Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/31009

Compartilhe esta página

Título: L² decay for weak solutions of the micropolar equations on R³
Autor(es): FREITAS, Lorena Brizza Soares
Palavras-chave: Análise matemática; Equações diferenciais
Data do documento: 14-Jun-2018
Editor: Universidade Federal de Pernambuco
Abstract: We obtain decay estimates for solutions of the micropolar fluid equations . Such equations, proposed by A. C. Eringen, generalize the classic model of Navier-Stokes and describe the behavior of fluids with microstructure such as animal blood, liquid crystals, suspensions, among others. For this, we use a method developed by M. Schonbek, known by Fourier Splitting Method. In order to present the method, we first show how it was applied in the context of parabolic conservation laws and the Navier-Stokes equations to obtain decay estimates. Having done this, assuming the existence for solutions of the micropolar fluid system with Dirichlet conditions at infinity and we show the result when the external forces are either null or decay at an appropriate rate. Lastly, through retarded mollifiers and approximate solutions, we guarantee the existence of solutions for the micropolar fluidequations in convenient functional spaces and we prove the desired decay bound.
URI: https://repositorio.ufpe.br/handle/123456789/31009
Aparece nas coleções:Teses de Doutorado - Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Lorena Brizza Soares Freitas.pdf853,89 kBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons