝑦 are both 3-
connected, otherwise there would be a triad of 𝑀/𝑒 containing 𝑓 . Lemma 2.1.4 implies that
there are triads containing {𝑒, 𝑥} and {𝑒, 𝑦}, since 𝑀∖𝑥 and 𝑀∖𝑦 are not 3-connected.
A possible representation of this configuration of triads and squares is done in the graph
of Figure 6.

Bixby’s Theorem implies that there is non-trivial (exact) 2-separation for 𝑀∖𝑓 , say
{𝑋, 𝑌 }. We will establish that {𝑋, 𝑌 } is non-sequential. Suppose that {𝑋, 𝑌 } is sequen-
tial. Lemma 2.2.1 implies that we can put an order on 𝑋 or 𝑌 , say 𝑌 = {𝑦1, . . . , 𝑦𝑛−2, 𝑦𝑛−1, 𝑦𝑛},
with 𝑛 ≥ 3, such that {𝑦𝑛−2, 𝑦𝑛−1, 𝑦𝑛} and {𝑦𝑛−1, 𝑦𝑛} are both 2-sparating set for
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𝑀∖𝑓 . Then {𝑦𝑛−1, 𝑦𝑛} is in a series class of 𝑀∖𝑓 and so {𝑦𝑛−1, 𝑦𝑛} = {𝑒, 𝑔}. Since
𝜉𝑀/𝑓 ({𝑦𝑛−2, 𝑒, 𝑔}) = 2 we have that

𝜉𝑀∖𝑓 ({𝑦𝑛−2, 𝑒, 𝑔}) = 𝑟𝑀∖𝑓 ({𝑦𝑛−2, 𝑒, 𝑔}) + 𝑟*
𝑀∖𝑓 ({𝑦𝑛−2, 𝑒, 𝑔}) − 3 + 1

= 𝑟𝑀 ({𝑦𝑛−2, 𝑒, 𝑔}) + 𝑟*
𝑀 ({𝑦𝑛−2, 𝑒, 𝑔, 𝑓}) − 1 − 3 + 1

= 𝑟*
𝑀 ({𝑦𝑛−2, 𝑒, 𝑔, 𝑓})

and so {𝑦𝑛−2, 𝑒, 𝑔, } is a triad of 𝑀 . Hence 𝑦𝑛−2 ∈ 𝑄1 ∩ 𝑄2, because of orthogonality;
a contradiction. Therefore {𝑋, 𝑌 } is non-sequential.

Denote by 𝑇 *
𝑥 and 𝑇 *

𝑦 the triads of 𝑀 that contains {𝑒, 𝑥} and {𝑒, 𝑦}, respectively.
We can suppose that |𝑋 ∩ 𝑇 *

𝑥 | ≥ 2 and that 𝑋 is fullclosed. If 𝑦 ∈ 𝑋 then 𝑓 belongs
to 𝑐𝑙 (𝑋) and this is a contradiction. So

⃒⃒⃒
𝑇 *

𝑦 ∩ 𝑌
⃒⃒⃒

≥ 2 and then 𝑇 *
𝑦 ̸= 𝑇 *

𝑥 . Since 𝑒 is in
series with 𝑔, we have that 𝑔 ∈ 𝑋 and so |𝑇 ′* ∩ 𝑌 | ≥ 2. Therefore 𝑇 ′* ∪ {𝑒, 𝑔} ⊆ 𝑐𝑙* (𝑌 ),
𝑌 ∪𝑇 ′*∪{𝑒, 𝑔} is a 2-separating set for 𝑀∖𝑓 and 𝑓 ∈ 𝑐𝑙 (𝑌 ∪ 𝑇 ′* ∪ {𝑒, 𝑔}); a contradiction.
Thus 𝑐𝑜 (𝑀∖𝑓) = 𝑀∖𝑓/𝑒 is 3-connected.

3.2 SQUARES HAVING TWO ELEMENTS IN COMMON

In this section, we will establish results about the local structure of the union of two
squares having two elements in common.

Lemma 3.2.1. Let 𝑇 * be a triad of a semi-binary matroid 𝑀 that intersects 𝑄1 ∪ 𝑄2,
where 𝑄1 and 𝑄2 are squares of 𝑀 such that |𝑄1 ∩ 𝑄2| = 2. Then

i) 𝑇 * ∩ 𝐹 ∈ {𝑄1 − 𝑄2, 𝑄2 − 𝑄1, 𝑄1 ∩ 𝑄2}; or
ii) |𝑇 * ∩ (𝑄1 − 𝑄2)| = |𝑇 * ∩ (𝑄2 − 𝑄1)| = |𝑇 * ∩ (𝑄1 ∩ 𝑄2)| = 1.

Demonstração. Since 𝑀 is semi-binary, we have that |𝑇 * ∩ 𝑄𝑖| ∈ {0, 2}, for 𝑖 ∈ {1, 2}. If
𝑇 * ∩ 𝑄1 = ∅ then 𝑇 * ∩ 𝐹 = 𝑄2 − 𝑄1. Similarly if 𝑇 * ∩ 𝑄2 = ∅. If both intersections are
non-empty, the orthogonality implies that 𝑇 * ∩ 𝐹 = 𝑄1 ∩ 𝑄2 or (ii) occurs.

Definition. In the previous lemma, when (i) happens we say that 𝑇 * is type-1 with
respect to 𝑄1 ∪ 𝑄2. Otherwise, when (ii) happens we say that 𝑇 * is type-2 with respect
to 𝑄1 ∪ 𝑄2.

Lemma 3.2.2. Let 𝑀 be a semi-binary triangle-free 3-connected matroid with at least 9
elements. If 𝑄1 and 𝑄2 are squares of 𝑀 such that |𝑄1 ∩ 𝑄2| = 2 and 𝑄1 ∪ 𝑄2 contains
at least two triads of 𝑀 , then 𝑄1 ∪ 𝑄2 is a 3-separating forced set of 𝑀 .

Demonstração. Let 𝑇 * and 𝑇 ′* be distinct triads contained in 𝐹 = 𝑄1 ∪ 𝑄2. Since we can
delete one element of each square, which is not contained in the other square, without
reducing the rank of 𝐹 , then we have to 𝑟 (𝐹 ) ≤ 4. The same occurs with the triads,
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without reducing the corank of 𝐹 , and so 𝑟* (𝐹 ) ≤ 4. Hence

𝜉 (𝐹 ) = 𝑟 (𝐹 ) + 𝑟* (𝐹 ) − |𝐹 | + 1 ≤ 8 − 6 + 1 = 3

and |𝐸 (𝑀) − 𝐹 | ≥ 3. The 3-connectivity of 𝑀 implies that the above inequality is in
fact an equality, otherwise we have to 𝜉 (𝐹 ) ≤ 2 and |𝐸 (𝑀) − 𝐹 | ≤ 1 contradicting the
fact of |𝐸 (𝑀)| ≥ 9. Therefore 𝐹 is a 3-separating set with 𝑟 (𝐹 ) = 𝑟* (𝐹 ) = 4.

If |𝑇 * ∩ 𝑇 ′*| = 2 then 𝐿* = 𝑇 * ∪ 𝑇 ′* is contained in a coline. In this case, 𝐿* intersects
one of the squares and so this square contain a triad; a contradiction.

If |𝑇 * ∩ 𝑇 ′*| = 1 then 𝐹 is a forced set of 𝑀 , since for each subset 𝑊 ⊆ 𝐹 we have
that 𝐹 ⊆ 𝑓𝑐𝑙 (𝑊 ) or 𝐹 ⊆ 𝑓𝑐𝑙 (𝐹 − 𝑊 ) (see Example 2.3.1).

So we can assume that 𝑇 * ∩ 𝑇 ′* = ∅, that is 𝑄1 ∪ 𝑄2 is an emerald. Suppose that
𝐹 is a non-forced set of 𝑀 . There are 𝑒 ∈ 𝐸 (𝑀) − 𝐹 , 𝑁 ∈ {𝑀 ∖ 𝑒, 𝑀/𝑒} and {𝑋, 𝑌 }
2-separation for 𝑁 such that 𝐹 * 𝑓𝑐𝑙𝑁 (𝑋) and 𝐹 * 𝑓𝑐𝑙𝑁 (𝑌 ). If |𝑋 ∩ 𝐹 | ≥ 4 then
𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝑋 ∩ 𝐹 ) ⊆ 𝑓𝑐𝑙𝑁 (𝑋). So we can take |𝑋 ∩ 𝐹 | = |𝑌 ∩ 𝐹 | = 3 and, moreover,
𝑓𝑐𝑙𝑀 (𝑋 ∩ 𝐹 ) ∩ 𝐹 = 𝑋 ∩ 𝐹 and the same holds for 𝑌 .

If 𝑋∩𝐹 intersect 𝑇 * or 𝑇 ′* only in 2 elements then 𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝑋 ∩ 𝐹 ), a contradiction.
So we have that {𝑋 ∩ 𝐹, 𝑌 ∩ 𝐹} = {𝑇 *, 𝑇 ′*}. As {𝑇 *, 𝑇 ′*} is not 2-separation for 𝑀 |𝐹 ,
it follows that 𝑀 |𝐹 ̸= 𝑁 |𝐹 . Hence 𝑁 = 𝑀/𝑒.

As 3 ≤ 𝑟 (𝑁 |𝐹 ) ≤ 𝑟 (𝑀 |𝐹 ) = 4, we have

𝜉𝑁 |𝐹 (𝑇 *) = { 𝑟 𝑁 |𝐹 (𝑇 *) + 𝑟𝑁 |𝐹 (𝑇 ′*) − 3 + 1,

if 𝑟 (𝑁 |𝐹 ) = 3

𝑟𝑁 |𝐹 (𝑇 *) + 𝑟𝑁 |𝐹 (𝑇 ′*) − 4 + 1,

= { 𝑟 𝑀 (𝑇 * ∪ 𝑒)+𝑟𝑀 (𝑇 ′* ∪ 𝑒)−4, if 𝑟 (𝑁 |𝐹 ) = 3𝑟𝑀 (𝑇 * ∪ 𝑒)+𝑟𝑀 (𝑇 ′* ∪ 𝑒)−5, if 𝑟 (𝑁 |𝐹 ) = 4 ≤ 2

then 𝑒 ∈ 𝑐𝑙𝑀 (𝑇 *) ∪ 𝑐𝑙𝑀 (𝑇 ′*), and so 𝑇 * ∪ 𝑒 or 𝑇 ′* ∪ 𝑒 is a square of 𝑀 ; a contradiction
because 𝑀 is semi-binary. Thus 𝐹 is a forced set of 𝑀 .

Follows a sufficient condition to a matroid 𝑀 be 8-reducible.

Lemma 3.2.3. Let 𝑀 be a semi-binary 123-irreducible matroid with at least 11 elements.
If 𝑇 * and 𝑇 ′* are triads of 𝑀 such that 𝑇 * ∪ 𝑇 ′* is an emerald then 𝑀∖𝑇 ′* is 3-connected
and 𝑀 is 8-reducible.

Demonstração. Denote by 𝑇 * = {𝑒0, 𝑒1, 𝑒2} and 𝑇 ′* = {𝑒′
0, 𝑒′

1, 𝑒′
2} triads of 𝑀 such that

𝑄0 = {𝑒0, 𝑒1, 𝑒′
0, 𝑒′

1} and 𝑄1 = {𝑒1, 𝑒2, 𝑒′
1, 𝑒′

2} are squares of 𝑀 . Suppose that 𝑀∖𝑇 ′* is
not 3-connected. Let {𝑋, 𝑌 } be a k-separation for 𝑀∖𝑇 ′*, with 𝑘 = 1 or 𝑘 = 2. We can
suppose that |𝑋 ∩ 𝑇 *| ≥ 2. If |𝑌 | = 1 then 𝑘 = 1 and 𝑌 is a coloop of 𝑀/𝑇 ′* and 𝑇 ′* ∪ 𝑌

is a coline. A contradiction since 𝑀 is semi-binary and 2-irreducible. Thus |𝑌 | ≥ 2.
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Let’s denote 𝑀 ′ = 𝑀∖ (𝑇 ′* − 𝑒′
0). Since

𝑘 = 𝜉𝑀∖𝑇 ′* (𝑋) = 𝑟𝑀∖𝑇 ′* (𝑋) + 𝑟*
𝑀∖𝑇 ′* (𝑋) − |𝑋| + 1

(|𝑋 ∩ 𝑇 *| ≥ 2) ≥ 𝜉𝑀∖𝑇 ′* (𝑋 ∪ 𝑇 *) = 𝜉𝑀 ′∖𝑒′
0
(𝑋 ∪ 𝑇 *)

(𝑒′
0 is a coloop in 𝑀 ′) = 𝑟𝑀 ′ (𝑋 ∪ 𝑇 *) + 𝑟*

𝑀 ′ (𝑋 ∪ 𝑇 * ∪ 𝑒′
0) −�����𝑟*

𝑀 ′ (𝑒′
0) − |𝑋 ∪ 𝑇 ′*| + 1

≥ 𝑟𝑀 ′ (𝑋 ∪ 𝑇 * ∪ 𝑒′
0) + 𝑟*

𝑀 ′ (𝑋 ∪ 𝑇 * ∪ 𝑒′
0) − |𝑋 ∪ 𝑇 * ∪ 𝑒′

0| + 1

= 𝜉𝑀 ′ (𝑋 ∪ 𝑇 * ∪ 𝑒′
0)

We have that {𝑋 ∪ 𝑇 *, 𝑌 − 𝑇 *} is a k-separation for 𝑀∖𝑇 ′* or |𝑌 − 𝑇 *| < 𝑘 ≤ 2.
Since {𝑋 ∪ 𝑇 *, 𝑌 − 𝑇 *} is a k-separation for 𝑀∖𝑇 ′*, and 𝑟𝑀 (𝑇 * ∪ 𝑒′

0) = 4, we have
that 𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝑋 ∪ 𝑇 * ∪ 𝑒′

0) and so

𝑘 = 𝜉𝑀 ′ (𝑋 ∪ 𝑇 * ∪ 𝑒′
0)

= 𝑟𝑀 ′ (𝑋 ∪ 𝑇 * ∪ 𝑒′
0) + 𝑟*

𝑀 ′ (𝑋 ∪ 𝑇 * ∪ 𝑒′
0) − |𝑋 ∪ 𝑇 * ∪ 𝑒′

0| + 1

≥ 𝑟𝑀 (𝑋 ∪ 𝑇 * ∪ 𝑇 ′*) + 𝑟*
𝑀 (𝑋 ∪ 𝑇 * ∪ 𝑇 ′*) − |𝑋 ∪ 𝑇 * ∪ 𝑇 ′*| + 1

= 𝜉𝑀 (𝑋 ∪ 𝑇 * ∪ 𝑇 ′*)

Therefore {𝑋 ∪ 𝑇 * ∪ 𝑇 ′*, 𝑌 − 𝑇 *} is a k-separation for 𝑀 , which is a contradiction.
So |𝑌 − 𝑇 *| = 1, 𝑇 * * 𝑋 and |𝑌 | = 2. Taking 𝑌 = {𝑒0, 𝑔} with 𝑔 /∈ 𝐹 , there is a cocircuit
𝐷* of 𝑀 such that 𝑌 = 𝐷* − 𝑇 ′*. Hence 𝐷* − 𝐹 = {𝑔}. Since 𝐹 is a 3-separating forced
set and |𝐸 (𝑀) − 𝐹 | ≥ 5, then Lemma 2.3.7 implies that 𝑀 is (1 or 2 or 3)-reducible; a
contradiction. Thus 𝑀∖𝑇 ′* is 3-connected and 𝑀 is 8-reducible.

From now on, until the end of this section, 𝑀 denotes a semi-binary 1238-irreducible
matroid with at least 11 elements, 𝑄1 and 𝑄2 are squares of 𝑀 such that |𝑄1 ∩ 𝑄2| = 2
and 𝑄1 ∪ 𝑄2 is not an emerald. Denote by 𝐹 = 𝑄1 ∪ 𝑄2.

Lemma 3.2.4. 𝐹 contains at most one type-2 triad.

Demonstração. Suppose, for contradiction, that 𝑇 *
0 and 𝑇 *

1 are both type-2 triads for 𝐹 .
Lemma 3.2.2 implies that 𝐹 is a 3-separating forced set and the previous lemma implies
that |𝑇 *

0 ∩ 𝑇 *
1 | = 1. Denote by 𝑓 the element in 𝐹 − (𝑇 *

0 ∪ 𝑇 *
1 ). Since 𝑀 is 1-irreducible,

𝑀∖𝑓 is not 3-connected.
Sub-lemma 3.2.4.1. Every 2-separation for 𝑀∖𝑓 is trivial.
Suppose that {𝑋, 𝑌 } is a non-trivial 2-separation for 𝑀∖𝑓 . By Lemma 2.2.4, {𝑋, 𝑌 }

is non-sequential. We can take 𝑋 such that |𝑋 ∩ 𝑇 *
𝑖 | ≥ 2 for some 𝑖 ∈ {0, 1}, say 𝑖 = 0,

|𝑋| is maximum. By Lemma 2.2.1, we can assume that 𝑋 is fullclosed. Therefore 𝑇 *
0 ⊆ 𝑋,

{𝑋, 𝑌 } is a 2-separation for 𝑀∖𝑓 and |𝑌 | ≥ 3. If |𝑋 ∩ 𝑇 *
1 | ≥ 2 the same happens with

𝑇 *
1 and 𝑇 *

1 ⊆ 𝑋, implying that 𝑓 is spanned by 𝑋 in 𝑀 , then 𝑋 ∪𝑓 will be a 2-separating
set for 𝑀 . So 𝑇 *

1 − 𝑇 *
0 ⊆ 𝑌 . Denote by 𝑒 the element in common to 𝑇 *

0 and 𝑇 *
1 . We have
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that

𝜉𝑀∖{𝑒,𝑓} (𝑋 − 𝑒) = 𝑟𝑀∖{𝑒,𝑓} (𝑋 − 𝑒) + 𝑟*
𝑀∖{𝑒,𝑓} (𝑋 − 𝑒) − |𝑋 − 𝑒| + 1

= 𝑟𝑀∖𝑓 (𝑋 − 𝑒) + 𝑟*
𝑀∖𝑓 (𝑋) − 𝑟*

𝑀∖𝑓 (𝑒) − |𝑋| + 2(︁
𝑒 /∈ 𝑐𝑙𝑀∖𝑓 (𝑋 − 𝑒)

)︁
= 𝑟𝑀∖𝑓 (𝑋) − 1 + 𝑟*

𝑀∖𝑓 (𝑋) − 1 − |𝑋| + 2

= 𝜉𝑀∖𝑓 (𝑋) − 1 = 1

Therefore {𝑋 − 𝑒, 𝑌 } is a 1-separation for 𝑀 ∖ {𝑒, 𝑓}. As 𝑇 *
0 and 𝑇 *

1 are both type-2
triads, we have that

{𝑒, 𝑓} ∈ {𝑄1 − 𝑄2, 𝑄2 − 𝑄1, 𝑄1 ∩ 𝑄2}

There is no circuit of 𝑀∖𝑓 intersecting both 𝑋 − 𝑒 and 𝑌 , then {𝑒, 𝑓} = 𝑄1 ∩ 𝑄2 and
𝑄1△𝑄2 is not a circuit of 𝑀 . So (𝑄1△𝑄2) ∪ 𝑒 and (𝑄1△𝑄2) ∪ 𝑓 are both circuits of 𝑀 .
we have that {𝑋 − 𝑒, 𝑌 ∪ 𝑒} is a 2-separation for 𝑀∖𝑓 and 𝑇 *

1 ⊆ 𝑌 ∪ 𝑒. By the choice of
{𝑋, 𝑌 }, we have that |𝑋| ≥ |𝑌 ∪ 𝑒|, and so

2 |𝑋 − 𝑒| + 1 ≥ |𝑋| + |𝑌 | + 1 = |𝐸 (𝑀)| ≥ 11

and then |𝑋 − 𝑒| ≥ 5.

We have that

2 = 𝜉𝑀∖𝑓 (𝑋) = 𝑟𝑀∖𝑓 (𝑋) + 𝑟*
𝑀∖𝑓 (𝑋) − |𝑋| + 1

= 𝑟𝑀∖𝑓 (𝑋 − 𝑒) + 𝑟*
𝑀∖𝑓 (𝑋 − 𝑒) − |𝑋 − 𝑒| + 1

= 𝑟𝑀 (𝑋 − 𝑒) + 𝑟*
𝑀 ((𝑋 − 𝑒) ∪ 𝑓) − |𝑋 − 𝑒|

= { 𝜉 𝑀 (𝑋 − 𝑒) ,

𝑓 /∈ 𝑐𝑙𝑀* (𝑋 − 𝑒)

𝜉𝑀 (𝑋 − 𝑒) − 1,

Since 𝑀 is 3-connected, we have to 𝑓 ∈ 𝑐𝑙𝑀* (𝑋 − 𝑒) and 𝜉𝑀 (𝑋 − 𝑒) = 3. Take

{𝑞𝑖} = 𝑄𝑖 − 𝑌 ∪ {𝑒, 𝑓} ⊆ 𝑇 *
0

We have that {𝑋 − {𝑒, 𝑞1} , 𝑌 ∪ {𝑒, 𝑓, 𝑞1}} is a 3-separation for 𝑀 . Then 𝜉𝑀 (𝑌 ∪ {𝑒, 𝑓, 𝑞1, 𝑞2}) =
2, provided 𝑞2 is spanned by 𝑌 ∪ {𝑒, 𝑓, 𝑞1} in both 𝑀 and 𝑀*. Therefore

{𝑋 − {𝑒, 𝑞1, 𝑞2} , 𝑌 ∪ {𝑒, 𝑓, 𝑞1, 𝑞2}}

is a 2-separation for 𝑀 , which is a contradiction.
Sub-lemma 3.2.4.2. There is a unique triad 𝑇 * containing 𝑓 and 𝑇 * ∩ 𝐹 = {𝑒, 𝑓}.
By previous lemma, every 2-sparation for 𝑀∖𝑓 is trivial and so 𝑐𝑜 (𝑀∖𝑓) is 3-connected.

Then there is a triad 𝑇 * containing 𝑓 and 𝑇 * can not be of type-2, because of Lemma
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2.1.7. Therefore 𝑇 * ∩ 𝐹 = {𝑒, 𝑓} , because of Lemma 3.2.1, and there is no other triad
that contains 𝑓 .

Let’s denote 𝑇 * = {𝑒, 𝑓, 𝑔}.
Sub-lemma 3.2.4.3. Every square containing 𝑔 avoids 𝑒.
Suppose that 𝑄 is a square of 𝑀 such that {𝑒, 𝑔} ⊆ 𝑄. Since 𝑒 ∈ 𝑇 *

0 ∩ 𝑇 *
1 there is

𝑒𝑖 ∈ 𝑇 *
𝑖 − 𝑒, 𝑖 ∈ {0, 1}, such that 𝑄 = {𝑒0, 𝑒1, 𝑒, 𝑔} . Therefore 𝑔 ∈ 𝑐𝑙𝑀 (𝐹 ) ∩ 𝑐𝑙𝑀* (𝐹 )

and hence 𝐹 ∪ 𝑔 is a 2-separating set for 𝑀 ; a contradiction.
Applying Lemma 2.3.6, 𝑀 is (2 or 3)-reducible; a contradiction.

