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ABSTRACT

We obtain decay estimates for solutions of the micropolar fluid equations . Such
equations, proposed by A. C. Eringen, generalize the classic model of Navier-Stokes and
describe the behavior of fluids with microstructure such as animal blood, liquid crystals,
suspensions, among others. For this, we use a method developed by M. Schonbek, known by
Fourier Splitting Method. In order to present the method, we first show how it was applied
in the context of parabolic conservation laws and the Navier-Stokes equations to obtain
decay estimates. Having done this, assuming the existence for solutions of the micropolar
fluid system with Dirichlet conditions at infinity and we show the result when the external
forces are either null or decay at an appropriate rate. Lastly, through retarded mollifiers
and approximate solutions, we guarantee the existence of solutions for the micropolar fluid
equations in convenient functional spaces and we prove the desired decay bound.

Keywords: Mathematical Analysis. Partial Differential Equations. Micropolar Fluids.
Decay of solutions. Fourier Splitting Method.



RESUMO

Obtemos estimativas de decaimento para as soluções das equações para fluidos
micropolares. Tais equações, propostas por A. C. Eringen, generalizam o clássico modelo de
Navier-Stokes e descrevem o comportamento de fluidos com microestrutura como sangue
de animais, cristais líquidos, suspensões, entre outros. Para tal, utilizamos um método
desenvolvido por M. Schonbek, conhecido como Método de Decomposição de Fourier. A
fim de apresentar o método, primeiramente mostramos como o mesmo foi aplicado no
contexto de leis de conservação parabólicas e das equações de Navier-Stokes para obter
estimativas de decaimento. Feito isto, assumindo a existência de soluções para o sistema
de fluido micropolar com condições de Dirichlet no infinito, obtemos decaimento no caso
em que as forças externas do sistema são nulas ou decaem a uma razão apropriada. Por
fim, construindo funções suavizantes e soluções aproximadas, garantimos a existência de
soluções das equações de fluido micropolar em espaços funcionais convenientes e provamos
a estimativa de decaimento desejada.

Palavras-chave: Análise Matemática. Equações Diferenciais Parciais. Fluido Micropolar.
Decaimento de Soluções. Método de Decomposição de Fourier.



SYMBOL LIST

Ω open subset of Rn, n a positive integer

suppu the set suppu = {x ∈ Ω : u(x) 6= 0}

C the set of continuous functions

Ck the set of functions which have continuous partial derivative of order
less than or equal to k

C∞ the set of functions which have continuous partial derivative of all orders
k ∈ N

C∞0 the set of C∞-function with compact support

D(Ω) space of test functions on Ω

Lp Lp(Rn) = (Lp(Rn))m, m and n positive integers

‖·‖p Lp norm defined by ‖u‖p =
 3∑
j=1
‖uj‖pp

1/p

, if 1 ≤ p <∞

(·, ·) the inner product on L2 defined by (u,v) =
3∑
j=1

∫
R3
uj vj dx

Lploc the set of functions which are p-integrable on every compact subset of
their domain of definition

Wm,p space of functions weakly m-differentiable and p-integrable (Sobolev
spaces)

Hm Wm,2

u u(x, t) ∈ R3 the linear velocity

w w(x, t) ∈ R3 the angular velocity

p p(x, t) ∈ R the pressure

f , g f(x, t), g(x, t) ∈ R3 the external forces

u0 u0(x) ∈ R3 the initial linear velocity

w0 w0(x) ∈ R3 the initial angular velocity

µ Newtonian viscosity



µr microrotational viscosity

c0 , ca, cd coefficients of angular viscosities

V fields on C∞0 with divv = 0

V the closure of V on H1
0

H the closure of V on L2

V ′ the topological dual of V

div divergence operator

curl rotational operator

∇ gradient operator

∆ Laplacian operator

[(u · ∇)u]j
3∑

k=1
uk
∂uj
∂xk

, j-th components of (u · ∇)u

[(u · ∇)w]j
3∑

k=1
uk
∂wj
∂xk

, j-th components of (u · ∇)w
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1 INTRODUCTION

Fluid dynamics is an area of extreme importance for many sciences, such as
engineering, biology, and physics (see [1]). Due to this, several models of differential
equations have been formulated over the years, among them, the classic Navier-Stokes
model. However, this model does not consider the influence of particles immersed in the
fluid in its flow. Because of this, A. C. Eringen [2] proposed a model for fluids with
microstructure called micropolar fluids.

In the present thesis, we investigate the long-time behavior for weak solutions
of the micropolar fluid model. More specifically, let T be a positive real number and
QT = R3 × (0, T ). We use boldface letters to denote vector fields in Rn, as well as to
indicate spaces whose elements are of this nature. We consider the system

ut + (u · ∇)u− (µ+ µr)∆u+∇p− 2µr curlw = f ,

divu = 0,

wt + (u · ∇)w − (ca + cd)∆w − (c0 + cd − ca)∇(divw) + 4µrw − 2µr curlu = g,

u
∣∣∣
t=0

= u0, w
∣∣∣
t=0

= w0.

(1.1)
Here, the unknowns u(x, t) ∈ R3, p(x, t) ∈ R and w(x, t) ∈ R3 represent, respectively, the
linear velocity, the pressure distribution and the angular velocity of rotation of the fluid
particles as functions of the position x and of the time t (see [2], [3], [4]). The functions
u0 = u0(x), w0 = w0(x), f = f(x, t) and g = g(x, t) are given and denote, respectively,
the initial linear velocity, the initial angular velocity and external forces. The positive
constants µ, µr , c0 , ca and cd represent viscosity coefficients and satisfy the inequality
c0 + cd > ca (see [4]). Without loss of generality to our aim, we will take

µ = µr = 1/2

and
ca + cd = c0 + cd − ca = 1.

Thus, system (1.1) can be written as

ut + (u · ∇)u−∆u+∇p− curlw = f ,

divu = 0,

wt + (u · ∇)w −∆w −∇(divw) + 2w − curlu = g,

u
∣∣∣
t=0

= u0, w
∣∣∣
t=0

= w0.

(1.2)

Observe that, if w ≡ 0 the system (1.2) reduces to the Navier-Stokes system (see for
instance [5] and the references therein).
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There are many works concerning the micropolar fluid model. Let us recall some of
them

• In [4], the existence of local in time weak solutions for a short time were established
(see also [3]).

• The existence of weak solutions was studied in [6, 7] on the Nikolskii spaces context.

• In [8, 9], the existence of strong solutions was established using linearization and the
method of successive approximations.

• In [10], a proof of existence and uniqueness of strong solutions using the semi-Galerkin
spectral approximations is presented.

• In [11,12], the authors proved the existence of a small time interval where the fluid
variables converge uniformly as the viscosities tend to zero.

• In [13], the existence of local in time semi-strong solutions and global in time strong
solutions for the system were studied. Under suitable assumptions, the uniqueness
of local semi-strong solutions were also proved.

• In [14], weak solutions with improved regularity were established, so improving the
results in [6, 7].

Returning to the purpose of this work, we are interested in proving that under
certain assumptions for the solutions of system (1.2), the following estimate∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2 (1.3)

holds, for some suitable positive constant C. A similar result was demonstrated for the
Navier-Stokes equations [15], using a method known as the “Fourier Splitting Method”
developed by M. Schonbek and first applied in the context of parabolic conservation
laws [16]. Given that the micropolar fluid model is a generalization of Navier-Stokes
equations, we have tried to use the same approach on the system (1.2) to get the bound
(1.3).

To present our results, we organized this thesis in six chapters. Chapter 2 contains
a review of basic functional analysis concepts and results. The Fourier Splitting Method, as
well as examples of its application, can be seen in Chapter 3. Chapters 4 and 5 present our
main results, considering either the external forces to be null or to decay at an appropriate
rate.
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2 BASIC CONCEPTS

The present chapter is devoted to introducing some auxiliary results used in this
work. Throughout this chapter, Ω is an open subset of Rn. For more details, see [17–20].

2.1 Spaces of Functions

Definition 2.1. Let α = (α1, α2, · · · , αn) be a multi-index, where αj is a nonnegative
integer for all j ∈ N. We denote by Dα the differential operator of order

|α| = α1 + α2 + · · ·+ αn,

i.e.
Dα = ∂|α|

∂α1
1 · · · ∂αnn

.

Definition 2.2. Let u : Ω→ R be a continuous function. The support of u is the set

suppu = {x ∈ Ω : u(x) 6= 0}.

Definition 2.3. The vector space C∞0 (Ω) consists of all functions in C∞(Ω) which have
compact support in Ω.

Definition 2.4. A sequence {φm}∞m=1 ⊂ C∞0 (Ω) is said to be convergent to zero if the
following conditions are satisfied

i. there exists a compact set K such that suppφm ⊂ K for all m ∈ N .

ii. For each α ∈ Nn, the sequence {Dαφm}∞m=1 converges to zero uniformly on K.

For a given φ ∈ C∞0 (Ω), the sequence {φm}∞m=1 ⊂ C∞0 (Ω) is said to be convergent to φ in
C∞0 (Ω) if {φm − φ}∞m=1 converges to zero in the above sense.

Definition 2.5. The vector space C∞0 (Ω) equipped with the notion of convergence above
is denoted by D(Ω) and is known as the space of test functions on Ω.

Definition 2.6. A distribution on Ω is a continuous linear functional T : D(Ω)→ R.

2.1.1 Lp Spaces

Definition 2.7. Let u be a measurable real function in Ω and 1 ≤ p <∞. We denote by
Lp(Ω) the Banach space

Lp(Ω) = {u : Ω→ R ; u is measurable and ‖u‖p <∞}.
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where
‖u‖Lp(Ω) = ‖u‖p =

( ∫
Ω
|u(x)|p dx

)1/p
.

Remark 2.8. If p = 2, the space L2(Ω) is a Hilbert space with scalar product

(u, v)L2(Ω) =
∫

Ω
u(x) v(x) dx, u, v : Ω→ R.

Definition 2.9. For a measurable function u : Ω→ R, we denote by L∞(Ω) the Banach
space

L∞(Ω) = {u : Ω→ R ;u is measurable and ‖u‖∞ <∞}

where
‖u‖L∞(Ω) = inf{C > 0 ; |u(x)| ≤ C a.e. onΩ}

= ess sup
x∈Ω

|u(x)|.

Lemma 2.10 (Generalized Young inequality). Let a, b be two positive real numbers.
Consider 1 < p, q <∞ such that 1

p
+ 1
q

= 1. Then, for all ε > 0, we have

ab ≤ εap + Cεb
q,

where Cε = p− 1
pq

ε1−q.