Lemma 3.2.5. 𝐹 = 𝑄1 ∪ 𝑄2 is a union of triads of type-1 such that 𝑄3 = 𝑄1△𝑄2 is also
a square of 𝑀 .

Demonstração. We will prove this result in some sub-lemmas.
Sub-lemma 3.2.5.1. There are at least 3 triads that meets 𝐹 .
Suppose false. The Theorem 2.1.1 implies that there are two triads 𝑇 * and 𝑇 ′* inter-

secting 𝐹 and one of them must be a type-1 triad. If 𝐹 intersects just two triads and both
are of type-2, then at least one circuit contained in 𝐹 intersects just one triad; a contra-
diction. Then we can assume that 𝑇 * is a type-1 and 𝑇 ′* is a type-2 triads. Moreover,
also by Theorem 2.1.1, 𝑇 * ∩ 𝐹 = 𝑄1 ∩ 𝑄2. Then 𝑄3 = 𝑄1△𝑄2 is a square of 𝑀 , provided
the exchange axiom for circuits and the orthogonality with 𝑇 *. The contradiction occurs
since 𝑇 ′* is the unique triad intersecting 𝑄3. Therefore, there are at least 3 triads that
meets 𝐹 .

Sub-lemma 3.2.5.2. There are type-1 triads, 𝑇 *
1 and 𝑇 *

2 such that 𝑇 *
1 ∩ 𝐹 = 𝑄1 − 𝑄2

and 𝑇 *
2 ∩ 𝐹 = 𝑄2 − 𝑄1.

We have that at least 3 triads intersects 𝐹 and at most one of them is a type-2 triad. So
we have at least two type-1 triads 𝑇 *

1 and 𝑇 *
2 . If 𝑇 *

1 ∩ 𝐹 = 𝑄1 − 𝑄2 and 𝑇 *
2 ∩ 𝐹 = 𝑄2 − 𝑄1,

then the problem is solved. Otherwise, we can assume that 𝑇 *
1 ∩ 𝐹 = 𝑄1 − 𝑄2 and

𝑇 *
2 ∩ 𝐹 = 𝑄2 ∩ 𝑄1. Then 𝑄3 = 𝑄1△𝑄2 is a square such that 𝐹 = 𝑄2 ∪ 𝑄3, 𝑇 *

1 = 𝑄3 − 𝑄2

and 𝑇 *
2 = 𝑄2 − 𝑄3. Now, just replace 𝑄1 by 𝑄3.

Sub-lemma 3.2.5.3. There is a type-1 triad, 𝑇 *
3 , such that 𝑇 *

3 = 𝑄1 ∩ 𝑄2.
Suppose false. There are just 3 triads intersecting 𝐹 , 𝑇 *

1 , 𝑇 *
2 and 𝑇 *, such that 𝑇 * is

a type-2 triad. There is 𝑔 ∈ 𝐹 − 𝑇 * such that 𝑔 does not belongs to any triad of 𝑀 . So
𝑐𝑜 (𝑀∖𝑔) = 𝑀∖𝑔 is not 3-connected and has non-trivial 2-separations. Choose {𝑋, 𝑌 }
2-separation for 𝑀∖𝑔 such that

𝑛 = |{𝑖 ∈ {1, 2} | 𝑇 *
𝑖 ∩ 𝐹 ⊆ 𝑋 or 𝑇 *

𝑖 ∩ 𝐹 ⊆ 𝑌 }|

is maximum. Lemma 2.2.4 implies that {𝑋, 𝑌 } is non-sequential. If 𝑛 < 2, we can assume
that 𝑇 *

1 ∩ 𝐹 * 𝑋 and 𝑇 *
1 ∩𝐹 * 𝑌 , moreover that |𝑇 *

1 ∩ 𝑋| = 2. Then {𝑋 ∪ 𝑇 *
1 , 𝑌 − 𝑇 *

1 }
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is a 2-separation for 𝑀∖𝑔, contradicting the maximality of the choice of {𝑋, 𝑌 }. Therefore
𝑛 = 2.

If 𝑇 *
1 ∩ 𝐹 ⊆ 𝑋 and 𝑇 *

2 ∩ 𝐹 ⊆ 𝑋, so 𝑇 * ⊆ 𝑐𝑙𝑀∖𝑔 (𝑋) and then {𝑋 ∪ 𝑇 *, 𝑌 − 𝑇 *} is a
2-separation for 𝑀∖𝑔 such that 𝑔 ∈ 𝑐𝑙𝑀 (𝑋 ∪ 𝑇 *), a contradiction. Then we can assume
that 𝑇 *

1 ∩ 𝐹 ⊆ 𝑋, 𝑇 *
2 ∩ 𝐹 ⊆ 𝑌 and, without lost of generality, |𝑋 ∩ 𝑇 *| = 2. Therefore

𝑋 ∪ 𝑇 * is 2-separating for 𝑀∖𝑔 and 𝑔 ∈ 𝑐𝑙𝑀 (𝑋 ∪ 𝑇 *), a contradiction.

We will denote 𝑇 *
𝑖 , for 𝑖 ∈ {1, 2, 3}, the type-1 triads for 𝐹 such that 𝑇 *

𝑖 ∩𝐹 = {𝑓𝑖, 𝑔𝑖}
and {𝑒𝑖} = 𝑇 *

𝑖 − 𝐹 . Also, 𝑄3 = 𝑄1△𝑄2 is a square of 𝑀 .

Figure 7 – Type-1 triads intersecting 𝑄1 ∪ 𝑄2.

Lemma 3.2.6. For 𝑖 ∈ {1, 2, 3}, 𝑀/𝑒𝑖 is 3-connected.

Demonstração. By symmetry, it is sufficient to establish the result for 𝑖 = 1. Suppose,
for contradiction, that 𝑀/𝑒1 is not 3-connected. Let {𝑋, 𝑌 } be a (exact) 2-separation for
𝑀/𝑒1. By Lemma 2.2.3, {𝑋, 𝑌 } is non-sequential. We can assume that |𝑋 ∩ 𝑇 *

2 | ≥ 2 and
that 𝑋 is fullclosed, because Lemma 2.2.1, and so 𝑇 *

2 ⊆ 𝑋. As 𝑒1 can not be spanned
by 𝑋 or 𝑌 in 𝑀*, otherwise we would have a 2-separation for 𝑀 , we have 𝑇 *

1 ∩ 𝑋 ̸= ∅
and 𝑇 *

1 ∩ 𝑌 ̸= ∅. Then |𝑄3 ∩ 𝑋| ≥ 3 and 𝑄3 ⊆ 𝑋, since 𝑋 is fullclosed; a contradiction
provided (𝑇 *

1 ∩ 𝑌 ) ⊆ 𝑄3.

Lemma 3.2.7. For each 𝑖 ∈ {1, 2, 3} there are squares 𝑄′
𝑖 containing 𝑇 *

𝑖 − 𝐹 such that:
i) |𝑄′

𝑖 ∩ 𝐹 | = 1; or
ii) for some 𝑗 ∈ {1, 2, 3} − {𝑖}, 𝑇 *

𝑖 ∪ 𝑇 *
𝑗 is an emerald with 𝑄′

𝑖 ⊆ 𝑇 *
𝑖 ∪ 𝑇 *

𝑗 ;
Moreover, if (ii) does not occur, then

⃒⃒⃒
𝑄′

𝑖 ∩ 𝑄′
𝑗

⃒⃒⃒
≤ 1 for each 2-subset {𝑖, 𝑗} ⊆ {1, 2, 3}.

Demonstração. Since 𝑀 is 2-irreducible, there are triangles 𝑇𝑖 in 𝑀/𝑒𝑖 such that 𝑄′
𝑖 =

𝑇𝑖 ∪ 𝑒𝑖 is a square of 𝑀 . Assume that |𝑄′
1 ∩ 𝐹 | > 1. As |𝑄′

1 ∩ 𝑇 *
1 | = 2, provided 𝑀 is

semi-binary, we have that |𝑄′
1 ∩ 𝑇 *

2 | = 2 or |𝑄′
1 ∩ 𝑇 *

3 | = 2. Without lost of generality, we
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can assume |𝑄′
1 ∩ 𝑇 *

2 | = 2. In this case we have 𝑇 *
2 − 𝐹 ⊆ 𝑄′

1, otherwise |𝑄′
1 ∩ 𝑄3| = 3,

which is a contradiction because of Lemma 2.1.6. Then |𝑄′
1 ∩ 𝑄3| = 2 and 𝑇 *

1 and 𝑇 *
2 are

both type-2 triads for 𝑄′
1 ∪ 𝑄3, and so 𝑄′

1 ∪ 𝑄3 is an emerald.
Suppose that (ii) does not occur. Assume, by contradiction, that |𝑄′

1 ∩ 𝑄′
2| = 2. As (ii)

does not occur, we have that |𝑄′
𝑖 ∩ 𝐹 | = 1. Then 𝑄′

1 ∩ 𝑄′
2 = 𝑄′

𝑖 − 𝑇 *
𝑖 , for 𝑖 = 1 and 𝑖 = 2.

As 𝑇 *
1 and 𝑇 *

2 are both type-1 triads for 𝑄′
1∪𝑄′

2, we have that there is a triad 𝑇 ′* such that
𝑇 ′* ∩ (𝑄′

1 ∪ 𝑄′
2) = 𝑄′

1 ∩𝑄′
2. Then 𝑄′

1△𝑄′
2 is a square of 𝑀 such that |(𝑄′

1△𝑄′
2) ∩ 𝑄3| = 2.

So 𝑇 *
1 and 𝑇 *

2 are both type-2 triads for (𝑄′
1△𝑄′

2) ∪ 𝑄3; a contradiction.

Lemma 3.2.8. For each 𝑖 ∈ {1, 2, 3}, if |𝑄𝑖 ∩ 𝐹 | = 1 then 𝑇 *
𝑖 is the unique triad of 𝑀

that contains 𝑄𝑖 ∩ 𝑄′
𝑖.

Demonstração. Suppose that 𝑇 * is another triad, different to 𝑇 *
1 , such that 𝑄1 ∩𝑄′

1 ⊆ 𝑇 *.
So 𝑇 * ∩ 𝐹 ̸= ∅ and 𝑇 * ̸= 𝑇 *

1 , then 𝑇 * is type-2 with respect 𝐹 and then |𝑄′
1 ∩ 𝐹 | > 1; a

contradiction.

Let’s take {𝑒𝑖} = 𝑇 *
𝑖 − 𝐹 , {𝑓𝑖} = 𝑄𝑖 ∩ 𝑄′

𝑖 e {𝑔𝑖} = 𝑇 *
𝑖 − {𝑒𝑖, 𝑓𝑖}, for 𝑖 = 1, 2 and 3.

Thus:

Lemma 3.2.9. For each 𝑖 ∈ {1, 2, 3}, 𝑐𝑜 (𝑀 ∖ 𝑓𝑖) = 𝑀 ∖ 𝑓𝑖/𝑒𝑖 is 3-connected and there
are squares 𝑄′′

𝑖 of 𝑀 such that 𝑄′′
𝑖 ∩ 𝑇 *

𝑖 = 𝑇 *
𝑖 − 𝑓𝑖 = {𝑒𝑖, 𝑔𝑖} where 𝑄′′

𝑖 ∩ 𝐹 = {𝑔𝑖} and
𝑄′′

𝑖 ∩ 𝑄′
𝑖 = {𝑒𝑖}. Moreover, 𝑇 *

𝑖 is the unique triad containing 𝑔𝑖.

Demonstração. We can apply Lemma 3.1.1 to the squares 𝑄𝑖 and 𝑄′
𝑖, concluding that

𝑐𝑜 (𝑀∖𝑓𝑖) = 𝑀∖𝑓𝑖/𝑒𝑖 is 3-connected. As 𝑀 is 3-irreducible, there is a triangle 𝑇 in
𝑀∖𝑓𝑖/𝑒𝑖 such that 𝑄′′

𝑖 = 𝑇 ∪ 𝑒𝑖 is a square of 𝑀∖𝑓𝑖. By orthogonality with 𝑇 *
𝑖 , we have

that 𝑔𝑖 ∈ 𝑄′′
𝑖 . If 𝑇 ′* is another triad containing 𝑔𝑖 then 𝑇 ′* is a type-2 triad for 𝑄1 ∪ 𝑄2,

and so 𝑄′′
𝑖 intersect 𝑄1 or 𝑄2 in two elements. Because of the configuration of the triads,

this is impossible.

Corollary 3.2.10. 𝐹 is contained in a union of three type-1 triads and no other triad
intersects 𝐹 .

If there is a triad other than 𝑇 *
𝑖 , say 𝑇 ′

𝑖
*, that contains 𝑒𝑖 then 𝑄′

𝑖 ∪ 𝑄′′
1 is a sapphire

with nucleus 𝑒𝑖. The case where 𝑇 *
𝑖 is the unique triad containing 𝑒𝑖 will be studied in the

next section. In this case 𝑄𝑖 ∪ 𝑄′
𝑖 ∪ 𝑄′′

𝑖 is a pure diamond with nucleus 𝑇 *
𝑖 .

The union of squares having two elements in common has the following configuration:

Lemma 3.2.11. Let 𝑀 be a semi-binary 123-irreducible matroid with |𝐸 (𝑀)| ≥ 11. Let
𝑄1 and 𝑄2 be squares of 𝑀 such that |𝑄1 ∩ 𝑄2| = 2. Then 𝐹 = 𝑄1 ∪ 𝑄2 is an emerald,
and 𝑀 is 8-reducible, or there are just 3 triads 𝑇 *

𝑖 , 𝑖 ∈ {1, 2, 3}, intersecting 𝐹 such that

{𝑇 *
1 ∩ 𝐹, 𝑇 *

2 ∩ 𝐹, 𝑇 *
3 ∩ 𝐹} = {𝑄1 − 𝑄2, 𝑄2 − 𝑄1, 𝑄1 ∩ 𝑄2}
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𝑄3 = 𝑄1△𝑄2 is a square of 𝑀 and for each 𝑖 ∈ {1, 2, 3} we have that:
i) 𝑇 *

𝑖 ∪ 𝑇 *
𝑗 is an emerald, for some 𝑗 ∈ {1, 2, 3} − {𝑖}; or

ii) 𝑇 *
𝑖 is a nucleus of a pure diamond 𝐷 such that 𝐷 ∩ 𝐹 ∈ {𝑄1, 𝑄2, 𝑄3}; or

iii) 𝑇 *
𝑖 − 𝐹 is a nucleus of a sapphire 𝑆 such that 𝑆 ∩ 𝐹 = 𝑇 *

𝑖 ∩ 𝐹 .

Figure 8 – Squares having two elements in common in matroids semi-binary 1238-irreducible

3.3 LAPPING PURE DIAMONDS

In the previous section we studied the configuration in which two squares intersects in
two elements. We have established that, in a semi-binary 123-irreducible matroid, there
are only 3 possibilities for developing of this configuration: sapphires, pure diamonds and
emeralds. Similar result occurs with pure diamonds.

Our goal in this section will describe the surrounding structure of a diamond in a
similar way to the union of squares having two elements in common. The main result of
this section is:

Lemma 3.3.1. Let 𝑀 be a semi-binary 123-irreducible matroid with |𝐸 (𝑀)| ≥ 11 . Let
𝐷 = 𝑄0 ∪ 𝑄1 ∪ 𝑄2 be a pure diamond with nucleus 𝑇 * and triads 𝑇 *

𝑖 , 𝑖 ∈ {0, 1, 2}, such
that 𝑇 *

𝑖 ∩ 𝐷 = 𝑄𝑖 − (𝑄𝑗 ∪ 𝑄𝑘) with {𝑖, 𝑗, 𝑘} = {0, 1, 2}. Then for each 𝑖 ∈ {0, 1, 2}:
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i) 𝑇 *
𝑖 ∪ 𝑇 * is an emerald; or

ii) 𝑇 *
𝑖 is a nucleus of a pure diamond 𝐷𝑖 such that 𝐷𝑖 ∩ 𝐷 = 𝑄𝑖; or

iii) 𝑇 *
𝑖 − 𝐷 is a nucleus of a sapphire 𝑆𝑖 such that 𝑆𝑖 ∩ 𝐷 = 𝑇 *

𝑖 ∩ 𝐷.

We will prove this result with a sequence of lemmas. In this section, 𝑀 will denote a
semi-binary 123-irreducible matroid with |𝐸 (𝑀)| ≥ 11. Let 𝑄0, 𝑄1 and 𝑄2 be squares of
𝑀 such that 𝐷 = 𝑄0 ∪𝑄1 ∪𝑄2 is a pure diamond with nucleus 𝑇 *. For every 𝑖 ∈ {0, 1, 2},
there is a triad 𝑇 *

𝑖 of 𝑀 such that 𝑇 *
𝑖 ∩ 𝐷 = 𝑄𝑖 − 𝑇 *. We have that 𝑇 *

𝑖 is the unique triad
of 𝑀 that intersect 𝑄𝑖 − 𝑇 *, otherwise if another triad 𝑇 ′

𝑖
* intersect 𝑄𝑖 then 𝑇 *

𝑖 ∪ 𝑇 ′
𝑖
* is

contained in a coline, a contradiction provided 𝑀 is semi-binary and 2-irreducible. See
Lemma 2.1.7.

Figure 9 – Pure diamond.

From now until the end of this section, we will set the labels above for the cited triads.

Lemma 3.3.2. If 𝑒 belongs to nucleus of a pure diamond then 𝑀/𝑒 is 3-connected.

Demonstração. Take 𝑒 ∈ 𝑇 *. Suppose that the result is false and consider {𝑋, 𝑌 } a
2-separation for 𝑀/𝑒. By Lemma 2.2.3, {𝑋, 𝑌 } is a non-sequential 2-separation. Since
neither 𝑋 nor 𝑌 can to span 𝑒 in 𝑀*, we have that 𝑇 * ∩ 𝑋 ̸= ∅ and 𝑇 * ∩ 𝑌 ̸= ∅. Denote
by 𝑇 * ∩ 𝑋 = {𝑓} and 𝑇 * ∩ 𝑌 = {𝑔}. We have that {𝑓, 𝑔} ∪ (𝑇 *

𝑖 ∩ 𝐷) is a face of diamond
𝐷 for some 𝑖 ∈ {0, 1, 2}, say 𝑖 = 2.

There are 𝑍 ∈ {𝑋, 𝑌 } and a fixed 2-subset {𝑖, 𝑗} ⊆ {0, 1, 2} such that |𝑇 *
𝑖 ∩ 𝑍| ≥ 2

and
⃒⃒⃒
𝑇 *

𝑗 ∩ 𝑍
⃒⃒⃒

≥ 2. Without lost of generality, we can assume that 𝑍 = 𝑋 and that 𝑋 is
a fullclosed set in 𝑀/𝑒. Therefore 𝑇 *

𝑖 ∪ 𝑇 *
𝑗 ⊆ 𝑋. If 𝑇 *

2 ⊆ 𝑋 then 𝑔 ∈ 𝑐𝑙𝑀/𝑒 (𝑇 *
2 ∪ 𝑓) ⊆

𝑐𝑙𝑀/𝑒 (𝑋) = 𝑋 and hence 𝑒 ∈ 𝑐𝑙*
𝑀 (𝑋), a contradiction. Thus we must have to 𝑇 *

0 ∪𝑇 *
1 ⊆ 𝑋.

In this case, 𝑔 ∈ 𝑐𝑙𝑀/𝑒 (𝑇 *
0 ∪ 𝑇 *

1 ) ⊆ 𝑋 and then 𝑒 ∈ 𝑐𝑙*
𝑀 (𝑋); a contradiction

Lemma 3.3.3. Let 𝑄𝑖 be a face of diamond 𝐷, and 𝑒 ∈ 𝑄𝑖 ∩ 𝑇 *. If we denote by {𝑒𝑖} =
𝑇 *

𝑖 − 𝑄𝑖, then 𝑀/ {𝑒, 𝑒𝑖} is 3-connected or 𝑇 * ∪ 𝑇 *
𝑖 is an emerald.
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Demonstração. By previous lemma, 𝑀/𝑒 is 3-connected. We have that 𝑇𝑖 = 𝑄𝑖 − 𝑒 is a
triangle and 𝑇 *

𝑖 is a triad of 𝑀/𝑒. If there is a square 𝑄 of 𝑀 that contains both 𝑒 and
𝑒𝑖, then 𝑄 ∪ 𝑄𝑖 is a union of squares having two elements in common with 𝑇 * and 𝑇 *

𝑖

type-2 triads for 𝑄 ∪ 𝑄𝑖, so Lemma 3.2.11 implies that 𝑇 * ∪ 𝑇 *
𝑖 is an emerald. Otherwise,

Lemma 2.1.5 implies that 𝑠𝑖 (𝑀/ {𝑒, 𝑒𝑖}) = 𝑀/ {𝑒, 𝑒𝑖} is 3-connected.

Lemma 3.3.4. Let’s denote {𝑒𝑖} = 𝑇 *
𝑖 − 𝐷. If 𝑇 * ∪ 𝑇 *

𝑖 is not an emerald then 𝑀/𝑒𝑖 is
3-connected.

Demonstração. Suppose that 𝑀/𝑒𝑖 is not 3-connected. Since (𝑀/𝑒𝑖) /𝑒 is 3-connected,
because of previous lemma, then 𝑒 belongs to a series class of 𝑀/𝑒1 that is a series class
of 𝑀 too; a contradiction.

Lemma 3.3.5. If 𝑀/𝑒𝑖 is 3-connected then there are squares 𝑄′
𝑖 and 𝑄′′

𝑖 of 𝑀 such that
{𝑒𝑖} = 𝑄′

𝑖 ∩ 𝑄′′
𝑖 , |𝑄𝑖 ∩ 𝑄′

𝑖| = 1 and |𝑄𝑖 ∩ 𝑄′′
𝑖 | = 1.

Demonstração. As 𝑀 is 2-irreducible, there are a triangle 𝑇𝑖 in 𝑀/𝑒𝑖. Then 𝑄′
𝑖 = 𝑇𝑖 ∪ 𝑒𝑖

is a square of 𝑀 . Since 𝑀 is semi-binary, 𝑄′
𝑖 contains just another one element of 𝑇 *

𝑖 . The
configuration of triads and the Lemma 2.1.6 prevents that 𝑄′

𝑖 intersects the nucleus 𝑇 *.
Let’s denote {𝑓𝑖} = 𝑄𝑖 ∩𝑄′

𝑖. Lemma 3.1.1 applying to 𝑄𝑖 and 𝑄′
𝑖 implies that 𝑐𝑜 (𝑀∖𝑓𝑖) =

𝑀∖𝑓𝑖/𝑒𝑖 is 3-connected. So there is a square 𝑄′′
𝑖 such that 𝑄′′

𝑖 ∩ 𝑇 *
𝑖 = {𝑒𝑖, 𝑔𝑖}, where

{𝑔𝑖} = 𝑇 *
𝑖 − {𝑒𝑖, 𝑓𝑖}, provided 𝑀 is 3-irreducible.