Lemma 2.11 (Hölder inequality). Let 1 ≤ p, q ≤ ∞ such that 1
p

+ 1
q

= 1. If u ∈ Lp(Ω)

and v ∈ Lq(Ω), then uv ∈ L1(Ω) and

‖uv‖1 ≤ ‖u‖p‖v‖q.

Lemma 2.12 (Generalized Hölder inequality). Let 1 ≤ p1, · · · , pk ≤ ∞. Assume that
u1, u2, · · · , uk are functions such that for i = 1, · · · , k

1. ui ∈ Lpi(Ω)

2. 1
p

=
k∑
i=1

1
pi
≤ 1.

Then u =
k∏
i=1

ui ∈ Lp(Ω) and ‖u‖p ≤
k∏
i=1
‖ui‖pi.

2.1.2 Bochner Spaces

Definition 2.13. Let 1 ≤ p <∞ and a Banach space X with norm ‖·‖X . We denote by
Lp(0, T ;X) the set of mappings u : [0, T ]→ X which are strongly measurable and

‖u‖Lp(0,T ;X) =
(∫ T

0

∥∥∥u(t)
∥∥∥p
X
dt

)1/p

<∞ 1 ≤ p <∞.
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If p =∞, we define the space L∞(0, T ;X) as the set of mappings u : [0, T ]→ X which
are strongly measurable and

‖u‖L∞(0,T ;X) = ess sup
t∈[0,T ]

‖u(t)‖X <∞.

Lp(0, T ;X) and L∞(0, T ;X) with the norm ‖u‖Lp(0,T ;X) and ‖u‖L∞(0,T ;X), respectively are
Banach spaces.

Lemma 2.14 (Lemma 1.1, Chapter 3, [5]). Let X be a given Banach space and X ′ its
topological dual and let u, g ∈ L1(0, T ;X). Then, the following conditions are equivalent

i. u is a.e. a primitive of g, i.e.,

u(t) = ξ +
∫ t

0
g(s) ds, ξ ∈ X, a.e. t ∈ [0, T ],

ii. For each test function φ ∈ D((0, T )),∫ T

0
u(t)φ′(t) dt = −

∫ T

0
g(t)φ(t) dt,

iii. For each η ∈ X ′,
d

dt
〈u, η〉X,X′ = 〈g, η〉X,X′ ,

in the distribution sense on (0, T ).

If conditions i− iii are satisfied, then u is equal to a continuous function from [0, T ] into
X a.e.

Lemma 2.15 (Lemma 1.4, Chapter 3, [5]). Let X and Y be two Banach spaces such that
X ⊂ Y with continuous injection. If a function φ ∈ L∞(0, T ;X) is weakly continuous with
values in Y , then φ is weakly continuous with values in X.

Lemma 2.16 (Lemma 1.2, Chapter 3, [5]). Let V and H be two Hilbert spaces and V ′,
H ′ be the dual of V and H respectively, with V ⊂ H ≡ H ′ ⊂ V ′, where the injections are
continuous. If a function u is such that u ∈ L2(0, T ;V ) and ut ∈ L2(0, T ;V ′), then u is
almost everywhere equal to a continuous function from [0, T ] into H and the equality

d

dt
|u|2 = 2〈ut, u〉V ′,V ,

holds in the distribution sense on (0, T ).

Lemma 2.17 (Lemma 2.1, Chapter 3, [5]). Let X0, X, X1 be Banach spaces such that
X0 ⊂ X ⊂ X1, the injections X0 ↪→ X ↪→ X1 are continuous, and the injection X0 ↪→ X

is compact. Then, for each η > 0, there exists some constant C = C(η,X0, X,X1) such
that for all ν ∈ X0, we have

‖ν‖X ≤ η‖ν‖X0 + C‖ν‖X1 .
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Lemma 2.18 (Aubin-Lions lemma, Theorem 2.1, Chapter 3, [5]). Let X0, X, X1 be Banach
spaces with X0, X1 reflexive. Suppose that injections X0 ↪→ X ↪→ X1 are continuous, and
that the injection X0 ↪→ X is compact. For T > 0 and α0, α1 > 1, let

Y = {v ∈ Lα0(0, T ;X0) such that vt ∈ Lα1(0, T ;X1)},

with norm defined by

‖v‖Y = ‖v‖Lα0 (0,T ;X0) + ‖vt‖Lα1 (0,T ;X1) .

Then, the space Y is a Banach space and the injection of Y into Lα0(0, T ;X) is compact.

2.1.3 Sobolev Spaces

Definition 2.19. Let Ω ⊂ Rn be an open set, u, v ∈ L1
loc(Ω), and a multi-index α =

(α1, α2, · · · , αn) ∈ Nn of length |α| = α1 + α2 + · · ·+ αn. We say that v is the αth-weak
partial derivative of u, denoted by

Dαu = v,

if ∫
Ω
u(x)Dαφ(x) dx = (−1)|α|

∫
Ω
v(x)φ(x) dx, (2.1)

for all test functions φ ∈ C∞0 (Ω).

Definition 2.20. Fix p ∈ R with 1 ≤ p ≤ ∞ and m a positive integer. The Sobolev space
Wm,p(Ω) consists of all functions u ∈ Lp(Ω) such that for each multi-index α with |α| ≤ m,
the derivative Dαu exists in the weak sense and belongs to Lp(Ω). If u ∈ Wm,p(Ω), we
define its norm by

‖u‖Wm,p(Ω) =
 ∑
|α|≤m

∫
Ω
|Dαu|pdx

1/p

, if 1 ≤ p <∞,

and

‖u‖Wm,∞(Ω) =
∑
|α|≤m

ess sup
Ω
|Dαu|.

Remark 2.21. If p = 2 and m ∈ N, the Sobolev space Wm,2(Ω) is usually denoted by
Hm(Ω). One can prove that Hm(Ω) is a Hilbert space with the norm associated to the
inner product

〈u, v〉 =
∑
|α|≤m

(Dαu,Dαv) ,

where (·, ·) is the inner product on L2(Ω).

Definition 2.22. Let 1 ≤ p ≤ ∞ and m a positive integer. The space Wm,p
0 (Ω) is the

closure of C∞0 (Ω) in Wm,p(Ω). If p = 2, we write Hm
0 (Ω) = Wm,2

0 (Ω).



Chapter 2. BASIC CONCEPTS 18

Definition 2.23. Let 1 ≤ p <∞, 1 < q ≤ ∞ such that 1
p

+ 1
q

= 1, and m ∈ N. The space
W−m,q(Ω) is the topological dual of Wm,p

0 (Ω). If q = 2, we write H−m(Ω) = W−m,2(Ω).

Lemma 2.24 (Lemma 6.7, Chapter 6, [21]). Let Ω be an open and bounded subset of R3

and u ∈ L2(0, T ;H1
0(Ω)) ∩ L∞(0, T ;L2(Ω)). Then u ∈ L4(0, T ;L3(Ω)).

2.2 Other results

Definition 2.25. K : Rn × Rn → R is said to be a Calderón-Zygmund kernel if satisfies
the following conditions

(i) |K(x,y)| ≤ C

|x− y|n
,

(ii) |K(x,y)−K(x̄,y)|+ |K(x,y)−K(x, ȳ)| ≤ C

|x− y|n+1 ,

(iii) K(x,y) = −K(y,x),

for some constant C > 0.

Lemma 2.26 (Calderón-Zygmund Theorem, [22]). Let T be a singular integral operator,
i.e.,

T (u)(x) =
∫
Rn
K(x,y)u(y) dy,

where K is a Calderón-Zygmund kernel. If u ∈ Lp(Rn), with 1 < p < ∞, then T (u) ∈
Lp(Rn) and

‖T (u)‖p ≤ C ‖u‖p,

where C depends only on p and on the dimension n.

Lemma 2.27 (Proposition 3.2, [23]). Let M be a Hermitian matrix with all eigenvalues
{λi}ni=1 positive. Then,

‖e−Mt‖ ≤ e−(mini λi)t, (2.2)

for all t ≥ 0.

Proof. Since M is a Hermitian matrix, it is diagonalizable. So, consider β = {v1, · · · , vn}
a basis of eigenvectors for M with respective eigenvalues {λ1, · · · , λn}. Then β is also a
basis of eigenvectors for e−Mt with respective eigenvalues {e−λ1t, · · · , e−λnt}. Let w ∈ Cn

such that
w = α1v1 + · · ·+ αnvn,

where αi ∈ C for all i = 1, · · · , n. Take ‖w‖ = maxi |αi|. Then for t ≥ 0, one has∥∥∥e−Mtw
∥∥∥ =

∥∥∥∥∥
n∑
i=1

αke
−λktvk

∥∥∥∥∥ ≤ ‖w‖
(

max
i=1,··· ,n

∣∣∣e−λit∣∣∣) = ‖w‖ e−(mini λi)t.

Thus, the inequality (2.2) is proved.
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3 THE FOURIER SPLITTING METHOD AND DE-
CAY ESTIMATES

This chapter is dedicated to explain the Fourier Splitting Method and to show
how it can be applied to obtain decay estimates for parabolic conservation laws and
Navier-Stokes equations.

3.1 Fourier Splitting Method

Definition 3.1. If u ∈ L1(Rn) ∩ L2(Rn), the Fourier Transform of u, denoted by û is
defined as

F{u}(ξ) = û(ξ) =
∫
Rn
e−i ξ·xu(x) dx, i =

√
−1,

with ξ ∈ Rn.

The next theorem is a fundamental tool to apply the Fourier splitting method.

Theorem 3.2 (Plancherel theorem, Chapter 4, [17]). If u ∈ L1(Rn) ∩ L2(Rn), then
û ∈ L2(Rn) and

‖û‖2 = (2π)n/2 ‖u‖2.

Proof. Note that if v ∈ L1(Rn), then v̂ ∈ L∞(Rn). Indeed,

|v̂(ξ)| =
∣∣∣∣∫

Rn
e−i ξ·xv(x) dx

∣∣∣∣
≤
∫
Rn
|e−i ξ·xv(x)| dx

=
∫
Rn
|v(x)| dx <∞.

Thus, if v, w ∈ L1(Rn), then v̂, ŵ ∈ L∞(Rn). Besides that, we have∫
Rn
v(x) ŵ(x) dx =

∫
Rn
v̂(ξ)w(ξ) dξ. (3.1)

By direct calculus, we have the identity∫
Rn
ei ξ·x−t|x|

2
dx =

(
π

t

)n/2
e−
|ξ|2
4t , ∀ t > 0.

So, from equality (3.1) for each ε > 0, we obtain∫
Rn
ŵ(ξ)e−ε|ξ|2 dξ =

(
π

ε

)n/2 ∫
Rn
w(x)e−

|x|2
4ε dx. (3.2)

Now, let u ∈ L1(Rn) ∩ L2(Rn) and set v(x) := u(−x), where u is the conjugate complex
of u. Define w ∈ L1(Rn) ∩ C(Rn) by

w(y) = (2π)n(u ∗ v)(y) = (2π)n
∫
Rn
u(x) v(y − x) dx.
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Observe that,

ŵ(ξ) = (2π)n(̂u ∗ v)(ξ)

= (2π)n
∫
Rn
e−i ξ·x

∫
Rn

u(y) v(x− y) dy dx

= (2π)n
∫
Rn
e−i ξ·y u(y)

(∫
Rn
e−i (x−y)·ξ v(x− y) dx

)
dy

= (2π)n
∫
Rn
e−i ξ·y u(y) v̂(ξ) dy

= (2π)n û(ξ) v̂(ξ).

Thus, ŵ ∈ L∞(Rn). But,

v̂(ξ) =
∫
Rn
e−i ξ·x u(−x) dx = û(ξ).

So, ŵ = (2π)n|û|2. Since w is continuous,

lim
ε→0

(
π

ε

)n/2 ∫
Rn
w(x)e−

|x|2
4ε dx = (2π)nw(0).

From identity (3.2), we deduce ∫
Rn
ŵ(ξ) dξ = (2π)nw(0).

Hence,∫
Rn
|û|2 dξ = 1

(2π)n
∫
Rn
ŵ(ξ) dξ = w(0) = (2π)n

∫
Rn
u(x)v(−x) dx = (2π)n

∫
Rn
|u|2 dx,

and the desired identity follows.

Lemma 3.3 (Hausdorff-Young inequality, Chapter V, [24]). Let 1 ≤ p ≤ 2. If u ∈ Lp(Rn),
then

‖û‖q ≤ C ‖u‖p ,

where q is the conjugate of p and C = C(n, p, q) > 0.

The Fourier Splitting Method was first applied to parabolic conservation laws
in [25] and it can be used as follows. Let u(x, t) ∈ R3 be a function satisfying the following
energy inequality

d

dt
‖u‖2

2 ≤ −C‖∇u‖2
2 + E(t), (3.3)

where the E(t) satisfies
E(t) ≤ C1(t+ 1)−(α+1),

for some constants C1 and α. If for C0 > 0

|û(ξ, t)| ≤ C0, (3.4)



Chapter 3. THE FOURIER SPLITTING METHOD AND DECAY ESTIMATES 21

for all ξ ∈ S(t), where

S(t) =

ξ ∈ Rn : |ξ| ≤
(

n

C(t+ 1)

)1/2
 ,

then
‖u(·, t)‖2

2 ≤ C̃(t+ 1)−α0 , (3.5)

where α0 = min(α, n/2). and the constant C̃ depends only on α, n, C, C0, C1 and on
‖u0‖2.

In [26], we can find its proof and some examples in which the method can be
applied. Let us see two of them: Parabolic Conservation Laws and the Navier-Stokes
equations.

3.2 Known Decay Results

3.2.1 Parabolic Conservation Laws

Consider the Cauchy problem
ut +

n∑
j=1

∂

∂xj
fj(u) = ε∆u, x ∈ Rn, t > 0,

u(x, 0) = u0(x), x ∈ Rn,

(3.6)

where u = u(x, t) ∈ R and f = (f1, · · · , fn) : R→ Rn is a smooth map.

Theorem 3.4 (Theorem 2.1, [25]). If fj ∈ C1(R,R), u0 ∈ L1(Rn) ∩ H1(Rn) ∩ C1
0(Rn),

and u is a solution of system (3.6), then

‖u(·, t)‖2
2 ≤ C(t+ 1)−n/2, (3.7)

where the constant C depends only on ε, n and u0.

Proof. Here, we suppose that the Cauchy problem (3.6) has a solution. Multiplying the
equation (3.6) by u and integrating by parts, we get

d

dt

∫
Rn
u2 dx = −2ε

∫
Rn
|∇u|2 dx. (3.8)

By Theorem 3.2, we have

d

dt

∫
Rn
|û|2 dξ = −2ε

∫
Rn

∣∣∣∇̂u∣∣∣2 dξ. (3.9)

Then,
d

dt

∫
Rn
|û|2 dξ = −2ε

∫
Rn
|ξ|2 |û|2 dξ. (3.10)
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Now, we can use the Fourier splitting method. Define,

A(t) =

ξ ∈ Rn : |ξ| >
(

n

2ε(t+ 1)

) 1
2
 . (3.11)

So,
d

dt

∫
Rn
|û|2 dξ ≤ −2ε

∫
A(t)
|ξ|2 |û|2 dξ. (3.12)

Since ξ ∈ A(t), one obtains

d

dt

∫
Rn
|û|2 dξ ≤ − n

t+ 1

∫
Rn
|û|2 dξ + n

t+ 1

∫
S(t)
|û|2 dξ, (3.13)

where S(t) := A(t)c. Multiplying inequality (3.13) by (t+ 1)n, we get

(t+ 1)n d
dt

∫
Rn
|û|2 dξ + n(t+ 1)n−1

∫
Rn
|û|2 dξ ≤ n(t+ 1)n−1

∫
S(t)
|û|2 dξ. (3.14)

Since u0 ∈ L1(Rn), one has ‖u(·, t)‖1 ≤ ‖u0‖1. In particular, ‖û(·, t)‖∞ ≤ ‖u0‖1. Therefore,

d

dt

[
(t+ 1)n

∫
Rn
|û|2 dξ

]
≤ ‖u0‖2

1 n(t+ 1)n−1ωn

[
2ε(t+ 1)

n

]−n/2
, (3.15)

where ωn is the volume of the n-dimensional unit sphere. The desired bound is obtained
by integrating inequality (3.15) over [0, t].

Remark 3.5. (3.7) is also valid if u0 ∈ L1(Rn) only.

3.2.2 Navier-Stokes Equations

Let us establish the L2 decay of the solutions for the Navier-Stokes equations on
Rn 

ut + (u · ∇)u−∆u+∇p = 0,
divu = 0,
u(x, 0) = u0(x).

(3.16)

Theorem 3.6 (Theorem 2.1, [15]). Let u : Rn×(0,+∞)→ Rn and p : Rn×(0,+∞)→ R,
be smooth functions, where u vanishes at infinity. If u and p satisfy the system (3.16) with
u0 ∈ L2(Rn) ∩L1(Rn), then ∥∥∥u(·, t)

∥∥∥2

2
≤ C(t+ 1)−n/2+1,

where the positive constant C depends only on ‖u0‖1, ‖u0‖2, and on n.

Proof. Multiplying equation (3.16)1 by u, and using the incompressibility condition
divu = 0, we have

d

dt

∫
Rn
|u|2 dx = −2

∫
Rn
|∇u|2 dx.
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By Theorem 3.2,
d

dt

∫
Rn
|û|2 dξ = −2

∫
Rn
|ξ|2|û|2 dξ.

Define

S(t) =

ξ ∈ Rn : |ξ| ≤
(

n

2(t+ 1)

) 1
2
 .

So,
d

dt

∫
Rn
|û|2 dξ ≤ −2

∫
S(t)c
|ξ|2|û|2 dξ.

Then,
d

dt

∫
Rn
|û|2 dξ + n

t+ 1

∫
Rn
|û|2 dξ ≤ n

t+ 1

∫
S(t)
|û|2 dξ. (3.17)

Now, we will to prove the inequality

|û(ξ, t)| ≤ C|ξ|−1, if ξ ∈ S(t), (3.18)

for some constant C > 0. Applying the Fourier Transform to equation (3.16)1 and
integrating by parts, we get

ût + |ξ|2û = −F{(u · ∇)u+∇p}(ξ). (3.19)

Multiplying (3.19) by e|ξ|2t, we obtain

e|ξ|
2t(ût + |ξ|2û) = e|ξ|

2t(−F{(u · ∇)u+∇p}(ξ)). (3.20)

Integrating (3.20) from 0 to t,

e|ξ|
2tû = û0(ξ) +

∫ t

0
e|ξ|

2s(−F{(u · ∇)u+∇p}(ξ)) ds.

Thus,
|û(ξ, t)| ≤ e−|ξ|

2t|û0(ξ)|+
∫ t

0
e−|ξ|

2(t−s)|F{(u · ∇)u+∇p}(ξ)| ds. (3.21)

Now, we have to estimate the term |F{(u ·∇)u+∇p}(ξ)|. Integrating by parts and using
the fact that divu = 0, we have

|F{(u · ∇)u}(ξ)| ≤
n∑

j,k=1

∫
Rn
|ukuj| |ξk| dx.

By Hölder inequality, we get

‖ukuj(·, t)‖1 ≤ ‖uk(·, t)‖2‖uj(·, t)‖2 ≤ ‖u0‖2
2.

So,
|F{(u · ∇)u}(ξ)| ≤ C|ξ|.

To estimate the term F{∇p}(ξ), apply the divergence operator in (3.16)1 to get

∆p = −
n∑

j,k=1

∂2

∂xj∂xk
(ujuk).
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So,
F{∆p}(ξ) =

n∑
j,k=1

ξjξkûjuk.

Since F{∆p}(ξ) = −|ξ|2p̂, one obtains

|p̂| ≤ C.

From
F{∇p}(ξ) = i ξF{p},

we then get
|F{∇p}(ξ)| ≤ C|ξ|.

Then,
|F{(u · ∇)u+∇p}(ξ)| ≤ C|ξ|. (3.22)

From (3.21) and the inequality (3.22), we get

|û(ξ, t)| ≤ e−|ξ|
2t|û0(ξ)|+ C

∫ t

0
e−|ξ|

2(t−s)|ξ| ds.

Then, since u0 ∈ L1 we have
|û0(ξ)| ≤ C.

So, for ξ ∈ S(t)
|û(ξ, t)| ≤ C|ξ|−1. (3.23)

Thus, from the bounds (3.17) and (3.23), we get

d

dt

[
(t+ 1)n

∫
Rn
|û|2 dξ

]
≤ C n (t+ 1)n−1

∫
S(t)
|ξ|−2 dξ.

By a change of coordinates and integration by parts, one has

d

dt

[
(t+ 1)n

∫
Rn
|û|2dξ

]
≤ Cωn

n− 2(t+ 1)n−1
[

n

2(t+ 1)

]n/2−1

≤ C(t+ 1)n/2, (3.24)

where ωn is the volume of the n-dimensional unit sphere. Since u0 ∈ L2(Rn), integrating
inequality (3.24) with respect to t we have

(t+ 1)n
∫
Rn
|û|2dξ ≤ C(t+ 1)n/2+1.