Figure 10 – Lapped diamond 𝐷. Here we have displayed the 3 possibilities: 𝑇 *
1 ∪ 𝑇 * is an emerald, 𝑇 *

2 is
a nucleus of a pure diamond and 𝑇 *

3 − 𝐷 is a nucleus of a sapphire.
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4 AN IRREDUCIBLE CLASS

The main result of this chapter is a covering theorem: each element in a triangle-free
semi-binary 123-irreducible matroid 𝑀 , with at least 11 elements, belongs to a sapphire,
pure diamond or an emerald. Thus, sapphires, pure diamonds and emeralds are the "buil-
ding blocks" of a semi-binary 123-irreduclible matroid with at least 11 elements.

In this chapter 𝑀 denotes a semi-binary 123-irreducible matroid with at least 11
elements. We denote by ℱ the union of every sapphires, pure diamonds and emeralds of
𝑀 . Our goal is to show that ℱ = 𝐸 (𝑀).

4.1 A COVERING THEOREM

Lemma 4.1.1. Let 𝑄 be a square of 𝑀 and 𝑇 * a triad such that 𝑇 *∩𝑄 ̸= ∅. If 𝑒 ∈ 𝑄−𝑇 *,
then:

i) 𝑀/𝑒 is not 3-connected. In this case there is a triad containing 𝑒; or
ii) 𝑀/𝑒 is 3-connected and there is a square 𝑄′ such that 𝑇 * ⊆ 𝑄 ∪ 𝑄′ and |𝑄 ∩ 𝑄′| = 1;
or
iii) 𝑀/𝑒 is 3-connected and there is a square 𝑄′ such that 𝑇 * ⊆ 𝑄 ∪ 𝑄′ and 𝑄 ∪ 𝑄′ is an
emerald.

Figure 11 – 𝑒 ∈ 𝑄 − 𝑇 *.

Demonstração. Suppose that 𝑀/𝑒 is not 3-connected. Since 𝑠𝑖 (𝑀/𝑒) = 𝑀/𝑒, Bixby’s
Theorem implies that 𝑐𝑜 (𝑀∖𝑒) is 3-connected. Therefore 𝑐𝑜 (𝑀∖𝑒) ̸= 𝑀∖𝑒 and 𝑒 belongs
to a triad of 𝑀 .

Suppose that 𝑀/𝑒 is 3-connected. We will denote by 𝑓 the unique element in 𝑇 * − 𝑄.
Lemma 2.1.5 implies that 𝑠𝑖 (𝑀/ {𝑒, 𝑓}) is 3-connected.

If 𝑠𝑖 (𝑀/ {𝑒, 𝑓}) ̸= 𝑀/ {𝑒, 𝑓} then the contraction of 𝑓 created a parallel class in
𝑀/ {𝑒, 𝑓} and so 𝑓 belongs to a triangle 𝑇 ′ of 𝑀/𝑒. In this case, 𝑄′ = 𝑇 ′ ∪𝑒 is a square of
𝑀 containing 𝑒 and 𝑓 . By orthogonality with 𝑇 *, we have to 𝑄′ intersect 𝑄 in a element
different than 𝑒. So |𝑄 ∩ 𝑄′| = 2 and then 𝑇 * is contained in 𝑄 ∪ 𝑄′. Because of Lemma
3.2.11, we have that 𝑄 ∪ 𝑄′ is an emerald.
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If 𝑠𝑖 (𝑀/ {𝑒, 𝑓}) = 𝑀/ {𝑒, 𝑓} we have that 𝑀/𝑓 is 3-connected too. Consequently,
there is a square 𝑄′ of 𝑀 containing 𝑓 and avoiding 𝑒, and so 𝑇 * ⊆ 𝑄∪𝑄′. Lemma 3.2.11
implies that |𝑄 ∩ 𝑄′| = 1 or 𝑄 ∪ 𝑄′ is an emerald.

Now, we will establish that every square of 𝑀 is contained in ℱ . It will be done in
the next two lemmas.

Lemma 4.1.2. Let 𝑄 be a square of 𝑀 . Suppose that 𝑇 *
1 and 𝑇 *

2 are distinct triads of 𝑀

such that 𝑇 *
1 ∩ 𝑇 *

2 ∩ 𝑄 ̸= ∅ then 𝑄 ⊆ ℱ .

Demonstração. Suppose, by contradiction, that 𝑄 is a square of 𝑀 such that 𝑄 * ℱ and
𝑇 *

1 ∩ 𝑇 *
2 ∩ 𝑄 ̸= ∅ for some triads 𝑇 *

1 and 𝑇 *
2 of 𝑀 . Denote by 𝑔 the unique element in

𝑇 *
1 ∩ 𝑇 *

2 ∩ 𝑄. If there is a square 𝑄′ ̸= 𝑄 such that 𝑔 ∈ 𝑄′ then Lemma 3.2.11 implies
that |𝑄 ∩ 𝑄′| = 1, because of triads, and so 𝑄 ∪ 𝑄′ is a sapphire. Therefore 𝑄 ⊆ ℱ ; a
contradiction.

So 𝑄 is the unique square that contains 𝑔. We denote by 𝑇 *
𝑖 = {𝑔, 𝑓𝑖, 𝑔𝑖}, 𝑖 ∈ {1, 2},

and 𝑄 = {𝑒, 𝑓1, 𝑓2, 𝑔} where 𝑒 /∈ 𝑇 *
1 ∪ 𝑇 *

2 . Under these notations, we have that:

Figure 12 – 𝑄 is the unique square that contains 𝑇 *
1 ∩ 𝑇 *

2 .

Sub-lemma 4.1.2.1. 𝑀/𝑒 is not 3-connected.
Suppose, by contradiction, that 𝑀/𝑒 is 3-connected. Since 𝑄 * ℱ , the previous lemma

implies that there are squares 𝑄1 and 𝑄2 such that 𝑇 *
𝑖 ⊆ 𝑄 ∪ 𝑄𝑖 and 𝑄 ∩ 𝑄𝑖 = {𝑓𝑖},

for 𝑖 ∈ {1, 2}. We have that 𝑇 *
𝑖 is the unique triad that contains 𝑓𝑖, otherwise 𝑄 ∪ 𝑄𝑖

is a sapphire. Since 𝑄 is the unique square that contains 𝑔 and its also contains 𝑓𝑖, we
have that 𝑐𝑜 (𝑀∖𝑓𝑖) = 𝑀∖𝑓𝑖/𝑔 is triangle-free and then is not 3-connected because 𝑀 is
3-irreducible. We have that 𝑄 − 𝑒 and 𝑇 *

2 are triangle and triad, respectively, in 𝑀/𝑒 that
is 3-connected. The dual form of Lemma 2.1.5 implies that 𝑐𝑜 (𝑀/𝑒∖𝑓1) = 𝑀/ {𝑒, 𝑔} ∖𝑓1

is 3-connected. Since 𝑐𝑜 (𝑀∖𝑓1) = 𝑀∖𝑓1/𝑔 is not 3-connected, we have that 𝑒 is in a series
class of 𝑀∖𝑓1/𝑔. This is a contradiction because the unique series class of 𝑀∖𝑓1 is {𝑔, 𝑔1}
and so 𝑀∖𝑓1/𝑔 have not series classes. Therefore 𝑀/𝑒 is not 3-connected.

Sub-lemma 4.1.2.2 There is a triad 𝑇 *
3 such that 𝑇 *

3 ∩ 𝑄 = {𝑒, 𝑔}.
As 𝑀/𝑒 is not 3-connected, Lemma 4.1.1 implies that there is a triad 𝑇 *

3 that contains
𝑒. If 𝑔 /∈ 𝑇 *

3 then its contains 𝑓𝑖 for some 𝑖 ∈ {1, 2}. Suppose, without lost of generality,
that 𝑓1 ∈ 𝑇 *

3 . Since 𝑠𝑖 (𝑀/𝑒) = 𝑀/𝑒 is not 3-connected, Bixby’s Theorem implies that
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𝑐𝑜 (𝑀∖𝑒) is 3-connected. Since {𝑓1} = 𝑇 *
1 ∩ 𝑇 *

3 ∩ 𝑄 and 𝑄 * ℱ , we have that 𝑄 is the
unique square that contains 𝑓1 and then {𝑓2} = 𝑄 − (𝑇 *

1 ∪ 𝑇 *
3 ) plays the role of 𝑒 in the

previously sub-lemma. Hence 𝑀/𝑓2 = 𝑠𝑖 (𝑀/𝑓2) is not 3-connected and Bixby’s Theorem
implies that 𝑐𝑜 (𝑀∖𝑓2) is 3-connected. Then 𝑀/𝑔2 and 𝑀/𝑔 are both 3-connected, because
of the dual form of Tutte’s Triangle Lemma. Therefore 𝑀 has a square 𝑄′ that contains
𝑔2 and so 𝑄 ∩ 𝑄′ = {𝑓2}, since that 𝑄 is a unique squared that contains 𝑔. Then 𝑇 *

2 is
the unique triad that contains 𝑓2 and so 𝑐𝑜 (𝑀∖𝑓2) = 𝑀∖𝑓2/𝑔2 is 3-connected. As 𝑀 is
3-irreducible, there is a square 𝑄′′ that contains 𝑔2 and avoids 𝑓2. By orthogonality with
𝑇 *

2 , we have that 𝑔 ∈ 𝑄′′; a contradiction. Therefore 𝑇 *
3 ∩ 𝑄 = {𝑒, 𝑔}.

Denote by 𝑓3 the unique element in 𝑇 *
3 − 𝑄. We have to 𝑀/𝑓3 and 𝑀/𝑔 are both

3-connected, because of the dual form of Tutte’s Triangle Lemma. There is a square 𝑄′

of 𝑀 such that 𝑓3 ∈ 𝑄′ and Lemma 3.2.11 implies that {𝑒} = 𝑄 ∩ 𝑄′, since 𝑄 is the
unique square that contains 𝑔. Therefore 𝑇 *

3 is the unique triad that contains 𝑒, otherwise
𝑄 ∪ 𝑄′ is a sapphire. Since 𝑠𝑖 (𝑀/𝑒) = 𝑀/𝑒 is not 3-connected, Bixby’s Theorem implies
that 𝑐𝑜 (𝑀∖𝑒) = 𝑀∖𝑒/𝑓3 is 3-connected. Then there is a triangle 𝑇 ′′ in 𝑀∖𝑒/𝑓3 and so
𝑄′′ = 𝑇 ′′ ∪ 𝑓3 is a square of 𝑀 that avoid 𝑒. By orthogonality with 𝑇 *

3 we have that
𝑔 ∈ 𝑄′′, that is a contradiction. Conclusion: |𝑇 *

1 ∩ 𝑇 *
2 ∩ 𝑄| = 0.

Lemma 4.1.3. If 𝑄 is a square of 𝑀 such that 𝑄∩𝑇 *
1 ∩𝑇 *

2 = ∅ for every pair of distinct
triads 𝑇 *

1 and 𝑇 *
2 then 𝑄 ⊆ ℱ . As consequence of the previous lemma, every square of 𝑀

is contained in ℱ .

Demonstração. Because of Theorem 2.1.1, we have that there are triads 𝑇 *
𝑖 = {𝑒𝑖, 𝑓𝑖, 𝑔𝑖},

for 𝑖 ∈ {1, 2}, such that 𝑄 = {𝑓1, 𝑔1, 𝑓2, 𝑔2} and {𝑒𝑖} = 𝑇 *
𝑖 − 𝑄. By hypothesis 𝑇 *

𝑖 is the
unique triad that contains 𝑓𝑖 or 𝑔𝑖. As consequence of Tutte’s Triangle Lemma, there is
𝑥𝑖 ∈ 𝑇 *

𝑖 ∩ 𝑄 such that 𝑀/𝑥𝑖 is 3-connected, for 𝑖 = 1 and 2. We can assume that 𝑥𝑖 = 𝑓𝑖.

Figure 13 – Unique triads intersecting 𝑄.

Because of Lemma 2.1.5, for {𝑖, 𝑗} = {1, 2}, we have that 𝑠𝑖 (𝑀/𝑓𝑖/𝑒𝑗) is 3-connected.
If 𝑠𝑖 (𝑀/𝑓𝑖/𝑒𝑗) ̸= 𝑀/𝑓𝑖/𝑒𝑗, there is a parallel class in 𝑀/𝑓𝑖/𝑒𝑗 caused by contraction

of 𝑒𝑗 and so there is a square 𝑄′ that contains {𝑓𝑖, 𝑒𝑗}. In this case, by orthogonality with
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𝑇 *
𝑗 , we have |𝑄 ∩ 𝑄′| = 2 and so 𝑒1 ̸= 𝑒2. In this case, 𝑄 ∪ 𝑄′ is an emerald, because of

Lemma 3.2.11, and 𝑄 ⊆ ℱ .
Suppose that 𝑠𝑖 (𝑀/𝑓𝑖/𝑒𝑗) = 𝑀/𝑓𝑖/𝑒𝑗. Then 𝑀/𝑓𝑖/𝑒𝑗 is 3-connected and so 𝑀/𝑒𝑗 is

3-connected too. By 2-irreducibility of 𝑀 , there is a square 𝑄′ containing 𝑒𝑗. If 𝑒1 = 𝑒2

we have that 𝑄′ intersect 𝑄 in two elements, because of the orthogonality with the triads,
and so 𝑄 ∪ 𝑄′ is an emerald and 𝑄 ⊆ ℱ . If 𝑒1 ̸= 𝑒2, Lemma 4.1.1 implies that there
are squares 𝑄1 and 𝑄2 such that 𝑇 *

𝑖 ⊆ 𝑄 ∪ 𝑄𝑖, for 𝑖 ∈ {1, 2}. We can assume that
|𝑄 ∩ 𝑄𝑖| = 1, otherwise 𝑄 ∪ 𝑄𝑖 is an emerald. Because of Lemma 3.1.1, we have that
𝑐𝑜 (𝑀∖ (𝑄 ∩ 𝑄𝑖)) = 𝑀∖ (𝑄 ∩ 𝑄𝑖) /𝑒𝑖 is 3-connected. Since 𝑀 is 3-irreducible, there are
squares 𝑄′

1 and 𝑄′
2 such that 𝑄′

𝑖 contains 𝑒𝑖 and avoid the element in 𝑄 ∩ 𝑄𝑖. Thus, with
the labels we are using , 𝑇 *

𝑖 ∩ 𝑄′
𝑖 = 𝑇 *

𝑖 − 𝑄 ∩ 𝑄𝑖 and 𝑄𝑖 ∩ 𝑄′
𝑖 = {𝑒𝑖}. If 𝑇 *

𝑖 is the unique
triad that contains 𝑒𝑖, then 𝑄 ∪ 𝑄𝑖 ∪ 𝑄′

𝑖 is a pure diamond with nucleus 𝑇 *
𝑖 . Otherwise,

𝑄𝑖 ∪ 𝑄′
𝑖 is a sapphire with nucleus 𝑒𝑖. Anyway, in this configuration, 𝑄 ⊆ 𝑇 *

1 ∪ 𝑇 *
2 ⊆ ℱ .

If there are a square of 𝑀 such that is not contained in ℱ , we have a contradiction
because of the previous lemma.

Lemma 4.1.4. Every triad of 𝑀 is contained in ℱ .

Demonstração. Suppose that the result fails. Let 𝑇 * = {𝑒, 𝑓, 𝑔} be a triad of 𝑀 such that
𝑇 * * ℱ . Then there is a element in 𝑇 *, say 𝑒, such that 𝑀/𝑒 is not 3-connected, otherwise
every element in 𝑇 * belongs to a square and by the previous lemma, 𝑇 * ⊆ ℱ . By dual
form of Tutte’s Triangle Lemma, we have that 𝑀/𝑓 and 𝑀/𝑔 are both 3-connected. So
there are squares of 𝑀 containing 𝑓 and 𝑔, and then {𝑓, 𝑔} ⊆ ℱ . Since 𝑒 can not belongs
to any square of 𝑀 , we have that there is a square 𝑄 of 𝑀 such that 𝑇 * ∩ 𝑄 = {𝑓, 𝑔}
and {𝑒} = 𝑇 * − 𝑄. Denote by 𝑄 = {𝑓, 𝑔, 𝑥, 𝑦}.

Figure 14 – Square intersecting 𝑇 *.

By Lemma 4.1.1 we have that 𝑀/𝑥 and 𝑀/𝑦 are both not 3-connected and both the
elements belongs to triads of 𝑀 . The dual form of Tutte’s Triangle Lemma implies that
there is no triad of 𝑀 containing {𝑥, 𝑦}.
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Let 𝑇 *
1 be a triad containing 𝑥. Since 𝑦 /∈ 𝑇 *

1 , we have that 𝑇 *
1 intersects 𝑇 * because

of orthogonality with 𝑄. Without lost of generality, we can suppose that 𝑇 *
1 ∩ 𝑇 * = {𝑓}.

As 𝑥 ∈ 𝑇 *
1 , the dual form of Tutte’s Triangle Lemma implies that 𝑀/𝑔1 is 3-connected,

where {𝑔1} = 𝑇 *
1 − 𝑄. As 𝑀/𝑔1 is 3-connected, there is a square 𝑄′ containing 𝑔1. Since

𝑇 *
1 ⊆ 𝑄 ∪ 𝑄′ and |𝑇 *

1 ∩ 𝑇 *| = 1, Lemma 3.2.11 implies that |𝑄 ∩ 𝑄′| = 1 otherwise
𝑄 ∪ 𝑄′ is an emerald containing 𝑇 *

1 and 𝑀∖𝑇 *
1 is not 3-connected, since |𝑇 *

1 ∩ 𝑇 *| = 1,
contradicting Lemma 3.2.3. Therefore 𝑄 ∩ 𝑄′ = {𝑥}.

Note that every square of 𝑀 that contains 𝑔1 avoids 𝑓 . Indeed, if ̃︀𝑄 is a square that
contains {𝑓, 𝑔1} then 𝑔 ∈ ̃︀𝑄, because 𝑒 /∈ ̃︀𝑄. We have that 𝑇 *

1 ⊆ ̃︀𝑄 ∪ 𝑄 ,
⃒⃒⃒ ̃︀𝑄 ∩ 𝑄

⃒⃒⃒
= 2 and

𝑇 *
1 ∩ 𝑇 * = {𝑓}. Lemma 3.2.11 implies that ̃︀𝑄 ∪ 𝑄 is an emerald containing 𝑇 *

1 and 𝑀∖𝑇 *
1

is not 3-connected, contradicting Lemma 3.2.3.

Figure 15 – Graphic representation of a square that intersects 𝑇 *, with labels given in the above des-
cription.

If 𝑇 *
1 is the unique triad that contains 𝑥, then 𝑐𝑜 (𝑀∖𝑥) = 𝑀∖𝑥/𝑓 . Since every square

that contains 𝑔1 avoids 𝑓 , the Bixby’s Theorem implies that 𝑐𝑜 (𝑀∖𝑥) is 3-connected and
so 𝑀 is 3-reducible; a contradiction. Therefore, there is another triad 𝑇 *

2 that contains
𝑥 and so 𝑄 ∪ 𝑄′ is as sapphire with nucleus 𝑥. Because of {𝑥, 𝑦} * 𝑇 *

2 , we have that 𝑔

belongs to a triad 𝑇 *
2 and we will to label 𝑇 *

2 = {𝑥, 𝑔, 𝑓2}, where 𝑓2 ∈ 𝑄′ − 𝑄.
Analogously, let 𝑇 *

3 be a triad that contains 𝑦. There is 𝑢 ∈ {𝑓, 𝑔} such that 𝑇 *
3 =

{𝑦, 𝑢, 𝑓3} where {𝑓3} = 𝑇 *
3 − 𝑄. Denote by {𝑣} = {𝑓, 𝑔} − {𝑢}. There is a square 𝑄′′ of

𝑀 such that 𝑄 ∩ 𝑄′′ = {𝑦}, and every square that contains 𝑓3 avoids 𝑢. Then there is
another triad 𝑇 *

4 that contains 𝑦, otherwise 𝑀 would be 3-reducible. Then 𝑄 ∪ 𝑄′′ is a
sapphire with nucleus 𝑦 and 𝑇 *

4 = {𝑦, 𝑣, 𝑔4} where {𝑔4} = 𝑇 *
4 − 𝑄.

We will denote {𝑤′} = 𝑄′−
4
∪

𝑖=1
𝑇 *

𝑖 and {𝑤′′} = 𝑄′′−
4
∪

𝑖=1
𝑇 *

𝑖 . There is no problem if
𝑤′ = 𝑤′′. To reinforce, we have the following labels: 𝑄 = {𝑓, 𝑔, 𝑥, 𝑦}, 𝑄′ = {𝑥, 𝑔1, 𝑓2, 𝑤′}
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and 𝑄′′ = {𝑦, 𝑓3, 𝑔4, 𝑤′′} are squares of 𝑀 , with 𝑓, 𝑓2, 𝑓3, 𝑔, 𝑔1, 𝑔4, 𝑥, 𝑦 and 𝑤′ pairwise
different. We have that 𝑇 *

1 = {𝑓, 𝑥, 𝑔1}, 𝑇 *
2 = {𝑔, 𝑥, 𝑓2}, 𝑇 *

3 = {𝑢, 𝑦, 𝑓3} and 𝑇 *
4 =

{𝑣, 𝑦, 𝑔4} are triads, where 𝑢 = 𝑓 and 𝑣 = 𝑔, or 𝑢 = 𝑔 and 𝑣 = 𝑓 . In the figure below,
we show a representation of a possible configuration.

Figure 16 – Representation with labels given in the above description.

We will to show that the above configuration of square and triads implies that for
every 2-sparation {𝑋, 𝑌 } of 𝑀/𝑒, 𝑋 or 𝑌 span 𝑒 in 𝑀*; a contradiction.

Denote by 𝐹 = 𝑄 ∪ 𝑄′ ∪ 𝑄′′. Take {𝑋, 𝑌 } 2-separation for 𝑀/𝑒. By Lemma 2.2.3 we
have that {𝑋, 𝑌 } is non-sequential. We can suppose that 𝑋 is fullclosed and |𝑋 ∩ 𝐹 | ≥ 5,
since 9 ≤ |𝐹 | ≤ 10. We have that 𝑒 can not be spanned by 𝑋 nor 𝑌 in 𝑀*, so we
can assume without lost of generality that 𝑓 ∈ 𝑋 and 𝑔 ∈ 𝑌 . If |𝑇 *

1 ∩ 𝑌 | = 2, then
𝑌 ∪ 𝑇 *

1 = 𝑌 ∪ 𝑓 is a 2-separating set for 𝑀/𝑒, and so 𝑌 ∪ {𝑒, 𝑓} is a 2-separating set for
𝑀 ; a contradiction. Hence |𝑇 *

1 ∩ 𝑋| ≥ 2 and so 𝑇 *
1 ⊆ 𝑋. If 𝑓2 ∈ 𝑋 then |𝑋 ∩ 𝑇2| ≥ 2

and then 𝑔 ∈ 𝑋, and this is a contradiction. Hence 𝑓2 ∈ 𝑌 and so 𝑤′ ∈ 𝑌 , otherwise
𝑄′ − 𝑓2 ⊆ 𝑋. Therefore, we have that 𝑥 ∈ 𝑐𝑙*

𝑀 (𝑌 ) and so 𝑌 ∪ 𝑥 is a 2-separating set for
𝑀/𝑒. As 𝑄′ − 𝑔1 ⊆ 𝑌 ∪ 𝑥 we have that 𝑌 ∪ {𝑥, 𝑔1} is also a 2-separating set for 𝑀/𝑒.
Since 𝑄′ ⊆ 𝑌 ∪ {𝑥, 𝑔1}, we have that 𝑓 ∈ 𝑐𝑙*

𝑀 (𝑌 ∪ {𝑥, 𝑔1}) and then 𝑌 ∪ {𝑥, 𝑔1, 𝑓} is a
2-separating set for 𝑀/𝑒. This is a contradiction because 𝑒 ∈ 𝑐𝑙*

𝑀 (𝑌 ∪ {𝑥, 𝑔1, 𝑓}).