It follows from Theorem 3.2 that∫
Rn
|u|2dx ≤ C(t+ 1)−n/2+1 (3.25)



25

4 DECAY RESULTS FOR THE MICROPOLAR SYS-
TEM: FORMAL PROOFS

In this chapter, assuming suitable hypothesis for the external forces f and g, we
prove the estimate ∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

for solutions of the Cauchy problem in R3 × (0,+∞)

ut + (u · ∇)u−∆u+∇p− curlw = f ,

divu = 0,

wt + (u · ∇)w −∆w −∇(divw) + 2w − curlu = g,

u
∣∣∣
t=0

= u0, w
∣∣∣
t=0

= w0,

(4.1)

complemented with Dirichlet conditions at infinity, i.e., u(x, t)→ 0 as |x| → ∞, t > 0,

w(x, t)→ 0 as |x| → ∞, t > 0,
(4.2)

Section 4.1 is devoted to the case f = g = 0. In Section 4.2, assuming that the external
forces decay in a suitable rate, we prove similar estimates for L2 norms of u and w.

4.1 Null External Forces

The main result of this section is

Theorem 4.1. Let (u, p,w) be a smooth solution of problem (4.1)-(4.2), with f = g = 0.
If u0, w0 ∈ L1(R3) ∩ L2(R3), with divu0 = 0, then there exists a constant C > 0 such
that, for all t ≥ 0, ∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2.

The constant C depends only on the L1 and L2 norms of u0 and w0.

Before proving Theorem 4.1, we show some auxiliary results.

Lemma 4.2. Under the assumptions of Theorem 4.1, there exists C > 0 such that

|F{(u · ∇)u}(ξ)|+ |F{(u · ∇)w}(ξ)|+ |F{∇p}(ξ)| ≤ C|ξ|,

for all t ≥ 0 and ξ ∈ R3 with |ξ| 6= 0. The constant C depends only on ‖u0‖2 and ‖w0‖2.

Proof. We begin by estimating |F{(u · ∇)u}(ξ)|. Let [F{(u · ∇)u}(ξ)]j the j-th coordi-
nate of F{(u · ∇)u}(ξ), i.e.,

[F{(u · ∇)u}(ξ)]j =
∫
R3
e−i ξ·x

( 3∑
k=1

uk
∂uj
∂xk

)
dx.
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Integrating by parts, one obtains

[F{(u · ∇)u}(ξ)]j = −
∫
R3
uj

3∑
k=1

∂

∂xk

(
e−i ξ·xuk

)
dx

= −
∫
R3
uj

3∑
k=1

[
e−i ξ·x

(
−iξkuk + ∂uk

∂xk

)]
dx.

Since divu = 0, we get

[F{(u · ∇)u}(ξ)]j = i
∫
R3
uj

3∑
k=1

e−i ξ·xξkuk dx.

Thus,

|F{(u · ∇)u}(ξ)| ≤
3∑

j, k=1

∫
R3
|uk uj||ξk| dx.

Analogously, we get

|F{(u · ∇)w}(ξ)| ≤
3∑

j, k=1

∫
R3
|uk wj||ξk| dx.

By Hölder inequality and estimate (4.25), we conclude that

‖uk uj(·, t)‖1 ≤ ‖uk(·, t)‖2 ‖uj(·, t)‖2 ≤ ‖u(·, t)‖2
2 ≤ ‖u0‖2

2 + ‖w0‖2
2 ≤ C

and

‖uk wj(·, t)‖1 ≤ ‖uk(·, t)‖2 ‖wj(·, t)‖2 ≤ ‖u(·, t)‖2‖w(·, t)‖2 ≤ ‖u0‖2
2 + ‖w0‖2

2 ≤ C.

Then,
|F{(u · ∇)u}(ξ)| ≤ C|ξ| and |F{(u · ∇)w}(ξ)| ≤ C|ξ|, (4.3)

where C depends only on the L2 norms of u0 and w0. Now, note that

F{∇p}(ξ) = i ξF{p}.

Taking the divergence of Eq. (4.1)1, one gets

∆p = −div [(u · ∇)u] = −
3∑

j,k=1

∂2

∂xj∂xk
(ujuk). (4.4)

Applying the Fourier transform to the identity (4.4), one obtains

−|ξ|2 p̂ = −i ξ · F{(u · ∇)u}(ξ) =
3∑

j, k=1
ξj ξk F{uj uk}(ξ).

Since F{uj uk} ∈ L∞ and

|F{uj uk}(ξ)| ≤ ‖uj uk(·, t)‖1 ≤ ‖u0‖2
2 + ‖w0‖2

2 ≤ C,
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one gets |ξ|2 | p̂ | ≤ C |ξ|2. Thus,

| p̂ | ≤ C, for all ξ ∈ R3 \ {0}.

Consequently,
|F{∇p}(ξ)| ≤ C|ξ|. (4.5)

Due to the estimates (4.3) and (4.5), one gets the desired bound.

Proposition 4.3. Let K ⊂ R3 be a compact set. Under the assumptions of Theorem 4.1,
we have

|û(ξ, t)|+ |ŵ(ξ, t)| ≤ C|ξ|−1, for all t ≥ 0 and ξ ∈ K, with ξ 6= 0,

where C > 0 depends only on the L1 and L2 norms of the initial data and on K.

Remark 4.4. Compare with the estimate (3.23).

Proof. Let us take the Fourier transform in equations (4.1)1 and (4.1)3.

i. Fourier Transform of ut and wt

Since u = (u1, u2, u3) and w = (w1, w2, w3), we have

ut = ((u1)t, (u2)t, (u3)t) and wt = ((w1)t, (w2)t, (w3)t) .

Then,
F{ut}(ξ) = (F{(u1)t}(ξ),F{(u2)t}(ξ),F{(uw)t}(ξ)) ,

and
F{wt}(ξ) = (F{(w1)t}(ξ),F{(w2)t}(ξ),F{(w3)t}(ξ)) .

Let [F{ut}(ξ)]j and [F{wt}(ξ)]j the j-th coordinate of F{ut}(ξ) and F{wt}(ξ), re-
spectively. Observe that

[F{ut}(ξ)]j =
∫
R3
e−i ξ·x(uj)t dx = (ûj)t(ξ),

and
[F{wt}(ξ)]j =

∫
R3
e−i ξ·x(wj)t dx = (ŵj)t(ξ).

Thus,
F{ut}(ξ) = ût, and F{wt}(ξ) = ŵt. (4.6)

ii. Fourier Transform of ∆u and ∆w
Note that

∆u = (∆u1,∆u2,∆u3) and ∆w = (∆w1,∆w2,∆w3) .

So,
F{∆u}(ξ) = (F{∆u1}(ξ),F{∆u2}(ξ),F{∆u3}(ξ)) ,
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and
F{∆w}(ξ) = (F{∆w1}(ξ),F{∆w2}(ξ),F{∆w3}(ξ)) .

Hence,

[F{∆u}(ξ)]j =
3∑

k=1

∫
R3
e−i ξ·x

∂2uj
∂x2

k

dx = −
3∑

k=1

∫
R3
ξ2
ke
−i ξ·xuj(x) dx. = −|ξ|2ûj,

and

[F{∆w}(ξ)]j =
3∑

k=1

∫
R3
e−i ξ·x

∂2wj
∂x2

k

dx = −
3∑

k=1

∫
R3
ξ2
ke
−iξ·xwj(x) dx. = −|ξ|2ŵj.

Consequently,

F{∆u}(ξ) = −|ξ|2û and F{∆w}(ξ) = −|ξ|2ŵ. (4.7)

iii. Fourier Transform of curlu and curlw
We define

curlu =
(
∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)
and

curlw =
(
∂w3

∂x2
− ∂w2

∂x3
,
∂w1

∂x3
− ∂w3

∂x1
,
∂w2

∂x1
− ∂w1

∂x2

)
,

So, integrating by parts we get

[F{curlu}(ξ)]1 =
∫
R3
e−i ξ·x

(
∂u3

∂x2
− ∂u2

∂x3

)
dx

=
∫
R3
−ie−i ξ·x (ξ2u3 − ξ3u2) dx

= −i (ξ2û3 − ξ3û2) ,

[F{curlu}(ξ)]2 =
∫
R3
e−i ξ·x

(
∂u1

∂x3
− ∂u3

∂x1

)
dx

=
∫
R3
−ie−i ξ·x (ξ3u1 − ξ1u3) dx

= −i (ξ3û1 − ξ1û3) ,

[F{curlu}(ξ)]3 =
∫
R3
e−i ξ·x

(
∂u2

∂x1
− ∂u1

∂x2

)
dx

=
∫
R3
−ie−i ξ·x (ξ1u2 − ξ2u1) dx

= −i (ξ1û2 − ξ2û1) ,
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[F{curlw}(ξ)]1 =
∫
R3
e−i ξ·x

(
∂w3

∂x2
− ∂w2

∂x3

)
dx

=
∫
R3
−ie−i ξ·x (ξ2w3 − ξ3w2) dx

= −i (ξ2ŵ3 − ξ3ŵ2) ,

[F{curlw}(ξ)]2 =
∫
R3
e−i ξ·x

(
∂w1

∂x3
− ∂w3

∂x1

)
dx

=
∫
R3
−ie−i ξ·x (ξ3w1 − ξ1w3) dx

= −i (ξ3ŵ1 − ξ1ŵ3) ,

[F{curlw}(ξ)]3 =
∫
R3
e−i ξ·x

(
∂w2

∂x1
− ∂w1

∂x2

)
dx

=
∫
R3
−ie−i ξ·x (ξ1w2 − ξ2w1) dx

= −i (ξ1ŵ2 − ξ2ŵ1) .

Therefore,

F{curlu}(ξ) = −i


0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0



û1

û2

û3

 , (4.8)

and

F{curlw}(ξ) = −i


0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0



ŵ1

ŵ2

ŵ3

 . (4.9)

iv. Fourier Transform of divw
From the following identity

∇(divw) =
(

∂2w1
∂x2

1
+ ∂2w2

∂x1∂x2
+ ∂2w3

∂x2∂x3
,

∂2w1
∂x1∂x2

+ ∂2w2
∂x2

2
+ ∂2w3

∂x2∂x3
,

∂2w1
∂x1∂x3

+ ∂2w2
∂x3∂x2

+ ∂2w3
∂x2

3

)
,

one obtains

[F{∇(divw)}(ξ)]1 =
∫
R3
e−i ξ·x

(
∂2w1

∂x2
1

+ ∂2w2

∂x1∂x2
+ ∂2w3

∂x1x3

)
dx

= ξ2
1ŵ1 + ξ1ξ2ŵ2 + ξ1ξ3ŵ3,

[F{∇(divw)}(ξ)]2 =
∫
R3
e−i ξ·x

(
∂2w1

∂x1∂x2
+ ∂2w2

∂x2
2

+ ∂2w3

∂x2∂x3

)
dx

= ξ1ξ2ŵ1 + ξ2
2ŵ2 + ξ2ξ3ŵ3,

[F{∇(divw)}(ξ)]3 =
∫
R3
e−i ξ·x

(
∂2w1

∂x1∂x3
+ ∂2w2

∂x3∂x2
+ ∂2w3

∂x2
3

)
dx

= ξ1ξ3ŵ1 + ξ2ξ3ŵ2 + ξ3
3ŵ3.
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Thus,

[F{∇(divw)}(ξ)] = −


ξ2

1 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ2
2 ξ2ξ3

ξ1ξ3 ξ2ξ3 ξ2
3



ŵ1

ŵ2

ŵ3

 . (4.10)

From the identities (4.6), (4.7), (4.8), (4.9), and (4.10), we rewrite equations (4.1)1 and
(4.1)3 as

ût + |ξ|2û− iL(ξ)ŵ = G1(ξ, t), ξ ∈ R3, t > 0, (4.11)

and
ŵt +

(
|ξ|2 + 2

)
ŵ − iL(ξ)û− P (ξ)ŵ = G2(ξ, t), ξ ∈ R3, t > 0, (4.12)

where L(ξ) and P (ξ) are the real matrices

L(ξ) :=


0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 , P (ξ) := −


ξ2

1 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ2
2 ξ2ξ3

ξ1ξ3 ξ2ξ3 ξ2
3

 ,
and G1, G2 are defined by G1(ξ, t) := −F{(u · ∇)u + ∇p}(ξ),

G2(ξ, t) := −F{(u · ∇)w}(ξ).
(4.13)

Now, setting y := (u,w) and G := (G1,G2), we can rewrite system (4.11)-(4.12) as

ŷt + A(ξ)ŷ = G(ξ, t), (4.14)

where A(ξ) is the Hermitian matrix

A(ξ) :=
 |ξ|2I B(ξ)
B(ξ) R(ξ) + (|ξ|2 + 2) I

 , (4.15)

with B(ξ) := −i L(ξ) and R(ξ) := −P (ξ). It follows from Lemma 2.27 that there exists a
constant K > 0, independent of ξ, such that

‖e−tA(ξ)‖ ≤ e−K|ξ|
2t, ∀ t ≥ 0 and |ξ| 6= 0, (4.16)

where ‖ · ‖ denotes the Euclidean norm of a matrix. Multiplying equation (4.14) by etA(ξ),
we obtain

d

dt

[
etA(ξ) ŷ

]
= etA(ξ)G(ξ, t).

Integrating with respect to time, we get

ŷ(ξ, t) = e−tA(ξ) ŷ0(ξ) +
∫ t

0
e−(t−s)A(ξ)G(ξ, s) ds,

where ŷ0 = ŷ(·, 0) = (û0, ŵ0). Using the5 bound (4.16), one gets

|ŷ(ξ, t)| ≤ e−K|ξ|
2t |ŷ0(ξ)|+

∫ t

0
e−K|ξ|

2(t−s) |G(ξ, s)| ds. (4.17)
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By Lemma 4.2, we have that |G(ξ, t)| ≤ C|ξ|, for all t ≥ 0 and ξ 6= 0, where C depends
only on ‖u0‖2 and ‖w0‖2. Thus, by inequality (4.17), we conclude that

|ŷ(ξ, t)| ≤ e−K|ξ|
2t |ŷ0(ξ)|+ C

∫ t

0
e−K|ξ|

2(t−s) |ξ| ds. (4.18)

Since y0 = y(·, 0) = (u0,w0) ∈ L1 ×L1, it follows that ŷ0 ∈ L∞ ×L∞, that is, we have

|ŷ0(ξ)| ≤ |û0(ξ)|+ |ŵ0(ξ)| ≤ ‖u0‖1 + ‖w0‖1 ≤ C,

for all ξ in a compact set K and some positive constant C depending on the L1 norms of
u0 and w0. Hence, after calculating the integral in the right-hand side of inequality (4.18),
we obtain

|ŷ(ξ, t)| ≤ C e−K|ξ|
2t + C

K|ξ|
(
1− e−K|ξ|2t

)
,

for all t ≥ 0, ξ 6= 0 and some constant C ∈ R+ depending only on the L1 and L2 norms
of u0 and w0. Since K ⊂ R3 is a compact set, we find that

|ŷ(ξ, t)| ≤ C|ξ|−1.

This completes the proof of Proposition 4.3.

Proof of Theorem 4.1. Multiplying equation (4.1)1 by u, we have

(ut,u) + ((u · ∇)u,u)− (∆u,u) + (∇p,u)− (curlw,u) = 0. (4.19)

Let us compute each term of Eq. (4.19). First of all

(ut,u) = 1
2
d

dt
(u,u) = 1

2
d

dt
‖u‖2

2. (4.20)

Integrating by parts, using the incompressibility condition, and the Cauchy-Schwarz
inequality, one obtains

((u · ∇)u,u) =
∫
R3

3∑
j,k=1

uk
∂uj
∂xk

uj dx

= −
∫
R3

3∑
j,k=1

uj
∂uj
∂xk

uk dx

= −(u, (u · ∇)u).

(4.21)

Consequently, ((u · ∇)u,u) = 0. Moreover,

(∆u,u) =
∫
R3

3∑
j,k=1

∂2uj
∂x2

k

uj dx

= −
∫
R3

3∑
j,k=1

(
∂uj
∂xk

)2

dx

= −(∇u,∇u)
= −‖∇u‖2

2.

(4.22)
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Finally, since divu = 0, we get

(∇p,u) =
∫
R3

3∑
j=1

∂p

∂xj
uj dx

= −
∫
R3

3∑
j=1

p
∂uj
∂xj

dx

= −(p, divu)
= 0.

(4.23)

Then, using the Cauchy-Schwarz and Young inequalities, we have
1
2
d

dt
‖u‖2

2 + ‖∇u‖2
2 = (curlw,u) = (w, curlu)

≤ ‖w‖2 ‖curlu‖2 = ‖w‖2 ‖∇u‖2

≤ ‖w‖2
2 + 1

4‖∇u‖
2
2.

Similarly,
1
2
d

dt
‖w‖2

2 + ‖∇w‖2
2 + ‖divw‖2

2 + 2‖w‖2
2 = (curlu,w)

≤ ‖curlu‖2 ‖w‖2 = ‖∇u‖2 ‖w‖2

≤ ‖w‖2
2 + 1

4‖∇u‖
2
2.

Adding up these two inequalities, manipulating the terms in the right-hand side, we find
the following energy inequality

d

dt

(
‖u‖2

2 + ‖w‖2
2

)
≤ −

(
‖∇u‖2

2 + ‖∇w‖2
2

)
. (4.24)

Integrating estimate (4.24) with respect to time in [0, t], one gets

‖u(·, t)‖2
2 + ‖w(·, t)‖2

2 ≤ ‖u0‖2
2 + ‖w0‖2

2, ∀ t ≥ 0. (4.25)

Note that from inequality (4.25) one has u, w ∈ L2. Hence, the transforms û and ŵ are
well defined. Applying the Plancherel theorem to bound (4.24), we obtain

d

dt

(
‖û‖2

2 + ‖ŵ‖2
2

)
≤ −

(
‖∇̂u‖2

2 + ‖∇̂w‖2
2

)
= −

∫
R3
|ξ|2

(
|û|2 + |ŵ|2

)
dξ.

Now, we will use the Fourier Splitting Method described in Chapter 3 . Let

S(t) =
{
ξ ∈ R3 : |ξ| ≤ r(t)

}
, (4.26)

where r(t) =
[ 3
t+ 1

]1/2
. Then,

d

dt

(
‖û‖2

2 + ‖ŵ‖2
2

)
≤ −

∫
S(t)c
|ξ|2

(
|û|2 + |ŵ|2

)
dξ −

∫
S(t)
|ξ|2

(
|û|2 + |ŵ|2

)
dξ

≤ −
∫
S(t)c
|ξ|2

(
|û|2 + |ŵ|2

)
dξ

≤ − 3
t+ 1

∫
S(t)c

(
|û|2 + |ŵ|2

)
dξ,
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since −|ξ|2 ≤ − 3
t+ 1 if ξ ∈ S(t)c. Thus, since R3 = S(t) ∪ S(t)c, we have

d

dt

(
‖û‖2

2 + ‖ŵ‖2
2

)
≤ − 3

t+ 1

∫
R3

(
|û|2 + |ŵ|2

)
dξ + 3

t+ 1

∫
S(t)

(
|û|2 + |ŵ|2

)
dξ,

or

d

dt

(
‖û‖2

2 + ‖ŵ‖2
2

)
+ 3
t+ 1

(
‖û‖2

2 + ‖ŵ‖2
2

)
≤ 3
t+ 1

∫
S(t)

(
|û|2 + |ŵ|2

)
dξ.

Multiplying the above inequality by the integrating factor (t+ 1)3, we get

d

dt

[
(t+ 1)3(‖û‖2

2 + ‖ŵ‖2
2)
]
≤ 3(t+ 1)2

∫
S(t)

(
|û|2 + |ŵ|2

)
dξ. (4.27)

By Proposition 4.3, we conclude that

|û(ξ, t)|2 + |ŵ(ξ, t)|2 ≤ C|ξ|−2, ∀ ξ ∈ S(t)\{0} and ∀ t ≥ 0, (4.28)

where C > 0 is a constant depending only on the L1 and L2 norms of u0 and w0. By
inequalities (4.27) and (4.28), one obtains

d

dt

[
(t+ 1)3(‖û‖2

2 + ‖ŵ‖2
2)
]
≤ C(t+ 1)2

∫
S(t)
|ξ|−2dξ.

A straightforward calculation via spherical coordinates gives∫
S(t)
|ξ|−2dξ = 4π r(t) = 4

√
3 π(t+ 1)−1/2.

Here, r(t) is the radius of the ball S(t) (see (4.26)). Hence,

d

dt

[
(t+ 1)3(‖û‖2

2 + ‖ŵ‖2
2)
]
≤ C(t+ 1)3/2.

Integrating in time yields

(t+ 1)3(‖û‖2
2 + ‖ŵ‖2

2) ≤ ‖û0‖2
2 + ‖ŵ0‖2

2 + C
[
(t+ 1)5/2 − 1

]
,

where û0 = û(·, 0) and ŵ0 = ŵ(·, 0). Using Theorem 3.2, one finds

(t+ 1)3(‖u‖2
2 + ‖w‖2

2) ≤ ‖u0‖2
2 + ‖w0‖2

2 + C(t+ 1)5/2 ≤ C(t+ 1)5/2, ∀ t ≥ 0.

Therefore,
‖u(·, t)‖2

2 + ‖w(·, t)‖2
2 ≤ C(t+ 1)−1/2, ∀ t ≥ 0.