Lemma 4.1.5. Every element of 𝑀 belongs to a triad.

Demonstração. Let 𝑒 be an element of 𝑀 . Suppose, by contradiction, that there is no
triad that contains 𝑒. Then 𝑐𝑜 (𝑀∖𝑒) = 𝑀∖𝑒 is not 3-connected and so Bixby’s Theorem
implies that 𝑠𝑖 (𝑀/𝑒) = 𝑀/𝑒 is 3-connected. Thus 𝑒 belongs to a square 𝑄 of 𝑀 . By
Lemma 4.1.3 we have that 𝑒 ∈ ℱ and so, by the fact of that there is no triad that
contains 𝑒, we can suppose 𝑒 belongs to a sapphire 𝑆 = 𝑄 ∪ 𝑄′ and there are triads 𝑇 *

1
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and 𝑇 *
2 contained in 𝑆 such the 𝑒 /∈ 𝑇 *

1 ∪𝑇 *
2 . If we denote 𝐹 = 𝑆 −𝑒, we have that for every

𝑊 ⊆ 𝐹 , 𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝑊 ) or 𝐹 ⊆ 𝑓𝑐𝑙𝑀 (𝐹 − 𝑊 ), then 𝐹 is a forced set of 𝑀 according to
the Example 2.3.1. Lemma 2.3.4 implies that 𝑐𝑜 (𝑀∖𝑒) is 3-connected, contradicting the
claim above.

Last lemma establish that each element in a semi-binary 123-irreducible matroid, with
at least 11 elements, belongs to a triad. In Theorem 5.2.1 we will see that this results
holds even when the matroid has less then 11 elements.

Theorem 4.1.6. Suppose that 𝑀 is a semi-binary 123-irreducible matroid with at least 11
elements. Then each element of 𝑀 belongs to a triad contained in a sapphire, an emerald
or to a nucleus of a pure diamond.

As consequence, if we add to the last theorem Lemmas 1.3.2 and 3.2.3 then every
1237-irreducible matroid with at least 11 elements is described in Theorem 1.3.1.

4.2 AVOIDING THE 9TH REDUCTION

If 𝑀 is an emerald-free 3-connected matroid, with |𝐸 (𝑀)| ≥ 11, such that each
element of 𝑀 belongs to a nucleus of a pure diamond then 𝑀 is a sapphire-free semi-
binary 1238-irreducible matroid.

Theorem 4.2.1. Let 𝑀 be a semi-binary 123-irreducible matroid, with at least 11 ele-
ments, without sapphires nor emeralds. Then each element of 𝑀 belongs to a nucleus of
a pure diamond.

Definition. A diamantic matroid 𝑀 is an emerald-free 3-connected matroid such that
each element of 𝑀 belongs to a nucleus of a pure diamond.

We will see in the next chapter that Lemma 5.1.1 implies that there is no diamantic
matroid with less than 12 elements. Diamantic matroids are 1234568-irreducible, only
9-reduction can be applied.

Later, in Chapter 6, we will establish a one-to-one correspondence between diamantic
and totally triangular matroids. Diamantic matroids are a huge class of semi-binary 123-
irreducible matroids.
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Figure 17 – The cycle matroid of this graph, having 10 vertices of degree 3 and 5 of degree 6, is a diamantic
matroid with 10 triads. The triads are illustrated by vertices of degree 3.

Pure diamonds are graphical structures, in the sense that the circuits contained therein
are the circuits of a graph. This local behaviour of pure diamonds is not necessarily global:
diamantic matroids need not be graphically representable.
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5 ON TRIANGLE-FREE 3-CONNECTED MATROIDS WITH FEW ELEMENTS

Before we study further the diamantic matroids, we will establish two results on
triangle-free 3-connected matroids with few elements. The first of them is an auxiliary
result that implies that there is no diamantic matroid with less then 12 elements. The
latter, along with Lemma 4.1.5, shows that every element in a semi-binary 123-irreducible
matroid belongs to a triad.

5.1 ON PURE DIAMONDS

Lemma 5.1.1. If 𝑀 is a 123-irreducible matroid with at most 10 elements then 𝑀 has
not a pure diamond.

Demonstração. Suppose that 𝐷 = 𝑄1 ∪ 𝑄2 ∪ 𝑄3 is a pure diamond with nucleus 𝑇 *. As
𝑀 has at most 10 elements, we have that 𝑇 *

𝑖 − 𝑄𝑖 = {𝑒} for every 𝑖 ∈ {1, 2, 3} and
|𝐸 (𝑀)| = 10. We will adopt the following labels described in the graphic representation
below.

Figure 18 – Graphic representation of a pure diamond.

Suppose that 𝑀/𝑒 is not 3-connected. Let {𝑋, 𝑌 } be a 2-separation for 𝑀/𝑒. Since 𝑒 /∈
𝑐𝑙*

𝑀 (𝑋)∪𝑐𝑙*
𝑀 (𝑌 ), we can assume that {𝑓1, 𝑓2, 𝑓3} ⊆ 𝑋, {𝑔1, 𝑔2, 𝑔3} ⊆ 𝑌 and |𝑇 * ∩ 𝑋| ≥

2. Therefore, there is 𝑔𝑖 ∈ 𝑐𝑙𝑀/𝑒 (𝑋) for some 𝑖 ∈ {1, 2, 3} and hence {𝑋 ∪ 𝑔𝑖, 𝑌 − 𝑔𝑖} is
a 2-separation for 𝑀/𝑒, and this is a contradiction because 𝑓𝑖 ∈ 𝑋.

So, 𝑀/𝑒 is 3-connected. There is a square 𝑄 containing 𝑒, because 𝑀 is 2-irreducible.
We can assume that 𝑄 = {𝑒, 𝑓1, 𝑓2, 𝑓3}, by orthogonality with 𝑇 *

𝑖 . Applying Lemma 3.1.1
to 𝑄∪𝑄1 we have that 𝑐𝑜 (𝑀∖𝑓1) = 𝑀∖𝑓1/𝑒 is 3-connected. Since 𝑀 is 3-irreducible, there
is a square 𝑄′ containing {𝑒, 𝑔1}. If |𝑄 ∩ 𝑄′| = 1 then 𝑄 ∪ 𝑄′ is a sapphire with nucleus
𝑒; a contradiction. Therefore we can assume that 𝑓3 ∈ 𝑄′ and hence 𝑄′ = {𝑒, 𝑔1, 𝑔2, 𝑓3}.
As 𝑄 ∩ 𝑄′ = {𝑒, 𝑓3} ⊆ 𝑇 *

3 , we have that 𝑄△𝑄′ = {𝑓1, 𝑓2, 𝑔1, 𝑔2} is a square of 𝑀 .
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There is a circuit of 𝑀 contained in ((𝑄△𝑄′) ∪ 𝑄2) − 𝑓2 = {𝑒2, 𝑒3, 𝑓1, 𝑔1, 𝑔2}. Because
of orthogonality with 𝑇 *

2 we have that {𝑒2, 𝑒3, 𝑓1, 𝑔1} is a square; a contradiction with
Lemma 2.1.6.

Corollary 5.1.2. There is no diamantic matroid with less than 12 elements.

5.2 TRIADS COVERS THE MATROID

This section is all dedicated to proving the following result:

Theorem 5.2.1. If 𝑀 is a semi-binary 123-irreducible matroid with at most 10 elements
then each elements of 𝑀 belongs to a triad.

We will prove by contradiction. Take 𝑒 ∈ 𝐸 (𝑀) and suppose that there is no triad
containing 𝑒. Then 𝑐𝑜 (𝑀∖𝑒) = 𝑀∖𝑒 is not 3-connected because 𝑀 is 1-irreducible. Bixby’s
Theorem implies that 𝑠𝑖 (𝑀/𝑒) = 𝑀/𝑒 is 3-connected, hence there is a square 𝑄 containing
𝑒, because 𝑀 is 2-irreducible. Theorem 2.1.1 implies that there is two triads 𝑇 *

1 and 𝑇 *
2

intersecting 𝑄. Since every triads avoids 𝑒, Lemma 2.1.7 implies that |𝑇 *
1 ∩ 𝑇 *

2 | = 1. Denote
by 𝑇 *

𝑖 = {𝑒𝑖, 𝑓𝑖, 𝑔} where 𝑔 is the unique element in 𝑇 *
1 ∩ 𝑇 *

2 and 𝑄 = {𝑒, 𝑓1, 𝑓2, 𝑔}.
As consequence we have that |𝐸 (𝑀)| ≥ 6. Follows a graphic representation for such
configuration.

Figure 19 – Element that do not belongs to a triad.

Lemma 5.2.2. We have that 𝑟 (𝑇 *
1 ∪ 𝑇 *

2 ) ≥ 4 and |𝐸 (𝑀)| ≥ 7. Moreover, if 𝑇 *
1 ∪ 𝑇 *

2 is
independent then |𝐸 (𝑀)| ≥ 8.

Demonstração. We will prove this lemma by contradiction. If 𝑟 (𝑇 *
1 ∪ 𝑇 *

2 ) < 4 then
𝑟 (𝑇 *

1 ∪ 𝑇 *
2 ) = 3, because 𝑀 is triangle-free. There is a circuit 𝐶 ⊆ 𝑇 *

1 ∪ 𝑇 *
2 and |𝐶| ≤ 4.

Since 𝑀 is a triangle-free 3-connected matroid we have that 𝐶 is a square of 𝑀 . Because 𝑀

is semi-binary, 𝑔 /∈ 𝐶 and 𝐶 = (𝑇 *
1 ∪ 𝑇 *

2 ) − 𝑔. As 𝑔 ∈ 𝑐𝑙𝑀 (𝐶), there is a circuit (a square)
contained in 𝑇 *

1 ∪ 𝑇 *
2 such that contains 𝑔; a contradiction. Therefore 𝑟 (𝑇 *

1 ∪ 𝑇 *
2 ) ≥ 4.

Suppose that |𝐸 (𝑀)| = 6. Then 𝑟* (𝑀) = |𝐸 (𝑀)|− 𝑟 (𝑀) ≤ 6−4 = 2, contradicting
the fact of every 3-set containing 𝑒 is coindependent in 𝑀 . Note that if 𝑟 (𝑇 *

1 ∪ 𝑇 *
2 ) = 5

then |𝐸 (𝑀)| ≥ 8.

Now we can apply Lemma 2.1.6. We have so:
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Corollary 5.2.3. Different squares of 𝑀 intersects in at most 2 elements.

Lemma 5.2.4. Every square that contains 𝑒𝑖 avoids 𝑒, for 𝑖 ∈ {1, 2}.

Demonstração. Suppose that 𝑄1 is a square of 𝑀 containing {𝑒, 𝑒1}. By orthogonality
with 𝑇 *

1 , we have that |𝑄 ∩ 𝑄1| = 2. We have two possibilities, 𝑄 ∩ 𝑄1 = {𝑒, 𝑓1} or
𝑄 ∩ 𝑄1 = {𝑒, 𝑔}.

Assume that 𝑄 ∩ 𝑄1 = {𝑒, 𝑓1}. Denote by 𝑔1 the element in 𝑄1 − (𝑇 *
1 ∪ 𝑄). By

orthogonality, 𝑔1 /∈ 𝑇 *
2 .

Figure 20 – Square containing 𝑒 and 𝑒1.

Lemma 2.1.1 implies that there is another triad 𝑇 *
3 intersecting 𝑄1. Since 𝑒 /∈ 𝑇 *

3 and
{𝑒1, 𝑓1} * 𝑇 *

3 , we have that 𝑔1 ∈ 𝑇 *
3 . If {𝑋, 𝑌 } is a 2-separation for 𝑀∖𝑒 then {𝑋, 𝑌 }

is non-trivial, because there is no triad containing 𝑒, and is non-sequential, because of
Lemma 2.2.4. We can suppose that 𝑋 intersects two of above cited triads in at least 2
elements each. Therefore 𝑒 belongs to 𝑐𝑙𝑀

(︁
𝑓𝑐𝑙𝑀∖𝑒 (𝑋)

)︁
and this is a contradiction, since{︁

𝑓𝑐𝑙𝑀∖𝑒 (𝑋) , 𝑌 − 𝑓𝑐𝑙𝑀∖𝑒 (𝑋)
}︁

is a 2-separation for 𝑀∖𝑒 as we saw in Lemma 2.2.1.
As consequence, 𝑄 is the unique square that contains {𝑒, 𝑓1} and {𝑒, 𝑓2}.
Then 𝑄 ∩ 𝑄1 = {𝑒, 𝑔} and 𝑄1 = {𝑒, 𝑒1, 𝑒2, 𝑔}, because of orthogonality with 𝑇 *

1 and
𝑇 *

2 . We denote by 𝐹 = 𝑄 ∪ 𝑄1.

Figure 21 – Another possibility to square.

Sub-Lemma 5.2.4.1. There is no other triad that intersects 𝐹 .
If 𝑇 * is another triad that intersects 𝐹 then 𝑇 * is a type-1 triad for 𝐹 , since 𝑇 * is not

contained in 𝐹 because of Lemma 2.1.7. We can assume that 𝑇 * ∩ 𝐹 = 𝑄 − 𝑄1, without
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lost of generality. Let {𝑋, 𝑌 } be a 2-separation for 𝑀∖𝑒. Then {𝑋, 𝑌 } is non-trivial
and non-sequential 2-separation. We can suppose that 𝑋 intersects two of above cited
triads in at least 2 elements each. Therefore 𝑒 belongs to 𝑐𝑙𝑀

(︁
𝑓𝑐𝑙𝑀∖𝑒 (𝑋)

)︁
and this is a

contradiction, since
{︁
𝑓𝑐𝑙𝑀∖𝑒 (𝑋) , 𝑌 − 𝑓𝑐𝑙𝑀∖𝑒 (𝑋)

}︁
is a 2-separation for 𝑀∖𝑒 as we saw

in Lemma 2.2.1. This sub-lemma ends.

As |𝐸 (𝑀)| ≥ 7, there is an element 𝑥 ∈ 𝐸 (𝑀) − 𝐹 .
Sub-Lemma 5.2.4.2. There is a triad 𝑇 * containing 𝑥.
Otherwise, there is a square 𝑄2 containing 𝑥 just like Figure 21, with 𝑥 playing role

of 𝑒. Since 𝑀 has at most 10 elements, the triads that intersects 𝑄2 also intersects 𝐹 .
Therefore, by previous sub-proposition, these triads are the same triads contained in 𝐹 .
This implies that 𝑔 ∈ 𝑄2 and so 𝑄2 = {𝑒1, 𝑓2, 𝑔, 𝑥} or 𝑄2 = {𝑒2, 𝑓1, 𝑔, 𝑥}, because 𝑀 is
sapphire-free. We can assume that 𝑄2 = {𝑒1, 𝑓2, 𝑔, 𝑥}.

If {𝑋, 𝑌 } is a 2-separation for 𝑀∖𝑒 then {𝑋, 𝑌 } is non-trivial and non-sequential,
and we can suppose that |𝑇 *

1 ∩ 𝑋| ≥ 2. So 𝑇 *
1 ⊆ 𝑓𝑐𝑙𝑀∖𝑒 (𝑋) and then {𝑒2, 𝑓2, 𝑥} ⊆ 𝑌 (𝑓2

because of 𝑄, 𝑒2 because of 𝑄1 and 𝑥 because of {𝑒1, 𝑔} ⊆ 𝑄2). Hence {𝑔, 𝑓1} ⊆ 𝑓𝑐𝑙𝑀∖𝑒 (𝑌 )
and 𝑒 ∈ 𝑐𝑙𝑀

(︁
𝑓𝑐𝑙𝑀∖𝑒 (𝑌 )

)︁
; a contradiction. This prove the sub-lemma.

So, there is a triad 𝑇 * containing 𝑥 such that 𝑇 * ∩𝐹 = ∅. Let’s denote 𝑇 * = {𝑥, 𝑦, 𝑧}.
Hence |𝐸 (𝑀)| ≥ 9 and 𝐹 is a 3-separating forced set, by Lemma 3.2.2. Because of dual
version of Tutte’s Triangle Lemma, we can suppose that 𝑀/𝑥 is 3-connected. As 𝑀 is
2-irreducible, there is a square 𝑄2 containing 𝑥. We can suppose that 𝑄2 ∩ 𝑇 * = {𝑥, 𝑦},
because of orthogonality. Since |𝐸 (𝑀)| ≤ 10, we have that 𝑄2 intersects 𝐹 . We must be
|𝑄2 ∩ 𝐹 | = 2. If |𝑄2 ∩ 𝐹 | ̸= 2 then 𝑄2 ∩ 𝐹 = {𝑒}, because each other element belongs to
a triad contained in 𝐹 . Therefore 𝑄2 = {𝑒, 𝑥, 𝑦, 𝑤} where 𝑤 /∈ 𝐹 ∪ {𝑧}. There is a triad
𝑇 ′* containing 𝑤 and 𝑥 or 𝑦. Since each coline has at most 3 elements, 𝑧 /∈ 𝑇 ′* and so 𝑇 ′*

intersects 𝐹 ; a contradiction. Therefore |𝑄2 ∩ 𝐹 | = 2.
Since |𝑄2 ∩ 𝐹 | = 2, we have that 𝑄2 intersects 𝐹 in a pair of elements belonging to a

same triad. Then 𝑒 /∈ 𝑄2 and 𝑔 /∈ 𝑄2, by orthogonality. So 𝑄2 = {𝑥, 𝑦, 𝑒𝑖, 𝑓𝑖} for 𝑖 = 1
or 𝑖 = 2. We can assume that 𝑄2 = {𝑥, 𝑦, 𝑒1, 𝑓1}. Since 𝑀/𝑒1 or 𝑀/𝑓1 is 3-connected,
Lemma 2.1.5 implies that 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) or 𝑠𝑖 (𝑀/ {𝑓1, 𝑧}) is 3-connected. We can as-
sume, without lost of generality, that 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) is 3-connected. If 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) ̸=
𝑀/ {𝑒1, 𝑧} then there is a square 𝑄′ containing {𝑒1, 𝑧} and then 𝑥 or 𝑦 belongs to 𝑄′. Since
𝑔 /∈ 𝑄′, because of orthogonality with 𝑇 *

2 , we have that 𝑓1 ∈ 𝑄′ and then |𝑄′ ∩ 𝑄2| = 3;
a contradiction. Therefore 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) = 𝑀/ {𝑒1, 𝑧}.

As 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) = 𝑀/ {𝑒1, 𝑧} is 3-connected, we have that 𝑀/𝑧 is 3-connected too
and there is a square 𝑄3 containing 𝑧 and avoid 𝑒1. If 𝑄3 intersects 𝑇 *

1 then

𝑄3 ∈ {{𝑓1, 𝑔, 𝑥, 𝑧} , {𝑓1, 𝑔, 𝑦, 𝑧}}

and this contradicts the orthogonality with 𝑇 *
2 .



50

So 𝑄3 ∩ 𝑇 *
1 = ∅ and 𝑄2 ∩ 𝑄3 ∈ {{𝑥} , {𝑦}}. Since 𝑀 is sapphire-free, 𝑇 * is the unique

triad containing 𝑄2 ∩𝑄3. We have that 𝑄3 intersects 𝐹 . So, as we have seen, |𝑄3 ∩ 𝐹 | = 2
and then 𝑄3 ∩ 𝐹 = {𝑒2, 𝑓2}.

Figure 22 – Intersection of new squares.

Lemma 3.1.1 implies that 𝑐𝑜 (𝑀∖ (𝑄2 ∩ 𝑄3)) = 𝑀∖ (𝑄2 ∩ 𝑄3) /𝑧 is 3-connected. Since
𝑀 is 3-irreducible, there is a square 𝑄4 such that

𝑄4 ∩ 𝑇 * = 𝑇 * − (𝑄2 ∩ 𝑄3)

Since |𝐸 (𝑀)| ≤ 10, we have that 𝑄4 intersects 𝐹 and so 𝑄4 ∩ 𝐹 = {𝑒𝑖, 𝑓𝑖} for some
𝑖 ∈ {1, 2}; a contradiction.

As consequence of Lemma 5.2.4, we have that

𝑠𝑖 (𝑀/ {𝑒, 𝑒𝑖}) = 𝑀/ {𝑒, 𝑒𝑖}

that is 3-connected, because of Lemma 2.1.5. Then 𝑀/𝑒𝑖 is 3-connected. Since 𝑀 is 2-
irreducible, there is a square 𝑄𝑖 containing 𝑒𝑖.

Lemma 5.2.5. Every square containing 𝑒𝑖 avoids 𝑔 too, for 𝑖 = 1 and 𝑖 = 2.

Demonstração. Let 𝑄1 be a square containing 𝑒 and 𝑔. Then 𝑒2 /∈ 𝑄1, because 𝑀 is
sapphire-free. By orthogonality, 𝑓2 ∈ 𝑄1 and so {𝑒1, 𝑓2, 𝑔} ⊆ 𝑄1. Therefore 𝑄1 ∩ 𝑄 =
{𝑓2, 𝑔} ⊆ 𝑇 *

2 and so
𝑄3 = 𝑄1△𝑄 = {𝑒, 𝑒1, 𝑓1, 𝑥}

is a square of 𝑀 , where 𝑥 /∈ 𝑇 *
1 ∪ 𝑇 *

2 ∪ 𝑄. Therefore, there is a triad 𝑇 *
3 containing

{𝑥, 𝑒1} or {𝑥, 𝑓1}. Let {𝑋, 𝑌 } be a 2 separation for 𝑀∖𝑒, then {𝑋, 𝑌 } is non-trivial and
non-sequential. We can assume that |𝑋 ∩ 𝑇 *

𝑖 | ≥ 2 for two indices 𝑖 ∈ {1, 2, 3}. Therefore
𝑒 ∈ 𝑐𝑙𝑀

(︁
𝑓𝑐𝑙𝑀∖𝑒 (𝑋)

)︁
, contradicting the 3-connectivity of 𝑀 . Then 𝑄1∩𝑇 *

1 = {𝑒1, 𝑓1}.

Thus, we have two possibilities:
P1) |𝑄 ∩ 𝑄𝑖| = 2, in this case 𝑄1 = 𝑄2 = {𝑒1, 𝑒2, 𝑓1, 𝑓2}; or

P2) |𝑄 ∩ 𝑄1| = |𝑄 ∩ 𝑄2| = 1, in this case 𝑄𝑖∩𝑄 = {𝑓𝑖} and 𝑄𝑖∩𝑇 *
𝑗 = ∅ for {𝑖, 𝑗} = {1, 2};

Let’s see that both lead to contradictions:
P1) If 𝑄1 = {𝑒1, 𝑒2, 𝑓1, 𝑓2} is a square of 𝑀 , then there is no other triad that intersects

𝑄 ∪ 𝑄1. Otherwise, with similar arguments to those presented in Sub-Lemma 5.2.4.1, we
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came to the conclusion that for each 2-separating set 𝑋 for 𝑀∖𝑒, 𝑒 ∈ 𝑐𝑙𝑀
(︁
𝑓𝑐𝑙𝑀∖𝑒 (𝑋)

)︁
or 𝑒 ∈ 𝑐𝑙𝑀

(︁
𝑓𝑐𝑙𝑀∖𝑒 (𝐸 (𝑀) − 𝑋)

)︁
; a contradiction. Follows a graphic representation of

squares 𝑄 and 𝑄1

Figure 23 – Possibility 1

Let’s denote 𝐹 = 𝑄 ∪ 𝑄1. There is an element 𝑥 /∈ 𝐹 because |𝐸 (𝑀)| ≥ 7. Suppose
that 𝑥 do not belongs to any triad of 𝑀 . Thus there is a square 𝑄′ containing 𝑥, just like
Figure 20 with 𝑥 in the place of 𝑒. Since 𝑀 has at most 10 elements, we have that 𝑔 ∈ 𝑄′

and so |𝑄′ ∩ 𝑄| = 2 since 𝑀 is sapphire-free. Then

𝑄′ ∈ {{𝑔, 𝑒1, 𝑓2, 𝑥} , {𝑔, 𝑒2, 𝑓1, 𝑥}}

We can assume that 𝑄′ = {𝑔, 𝑒1, 𝑓2, 𝑥}. If {𝑋, 𝑌 } is a 2-separation for 𝑀∖𝑒, then
{𝑋, 𝑌 } is non-trivial and non-sequential. We can suppose that 𝑋 intersects 𝑇 *

1 in at least
two elements. Then 𝑓2 /∈ 𝑓𝑐𝑙𝑀∖𝑒 (𝑋) and {𝑒2, 𝑥} ⊆ 𝑌 . Therefore 𝑒 ∈ 𝑐𝑙𝑀

(︁
𝑓𝑐𝑙𝑀∖𝑒 (𝑌 )

)︁
; a

contradiction. Hence 𝑥 belongs to a triad 𝑀 and this triad do not intersects 𝐹 .
Denote by 𝑇 * = {𝑥, 𝑦, 𝑧}. Then |𝐸 (𝑀)| ≥ 9 and so 𝐹 is 3-separating forced set of

𝑀 , because of Lemma 3.2.2. We can suppose that 𝑀/𝑥 is 3-connected, because of dual
version of Tutte’s Triangle Lemma. As 𝑀 is 2-irreducible, there is a square 𝑄2 containing
𝑥. We can suppose that 𝑄2 ∩ 𝑇 * = {𝑥, 𝑦}, because of orthogonality. Since |𝐸 (𝑀)| ≤ 10,
we have that 𝑄2 intersects 𝐹 . We must be |𝑄2 ∩ 𝐹 | = 2, otherwise 𝑄2 ∩ 𝐹 = {𝑒} because
each other element belongs to a triad contained in 𝐹 . Therefore 𝑄2 = {𝑒, 𝑥, 𝑦, 𝑤} where
𝑤 /∈ 𝐹 ∪ {𝑧}. There is a triad 𝑇 ′* containing 𝑤 and 𝑥 or 𝑦. Since each coline has at most
3 elements, 𝑧 /∈ 𝑇 ′* and so 𝑇 ′* intersects 𝐹 ; a contradiction. Therefore |𝑄2 ∩ 𝐹 | = 2.

Since |𝑄2 ∩ 𝐹 | = 2, we have that 𝑒 /∈ 𝑄2 and 𝑔 /∈ 𝑄2. Then 𝑄2 = {𝑥, 𝑦, 𝑒𝑖, 𝑓𝑖} for 𝑖 = 1
or 𝑖 = 2. We can assume that 𝑄2 = {𝑥, 𝑦, 𝑒1, 𝑓1}. Since 𝑀/𝑒1 is 3-connected, Lemma 2.1.5
implies that 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) is 3-connected. If 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) ̸= 𝑀/ {𝑒1, 𝑧} then there is
a square 𝑄′ containing {𝑒1, 𝑧} and then 𝑥 or 𝑦 belongs to 𝑄′. Since 𝑔 /∈ 𝑄′, because of
orthogonality with 𝑇 *

2 , we have that 𝑓1 ∈ 𝑄′ and then |𝑄′ ∩ 𝑄2| = 3; a contradiction.



52

Therefore 𝑠𝑖 (𝑀/ {𝑒1, 𝑧}) = 𝑀/ {𝑒1, 𝑧} is 3-connected. With arguments similar to those
given after Sub-Lemma 5.2.4.2, we ends case P1.

P2) |𝑄 ∩ 𝑄1| = |𝑄 ∩ 𝑄2| = 1 , in this case 𝑄𝑖 ∩ 𝑄 = {𝑓𝑖} and 𝑄𝑖 ∩ 𝑇 *
𝑗 = ∅ for {𝑖, 𝑗} =

{1, 2}. There are elements 𝑥𝑖 and 𝑦𝑖, for 𝑖 ∈ {1, 2}, such that 𝑄𝑖 − (𝑇 *
1 ∪ 𝑇 *

2 ∪ 𝑄) =
{𝑥𝑖, 𝑦𝑖}. Follows a graphic representation of squares above referred.

Figure 24 – Possibility 2.

As 𝑀 is sapphire-free, 𝑇 *
𝑖 is the unique triad containing 𝑓𝑖. Since 𝑀/𝑒1 is 3-connected

and 𝑄 is a square of 𝑀/𝑒1 that intersects just one triad, Theorem 2.1.1 implies that
𝑀/𝑒1∖𝑥 is 3-connected for some 𝑥 ∈ 𝑄. As 𝑓2 and 𝑔 belongs to 𝑇 *

2 , a triad of 𝑀/𝑒1, then
𝑥 ∈ {𝑒, 𝑓1}. Because of 𝑀∖𝑒 is not 3-connected, 𝑀∖𝑒/𝑒1 is not 3-connected, otherwise
there would be a triad containing 𝑒 on 𝑀 . Hence 𝑀∖𝑓1/𝑒1 = 𝑐𝑜 (𝑀∖𝑓1) is 3-connected.
Since 𝑀 is 3-irreducible, there is a square of 𝑀 containing {𝑒1, 𝑔}, contradicting the
previous lemma.

Theorem 5.2.6. If 𝑀 is a semi-binary 123-irreducible 3-connected matroid the each
element belongs to a triad.
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6 GENERALIZED PARALLEL CONNECTION ON 3-CONNECTED MATROIDS:
AN IDENTIFICATION THEOREM

Going back to the case of irreducible classes, we will establish that for each dia-
mantic matroid 𝑀 with 𝑚 triads there is a unique totally triangular matroid 𝑁 , up to
isomorphism, with 𝑚 triangles such that:

i) There is an amalgam 𝐵 of 𝑀 and 𝑁 ;
ii) For each triad 𝑇 * of 𝑀 , there is a unique triangle 𝑌 of 𝑁 such that 𝑌 surrounds 𝑇 *

in 𝐵.
The process of constructing this correspondence uses the generalized parallel connec-

tion and its properties.

6.1 GENERALIZED PARALLEL CONNECTION AND Δ − 𝑌 EXCHANGE

The reference to this subsection is the Oxley’s book [10], sections 11.4 and 11.5, where
we find much more results on parallel connection. For the sake of clarity of the text and in
order to avoid using the book to recall some knowns results about connection in parallel,
we put this first section.

6.1.1 Generalized parallel connection

Let 𝑀1 and 𝑀2 be two matroids with ground sets 𝐸1 and 𝐸2, respectively. We will
denote by 𝑟𝑖 and 𝑐𝑙𝑖 the rank function and closure operator of 𝑀𝑖, for 𝑖 = 1 and 2.
Analogously, we denote by to 𝑟*

𝑖 and 𝑐𝑙*
𝑖 rank function and closure operator of 𝑀*

𝑖 . Suppose
that 𝑀1|𝑇 = 𝑀2|𝑇 , where 𝑇 = 𝐸1 ∩ 𝐸2. We denote 𝑁 = 𝑀1|𝑇 = 𝑀2|𝑇 .

Definition. An amalgam of 𝑀1 and 𝑀2 is a matroid 𝑀 with ground set 𝐸 = 𝐸1 ∪ 𝐸2

such that 𝑀 |𝐸𝑖 = 𝑀𝑖. The free amalgam of 𝑀1 and 𝑀2 is the amalgam 𝑀 such that for
any other amalgam 𝑀 ′, every independent set in 𝑀 ′ is independent in 𝑀 .

First, there may not be an amalgam of 𝑀1 and 𝑀2. Even when there is an amalgam,
there may not be the free amalgam. See Example 11.4.1 of Oxley [10].

By sub-modularity of rank function, for every amalgam 𝑀 of 𝑀1 and 𝑀1 we have
that:

𝑟𝑀 (𝑋) ≤ 𝑟1 (𝑋 ∩ 𝐸1) + 𝑟2 (𝑋 ∩ 𝐸2) − 𝑟𝑁 (𝑋 ∩ 𝑇 )

for all 𝑋 ⊆ 𝐸.
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Definition. The free amalgam 𝑀 of 𝑀1 and 𝑀2 is called proper amalgam if for every
𝑋 ⊆ 𝐸,

𝑟𝑀 (𝑋) = 𝑚𝑖𝑛 {𝑟1 (𝑌 ∩ 𝐸1) + 𝑟2 (𝑌 ∩ 𝐸2) − 𝑟𝑁 (𝑌 ∩ 𝑇 ) : 𝑋 ⊆ 𝑌 ⊆ 𝐸}

Some free amalgams are not proper, as Example 11.4.4 of Oxley [10] shows.

Definition. A closed set 𝑍 of a matroid 𝑀 is called modular flat if for every closed set
𝑋 ⊆ 𝐸 (𝑀),

𝑟𝑀 (𝑋 ∪ 𝑍) = 𝑟𝑀 (𝑋) + 𝑟𝑀 (𝑍) − 𝑟𝑀 (𝑋 ∩ 𝑍)

A matroid 𝑀 is called modular if every closed set 𝑋 ⊆ 𝐸 (𝑋) is a modular flat.

Theorem 6.1.1. (Theorem 11.4.10, Oxley [10]) If either of the following conditions holds,
then the proper amalgam of 𝑀1 and 𝑀2 exists:

i) 𝑇 is a modular flat of 𝑀1;
ii) 𝑁 is a modular matroid.

Definition. When 𝐸 (𝑠𝑖 (𝑁)) is a modular flat of 𝑠𝑖 (𝑀1), the proper amalgam is cal-
led the generalized parallel connection of 𝑀1 and 𝑀2 across 𝑇 , and will be denoted by
𝑃𝑇 (𝑀1, 𝑀2). The existence of 𝑃𝑇 (𝑀1, 𝑀2) is guaranteed by previous theorem.

If 𝑀 = 𝑃𝑇 (𝑀1, 𝑀2) and, for 𝑋 ⊆ 𝐸, we denote by [𝑋]𝑖 = 𝑋 ∪ 𝑐𝑙𝑖 (𝑋 ∩ 𝐸𝑖), then we
have that:

{ 𝑟 𝑀 (𝑋) = 𝑟1 ([𝑋]2 ∩ 𝐸1)+𝑟2 ([𝑋]1 ∩ 𝐸2)−𝑟𝑁 (([𝑋]1 ∪ [𝑋]2) ∩ 𝑇 ) 𝑐𝑙𝑀 (𝑋) = 𝑐𝑙1 ([𝑋]2 ∩ 𝐸1)∪𝑐𝑙2 ([𝑋]1 ∩ 𝐸2)
(6.1)

Lemma 6.1.2. Let 𝑃𝑇 (𝑀1, 𝑀2) be the generalized parallel connection of n-connected
matroids 𝑀1 and 𝑀2 with 𝑚𝑖𝑛 {|𝐸1| , |𝐸2|} ≥ 2𝑛 − 2, 𝑛 ≥ 2. Then 𝑃𝑇 (𝑀1, 𝑀2) is n-
connected if and only if |𝑇 | ≥ 𝑛 − 1.

Proposition 6.1.3. (Proposition 11.4.14, Oxley [10]) The generalized parallel connection
has the following properties:

i) If 𝑠𝑖 (𝑁) is a modular flat in 𝑠𝑖 (𝑀2) as well as in 𝑠𝑖 (𝑀1), then 𝑃𝑇 (𝑀1, 𝑀2) =
𝑃𝑇 (𝑀2, 𝑀1);
ii) The ground set of 𝑠𝑖 (𝑀2) is a modular flat of the 𝑠𝑖 (𝑃𝑇 (𝑀1, 𝑀2));
iii) If 𝑒 ∈ 𝐸1 − 𝑇 , then 𝑃𝑇 (𝑀1, 𝑀2) ∖𝑒 = 𝑃𝑇 (𝑀1∖𝑒, 𝑀2);
iv) If 𝑒 ∈ 𝐸1 − 𝑐𝑙1 (𝑇 ), then 𝑃𝑇 (𝑀1, 𝑀2) /𝑒 = 𝑃𝑇 (𝑀1/𝑒, 𝑀2);
v) If 𝑒 ∈ 𝐸2 − 𝑇 , then 𝑃𝑇 (𝑀1, 𝑀2) ∖𝑒 = 𝑃𝑇 (𝑀1, 𝑀2∖𝑒);
vi) If 𝑒 ∈ 𝐸2 − 𝑐𝑙2 (𝑇 ), then 𝑃𝑇 (𝑀1, 𝑀2) /𝑒 = 𝑃𝑇 (𝑀1, 𝑀2/𝑒);
vii) If 𝑒 ∈ 𝑇 , then 𝑃𝑇 (𝑀1, 𝑀2) /𝑒 = 𝑃𝑇/𝑒 (𝑀1/𝑒, 𝑀2/𝑒);
viii) 𝑃𝑇 (𝑀1, 𝑀2) /𝑇 is the direct sum (𝑀1/𝑇 ) ⊕ (𝑀2/𝑇 );
ix) The classes of graphic, regular, binary and ternary matroids are all closed under the
operation of generalized parallel connection (see Proposition 11.4.18 of [10]).
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6.1.2 Δ − 𝑌 exchange in 3-connected matroids

Let 𝑇 = {𝑒1, 𝑒2, 𝑒3} be a triangle of matroid 𝑀 . Denote by 𝑊3 a 3-wheel with ground
set {𝑒1, 𝑒2, 𝑒3, 𝑦1, 𝑦2, 𝑦3}, spokes set 𝑌 = {𝑦1, 𝑦2, 𝑦3} and rim 𝑇 such that 𝑌 ∩𝐸 (𝑀) = ∅.
As 𝑀 |𝑇 = 𝑊3|𝑇 and 𝑇 = 𝐸 (𝑠𝑖 (𝑁)) is a modular flat in 𝑊3 = 𝑠𝑖 (𝑊3), Theorem 6.1.1
implies that the parallel connection 𝑃𝑇 (𝑊3, 𝑀) is well defined.

Figure 25 – 3-wheel with rim 𝑇 = {𝑒1, 𝑒2, 𝑒3} and spokes set 𝑌 = {𝑦1, 𝑦2, 𝑦3}.

Here, we have an important feature of the 3-wheel: if 𝑛 ≥ 4 then the rim of 𝑊𝑛 is not
a modular flat in 𝑊𝑛.

When 𝑀 is 3-connected, Lemma 6.1.2 implies that 𝑃𝑇 (𝑊3, 𝑀) is 3-connected.
As 𝑇 is a coindependent in 𝑀 , we have that:

Lemma 6.1.4. (Lemma 11.5.6, Oxley [10]) The set 𝑌 is a triad of 𝑃𝑇 (𝑊3, 𝑀) ∖𝑇 ;

Analogously, if 𝑀 is a 3-connected matroid such that 𝑇 = {𝑒1, 𝑒2, 𝑒3} is a triad of 𝑀

then 𝑃𝑇 (𝑊3, 𝑀*) is well defined.

Definition. Let 𝑀 be a 3-connected matroid and 𝑇 a triangle of 𝑀 . The delta-wye
exchange on 𝑇 is defined as the matroid Δ𝑇 (𝑀) obtained from 𝑃𝑇 (𝑊3, 𝑀) ∖𝑇 after
relabel each 𝑦𝑖 by 𝑒𝑖. Note that 𝐸 (Δ𝑇 (𝑀)) = 𝐸 (𝑀) and 𝑇 is a triad of Δ𝑇 (𝑀). With
the fixed labels, the matroid Δ𝑇 (𝑀) is uniquely determined. In case of 𝑇 * be a triad of
𝑀 , instead a triangle, the wye-delta exchange on 𝑇 * is defined as the matroid ∇𝑇 * (𝑀) =
(Δ𝑇 * (𝑀*))*.

Some properties of delta-wye exchange is describe in the following proposition:

Proposition 6.1.5. Let 𝑀 be a matroid and 𝑇 be a triangle of 𝑀 . Then:
i) 𝑟 (Δ𝑇 (𝑀)) = 𝑟 (𝑀) + 1;

ii) When 𝑀 is 3-connected, 𝑐𝑜 (Δ𝑇 (𝑀)) is 3-connected;
iii) Δ𝑇 (𝑀) ∖𝑇 = 𝑀∖𝑇 and Δ𝑇 (𝑀) /𝑇 = 𝑀/𝑇 ;
iv) For all 𝑖 ∈ {1, 2, 3}, Δ𝑇 (𝑀) ∖𝑒𝑖/ (𝑇 − 𝑒𝑖) = 𝑀/𝑒𝑖∖ (𝑇 − 𝑒𝑖);
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v) ∇𝑇 (Δ𝑇 (𝑀)) = 𝑀 (in case of 𝑇 be a triad of 𝑀 , instead a triangle, we have Δ𝑇 (∇𝑇 (𝑀)) =
𝑀);
vi) If 𝑥 ∈ 𝐸 (𝑀) − 𝑐𝑙*

𝑀 (𝑇 ) then Δ𝑇 (𝑀) ∖𝑥 = Δ𝑇 (𝑀∖𝑥);
vii) If 𝑥 ∈ 𝐸 (𝑀) − 𝑐𝑙𝑀 (𝑇 ) then Δ𝑇 (𝑀) /𝑥 = Δ𝑇 (𝑀/𝑥);
viii) A subset of 𝐸 (𝑀) is a basis of Δ𝑇 (𝑀) if and only if is a member of one of the
following sets:

{ {𝑇∪𝐵 : 𝐵 is a basis of 𝑀/𝑇, or {(𝑇 − 𝑒𝑖) ∪ 𝐵 : 𝐵 is a basis of 𝑀/𝑒𝑖∖ (𝑇 − 𝑒𝑖), for all 𝑖 ∈ {1, 2, 3}} , or {𝑒𝑖 ∪ 𝐵 : 𝐵 is a basis of 𝑀∖𝑇 , for all 𝑖 ∈ {1, 2, 3}}

For this and more contents about the above properties see [10], pages 452 to 456.

6.2 TRIANGULATION AROUND A TRIAD

Definition. Let 𝑀 be a matroid, 𝑇 * a triad and 𝑌 a triangle of 𝑀 . We say that 𝑌

surrounds 𝑇 * if 𝑀 | (𝑇 * ∪ 𝑌 ) is isomorphic to a cycle matroid of a 3-wheel.

There is a simple way to put a triangle around a triad 𝑇 * on a 3-connected matroid
𝑀 : denoting by 𝑊3 a 3-wheel with spokes set 𝑇 * and rim 𝑌 , such that 𝑌 ∩ 𝐸 (𝑀) = ∅,
we have that

N𝑇 * (𝑀) = 𝑠𝑖 [𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)]

is a 3-connected matroid with ground set 𝐸 (𝑀) ∪ 𝑌 , having 𝑌 and 𝑇 * as triangle and
triad, respectively. We have that N𝑇 * (𝑀) ∖𝑌 = 𝑀 and 𝑌 surrounds 𝑇 *.

In this section we will study the circuits of N𝑇 * (𝑀), its triads and how N𝑇 * (𝑀)
behaves according to 𝑇 *. Moreover, when 𝑀 is semi-binary then N𝑇 * (𝑀) is also semi-
binary. In the end of this section we will describe the triads of N𝑇 * (𝑀) and what happens
when 𝑇 * is contained in an emerald. These results will be required for the construction
described in the next section.

Follows a graphic representation:

Figure 26 – Putting a triangle 𝑌 around 𝑇*.
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Let 𝑀 be a 3-connected matroid and 𝑇 * = {𝑒1, 𝑒2, 𝑒3} a triad of 𝑀 . We will denote
by 𝑊3 a 3-wheel with ground set 𝐸 (𝑊3) = {𝑒1, 𝑒2, 𝑒3, 𝑦1, 𝑦2, 𝑦3}, spokes set 𝐸 (𝑊3) ∩
𝐸 (𝑀) = 𝑇 * and rim 𝑌 = {𝑦1, 𝑦2, 𝑦3}. We take the labels of 𝑌 such that {𝑦𝑖, 𝑒𝑗, 𝑒𝑘} is a
triangle of 𝑊3 for {𝑖, 𝑗, 𝑘} = {1, 2, 3}.

We have that 𝑇 * is independent in 𝑀 , 𝑇 * is a modular flat of 𝑊 *
3 and 𝑠𝑖 (𝑊 *

3 |𝑇 *) =
𝑊 *

3 |𝑇 *. Theorem 6.1.1 implies that 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) is well defined and we have the following
properties:

Proposition 6.2.1. Properties of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*):
i) 𝐸 (𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*)) = 𝐸 (𝑀) ∪ 𝐸 (𝑊3) = 𝐸 (𝑀) ∪ 𝑌 ;

ii) 𝑟 (𝑃𝑇 * (𝑊 *
3 , 𝑀*)) = 𝑟 (𝑀*) + 1, and so 𝑟 (𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*)) = 𝑟 (𝑀) + 2;

iii) Because of Proposition 6.1.3(iii) we have that

𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑌 = [𝑃𝑇 * (𝑊 *
3 , 𝑀*) ∖𝑌 ]* = [𝑃𝑇 * (𝑊 *

3 ∖𝑌, 𝑀*)]* = [𝑀*]* = 𝑀

iv) Lemma 6.1.2 implies that 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) is 3-connected;
v) Lemma 6.1.4 implies that 𝑌 is a triangle of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 *;

vi) Because of Proposition 6.1.5(i) we have that 𝑟 (𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) = 𝑟 (𝑀) − 1;
vii) Proposition 6.1.5(ii) implies that 𝑠𝑖 (𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 *) is 3-connected;

viii) For indices {𝑖, 𝑗, 𝑘} = {1, 2, 3}, we have that {𝑦𝑖, 𝑦𝑗, 𝑒𝑘} is a triangle of 𝑊 *
3 and so

is a triangle of 𝑃𝑇 * (𝑊 *
3 , 𝑀*). Therefore it is a triad of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*), just like 𝑇 *.