This completes the proof of Theorem 4.1.
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4.2 General External Forces

Now we deal with the case when the external forces f and g do not vanish. We
assume f and g to satisfy

divf(t) = 0, ∀ t ≥ 0, (4.29)

‖f(·, t)‖2 + ‖g(·, t)‖2 ≤ K1(t+ 1)−3/2, ∀ t ≥ 0, (4.30)

|f̂(ξ, t)|+ |ĝ(ξ, t)| ≤ K2|ξ|, ∀ t ≥ 0 and ξ ∈ R3, (4.31)

for some K1, K2 > 0.

Remark 4.5. Under the hypothesis (4.30), we have that f , g ∈ L1(0,∞;L2(R3)).

Theorem 4.6. Let (u, p,w) be a smooth solution of problem (4.1)-(4.2). If u0,w0 ∈
L1(R3) ∩L2(R3), with divu0 = 0 and f , g satisfying (4.29)-(4.31), then∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where C ∈ R+ depends only on K1, K2 and on the L1 and L2 norms of u0 and w0.

Proof. In this case, the energy estimate (4.24) is replaced by

d

dt

(
‖u‖2

2 + ‖w‖2
2

)
≤ −

(
‖∇u‖2

2 + ‖∇w‖2
2

)
+ 2 |(f ,u)|+ 2 |(g,w)|. (4.32)

Integrating inequality (4.32) over [0, t], one gets

‖u(·, t)‖2
2 + ‖w(·, t)‖2

2 ≤ ‖u0‖2
2 + ‖w0‖2

2 + 2
∫ t

0

(
|(f ,u)|+ |(g,w)|

)
ds. (4.33)

Initially, note that u(·, t) and w(·, t) ∈ L2(R3). Indeed, if f and g are smooth with
‖f(·, t)‖2 > 0 and ‖g(·, t)‖2 > 0, then the functions F and G defined by

F (t) := |(f(t),u(t))| ‖f(t)‖−1
2 and G(t) := |(g(t),w(t))| ‖g(t)‖−1

2 ,

are continuous (see [27]). Hence, by the estimate (4.33) and Cauchy-Schwarz and Young
inequalities, one gets

F 2(t) + G2(t) ≤ ‖u(t)‖22 + ‖w(t)‖22

≤ ‖u0‖22 + ‖w0‖22 + 2
∫ t

0

(
F (s) ‖f(s)‖2 + G(s) ‖g(s)‖2

)
ds

≤ ‖u0‖22 + ‖w0‖22 +
∫ ∞

0

(
‖f(s)‖2 + ‖g(s)‖2

)
ds +

∫ t

0

(
F 2(s) ‖f(s)‖2 + G2(s) ‖g(s)‖2

)
ds

≤ C̃ +
∫ t

0

(
F 2(s) + G2(s)

)(
‖f(s)‖2 + ‖g(s)‖2

)
ds,

with C̃ a positive constant depending only on the L2 norms of u0 and w0 and on K1. By
Gronwall inequality, we have that

F (t) ≤ C and G(t) ≤ C,
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where the constant C ∈ R+ depends only on the L2 norms of the initial data and on K1.
In particular,

|(f(t),u(t))| ≤ C ‖f(t)‖2 and |(g(t),w(t))| ≤ C ‖g(t)‖2. (4.34)

Using the hypotheses on f and g and bounds (4.33)-(4.34), we conclude that u(·, t),
w(·, t) ∈ L2(R3). Using Theorem 3.2, the inequality (4.32) can be rewritten as

d

dt

(
‖û‖2

2 + ‖ŵ‖2
2

)
≤ −

∫
R3
|ξ|2

(
|û|2 + |ŵ|2

)
dξ +H(t), (4.35)

where H(t) := 16π3
(
|(f(t),u(t))| + |(g(t),w(t))|

)
. By the hypothesis under the external

forces (4.30) and the inequalities in (4.34), one gets

H(t) ≤ C (t+ 1)−3/2,

where C ∈ R+ depends only on the L2 norm of u0 and w0 and on the constant K1. From
inequality (4.35) and repeating the arguments in the proof of Theorem 4.1, we obtain
d

dt

(
‖û‖2

2 + ‖ŵ‖2
2

)
+ 3

(t+ 1)
(
‖û‖2

2 + ‖ŵ‖2
2

)
≤ 3

(t+ 1)

∫
S(t)

(
|û|2 + |ŵ|2

)
dξ + C(t+ 1)−3/2,

where S(t) is the ball defined in (4.26). Multiplying the inequality above by (t+ 1)3, one
finds

d

dt

[
(t+ 1)3(‖û‖2

2 + ‖ŵ‖2
2)
]
≤ 3(t+ 1)2

∫
S(t)

(
|û|2 + |ŵ|2

)
dξ + C(t+ 1)3/2. (4.36)

Repeating the arguments used in Lemma 4.2 and Proposition 4.3, together with the
hypothesis (4.29) and (4.31), we get

|û(ξ, t)|+ |ŵ(ξ, t)| ≤ C|ξ|−1, ∀ ξ ∈ S(t)\{0} and t ≥ 0, (4.37)

where the positive constant C depends only on the L1 and L2 norms of u0 and w0 and
on the constant K2. Thus, by inequalities (4.36) and (4.37), we have

d

dt

[
(t+ 1)3(‖û‖2

2 + ‖ŵ‖2
2)
]
≤ C(t+ 1)2

∫
S(t)
|ξ|−2 dξ + C(t+ 1)3/2.

Using spherical coordinates, one gets
d

dt

[
(t+ 1)3(‖û‖2

2 + ‖ŵ‖2
2)
]
≤ C(t+ 1)3/2.

Integrating in time from 0 to t, one obtains

(t+ 1)3(‖û‖2
2 + ‖ŵ‖2

2) ≤ (‖û0‖2
2 + ‖ŵ0‖2

2) + C(t+ 1)5/2.

It follows from Plancherel theorem that

(t+ 1)3(‖u‖2
2 + ‖w‖2

2) ≤
(
‖u0‖2

2 + ‖w0‖2
2

)
+ C(t+ 1)5/2.

Therefore
‖u(t)‖2

2 + ‖w(t)‖2
2 ≤ C(t+ 1)−1/2.

This completes the proof of Theorem 4.6.
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If u(·, t) and w(·, t) ∈ L1(R3), then the following decay rate can be obtained for
solutions of system (4.1):

Corollary 4.7. Let (u, p,w) be a smooth solution of problem (4.1)-(4.2). Let u0, w0, f
and g be as in Theorem 4.6. If ‖u(·, t)‖1 + ‖w(·, t)‖1 ≤ K3, then∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where C depends only on K1, K2, K3 and on the L1 and L2 norms of u0 and w0.

Proof. As u(·, t), w(·, t) ∈ L1(R3) and û, ŵ ∈ L∞, we have

|û(ξ, t)|+ |ŵ(ξ, t)| ≤ ‖u(·, t)‖1 + ‖w(·, t)‖1 ≤ K3.

Just repeat the proof of Theorem 4.6 using the estimate above.
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5 DECAY RESULTS FOR THE MICROPOLAR SYS-
TEM: RIGOROUS ARGUMENTS

In Chapter 4, we have showed some decay theorems for a smooth solution of the
problem 

ut + (u · ∇)u−∆u+∇p− curlw = f ,

divu = 0,

wt + (u · ∇)w −∆w −∇(divw) + 2w − curlu = g,

u
∣∣∣
t=0

= u0, w
∣∣∣
t=0

= w0,

(5.1)

with  u(x, t)→ 0 as |x| → ∞, t > 0,

w(x, t)→ 0 as |x| → ∞, t > 0,
(5.2)

assuming its existence. The proposal of the current chapter is to make such results rigorous,
guaranteeing the existence of the weak solution for system (5.1)-(5.2) and then, proving
the bound ∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2, ∀ t ≥ 0.

To do so, let T be an arbitrary positive number. Recall that we are using the following
notation

QT = R3 × (0, T ),

V :=
{
v ∈ C∞0 (R3) / divv = 0 in R3

}
,

H := the closure of V in L2(R3),

V := the closure of V in H1(R3),

V ′ := the topological dual of V .

Definition 5.1. Let u0 ∈H , w0 ∈ L2(R3), f ∈ L2(0, T ;V ′) and g ∈ L2(0, T ;H−1(R3)).
We say that (u,v) is a weak solution of the problem (5.1)-(5.2) if

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),

w ∈ L2(0, T ;H1(R3)) ∩ L∞(0, T ;L2(R3)),

and (u,w) satisfies

(ut,ϕ) + ((u · ∇)u,ϕ) + (∇u,∇ϕ) = (curlw,ϕ) + (f ,ϕ)

(divu,ϕ) = 0

(wt,φ) + ((u · ∇)w,φ) + (∇w,∇φ) + (divw, divφ) + 2 (w,φ)

= (curlu,φ) + (g,φ) ,

u
∣∣∣
t=0

= u0, w
∣∣∣
t=0

= w0 weakly in L2(R3),

(5.3)
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for all ϕ ∈ V and φ ∈H1
0(R3).

In the next section we construct approximate solutions to the problem (5.1) and
present several lemmas established in [4,28,29]. Finally, in Section 5.2, we prove the L2

decay for the approximate solutions of the system (5.1) and the previous estimate follows.

5.1 Approximate Solutions and Auxiliary Results

Following the ideas introduced by L. Caffarelli, R. Kohn and L. Nirenberg in [28],
we define the retarded mollifiers as

Definition 5.2 (Chapter 3, Section 1.4, [3]). For u ∈ L2(0, T ;V ) and δ > 0, the retarded
mollifier of u is defined by

Ψδ(u)(x, t) := 1
δ4

∫∫
R4

ψ
(
y

δ
,
τ

δ

)
ũ(x− y, t− τ) dy dτ,

where ψ(x, t) ∈ C∞(R4) is such that

ψ ≥ 0,
∫∫
R4

ψ(x, t) dx dt = 1,

suppψ ⊆ {(x, t) ∈ R4 ; |x|2 < t, 1 < t < 2},

and ũ : R4 → R3 is a extension of u, that is

ũ(x, t) :=

 u(x, t), if (x, t) ∈ QT ,
0, otherwise.

Remark 5.3. Note that Ψδ(u) is a smooth function, i.e., Ψδ(u) ∈ C∞ (R3 × [0, T ];R3),
whose values at time t depend only on the values of u at times τ ∈ (t− 2δ, t− δ).

Lemma 5.4 (Lemma A.8, [28]). If u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), then

divΨδ(u) = 0, (5.4)

and
sup
t∈[0,T ]

∫
R3
|Ψδ(u)|2 dx ≤ C ess sup

t∈(0,T )

∫
R3
|u|2 dx, (5.5)

where C ∈ R+ is an universal constant.