First, we will study the circuits of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) a little further and how they relate
to the circuits of 𝑀 .

Lemma 6.2.2. 𝑌 is a triangle of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*). Moreover, 𝑌 is the unique circuit of
𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) contained in 𝐸 (𝑊3) (see Figure 27).

Demonstração. First, we will prove that 𝑌 is a triangle of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*). Since 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*)
is 3-connected, its sufficient to show that 𝑟𝑃 *

𝑇 * (𝑌 ) = 2, where 𝑟𝑃 *
𝑇 * is the rank function of

𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*). If 𝑟𝑃𝑇 * denotes the rank function of 𝑃𝑇 * (𝑊 *
3 , 𝑀*), then we have that

𝑟𝑃 *
𝑇 * (𝑌 ) = |𝑌 | + 𝑟𝑃𝑇 * (𝐸 − 𝑌 ) − (𝑟 (𝑀*) + 1) = 𝑟𝑃𝑇 * (𝐸 − 𝑌 ) − 𝑟 (𝑀*) + 2

where 𝐸 = 𝐸 (𝑀) ∪ 𝐸 (𝑊3). As 𝐸 − 𝑌 = 𝐸 (𝑀) and

{ [𝐸−𝑌𝑊 *
3

= (𝐸 − 𝑌 )∪𝑐𝑙𝑊 *
3

((𝐸 − 𝑌 ) ∩ 𝐸 (𝑊3)) = 𝐸 (𝑀) , [𝐸 − 𝑌 ]𝑀* = (𝐸 − 𝑌 )∪𝑐𝑙𝑀* ((𝐸 − 𝑌 ) ∩ 𝐸 (𝑀)) = 𝐸 (𝑀)

then, by (6.1), we have that

𝑟𝑃𝑇 * (𝐸 − 𝑌 ) = 𝑟𝑊 *
3

(𝐸 (𝑀) ∩ 𝐸 (𝑊 )) + 𝑟𝑀* (𝐸 (𝑀)) − 𝑟𝑀*|𝑇 * (𝑇 *)

= 2 + 𝑟 (𝑀*) − 2

= 𝑟 (𝑀*)
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therefore 𝑟𝑃 *
𝑇 * (𝑌 ) = 2, and so 𝑌 is a triangle of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*).

Now, suppose that 𝐶 is a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*), different to 𝑌 , contained in 𝐸 (𝑊3).
Since 𝑌 * 𝐶, we have that |𝐶| ≤ 5. If 𝑇 * ⊆ 𝐶 then 𝐶 = 𝑇 *, otherwise 𝐶−𝑇 * is a loop or a
parallel class of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 * contained in 𝑌 ; a contradiction because 𝑌 is a triangle

of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *. If 𝐶 = 𝑇 *, we have that 𝐶 is a triangle and triad of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*),
contradicting its 3-connectivity. Therefore 𝑇 * * 𝐶. Since 𝑇 * and 𝑌 are both not contained
in 𝐶, we have that 𝐶 ∩ 𝑌 ̸= ∅ and 𝐶 ∩ 𝑇 * ̸= ∅ . Then 𝐶 − 𝑇 * is a loop or a parallel class
of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 * contained in 𝑌 ; a contradiction.

Lemma 6.2.3. If 𝐶 is a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) contained in 𝐸 (𝑀) then 𝐶 is a circuit
of 𝑀∖𝑇 *.

Demonstração. As 𝑇 *
𝑖 = {𝑒𝑖, 𝑦𝑗, 𝑦𝑘} is a triad of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) for {𝑖, 𝑗, 𝑘} = {1, 2, 3},

by Proposition 6.2.1 (viii), we have that 𝐶 ∩ 𝑇 * = ∅. Since 𝐶 do not intersect 𝑇 *, 𝐶 is
a circuit of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) ∖𝑇 *. Proposition 6.1.3 (viii) implies that 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) ∖𝑇 * =

(𝑊3∖𝑇 *) ⊕ (𝑀∖𝑇 *). Therefore 𝐶 is a circuit of 𝑀∖𝑇 *and then its a circuit of 𝑀 .

Proposition 6.1.3 (viii) implies that 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) ∖𝑇 * = (𝑊3∖𝑇 *) ⊕ (𝑀∖𝑇 *) and so
the previous lemma implies

𝒞 (𝑀∖𝑇 *) = {𝐶 ∈ 𝒞 (𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*)) | 𝐶 ⊆ 𝐸 (𝑀)}

What happens with circuits of 𝑀 that intersects 𝑇 *?

Lemma 6.2.4. Let 𝐶 be a circuit of 𝑀 such that 𝐶 ∩ 𝑇 * ̸= ∅.
i) If 𝐶 ∩ 𝑇 * = {𝑒𝑖, 𝑒𝑗}, then 𝐶 ∪ 𝑦𝑘 is a circuit of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*), where {𝑖, 𝑗, 𝑘} =

{1, 2, 3}. By circuit elimination axiom 𝐶 ∪ {𝑦𝑖, 𝑦𝑗} is a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) too;
ii) If 𝑇 * ⊆ 𝐶, then 𝐶 ∪ {𝑦𝑖, 𝑦𝑗} is a circuit of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*), for every 2-subset {𝑖, 𝑗} ⊆

{1, 2, 3};

Demonstração. We will adopt the symbols 𝑟𝑃𝑇 * and 𝑟𝑃 *
𝑇 * for the rank functions of 𝑃𝑇 * (𝑊 *

3 , 𝑀*)
and 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) respectively. Denote by 𝑇 *

𝑘 = {𝑦𝑖, 𝑦𝑗, 𝑒𝑘}, for {𝑖, 𝑗, 𝑘} = {1, 2, 3}. Re-
member that 𝑇 *

𝑘 is a triad of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) for 𝑘 = 1, 2 and 3.
Suppose that 𝐶 ∩ 𝑇 * = {𝑒1, 𝑒2}. Denote by 𝑋 = 𝐶 ∪ 𝑦3. In this case

[𝐸 − 𝑋]𝑊 *
3

= (𝐸 − 𝑋) ∪ 𝑐𝑙𝑊 *
3

({𝑦1, 𝑦2, 𝑒3}) = 𝐸 − 𝑋

and
[𝐸 − 𝑋]𝑀* = (𝐸 − 𝑋) ∪ 𝑐𝑙𝑀* (𝐸 (𝑀) − 𝐶) = 𝐸 − 𝑋

By (6.1) we have that

𝑟𝑃𝑇 * (𝐸 − 𝑋) = 𝑟𝑊 *
3

({𝑦1, 𝑦2, 𝑒3}) + 𝑟𝑀* ((𝐸 (𝑀) − 𝐶)) − 𝑟𝑀*|𝑇 * (𝑒3)
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and so 𝑟𝑃𝑇 * (𝐸 − 𝑋) = 𝑟𝑀* ((𝐸 (𝑀) − 𝐶)) + 1 = 𝑟 (𝑀*), because 𝐸 (𝑀) − 𝐶 is a hyper-
plane of 𝑀*. Therefore 𝑟𝑃 *

𝑇 * (𝑋) = |𝑋| + 𝑟𝑃𝑇 * (𝐸 − 𝑋) − 𝑟 (𝑀*) − 1 = |𝑋| − 1 and hence
𝑋 is dependent in 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*). Now we will prove that 𝑋 is a circuit.

If 𝑋 is not a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*), there is a circuit 𝑍 ( 𝑋. Because of orthogonality
with 𝑇 *

1 and 𝑇 *
2 , we have that 𝐶 can not be a circuit of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*), since 𝐶 ∩ 𝑌 = ∅.

Therefore 𝑦3 ∈ 𝑍. The orthogonality with 𝑇 *
1 and 𝑇 *

2 implies that {𝑒1, 𝑒2} ⊆ 𝑍. Then 𝑍 −
𝑦3 is a circuit of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑦3. Proposition 6.1.3(iii) implies that 𝑃𝑇 * (𝑊 *

3 , 𝑀*) ∖𝑦3 =
𝑃𝑇 * (𝑊 *

3 ∖𝑦3, 𝑀*). Then 𝐸 − (𝑍 − 𝑦3) is a hyperplane of 𝑃𝑇 * (𝑊 *
3 ∖𝑦3, 𝑀*).

Denote by 𝑟′ the rank function of 𝑃𝑇 * (𝑊 *
3 ∖𝑦3, 𝑀*). From (6.1) we have that

𝑟′ (𝐸 − (𝑍 − 𝑦3)) = 𝑟𝑊 *
3 ∖𝑦3 ([𝐸 − (𝑍 − 𝑦3)]𝑀* ∩ (𝐸 (𝑊3) − 𝑦3))

+𝑟𝑀*

(︁
[𝐸 − (𝑍 − 𝑦3)]𝑊 *

3 ∖𝑦3
∩ (𝐸 (𝑀))

)︁
−𝑟𝑀*|𝑇 *

(︁(︁
[𝐸 − (𝑍 − 𝑦3)]𝑀* ∪ [𝐸 − (𝑍 − 𝑦3)]𝑊 *

3 ∖𝑦3

)︁
∩ 𝑇 *

)︁
where

{ [𝐸−(𝑍 − 𝑦3)𝑀* = (𝐸 − (𝑍 − 𝑦3))∪𝑐𝑙𝑀* ((𝐸 − (𝑍 − 𝑦3)) ∩ 𝐸 (𝑀)) , and [𝐸 − (𝑍 − 𝑦3)]𝑊 *
3 ∖𝑦3

= (𝐸 − (𝑍 − 𝑦3))∪𝑐𝑙𝑊 *
3 ∖𝑦3 ((𝐸 − (𝑍 − 𝑦3)) ∩ (𝐸 (𝑊 *

3 ) − 𝑦3))

Since (𝐸 − (𝑍 − 𝑦3)) ∩ 𝐸 (𝑀) = 𝐸 (𝑀) − 𝑍 and 𝐸 (𝑀) − 𝐶 ( 𝐸 (𝑀) − 𝑍, we have
that

𝑐𝑙𝑀* ((𝐸 − (𝑍 − 𝑦3)) ∩ 𝐸 (𝑀)) = 𝐸 (𝑀)

and so [𝐸 − (𝑍 − 𝑦3)]𝑀* = 𝐸. Because (𝐸 − (𝑍 − 𝑦3)) ∩ (𝐸 (𝑊 *
3 ) − 𝑦3)= {𝑦1, 𝑦2, 𝑒3} is a

triangle of 𝑊 *
3 ∖𝑦3, we have that [𝐸 − (𝑍 − 𝑦3)]𝑊 *

3 ∖𝑦3
= 𝐸 − (𝑍 − 𝑦3). Therefore

𝑟′ (𝐸 − (𝑍 − 𝑦3)) = 𝑟𝑊 *
3

(𝐸 ∩ (𝐸 (𝑊3) − 𝑦3)) + 𝑟𝑀* ((𝐸 − (𝑍 − 𝑦3)) ∩ (𝐸 (𝑀)))

−𝑟𝑊 *
3

((𝐸 ∪ (𝐸 − (𝑍 − 𝑦3))) ∩ 𝑇 *)

= 3 + 𝑟𝑀* (𝐸 (𝑀) − (𝑍 − 𝑦3)) − 2

= 𝑟 (𝑀*) + 1

= 𝑟 (𝑃𝑇 * (𝑊 *
3 ∖𝑦3, 𝑀*))

contradicting the fact that 𝐸 − (𝑍 − 𝑦3) is a hyperplane of 𝑃𝑇 * (𝑊 *
3 ∖𝑦3, 𝑀*). Therefore

𝐶 ∪ 𝑦3 is a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*).
Since 𝑌 is a triangle of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) and 𝑌 ∩ (𝐶 ∪ 𝑦3) = {𝑦3}, we have that there

is a circuit 𝐷 of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) contained in 𝐶 ∪ {𝑦1, 𝑦2}. Lemma 6.2.3 implies that
𝐷 ∩ {𝑦1, 𝑦2} ̸= ∅, otherwise the orthogonality implies that 𝐷 ∩ 𝑇 * = ∅ and then 𝐷 is
a circuit of 𝑀 contained in 𝐶; a contradiction. The orthogonality with 𝑇 *

3 and the fact
of 𝑒3 /∈ 𝐷 implies that {𝑦1, 𝑦2} ⊆ 𝐷. Therefore 𝐷 − {𝑦1, 𝑦2} and 𝐶 are both circuits of
𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑌 , and then 𝐷 − {𝑦1, 𝑦2} = 𝐶. Consequently 𝐶 ∪ {𝑦1, 𝑦2} is a circuit of

𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) too.
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From now on, we will suppose that 𝑇 * ⊆ 𝐶.

First, we will prove that for every 𝑖 ∈ {1, 2, 3} we have that 𝐶 ∪ 𝑦𝑘 is an independent
of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*). Denote by 𝑋 = 𝐶 ∪ 𝑦3, for example. In this case, we have that

{ [𝐸 − 𝑋𝑊 *
3

= (𝐸 − 𝑋) ∪ 𝑐𝑙𝑊 *
3

({𝑦1, 𝑦2}) , and [𝐸 − 𝑋]𝑀* = (𝐸 − 𝑋) ∪ 𝑐𝑙𝑀* (𝐸 (𝑀) − 𝐶)

Then 𝑐𝑙𝑊 *
3

({𝑦1, 𝑦2}) = {𝑦1, 𝑦2, 𝑒3} and 𝑐𝑙𝑀* (𝐸 (𝑀) − 𝐶) = 𝐸 (𝑀) − 𝐶, because
𝐸 (𝑀)−𝐶 is a hyperplane of 𝑀*. Therefore [𝐸 − 𝑋]𝑊 *

3
= (𝐸 − 𝐶)∪𝑒3 and [𝐸 − 𝑋]𝑀* =

𝐸 − 𝑋. Hence

𝑟𝑃𝑇 * (𝐸 − 𝑋) = 𝑟𝑊 *
3

({𝑦1, 𝑦2}) + 𝑟𝑀* ((𝐸 (𝑀) − 𝐶) ∪ 𝑒3) − 𝑟𝑀*|𝑇 * (𝑒3)

and so 𝑟𝑃𝑇 * (𝐸 − 𝑋) = 𝑟𝑀* ((𝐸 (𝑀) − 𝐶) ∪ 𝑒) + 1 = 𝑟 (𝑀*) + 1. Then

𝑟𝑃 *
𝑇 * (𝑋) = |𝑋| + 𝑟𝑃𝑇 * (𝐸 − 𝑋) − 𝑟 (𝑀*) − 1 = |𝑋| + (𝑟 (𝑀*) + 1) − 𝑟 (𝑀*) − 1 = |𝑋|

Consequently, 𝑋 = 𝐶 ∪ 𝑦3 is an independent of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*). More generally, 𝐶 ∪ 𝑦𝑖 is
an independent of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*).

Now, we will prove that 𝐶 ∪ {𝑦𝑖, 𝑦𝑗} is a dependent of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*). Take 𝑋 =
𝐶 ∪ {𝑦1, 𝑦2}. we have that

{ [𝐸 − 𝑋𝑊 *
3

= (𝐸 − 𝑋) ∪ 𝑐𝑙𝑊 *
3

({𝑦3}) , and [𝐸 − 𝑋]𝑀* = (𝐸 − 𝑋) ∪ 𝑐𝑙𝑀* (𝐸 (𝑀) − 𝐶)

Then 𝑐𝑙𝑊 *
3

({𝑦1, 𝑦2}) = {𝑦3} and 𝑐𝑙𝑀* (𝐸 (𝑀) − 𝐶) = 𝐸 (𝑀)−𝐶. Therefore [𝐸 − 𝑋]𝑊 *
3

=
𝐸 − 𝑋 and [𝐸 − 𝑋]𝑀* = 𝐸 − 𝑋. Hence

𝑟𝑃𝑇 * (𝐸 − 𝑋) = 𝑟𝑊 *
3

({𝑦3}) + 𝑟𝑀* ((𝐸 (𝑀) − 𝐶)) − 𝑟𝑀*|𝑇 * (∅)

and so 𝑟𝑃𝑇 * (𝐸 − 𝑋) = 𝑟𝑀* ((𝐸 (𝑀) − 𝐶) ∪ 𝑒) + 1 = 𝑟 (𝑀*). Then

𝑟𝑃 *
𝑇 * (𝑋) = |𝑋| + 𝑟𝑃𝑇 * (𝐸 − 𝑋) − 𝑟 (𝑀*) − 1 = |𝑋| − 1

Consequently, 𝑋 = 𝐶 ∪ {𝑦1, 𝑦2} is a dependent of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*). Hence, there is a circuit
𝐷 contained in 𝐶 ∪ {𝑦1, 𝑦2}. Suppose, by contradiction, that 𝐷 ( 𝐶 ∪ {𝑦1, 𝑦2}. Since
𝐶 ∪ 𝑦1 and 𝐶 ∪ 𝑦2 are both independents of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*), we have that {𝑦1, 𝑦2} ⊆ 𝐷.

As 𝑦3 /∈ 𝐷, the orthogonality with 𝑇 *
1 and 𝑇 *

2 implies that {𝑒1, 𝑒2} ⊆ 𝐷. Therefore
𝐷 = (𝐶 ∪ {𝑦1, 𝑦2})−𝑒3. There is a circuit 𝐷′ contained in (𝐷 ∪ 𝑌 )−𝑦1. The orthogonality
with 𝑇 *

3 implies that 𝑦2 /∈ 𝐷′ and so 𝐷′ = (𝐶 − 𝑒3) ∪ 𝑦3, otherwise 𝐷′ ⊆ 𝐸 (𝑀) − 𝑇 *

and this is a contradiction. Then 𝐷′ = 𝐶 − 𝑒3 is a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑌 = 𝑀 ; a
contradiction.
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Corollary 6.2.5. Let 𝐶 be a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*). Then for {𝑖, 𝑗, 𝑘} = {1, 2, 3}:
i) 𝐶 = 𝑌 , a triangle of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*); or

ii) 𝐶∩𝑌 = {𝑦𝑖, 𝑦𝑗}. Then 𝐶−𝑌 is a circuit of 𝑀 intersecting 𝑇 * in two or three elements;
or
iii) 𝐶 ∩𝑌 = {𝑦𝑖}. Then 𝐶 −𝑌 is a circuit of 𝑀 intersecting 𝑇 * in {𝑒𝑗, 𝑒𝑘} and 𝑒𝑖 /∈ 𝐶 −𝑌 ;
or
iv) 𝐶 ∩ 𝑌 = ∅ and then 𝐶 is a circuit or 𝑀∖𝑇 *.

Corollary 6.2.6. There is no square of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) containing 𝑇 *. Consequently,
𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 * is not 3-connected if and only if it has parallel classes. Moreover, if

𝑀 is semi-binary then 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) is semi-binary.

Figure 27 – Graphic representation of local structure of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) around 𝑇 *, highlighting the triads
that intersects 𝑇 *.

Consider the matroid

𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)

We have that:

• 𝑌 is a triangle of 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *);

• 𝑟 (𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)) = 𝑟 (𝑊3)+𝑟 (𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)−𝑟 (𝑊3|𝑌 ) = 𝑟 (𝑀);

• Because of Proposition 6.1.5(v), we have that 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) ∖𝑌 = 𝑀 ;

Lemma 6.1.2 implies that if 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 * is 3-connected then 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)
is 3-connected too.

Now, we will look for the parallel classes of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *. Note that ∇𝑇 * (𝑀) is
obtained from 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 * changing 𝑦𝑖 to 𝑒𝑖.

Lemma 6.2.7. A 2-set {𝑥, 𝑦} is a parallel class of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 * if and only if there is
a square 𝑄 of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) such that 𝑄∩𝑇 * = {𝑒𝑖, 𝑒𝑗}, {𝑥, 𝑦} ⊆ 𝑄, 𝑥 ∈ 𝐸 (𝑀)−𝐸 (𝑊3)

and 𝑦 = 𝑦𝑘, for {𝑖, 𝑗, 𝑘} = {1, 2, 3}.
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Figure 28 – {𝑥, 𝑦3} is a parallel class of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *.

Demonstração. If 𝑄 is a square of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) such that 𝑄∩𝑇 * = {𝑒1, 𝑒2}, {𝑥, 𝑦} ⊆ 𝑄

and 𝑦 = 𝑦3, then 𝑄 − 𝑇 * = {𝑥, 𝑦} is a a parallel class of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *.
There is no triangle of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) that intersect 𝑇 * in just one element, because of

orthogonality with 𝑇 *. If 𝑇 is a triangle of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) that intersect 𝑇 * in two element,
the orthogonality with 𝑇 *

𝑖 = {𝑒𝑖, 𝑦𝑗, 𝑦𝑘}, {𝑖, 𝑗, 𝑘} = {1, 2, 3}, implies that 𝑇 ⊆ 𝐸 (𝑊3),
contradicting Lemma 6.2.2.

Suppose that 𝐶 is a circuit of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) with five elements such that 𝑇 * ⊆ 𝐶.
Because of orthogonality with 𝑇 *

𝑖 = {𝑒𝑖, 𝑦𝑗, 𝑦𝑘}, {𝑖, 𝑗, 𝑘} = {1, 2, 3}, we have that 𝐶 =
{𝑒1, 𝑒2, 𝑒3, 𝑦𝑖, 𝑦𝑗}, for some 2-subset {𝑖, 𝑗} ⊆ {1, 2, 3}, and so 𝐶 ⊆ 𝐸 (𝑊3), contradicting
Lemma 6.2.2.

We have that if {𝑥, 𝑦} is a parallel class of 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 * then there are a square
𝑄 of 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) such that intersects 𝑇 * in just two elements, say {𝑒1, 𝑒2}. Since 𝑄 is

not contained in 𝐸 (𝑊3), there is 𝑥 ∈ 𝐸 (𝑀) − 𝑇 * such that 𝑥 ∈ 𝑄. The orthogonality
with 𝑇 *

1 and 𝑇 *
2 implies that 𝑦3 ∈ 𝑄.

Corollary 6.2.8. 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 * has a parallel class if and only if there is a triangle
𝑇 of 𝑀 such that 𝑇 ∩ 𝑇 * ̸= ∅

Lemma 6.2.9. 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) is not 3-connected if and only if there is a
triangle of 𝑀 that intersects 𝑇 *, and 𝑠𝑖 (𝑃𝑌 (𝑊3, 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 *)) is 3-connected.

Demonstração. If 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) is not 3-connected then 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *

is not 3-connected and so there is a triangle 𝑇 of 𝑀 such that. If there is a triangle 𝑇

of 𝑀 such that 𝑇 ∩ 𝑇 * ̸= ∅ then 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 * has a parallel class that is a parallel
class of

𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)

too.
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Corollary 6.2.10. If 𝑀 is a triangle-free 3-connected matroid then 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)
is 3-connected for each triad 𝑇 * of 𝑀 .

Definition. Let 𝑀 be a 3-connected matroid and 𝑇 * a triad of 𝑀 . Take 𝑊3 a 3-wheel
with spokes set 𝑇 * and rim 𝑌 , such that 𝑌 ∩𝐸 (𝑀) = ∅. We define a triangulation around
𝑇 * as the matroid

N𝑇 * (𝑀) = 𝑠𝑖 [𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)] (6.2)

Figure 29 – Triangulation around 𝑇 *.

When 𝑀 has a triangle 𝑇 intersecting 𝑇 *, there is a parallel class on 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)
containing the element on 𝑇 − 𝑇 * and a element of 𝑌 (see {𝑥, 𝑦3} in Figure 28). In this
case, we will treat this class representative as an element of 𝐸 (𝑀) or 𝐸 (𝑊3) convenien-
tly, for the sake of textual fluidity. With this caution warned, it now makes sense write
N𝑇 * (𝑀) | (𝑇 * ∪ 𝑌 ) = 𝑊3. If 𝑀 has a triangle surrounding 𝑇 * then N𝑇 * (𝑀) = 𝑀 .

Proposition 6.2.11. Let N𝑇 * (𝑀) be a triangulation around a triad 𝑇 * of 𝑀 with ground
set 𝐸 (N𝑇 * (𝑀)) = 𝐸 (𝑀) ∪ 𝑌 , where 𝑌 is the triangle surrounds 𝑇 * on N𝑇 * (𝑀). Then
N𝑇 * (𝑀) is 3-connected and:

i) N𝑇 * (𝑀) |𝐸 (𝑀) = 𝑀 ;
ii) 𝑟 (N𝑇 * (𝑀)) = 𝑟 (𝑀);
iii) N𝑇 * (𝑀) ∖𝑇 * is 3-connected and 𝑟 (N𝑇 * (𝑀) ∖𝑇 *) = 𝑟 (𝑀) − 1;
iv) If 𝑁 is a 3-connected matroid with ground set 𝐸 = 𝐸 (𝑀)∪𝑌 such that 𝑁 |𝐸 (𝑀) = 𝑀 ,
𝑇 * is a triad of 𝑁 and 𝑌 is a triangle surrounding 𝑇 *on 𝑁 , then 𝑁 = N𝑇 * (𝑀);
v) If 𝑇 * is a nucleus of a pure diamond of 𝑀 then every element of 𝑌 belongs to at least
two triangles of N𝑇 * (𝑀) ∖𝑇 *.

Demonstração. i) If we denote by

̂︀𝑌 = 𝑌 − {𝑦 ∈ 𝑌 | 𝑦 belongs to a parallel class of 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)}
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then

N𝑇 * (𝑀) ∖ ̂︀𝑌 = 𝑠𝑖 [𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)] ∖ ̂︀𝑌
=

[︁
𝑃𝑌 (𝑊3, 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 *) ∖

(︁
𝑌 − ̂︀𝑌 )︁]︁ ∖ ̂︀𝑌

= 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) ∖𝑌

= Δ𝑇 * (∇𝑇 * (𝑀))

(by Proposition 6.1.5(v) ) = 𝑀

ii) 𝑟 (N𝑇 * (𝑀)) = 𝑟 (𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)) = 𝑟 (𝑀).
iii)

N𝑇 * (𝑀) ∖𝑇 * = 𝑠𝑖 [𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)] ∖𝑇 *

= 𝑠𝑖 [𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) ∖𝑇 *]

(Proposition 6.1.3(iii) ) = 𝑠𝑖 [𝑃𝑌 (𝑊3∖𝑇 *, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)]

= 𝑠𝑖 [𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *]

that is 3-connected because of Proposition 6.1.5(ii), and 𝑟 (𝑠𝑖 [𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *]) =
𝑟 (𝑀) − 1;

iv) Since 𝑌 is a triangle surrounding 𝑇 *on 𝑁 , we have that

𝑁 = N𝑇 * (𝑁) = N𝑇 * (𝑁 |𝐸 (𝑀)) = N𝑇 * (𝑀)

v) Take 𝑦 ∈ 𝑌 . Since 𝑇 * is a nucleus of a pure diamond, there is a square 𝑄 of 𝑀

such that (𝑄 ∩ 𝑇 *) ∪ {𝑦} is a triangle of N𝑇 * (𝑀). Therefore (𝑄 − 𝑇 *) ∪ {𝑦} is a triangle,
because of circuit elimination axiom and orthogonality. The self 𝑌 is the other triangle
containing 𝑦 on N𝑇 * (𝑀) ∖𝑇 *.

Lemma 6.2.12. Let 𝑀 be a 3-connected matroid and 𝑇 * a triad of 𝑀 . Denote by 𝑌 the
triangle surround 𝑇 * on N𝑇 * (𝑀). Suppose that for each triangle 𝑇 of 𝑀 that intersects
𝑇 * we have that 𝑇 − 𝑇 * do not belongs to any triad of 𝑀 (equivalently, 𝑀∖ (𝑇 − 𝑇 *) is
3-connected). Then there is no triad of N𝑇 * (𝑀) intersecting 𝑌 .

Demonstração. Suppose that 𝑇 ′* is a triad of N𝑇 * (𝑀) that intersects 𝑌 . Since N𝑇 * (𝑀) | (𝑇 * ∪ 𝑌 )
is a 3-wheel with spokes set 𝑇 * and rim 𝑌 , we have that there is 𝑒 ∈ 𝑇 * and a 2-set
{𝑦1, 𝑦2} ⊆ 𝑌 such that 𝑇 ′* = {𝑒, 𝑦1, 𝑦2}. As 𝑇 ′* is not contained in 𝐸 (𝑀), we have that
{𝑦1, 𝑦2} * 𝐸 (𝑀). If 𝑦1 and 𝑦2 are both not containing in 𝐸 (𝑀) then there is a base 𝐵

of 𝑀 such that 𝑒 /∈ 𝐵. As 𝑟 (N𝑇 * (𝑀)) = 𝑟 (𝑀), we have that 𝐵 is a base of N𝑇 * (𝑀)
that do not intersects 𝑇 ′*; a contradiction. So we can assume that 𝑦1 ∈ 𝐸 (𝑀). Since 𝑀

is 3-connected, there is a base 𝐵 of 𝑀 that do not intersects {𝑒, 𝑦1}, and then 𝐵 is a base
of N𝑇 * (𝑀) that do not intersects 𝑇 ′*; also a contradiction.
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Lemma 6.2.13. Let 𝑀 be a 3-connected matroid and 𝑇 * a triad of 𝑀 . Suppose that
for each triangle 𝑇 of 𝑀 that intersects 𝑇 *, 𝑀∖ (𝑇 − 𝑇 *) is 3-connected. Then the triads
of N𝑇 * (𝑀) are 𝑇 * and the triads of 𝑀 that do not intersects 𝑇 *. The triads of 𝑀 that
intersects 𝑇 *, different of it self, are destroyed.

Figure 30 – Triads destroyed on triangulation around a triad in 𝐿4 = 𝐷6.

Demonstração. Denote by 𝑌 the triangle surround 𝑇 * on N𝑇 * (𝑀) and take

̂︀𝑌 = 𝑌 − {𝑦 ∈ 𝑌 : 𝑦 belongs to a parallel class of 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *)}

By (6.2), we have that

N𝑇 * (𝑀) = 𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) ∖
(︁
𝑌 − ̂︀𝑌 )︁

Lemma 6.2.2 implies that 𝑇 * is a triangle of 𝑃 *
𝑌 (𝑊3, 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 *) that do not

intersects 𝑌 − ̂︀𝑌 , since each element of 𝑌 − ̂︀𝑌 belongs to a triangle of 𝑀 that intersects
𝑇 *. Therefore 𝑇 * is a triangle of N*

𝑇 * (𝑀).
Take 𝑇 ′* a triad of 𝑀 such that 𝑇 ′* ∩ 𝑇 * = ∅. Therefore 𝑇 ′* is a triangle of 𝑀*∖𝑇 *.

Since

N*
𝑇 * (𝑀) ∖𝑌 =

[︁
𝑃 *

𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) /
(︁
𝑌 − ̂︀𝑌 )︁]︁ ∖𝑌

= [𝑃 *
𝑌 (𝑊3, 𝑃 *

𝑇 * (𝑊 *
3 , 𝑀*) /𝑇 *) ∖𝑌 ] /

(︁
𝑌 − ̂︀𝑌 )︁

= [𝑃𝑌 (𝑊3, 𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 *) /𝑌 ]* /
(︁
𝑌 − ̂︀𝑌 )︁

(Proposition 6.1.3 (viii)) = [(𝑊3/𝑌 ) ⊕ (𝑃 *
𝑇 * (𝑊 *

3 , 𝑀*) /𝑇 */𝑌 )]* /
(︁
𝑌 − ̂︀𝑌 )︁

= [(𝑊 *
3 ∖𝑌 ) ⊕ (𝑃𝑇 * (𝑊 *

3 , 𝑀*) ∖ (𝑇 * ∪ 𝑌 ))] /
(︁
𝑌 − ̂︀𝑌 )︁

= [(𝑊 *
3 ∖𝑌 ) ⊕ (𝑀*∖𝑇 *)] /

(︁
𝑌 − ̂︀𝑌 )︁
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and 𝑇 ′* do not intersects 𝑌 − ̂︀𝑌 , we have that 𝑇 ′* is a triangle of N*
𝑇 * (𝑀) ∖𝑌 , and so of

N*
𝑇 * (𝑀). If 𝑇 ′* ̸= 𝑇 * is a triad of 𝑀 such that 𝑇 ′* ∩ 𝑇 * ̸= ∅ then 𝑇 ′* is not a triad of

N*
𝑇 * (𝑀) because of 𝑌 surrounds 𝑇 *.

Lemma 6.2.14. Let 𝑀 be a 3-connected matroid such that 𝑀 has a triangle 𝑌 sur-
rounding a triad 𝑇 *. If a subset 𝑋 ⊆ 𝑌 do not intersects any triad of 𝑀 then 𝑀∖𝑋 is
3-connected and 𝑀 = N𝑇 * (𝑀∖𝑌 ).

Demonstração. Suppose that 𝑋 ̸= ∅ and take 𝑥1 ∈ 𝑋. Since 𝑠𝑖 (𝑀/𝑥1) is not 3-connected,
because has a parallel class, Bixby’s Theorem implies that 𝑐𝑜 (𝑀∖𝑥1) = 𝑀∖𝑥1 is 3-
connected. If 𝑋 − 𝑥1 ̸= ∅, take 𝑥2 ∈ 𝑋 − 𝑥1. There is a triangle of 𝑀 containing
𝑥2 that avoids 𝑥1 and intersects 𝑇 *, then this triangle is also a triangle of 𝑀∖𝑥1. So
𝑠𝑖 [(N𝑇 * (𝑀) ∖𝑦1) /𝑦2] is not 3-connected, provide involves a deletion of one element of 𝑇 *.
Therefore 𝑐𝑜 ((𝑀∖𝑥1) ∖𝑥2) = 𝑀∖ {𝑥1, 𝑥2} is 3-connected. Analogously to the case 𝑋 = 𝑌 .
Because of Proposition 6.2.11(iv), 𝑀 = N𝑇 * (𝑀∖𝑌 ).

Corollary 6.2.15. If 𝑀 is a triangle-free 3-connected matroid and N𝑇 * (𝑀) is a trian-
gulation around a triad 𝑇 * of 𝑀 , then N𝑇 * (𝑀) ∖𝑋 is 3-connected for every 𝑋 ⊆ 𝑌 , the
triangle surrounding 𝑇 * on N𝑇 * (𝑀).

Now, in the end of this section, we will look at how triangulation relates to emeralds:

Lemma 6.2.16. Let 𝑀 be a 3-connected matroid with 𝑇 * and 𝑇 ′* different triads of 𝑀 .
Then N𝑇 * (𝑀) = N𝑇 ′* (𝑀) if and only if 𝑇 * ∪ 𝑇 ′* is a pure emerald of 𝑀 . Moreover, if
𝑇 * ∪ 𝑇 ′* is a non-pure emerald then N𝑇 * (𝑀) is non-semi-binary.

Demonstração. If N𝑇 * (𝑀) = N𝑇 ′* (𝑀) then there is a triangle 𝑌 surrounding both 𝑇 *

and 𝑇 ′*. Circuit elimination axiom implies that 𝑇 * ∪ 𝑇 ′* is a pure emerald. If 𝑇 * ∪ 𝑇 ′*

is a pure emerald of 𝑀 and 𝑌 is the triangle surrounding 𝑇 * on N𝑇 * (𝑀), then circuit
elimination axiom implies that 𝑌 also surrounds 𝑇 ′*. Therefore N𝑇 * (𝑀) = N𝑇 ′* (𝑀).

Now, suppose that 𝑇 * ∪ 𝑇 ′* is a non-pure emerald. Then there is squares 𝑄 and 𝑄′ of
𝑀 such that 𝑇 * ∪ 𝑇 ′* = 𝑄 ∪ 𝑄′ and 𝑄△𝑄′ is not a squares of 𝑀 . By circuit elimination
axiom, there is a circuit contained in 𝑄 ∪ 𝑄′ − 𝑒 for each 𝑒 ∈ 𝑄 ∩ 𝑄′. Since there is no
triangle contained in 𝑄△𝑄′, because of triads, we have that 𝑄 ∪ 𝑄′ − 𝑒 is a circuit of 𝑀

for each 𝑒 ∈ 𝑄 ∩ 𝑄′. Take 𝑒 ∈ 𝑄 ∩ 𝑄′ ∩ 𝑇 *. Then 𝑄 ∪ 𝑄′ − 𝑒 = 𝑇 ′* ∪ (𝑇 * − 𝑒) is a circuit
of 𝑀 , and so of N𝑇 * (𝑀). If 𝑌 = {𝑥, 𝑦, 𝑧} is the triangle surrounding 𝑇 * then, by circuit
elimination axiom, {𝑥} ∪ (𝑄 ∩ 𝑇 ′*) and {𝑦} ∪ (𝑄′ ∩ 𝑇 ′*) are triangles of N𝑇 * (𝑀). Since 𝑌

do not surrounds 𝑇 ′*, there is no triangle containing 𝑧 contained in 𝑇 ′* ∪ {𝑧}, otherwise
this triangle would be intersects {𝑥} ∪ (𝑄 ∩ 𝑇 ′*) or {𝑦} ∪ (𝑄′ ∩ 𝑇 ′*) in two elements.

We have that 𝑇 ′* ∪ (𝑇 * − 𝑒) and (𝑇 * − 𝑒) ∪ {𝑧} are both circuits of N𝑇 * (𝑀). Circuit
elimination axiom and orthogonality implies that 𝑇 ′* ∪ {𝑧} is a circuit of N𝑇 * (𝑀).
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6.3 AN IDENTIFICATION THEOREM: ASSOCIATED TRIANGULAR MATROID

As first application of the triangulation around a triad operation, we will establish that
the family of 3-connected diamantics matroids is in a one-to-one correspondence with the
family of 3-connected totally triangular matroids.

Definition. A 3-connected matroid 𝑀 is said triangular if each element belongs to at
least 2 triangles. A triangular matroid is said totally triangular if:
i) Every pair of triangles intersects in at most 1 element; and
ii) 𝑀 has no triads.

Note that 𝑀 is totally triangular if and only if 𝑀* is a triangle-free 3-connected
matroid such that each element belongs to at least 2 triads and every pair of triads of
intersects in at most 1 element.

Example 6.3.1. A 3-wheel is a triangular 3-connected matroid such that each element
belongs to a two triads, therefore a 3-wheel is a non-totally triangular matroid. The Fano
matroid 𝐹7 is an example of a totally triangular matroid.

Figure 31 – Geometric representation to 𝐹7 and its dual.

Let 𝑀 be a triangle-free 3-connected matroid such that each element belongs to a
unique triad. If we denote by

𝑛 = |𝐸 (𝑀)|
3

then we can put an order on family of triads of 𝑀 ,

{𝑇 *
1 , 𝑇 *

2 , . . . , 𝑇 *
𝑛}

For each 𝑘 ∈ {1, 2, . . . , 𝑛}, we will denote by 𝑊 𝑘
3 the 3-wheel with ground set

𝐸
(︁
𝑊 𝑘

3

)︁
= 𝑇 *

𝑘 ∪ 𝑌𝑘 such that 𝑇 *
𝑘 is the spokes set of 𝑊 𝑘

3 , 𝑌𝑘 the rim of 𝑊 𝑘
3 and

𝑌𝑘 ∩ (𝐸 (𝑀) 𝑖 ̸= 𝑘
⋃︀

𝑌𝑖) = ∅.
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Denote by 𝑀1 = N𝑇 *
1

(𝑀) and for each 𝑘 > 1, we define

𝑀𝑘 = N𝑇 *
𝑘

(𝑀𝑘−1)

By Lemma 6.2.13, we have that 𝑀𝑘 has the same triads of 𝑀 for each 𝑘 ∈ {1, 2, . . . , 𝑛}.
Lemma 6.2.9 implies that 𝑀𝑘 is 3-connected for every 𝑘.

For each 𝑘 ∈ {1, 2, . . . , 𝑛}, consider the following sets

̂︁𝑌𝑘 = 𝑌𝑘 −
{︁
𝑦 ∈ 𝑌𝑘 : 𝑦 belongs to a parallel class of 𝑃𝑌𝑘

(︁
𝑊 𝑘

3 , 𝑃 *
𝑇 *

𝑘

(︁
𝑊 𝑘*

3 , 𝑀*
𝑘−1

)︁
/𝑇 *

𝑘

)︁}︁

Note that ̂︁𝑌1 = 𝑌1. We have that 𝐸 (𝑀𝑘) = 𝐸 (𝑀) ∪
(︃

𝑘⋃︀
𝑖=1

̂︁𝑌𝑖

)︃
.

Lemma 6.3.2. For every 𝑘 ∈ {1, 2, . . . , 𝑛}, 𝑀𝑘 is a 3-connected matroid such that:
i) 𝑀𝑘∖̂︁𝑌𝑘 = 𝑀𝑘−1, and so 𝑀𝑘∖

𝑘⋃︀
𝑖=1

̂︁𝑌𝑖 = 𝑀 ;
ii) 𝑟 (𝑀𝑘) = 𝑟 (𝑀);
iii) 𝑀𝑘∖

𝑘⋃︀
𝑖=1

𝑇 *
𝑖 is a 3-connected matroid with rank 𝑟 (𝑀) − 𝑘;

iv) If every triad of 𝑀 is a nucleus of a pure diamond then every element of
𝑘⋃︀

𝑖=1
𝑌𝑖 belongs

to at least two triangles of 𝑀𝑘∖
𝑘⋃︀

𝑖=1
𝑇 *

𝑖 ;
v) The triads of 𝑀𝑘 are the same triads of 𝑀 ;

Demonstração. Items (i), (ii) and (iii) are consequence of Proposition 6.2.11 (i), (ii) and
(iii), applied k times.

Item (iv): case 𝑘 = 1 is consequence of Proposition 6.2.11 (v). Suppose valid for 𝑘 − 1.
Take 𝑦 ∈

𝑘⋃︀
𝑖=1

𝑌𝑘. If 𝑦 ∈ 𝑌𝑗 for 𝑗 < 𝑘 then 𝑦 belongs to at least two triangles of 𝑀𝑘−1, and

so of 𝑀𝑘. If 𝑦 ∈ ̂︁𝑌𝑘, then we can apply the same arguments as Proposition 6.2.11 (v).
Item (v) is consequence of 6.2.13, since each element of 𝑀 belongs to a unique triad.

Note that 𝑀𝑛 is a triangular 3-connected matroid with 𝑟 (𝑀𝑛) = 𝑟 (𝑀) such that
𝑀𝑛|𝐸 (𝑀) = 𝑀 . When every triad of 𝑀 is a nucleus of a pure diamond then 𝑀𝑛∖

𝑛
∪

𝑖=1
𝑇 *

𝑖

is a 3-connected triangular matroid without triads, with rank 𝑟 (𝑀) − 𝑛. Moreover, if
every emerald of 𝑀 is pure (for example when 𝑀 is diamantic) then 𝑀𝑛∖

𝑛
∪

𝑖=1
𝑇 *

𝑖 is a
totally triangular matroid (see Lemma 6.2.16).

Lemma 6.3.3. 𝑀𝑛 does not depend on the order of the triads.

Demonstração. Take 𝜎 : {1, 2, ..., 𝑛} −→ {1, 2, ..., 𝑛} a permutation. Denote by

𝑇 ′
𝑖
* = 𝑇 *

𝜎(𝑖) = 𝑇 *
𝜎𝑖

then {𝑇 ′
1

*, 𝑇 ′
2

*, ..., 𝑇 ′
𝑛

*} is another ordination for the triads. As 𝑊 𝑘
3 denotes a 3-wheel

with spokes set 𝑇 *
𝑘 and rim 𝑌𝑘, then 𝑀𝑛 has ground set 𝐸 (𝑀𝑛) = 𝐸 (𝑀) ∪

(︂
𝑛⋃︀

𝑖=1
𝑌𝑖

)︂
. For
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each 𝑘 ∈ {1, ..., 𝑛}, take 𝑊 ′
3

𝑘 a copy of a 3-wheel with spokes set 𝑇 ′
𝑘

* = 𝑇 *
𝜎𝑘

and rim 𝑌 ′
𝑘 ,

such that

𝑌 ′
𝑘 ∩

⎛⎝𝐸 (𝑀𝑛) ∪

⎛⎝⋃︁
𝑖 ̸=𝑘

𝑌 ′
𝑖

⎞⎠⎞⎠ = ∅

We denote by

{ 𝑀
′
1 = N𝑇 ′

1
* (𝑀) , 𝑀 ′

𝑘 = N𝑇 ′
𝑘

*

(︁
𝑀 ′

𝑘−1

)︁
, for each 𝑘 > 1.