Proof. Since divu = 0, we have

div ũ :=

 divu, if (x, t) ∈ QT ,
0, otherwise.

Thus, div ũ ≡ 0 and assertion (5.4) is proved. Inequality (5.5) follows from the identity

Ψδ(u) ≡ ũ ∗ Φδ,
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where ∗ denotes the convolution operator and Φδ : R4 → R is such that

Φδ(x, t) := δ−4ψ
(
δ−1x, δ−1t

)
,

and by Young inequality for convolutions,

‖Ψδ(u)‖2 = ‖ũ ∗ Φδ‖2 ≤ C‖ũ‖2,

and we prove inequality (5.5).

Now, let N ∈ N and for some fixed T > 0 consider δ = T/N in Definition 5.2. We
define approximate solutions (uN , pN ,wN ) for the system (5.1) as solutions of the problem



uNt +
(
Ψδ(uN) · ∇

)
uN −∆uN +∇pN − curlwN = f in QT ,

divuN = 0 in QT ,

wN
t +

(
Ψδ(uN) · ∇

)
wN −∆wN −∇(divwN) + 2wN − curluN = g in QT ,

uN(x, 0) = u0(x), wN(x, 0) = w0(x) in R3,∫
R3
pNdx = 0 a.e. in [0, T ],

(5.6)

with  uN(x, t)→ 0 as |x| → ∞, t > 0,

wN(x, t)→ 0 as |x| → ∞, t > 0.
(5.7)

Here, u0 ∈H and w0 ∈ L2(R3).

Let us review some auxiliary results for the problems (5.1) and (5.6) (see [28,
Appendix] and [3, Chapter 3]).

Lemma 5.5. Suppose F ∈ L2(0, T ;V ′), u ∈ L2(0, T ;V ), and p is a distribution such
that

ut −∆u+∇p = F , (5.8)

in the sense of distributions on QT . Moreover, assume G ∈ L2(0, T ;H−1(R3)), w ∈
L2(0, T ;H1

0(R3)), and
wt −∆w −∇(divw) = G. (5.9)

Then,
ut ∈ L2(0, T ;V ′), wt ∈ L2(0, T ;H−1(R3)), (5.10)

1
2
d

dt

∥∥∥u(·, t)
∥∥∥2

2
= (ut,u), 1

2
d

dt

∥∥∥w(·, t)
∥∥∥2

2
= (wt,w), (5.11)

in the sense of distributions, and

u ∈ C([0, T ];H), w ∈ C([0, T ];L2(R3)), (5.12)
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after a possible modification on a set of measure zero. Solutions of the equation (5.8)
are unique in the space L2(0, T ;V ) for a given initial data u0 ∈H. Similarly, solutions
of the equation (5.9) are unique in the space L2(0, T ;H1(R3)) for a given initial data
w0 ∈ L2(R3).

Proof. We will only prove the results for u, since the proof of the results for w is analogous.
Multiplying the equation (5.8) by v ∈ V in L2(R3), we get

(ut,v)− (∆u,v) + (∇p,v) = 〈F ,v〉. (5.13)

Since divv = 0, we have
d

dt
(u,v) + (∇u,∇v) = 〈F ,v〉. (5.14)

Now, observe that as
V 3 v 7→ (∇u,∇v)

is a linear and continuous map on V , then there exists Au ∈ L2(0, T ;V ′) such that

〈Au,v〉 = (∇u,∇v).

Thus, we can rewrite the identity (5.14) as
d

dt
〈u,v〉 = 〈F −Au,v〉. (5.15)

Since F ,Au ∈ L2(0, T ;V ′), we conclude that

ut ∈ L2(0, T ;V ′). (5.16)

Moreover, from (5.16) and using Lemma 2.16 for V , V ′, H , we get (5.11) and (5.12). To
prove the uniqueness of u, let us assume that (u1, p1) and (u2, p2) are two solutions of
(5.8) with initial data u0 and external force F , i.e.,

u1
t −∆u1 +∇p1 = F , u1(0) = u0,

and
u2
t −∆u2 +∇p2 = F , u2(0) = u0.

Define u = u1 − u2 and p = p1 − p2. Then, u belongs to the same spaces as u1 and u2

and satisfies
ut −∆u+∇p = 0, u(0) = 0. (5.17)

Multiplying the equation (5.17) by u, from the first identity of (5.11) we obtain
1
2
d

dt
‖u‖2

2 + ‖∇u‖2
2 = 0.

Integrating from 0 to t, 0 < t ≤ T , one has

‖u(t)‖2 ≤ ‖u(0)‖2 = 0.

Therefore, u1 = u2.
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Lemma 5.6 (Lemma 1.2.1, [3]). If v,w ∈ C∞(Q̄T ;R3), divv = 0, f ∈ L2(0, T ;V ′), and
u0 ∈H, then there exists a unique function u,

u ∈ C([0, T ];H) ∩ L2(0, T ;V ), u(0) = u0, (5.18)

and a distribution p on QT such that equation

ut + (v · ∇)u−∆u+∇p− curlw = f (5.19)

holds in the sense of distributions on QT .

Proof. The existence of u and p is proved in Theorem 5.8 and assertion (5.18) follows
directly by repeating arguments of the proof of Lemma 5.5 and by Lemma 2.16.

Lemma 5.7 (Lemma 1.3.1, [3]). If u ∈ C∞(Q̄T ;R3), divu = 0, g ∈ L2(0, T ;H−1(R3)),
and w0 ∈ L2(R3), then there exists a unique function w,

w ∈ C([0, T ];L2(R3)) ∩ L2(0, T ;H1(R3)), w(0) = w0, (5.20)

such that equation

wt + (u · ∇)w −∆w −∇(divw) + 2w − curlu = g

holds in the sense of distributions on QT .

Proof. Using Lemma 2.16 and by the the proof of Lemma 5.6.

Theorem 5.8. If u0 ∈ H, w0 ∈ L2(R3), f ∈ L2(0, T ;V ′), and g ∈ L2(0, T ;H−1(R3)),
then there exists a weak solution (u, p,w) of the problem (5.1) such that

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) (5.21)

and
w ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)). (5.22)

Proof. Let us show the existence of a weak solution for the system (5.1) using the
Faedo-Galerkin method. Consider (φk)k∈N ⊂ V a basis of eigenfunctions for the Stokes
operator ∆̃ := −P∆, where P is the orthogonal projection from L2(R3) onto H, and
(ϕk)k∈N ⊂ H1

0(R3) is a basis of eigenfunctions for the Lamé operator L := −∆−∇ div
(see [10]). For each m ∈ N, we define an approximate solution for problem (5.1) as follows:

um(x, t) =
m∑
k=1

hkm(t)φk(x), hkm(t) ∈ R,

wm(x, t) =
m∑
k=1

h̄km(t)ϕk(x), h̄km(t) ∈ R,
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where the pair (um,wm) is the solution of the approximate problem
(∂tum,φk) + ((um · ∇)um,φk)− (∆um,φk) = (curlwm,φk) + (f ,φk) , k = 1, · · · , m,

(∂twm,ϕk) + ((um · ∇)wm,ϕk)− (∆wm,ϕk)− (∇divwm,ϕk) + 2 (wm,ϕk)
= (curlum,ϕk) + (g,ϕk) , k = 1, · · · , m,

um(0) = u0m, wm(0) = w0m.

(5.23)
It is not difficult to prove that the nonlinear system of ordinary differential equations
(5.23) has only one solution (um,wm) defined in a interval [0, Tm), with Tm ∈ (0, T ).
Actually it is possible to extend this solution to [0, T ] (for more details, see [10]). Now,
multiplying both sides of the equations (5.23)1 and (5.23)2 by hkm and h̄km, respectively,
adding up the corresponding equations from k = 1, · · · ,m, and using Cauchy-Schwarz and
Young inequalities, we get

1
2
d

dt
‖um‖2

2 + 1
2‖∇um‖

2
2 ≤

1
2‖wm‖2

2 + ‖f(t)‖V ′‖um‖V ,

and
1
2
d

dt
‖wm‖2

2 + ‖∇wm‖2
2 + ‖divwm‖2

2 + ‖wm‖2
2 ≤

1
4‖∇um‖

2
2 + ‖g(t)‖H−1‖wm‖H1 .

Add the above inequalities, we have

d

dt

(
‖um‖2

2 + ‖wm‖2
2

)
+ 1

2
(
‖∇um‖2

2 + ‖∇wm‖2
2

)
≤ 2 (‖f‖V ′‖um‖V + ‖g‖H−1‖wm‖H1) .

(5.24)
Integrating the inequality (5.24) with respect to time on the interval [0, s], with s > 0, we
get

‖um(s)‖2
2 + ‖wm(s)‖2

2 ≤ ‖u0m‖2
2 + ‖w0m‖2

2 + 2
∫ s

0
(‖f‖V ′‖um‖V + ‖g‖H−1‖wm‖H1) dt

≤ ‖u0‖2
2 + ‖w0‖2

2 + 2
∫ T

0
(‖f‖V ′‖um‖V + ‖g‖H−1‖wm‖H1) dt.

Then, it follows from Young inequality and the assumptions of u0, w0, f , and g that

‖um(s)‖2
2 + ‖wm(s)‖2

2 ≤ C + C
∫ s

0

(
‖um‖2

V + ‖wm‖2
H1

)
dt.