We will to prove that 𝑀 ′
𝑛 = 𝑀𝑛, up to relabel of the triangles that surrounds the

triads.
By Lemma 6.2.13 𝑀𝑛 and 𝑀 ′

𝑛 has the same triads of 𝑀 . For each 𝑘 ∈ {1, ..., 𝑛} we
have that

𝑀𝑛 = N𝑇 ′
𝑘

* (𝑀𝑛∖𝑌𝜎𝑘
)

because of Lemma 6.2.14. So, we have that

𝑀𝑛 = N𝑇 ′
1

* (𝑀𝑛∖𝑌𝜎1)

= N𝑇 ′
2

*

(︁
N𝑇 ′

1
* (𝑀𝑛∖𝑌𝜎1) ∖𝑌𝜎2

)︁
If we denote by ̂︂𝑌𝜎2 = 𝑌𝜎2 − 𝑌𝜎1

then we have that

N𝑇 ′
1

* (𝑀𝑛∖𝑌𝜎1) ∖𝑌𝜎2 = 𝑠𝑖
[︁
𝑃𝑌 ′

1

(︁
𝑊 ′

3
1, 𝑃 *

𝑇 ′
1

*

(︁
[𝑊 ′

3
1]* , [𝑀𝑛∖𝑌𝜎1 ]*

)︁
/𝑇 ′

1
*
)︁]︁

∖𝑌𝜎2

(Corollary 6.2.8) = 𝑃𝑌 ′
1

(︁
𝑊 ′

3
1, 𝑃 *

𝑇 ′
1

*

(︁
[𝑊 ′

3
1]* , [𝑀𝑛∖𝑌𝜎1 ]*

)︁
/𝑇 ′

1
*
)︁

∖𝑌𝜎2

(Proposition 6.1.3(v)) = 𝑃𝑌 ′
1

(︁
𝑊 ′

3
1, 𝑃 *

𝑇 ′
1

*

(︁
[𝑊 ′

3
1]* , [𝑀𝑛∖𝑌𝜎1 ]*

)︁
/𝑇 ′

1
*∖̂︂𝑌𝜎2

)︁
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁
(Proposition 6.1.3(vi)) = 𝑃𝑌 ′

1

(︂
𝑊 ′

3
1, 𝑃 *

𝑇 ′
1

*

(︂
[𝑊 ′

3
1]* ,

[︂
𝑀𝑛∖

2
∪

𝑖=1
𝑌𝜎𝑖

]︂*)︂
/𝑇 ′

1
*
)︂

∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁
= N𝑇 ′

1
*

(︂
𝑀𝑛∖

2
∪

𝑖=1
𝑌𝜎𝑖

)︂
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁
Since there is no triangle of 𝑀𝑛∖𝑌𝜎1 intersecting 𝑇 ′

1
*, we can apply Corollary 6.2.8 in

the second equality.
For fourth equality, we have to show that ̂︂𝑌𝜎2 ∩ 𝑐𝑙𝑀*

𝑛/𝑌𝜎1
(𝑇 ′

1
*) = ∅. Suppose that

𝑦 ∈ ̂︂𝑌𝜎2 ∩ 𝑐𝑙𝑀*
𝑛/𝑌𝜎1

(𝑇 ′
1

*), then

2 = 𝑟𝑀*
𝑛/𝑌𝜎1

(𝑇 ′
1

* ∪ {𝑦}) = 𝑟𝑀*
𝑛

(𝑇 ′
1

* ∪ {𝑦} ∪ 𝑌𝜎1) − 𝑟𝑀*
𝑛

(𝑌𝜎1)

and 𝑟𝑀*
𝑛

(𝑇 ′
1

* ∪ {𝑦} ∪ 𝑌𝜎1) = 5. So, for some 𝑒 ∈ 𝑇 ′
1

*, we have that (𝑇 ′
1

* − 𝑒) ∪ {𝑦} ∪ 𝑌𝜎1 is
a circuit of 𝑀*

𝑛 that contains 𝑦 ∈ 𝑌𝜎2 but do not intersects 𝑇 ′
2

*. A contradiction since 𝑌𝜎2

surrounds 𝑇 ′
2

*.
Therefore

𝑀𝑛 = N𝑇 ′
2

*

(︂
N𝑇 ′

1
*

(︂
𝑀𝑛∖

(︂ 2⋃︀
𝑖=1

𝑌𝜎𝑖

)︂)︂
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁)︂
= N𝑇 ′

3
*

(︂
N𝑇 ′

2
*

(︂
N𝑇 ′

1
*

(︂
𝑀𝑛∖

(︂ 2⋃︀
𝑖=1

𝑌𝜎𝑖

)︂)︂
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁)︂
∖𝑌𝜎3

)︂
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and, if we take ̂︂𝑌𝜎3 = 𝑌𝜎3−
2⋃︁

𝑖=1
𝑌𝜎𝑖

then we have that

𝑀𝑛 = N𝑇 ′
3

*

(︃
N𝑇 ′

2
*

(︃
N𝑇 ′

1
*

(︃
𝑀𝑛∖

(︃ 3⋃︁
𝑖=1

𝑌𝜎𝑖

)︃)︃
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁)︃
∖
(︁
𝑌𝜎3 − ̂︂𝑌𝜎3

)︁)︃

and so on, until

𝑀𝑛 = N𝑇 ′
𝑛

*

(︃
N𝑇 ′

𝑛−1
*

(︃
...N𝑇 ′

2
*

(︃
N𝑇 ′

1
*

(︃
𝑀𝑛∖

(︃
𝑛⋃︁

𝑖=1
𝑌𝜎𝑖

)︃)︃
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁
...

)︃
∖
(︁
𝑌𝜎𝑛−1 − 𝑌𝜎𝑛−1

)︁)︃
∖
(︁
𝑌𝜎𝑛 − ̂︂𝑌𝜎𝑛

)︁)︃

By previous lemma, we have that 𝑀𝑛∖
(︂

𝑛⋃︀
𝑖=1

𝑌𝜎𝑖

)︂
= 𝑀 . Then

N𝑇 ′
1

*

(︃
𝑀𝑛∖

(︃
𝑛⋃︁

𝑖=1
𝑌𝜎𝑖

)︃)︃
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁
= N𝑇 ′

1
* (𝑀)

and

N𝑇 ′
2

*

(︃
N𝑇 ′

1
*

(︃
𝑀𝑛∖

(︃
𝑛⋃︁

𝑖=1
𝑌𝜎𝑖

)︃)︃
∖
(︁
𝑌𝜎2 − ̂︂𝑌𝜎2

)︁)︃
∖
(︁
𝑌𝜎3 − ̂︂𝑌𝜎3

)︁
= N𝑇 ′

2
*

(︁
N𝑇 ′

1
* (𝑀)

)︁
Continuing this, we obtain that

𝑀𝑛 = N𝑇 ′
𝑛

*

(︁
N𝑇 ′

𝑛−1
*

(︁
...N𝑇 ′

2
*

(︁
N𝑇 ′

1
* (𝑀)

)︁)︁)︁
= 𝑀 ′

𝑛

Because of previous result, we will denote 𝑀𝑛 by B (𝑀).
Denote by

• ℑ𝑛 = {𝑀 : 3-connected with 𝑛 triads and each element belongs to a nucleus of a pure diamond};

• ℘𝑛 = {𝑀 ∈ ℑ𝑛 : 𝑀 is a diamantic matroid};

• 𝒯 𝑛 the class of 3-connected triangular matroids without triads having 𝑛 triangles;

• 𝒴𝑛 the class of totally triangular matroids having 𝑛 triangles;

Because of Lemma 5.1.1, we have that ℘𝑛 = ∅ for 𝑛 < 4. Note that 𝒴𝑛 = ∅ for 𝑛 < 4.
Denoting by 𝜏 * the set of triads of 𝑀 , previous lemma implies that ♭ : ℑ𝑛 −→ 𝒯 𝑛

such that
♭ (𝑀) = 𝑀 ♭ = B (𝑀) ∖𝑇 * ∈ 𝜏 *⋃︁𝑇 *

is a function, unless re-labelling the triangles. Note that ♭|℘𝑛 is injective and ♭ (℘𝑛) ⊆ 𝒴𝑛.
This function is not injective over ℑ𝑛 because of the pure emeralds. If 𝑀 ∈ ℑ𝑛 and has
a non-pure emerald then 𝑀 ♭ /∈ 𝒴𝑛.
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Definition. For 𝑀 ∈ ℘𝑛, we say that 𝑀 ♭ is the triangular matroid associated to 𝑀 .

Example 6.3.4. If 𝑀 denotes the cycle matroid of graph described in Figure 17 then
𝑀 ♭ = 𝑀 (𝐾5) is its associated triangular matroid, where 𝐾5 denotes the complete graph
with 5 vertices.

Definition. If 𝑀 is a diamantic matroid then B (𝑀) is an amalgam of 𝑀 and 𝑀 ♭ having
the same triads of 𝑀 such that each triad has a unique triangle surround it. B (𝑀) is the
barycentric subdivision of 𝑀 .

Now, we will to show that ♭|℘𝑛 is a bijection of ℘𝑛 on 𝒴𝑛. From now until the end of
this section, 𝑀 will denotes a triangular 3-connected matroid. Denote by

{𝑌1, 𝑌2, . . . , 𝑌𝑛}

the family of triangles of 𝑀 .
For each 𝑘 ∈ {1, 2, ..., 𝑛}, we take 𝑊 𝑘

3 as the 3-wheel with spokes set 𝑇 *
𝑘 and rim 𝑌𝑘,

where
𝑇 *

𝑘 ∩ (𝐸 (𝑀) 𝑖 ̸= 𝑘∪𝑇 *
𝑖 ) = ∅

We define 𝑀1 = 𝑃𝑌1 (𝑊 1
3 , 𝑀) and for 𝑘 > 1,

𝑀𝑘 = 𝑃𝑌𝑘

(︁
𝑊 𝑘

3 , 𝑀𝑘−1
)︁

By Lemma 6.2.2, 𝑇 *
1 is a triad of 𝑀1. Since 𝑌2 is a triangle of 𝑀 , is also a triangle of 𝑀1.

Therefore 𝑌𝑘 is a triangle of 𝑀𝑘−1, and so 𝑀𝑘 is well defined for every 𝑘 ∈ {1, 2, ..., 𝑛}.
Lemma 6.2.2 implies that 𝑇 *

𝑘 is a triad of 𝑀𝑘, for every 𝑘.
Lemma 6.1.4 implies that 𝑇 *

𝑘 is a triangle of 𝑃 *
𝑌𝑘

(︁
𝑊 𝑘

3 , 𝑀𝑘−1
)︁

/𝑌𝑘 = 𝑀𝑘*/𝑌𝑘, then is
a triad of 𝑀𝑘∖𝑌𝑘. We have that

𝑀𝑘∖𝑇 *
𝑘 = 𝑃𝑌𝑘

(︁
𝑊 𝑘

3 , 𝑀𝑘−1
)︁

∖𝑇 *
𝑘 = 𝑀𝑘−1

therefore 𝑀𝑘∖
𝑘
∪

𝑖=1
𝑇 *

𝑖 = 𝑀 .
We have that 𝑀1∖𝑌1 = 𝑃𝑌1 (𝑊 1

3 , 𝑀) ∖𝑌1 is 3-connected iff 𝑃 *
𝑌1 (𝑊 1

3 , 𝑀) /𝑌1 is 3-
connected. Proposition 6.1.5 (ii) implies that 𝑠𝑖

(︁
𝑃 *

𝑌1 (𝑊 1
3 , 𝑀) /𝑌1

)︁
is 3-connected and

𝑃 *
𝑌1 (𝑊 1

3 , 𝑀) /𝑌1 has no loop. Therefore Lemma 6.2.7 implies that 𝑀1∖𝑌1 is 3-connected
if, and only if, there is no triad of 𝑀 intersecting 𝑌1.

Lemma 6.3.5. Suppose that 𝑀 ∈ 𝒯 𝑛, then 𝑀𝑘∖
𝑘
∪

𝑖=1
𝑌𝑖 is a 3-connected matroid and has

{𝑇 *
1 , . . . , 𝑇 *

𝑘 } as the set of triads, for every 𝑘 ∈ {1, 2, ..., 𝑛}.

Demonstração. For every 𝑘, we have that 𝑀𝑘 = 𝑃𝑌𝑘

(︁
𝑊 𝑘

3 , 𝑀
)︁

is 3-connected. Lemma
6.2.2 implies that 𝑇 *

𝑘 is the unique cocircuit of 𝑀𝑘 containing in 𝐸
(︁
𝑊 𝑘

3

)︁
. Now, we will

to show that {𝑇 *
1 , 𝑇 *

2 , ..., 𝑇 *
𝑘 } are the triads of 𝑀𝑘.
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For 𝑘 = 1, if 𝑇 * ̸= 𝑇 *
1 is a triad of 𝑀1 then we have that 𝑇 * intersects 𝑇 *

1 or 𝑇 *∩𝑇 *
1 = ∅

and both are prohibited by Corollary 6.2.5. Therefore, 𝑇 *
1 is the unique triad of 𝑀1.

Suppose that the triads of 𝑀𝑘−1 are
{︁
𝑇 *

1 , 𝑇 *
2 , ..., 𝑇 *

𝑘−1

}︁
. Take 𝑇 * a triad of 𝑀𝑘. Since

𝑀𝑘 = 𝑃𝑌𝑘

(︁
𝑊 𝑘

3 , 𝑀
)︁
, Corollary 6.2.5 implies that 𝑇 * = 𝑇 *

𝑘 or 𝑇 * ∩ 𝑇 *
𝑘 = ∅, and hence 𝑇 *

is a triad of 𝑀𝑘−1/𝑌𝑘. So, in last case 𝑇 * ∈
{︁
𝑇 *

1 , 𝑇 *
2 , ..., 𝑇 *

𝑘−1

}︁
.

Since the triads of 𝑀𝑘 are {𝑇 *
1 , 𝑇 *

2 , ..., 𝑇 *
𝑘 }, for each 𝑘, we have that 𝑀𝑘∖𝑌𝑘 is 3-

connected because of Corollary 6.2.8. Moreover, if we denote by ̂︁𝑌1 = 𝑌1 and for 𝑘 > 1

̂︁𝑌𝑘 = 𝑌𝑘−
𝑘−1⋃︁
𝑖=1

̂︁𝑌𝑖

then we have that
𝑘
∪

𝑖=1
̂︁𝑌𝑖 =

𝑘
∪

𝑖=1
𝑌𝑖 and

𝑀𝑘∖
𝑘
∪

𝑖=1
̂︁𝑌𝑖 =

(︁
𝑀𝑘∖̂︁𝑌𝑘

)︁
∖

𝑘−1
∪

𝑖=1
̂︁𝑌𝑖

Since 𝑀𝑘 is a 3-connected matroid and 𝑌𝑘 is a triangle surrounding 𝑇 *
𝑘 on 𝑀𝑘 such

that 𝑌𝑘 do not intersects any triad of 𝑀𝑘, then Lemma 6.2.14 implies that 𝑀𝑘∖̂︁𝑌𝑘 is
3-connected. We have that 𝑌𝑘−1 is a triangle surrounding 𝑇 *

𝑘−1 on 𝑀𝑘∖̂︁𝑌𝑘. Lemma 6.2.14
implies that 𝑀𝑘∖̂︁𝑌𝑘∖ ̂︂𝑌𝑘−1 is 3-connected. Continuing with this precedence, we obtain that
𝑀𝑘∖

𝑘
∪

𝑖=1
𝑌𝑖 is 3-connected.

If 𝑀 ∈ 𝒯 𝑛 then 𝑀𝑛∖
𝑛
∪

𝑖=1
𝑌𝑖 is a 3-connected matroid such that each element belongs

to a unique triad.

Lemma 6.3.6. 𝑀𝑛 does not depend on the order of the triangles.

Demonstração. Take 𝜎 : {1, 2, ..., 𝑛} −→ {1, 2, ..., 𝑛} a permutation. Denote by

𝑌 ′
𝑖 = 𝑌𝜎(𝑖) = 𝑌𝜎𝑖

then {𝑌 ′
1 , 𝑌 ′

2 , ..., 𝑌 ′
𝑛} is another ordination for the triangles. If 𝑊 𝑘

3 denotes a 3-wheel with
spokes set 𝑇 *

𝑘 and rim 𝑌𝑘, then 𝑀𝑛 has ground set 𝐸 (𝑀𝑛) = 𝐸 (𝑀) ∪
(︂

𝑛⋃︀
𝑖=1

𝑇 *
𝑖

)︂
. For each

𝑘 ∈ {1, ..., 𝑛}, take 𝑊 ′
3

𝑘 a copy of a 3-wheel with spokes set 𝑇 ′
𝑘

* and rim 𝑌 ′
𝑘 = 𝑌𝜎𝑘

, such
that

𝑇 ′
𝑘

* ∩

⎛⎝𝐸 (𝑀𝑛) ∪

⎛⎝⋃︁
𝑖 ̸=𝑘

𝑇 ′
𝑖
*

⎞⎠⎞⎠ = ∅

We denote by

{ 𝑀
′1 = 𝑃𝑌 ′

1

(︁
𝑊 ′

3
1, 𝑀

)︁
, 𝑀 ′𝑘 = 𝑃𝑌 ′

𝑘

(︁
𝑊 ′

3
𝑘, 𝑀 ′𝑘−1

)︁
, for each 𝑘 > 1.

We will to prove that 𝑀 ′𝑛 = 𝑀𝑛, unless label of the triads surrounded by triangles.
Note that for every 𝑘, 𝑇 ′

𝑘
* ∪ 𝑇 *

𝜎𝑘
is a pure emerald of 𝑃𝑌 ′

𝑘

(︁
𝑊 ′

3
𝑘, 𝑀𝑛

)︁
. Then

𝑀𝑛 = 𝑃𝑌 ′
𝑘

(︁
𝑊 ′

3
𝑘, 𝑀𝑛

)︁
∖𝑇 ′

𝑘
*

= 𝑃𝑌 ′
𝑘

(︁
𝑊 ′

3
𝑘, 𝑀𝑛

)︁
∖𝑇 *

𝜎𝑘
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and 𝑇 *
𝜎𝑘

⊆ 𝐸 (𝑀𝑛) − 𝑌 ′
𝑘 . Then

𝑀𝑛 = 𝑃𝑌 ′
𝑘

(︁
𝑊 ′

3
𝑘, 𝑀𝑛∖𝑇 ′

𝑘
*
)︁

We have that

𝑀𝑛 = 𝑃𝑌 ′
2

(︁
𝑊 ′

3
2, 𝑀𝑛

)︁
∖𝑇 ′

2
* = 𝑃𝑌 ′

2

(︁
𝑊 ′

3
2, 𝑃𝑌 ′

1

(︁
𝑊 ′

3
1, 𝑀𝑛∖

(︁
𝑇 *

𝜎1 ∪ 𝑇 *
𝜎2

)︁)︁)︁
Going on until

𝑀𝑛 = 𝑃𝑌 ′
𝑛

(︂
𝑊 ′

3
𝑛, 𝑃𝑌 ′

𝑛−1

(︂
𝑊 ′

3
𝑛−1, . . . 𝑃𝑌 ′

1

(︂
𝑊 ′

3
1, 𝑀𝑛∖

(︂
𝑛⋃︀

𝑖=1
𝑇 *

𝜎𝑖

)︂)︂)︂)︂
= 𝑀 ′𝑛

since 𝑀𝑛∖
(︂

𝑛⋃︀
𝑖=1

𝑇 *
𝜎𝑖

)︂
= 𝑀 .

Denoting by 𝜏 the set of triangles of a 𝑀 , we have a function ♯ : 𝒴𝑛 −→ ℘𝑛 such that

♯ (𝑀) = 𝑀 ♯ = 𝑀𝑛∖𝑌 ∈ 𝜏
⋃︁

𝑌

is injective, unless re-labelling the triads.

Definition. Given 𝑀 ∈ 𝒴𝑛, we have that 𝑀 ♯ is semi-binary (Corollary 6.2.6) and 123-
irreducible. We say that ♯ (𝑀) = 𝑀 ♯ is the diamantic matroid associated to 𝑀 .

Theorem 6.3.7. If 𝑀 is a rank 𝑚 3-connected diamantic matroid with 𝑛 ≥ 4 triads,
|𝐸 (𝑀)| = 3𝑛, then 𝑀 ♭ is a totally triangular 3-connected matroid with rank 𝑚 − 𝑛

and 𝑛 triangles. Conversely, if 𝑀 is a rank 𝑚 totally triangular 3-connected matroid
with 𝑛 triangles, 𝑛 ≥ 4, then 𝑀 ♯ is a 3-connected diamantic matroid with 𝑛 triads,⃒⃒⃒
𝐸
(︁
𝑀 ♯

)︁⃒⃒⃒
= 3𝑛, and 𝑟

(︁
𝑀 ♯

)︁
= 𝑛 + 𝑚. Moreover,

(︁
𝑀 ♭

)︁♯
= 𝑀 and

(︁
𝑀 ♯

)︁♭
= 𝑀 .

Demonstração. Take 𝑀 ∈ ℘𝑛. Then(︁
𝑀 ♭

)︁♯
=

(︁
𝑀 ♭

)︁𝑛
∖

𝑛
∪

𝑖=1
𝑌𝑖

=
(︂

𝑀𝑛∖
𝑛
∪

𝑖=1
𝑇 *

𝑖

)︂𝑛

∖
𝑛
∪

𝑖=1
𝑌𝑖

Note that (︂
𝑀𝑛∖

𝑛
∪

𝑖=1
𝑇 *

𝑖

)︂1
= 𝑃𝑌1

(︂
𝑊 1

3 , 𝑀𝑛∖
𝑛
∪

𝑖=1
𝑇 *

𝑖

)︂
= 𝑀𝑛∖

𝑛
∪

𝑖=2
𝑇 *

𝑖

and (︂
𝑀𝑛∖

𝑛
∪

𝑖=1
𝑇 *

𝑖

)︂2
= 𝑃𝑌2

(︂
𝑊 2

3 , 𝑀𝑛∖
𝑛
∪

𝑖=2
𝑇 *

𝑖

)︂
= 𝑀𝑛∖

𝑛
∪

𝑖=3
𝑇 *

𝑖

and so on until (︂
𝑀𝑛∖

𝑛
∪

𝑖=1
𝑇 *

𝑖

)︂𝑛

= 𝑀𝑛

Therefore (︁
𝑀 ♭

)︁♯
= 𝑀𝑛∖

𝑛
∪

𝑖=1
𝑌𝑖 = 𝑀

Analogously we can check that
(︁
𝑀 ♯

)︁♭
= 𝑀 , for 𝑀 ∈ 𝒴𝑛.
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As consequence, if 𝑀 is a totally triangular matroid then 𝑀𝑛 = B
(︁
𝑀 ♯

)︁
and so:

Definition. If 𝑀 and 𝑁 are diamantic and totally triangular matroids associated each
others, then B (𝑀) = B (𝑁) = B (𝑀, 𝑁) denotes its barycentric subdivision of 𝑀 or 𝑁 .

Example 6.3.8. The Fano matroid 𝐹7 is a rank 3 totally triangular matroid with 7
triangles such that different triangles intersects in exactly one element. Then (𝐹7)♯ is a
3-connected diamantic matroid with

⃒⃒⃒
𝐸
[︁
(𝐹7)♯

]︁⃒⃒⃒
= 21 and 𝑟

(︁
(𝐹7)♯

)︁
= 10. We have that(︁

𝐹 −
7

)︁♯
is a diamantic matroid, with

⃒⃒⃒⃒
𝐸
[︂(︁

𝐹 −
7

)︁♯
]︂⃒⃒⃒⃒

= 18 and 𝑟
(︂(︁

𝐹 −
7

)︁♯
)︂

= 9.

Example 6.3.9. For 𝑛 ≥ 4, the dual of Ladder, 𝐿*
𝑛, and dual of Mbius Ladder, ℒ*

𝑛, are
two non-isomorphic totally triangular matroids. We have that ♯ (𝐿*

𝑛) and ♯ (ℒ*
𝑛) are two

non-isomorphic diamantic matroids with 6𝑛 elements and rank 3𝑛 + 1.
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