So, by using Gronwall’s inequality, we have

sup
s∈[0,T ]

(
‖um(s)‖2

2 + ‖wm(s)‖2
2

)
≤ C, (5.25)

Now, integrating the estimate (5.24) from 0 to T , we obtain

‖um(T )‖2
2 + ‖wm(T )‖2

2 + 1
2

∫ T

0

(
‖∇um(t)‖2

2 + ‖∇wm(t)‖2
2

)
dt

≤ ‖u0m‖2
2 + ‖w0m‖2

2 + 2
∫ s

0
(‖f‖V ′‖um‖V + ‖g‖H−1‖wm‖H1) dt

≤ ‖u0‖2
2 + ‖w0‖2

2 + 2
∫ T

0
(‖f‖V ′‖um‖V + ‖g‖H−1‖wm‖H1) dt. (5.26)
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Let us prove the existence of u satisfying the assertion (5.21). For this, observe that it
follows from the inequality (5.25) that

{um} stays bounded in L∞(0, T ;H), (5.27)

and
{wm} stays bounded in L∞(0, T ;L2(R3)). (5.28)

From the bound (5.26), it follows that

{um} is bounded in L2(0, T ;V ), (5.29)

and
{wm} stays bounded in L2(0, T ;H1(R3)). (5.30)

Assertions (5.27) and (5.28) guarantee the existence of u, w, and a subsequence m′ →∞,
such that

um′
∗
⇀ u∗ in L∞(0, T ;H), (5.31)

and
wm′ ⇀

∗ w∗ on L∞(0, T ;L2(R3)). (5.32)

From assertions (5.29) and (5.30), we have

{um′} stays bounded in L2(0, T ;V ), (5.33)

and
{wm′} stays bounded in L2(0, T ;H1(R3)). (5.34)

So, there exists u∗ ∈ L2(0, T ;V ), w∗ ∈ L2(0, T ;H1
0(R3)), and a subsequence, for simplicity

denoted again by um′ and wm′ , such that

um′ ⇀ u in L2(0, T ;V ), (5.35)

and
wm′ ⇀ w on L2(0, T ;H1(R3)). (5.36)

In particular, for each ν ∈ L2(0, T ;V )∫ T

0
(um′(t),ν(t)) dt→

∫ T

0
(u∗(t),ν(t)) dt, (5.37)

and ∫ T

0
(wm′(t),ν(t)) dt→

∫ T

0
(w∗(t),ν(t)) dt, (5.38)

for each ν ∈ L2(0, T ;H1
0(R3)). Then, from the convergences (5.31) and (5.32), we get∫ T

0
(u(t)− u∗(t),ν(t)) dt = 0, ∀ν ∈ L2(0, T ;V ), (5.39)
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and ∫ T

0
(w(t)−w∗(t),ν(t)) dt = 0, ∀ν ∈ L2(0, T ;H1

0(R3)). (5.40)

Consequently,
u = u∗ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),

and
w = w∗ ∈ L2(0, T ;H1(R3)) ∩ L∞(0, T ;L2(R3)),

and the existence of (u,w) is proved. Finally, let us show the existence of the pressure
p. Consider u and w satisfying u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), w ∈ L2(0, T ;H1(R3)) ∩
L∞(0, T ;L2(R3)), and satisfying for each v ∈ V ,

d

dt
(u,v)− (∆u,v)− (curlw,v)− 〈f̃ ,v〉 = 0, (5.41)

where f̃ = f − (u · ∇)u. Set

U(t) =
∫ t

0
u(s) ds, W (t) =

∫ t

0
w(s) ds, F (t) =

∫ t

0
f̃(s) ds. (5.42)

So, U ∈ C([0, T ];V ), W ∈ C([0, T ];H1(R3)), and F ∈ C([0, T ];V ′). Then, integrating
the identity (5.41) on t, we have for v ∈ V ,

〈u(t)− u0 −∆U(t)− curlW (t)− F (t),v〉 = 0, ∀ t ∈ [0, T ]. (5.43)

It follows from Proposition 1.1 and Proposition 1.2, Chapter I of [5], that there exists a
function P (t) ∈ L2(R3) such that

u(t)− u0 −∆U(t)− curlW (t)− F (t) = −∇P (t). (5.44)

Moreover, P ∈ C([0, T ];L2(R3)). Then, differentiating equation (5.44) with respect to t,
in the sense of distribution in QT and setting

p = ∂P

∂t
,

we obtain
ut −∆u− curlw − f + (u · ∇)u = −∇p in QT .

This finishes the proof of existence for the pressure p.

Lemma 5.9 (Lemma A.4, [28]). Suppose f ∈ L2(0, T ;H−1(R3)), divf = 0, and u0 ∈H.
Under the same hypotheses of the Lemma 5.6, the pressure satisfies

∆p = −div [(v · ∇)u] = −
3∑

j,k=1

∂2

∂xj∂xk
(vjuk),

and p ∈ L5/3 (QT ), for all T > 0.
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Proof. Taking the divergence of

ut + (v · ∇)u−∆u+∇p− curlw = f ,

the identity

∆p = −div [(v · ∇)u] = −
3∑

i,j=1

∂2

∂xi∂xj
(viuj)

follows. Thus,

p(x, t) = 1
4π

3∑
j,k=1

∫
R3

1
|x− y|

(
∂2

∂yj∂yk
(vjuk)

)
(y) dy.

So, from Lemma 2.26 we have∫
R3
|p|q dx ≤ C(q)

∫
R3

(|v||u|)q dx,

for 1 < q <∞. In particular, for u as in Lemma 5.6, we get∫ T

0

∫
R3
|p|5/3 dx dt ≤ C

∫ T

0

∫
R3
|u|10/3 dx dt.

Since ∫
R3
|u|10/3 dx ≤ C

(∫
R3
|∇u|2 dx

)(∫
R3
|u|2 dx

)2/3
,

then ∫ T

0

∫
R3
|p|5/3 dx dt <∞,

i.e., p ∈ L5/3(QT ) for all T > 0.

Lemma 5.10. Suppose f , g ∈ L2(0, T ;H−1(R3)), divf = 0, u0 ∈H, and w0 ∈ L2(R3).
Let (uN , pN ,wN), N ∈ N, be the unique solution of the problem (5.6)-(5.7). Then

uN → u


strongly in L2(QT ),
weakly in L2(0, T ;V ),
weakly-star in L∞(0, T ;H),

pN → p weakly in L5/3 (QT ) ,

wN → w


strongly in L2(QT ),
weakly in L2(0, T ;H1

0(R3)),
weakly-star in L∞(0, T ;L2(R3)),

Ψδ(uN)→ u strongly in L2(QT ),

lim
N→∞

uN(0) = u0, lim
N→∞

wN(0) = w0,

and (u,w) is a weak solution for the micropolar equations (5.1) with forces f and g,
pressure p and initial data u0 and w0.
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Proof. The existence of the solution (uN , pN ,wN) of system (5.6)-(5.7) follows applying
Theorem 5.8 inductively on each time interval (kδ, (k + 1)δ), 0 ≤ k ≤ N − 1. It remains to
show the convergences above. Through analogous computations as in the proof of Theorem
4.1, we obtain the energy estimate

d

dt

(
‖uN‖2

2 + ‖wN‖2
2

)
+ 1

2
(
‖∇uN‖2

2 + ‖∇wN‖2
2

)
≤ 2

(
‖f‖V ′‖uN‖V + ‖g‖H−1‖wN‖H1

)
,

(5.45)
for t ∈ (0, T ). Integrating the estimate (5.45) in s, with s > 0, one gets

‖uN(s)‖2
2 + ‖wN(s)‖2

2 ≤ ‖u0m‖2
2 + ‖w0m‖2

2 + 2
∫ s

0

(
‖f‖V ′‖uN‖V + ‖g‖H−1‖wN‖H1

)
dt

≤ ‖u0‖2
2 + ‖w0‖2

2 + 2
∫ T

0

(
‖f‖V ′‖uN‖V + ‖g‖H−1‖wN‖H1

)
dt.

On the other hand, integrating the inequality (5.45) from 0 to T , one obtains

‖uN(T )‖2
2 + ‖wN(T )‖2

2 + 1
2

∫ T

0

(
‖∇uN(t)‖2

2 + ‖∇wN(t)‖2
2

)
dt

≤ ‖u0‖2
2 + ‖w0‖2

2 + 2
∫ T

0

(
‖f‖V ′‖uN‖V + ‖g‖H−1‖wN‖H1

)
dt.

Therefore, we conclude that

{uN} stays bounded in L∞(0, T ;H) ∩ L2(0, T ;V ) (5.46)

and
{wN} is bounded in L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)). (5.47)

Now, denote by V 2 the closure of V in H2(R3) and by V ′2 its dual space. Multiplying the
equation (5.6)1 by ν ∈ V , we obtain

〈uNt ,ν〉 = 〈∆uN ,ν)− 〈(Ψδ(uN) · ∇)uN ,ν〉+ 〈curlwN ,ν〉+ 〈f ,ν〉. (5.48)

Since H1
0(R3) ⊂ L6(R3), we have, by Lemma 2.24, that

∣∣∣〈(Ψδ(uN) · ∇)uN ,ν〉
∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
R3

(Ψδ(uN) · ∇)uN ν dx dt
∣∣∣∣∣

=
∣∣∣∣∣
∫ T

0

∫
R3

(Ψδ(uN) · ∇)ν uN dx dt
∣∣∣∣∣

≤
∫ T

0
‖Ψδ(uN)‖3 ‖uN‖2 ‖∇ν‖6 dt

≤ C ‖Ψδ(uN)‖L4(0,T ;L3)‖uN‖L4(0,T ;L2) ‖ν‖L2(0,T ;V 2) . (5.49)

So, it follows from the properties of the retarded mollifier Ψδ, from (5.46) and from Lemma
2.24, that

‖(Ψδ(uN) · ∇)uN‖L2(0,T ;V ′2) ≤ C,
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where C is a positive constant independent of N . Similarly, we have

‖(Ψδ(uN) · ∇)wN‖L2(0,T ;H−2(R3)) ≤ C,

where C > 0 is independent of N . Thus,

{uNt } stays bounded in L2(0, T ;V ′2). (5.50)

and
{wN

t } is bounded in L2(0, T ;H−2(R3)). (5.51)

Therefore, by Lemma 2.18, we have

{uN} and {wN} are in a compact subset of L2(QT ). (5.52)

On the other hand, using Lemmas 5.4 and 5.9, we get

{pN} is bounded in L5/3(QT ). (5.53)

So, by (5.46)-(5.47) and (5.50)-(5.53), we conclude that there exists a subsequence, again
denoted by (uN , pN ,wN), converging to the limit (u, p,w) in the following sense:

uN → u


strongly in L2(QT ),
weakly in L2(0, T ;V ),
weakly-star in L∞(0, T ;H),

(5.54)

pN → p weakly in L5/3 (QT ) , (5.55)

wN → w


strongly in L2(QT ),
weakly in L2(0, T ;H1(R3)),
weakly-star in L∞(0, T ;L2(R3)).

(5.56)

From the definition of Ψδ and by (5.54)-(5.56), one obtains

Ψδ(uN)→ u strongly in L2(QT ).

Finally, by assertions (5.50) and (5.51), we conclude that the functions {uN} and {wN})
are uniformly continuous from (0, T ) to V ′2 and H−2(R3)), respectively. Therefore,(

uN(0),wN(0)
)
−−−→
N→∞

(u(0),w(0)) = (u0,w0) .

This completes the proof.
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5.2 Main Results

The first result considers the case of null external forces.

Theorem 5.11. Let u0 ∈H ∩L1(R3) and w0 ∈ L2(R3) ∩L1(R3). There exists a weak
solution (u, p,w) of problem (5.1) with f = g = 0 such that∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where C ∈ R+ is a constant depending only on the L1 and L2 norms of u0 and w0.

In order to prove Theorem 5.11, we first obtain a decay estimate for the approximate
solutions (uN , pN ,wN) through the same arguments as in the proof of Theorem 4.1.

Theorem 5.12. Suppose u0 ∈H ∩L1(R3) and w0 ∈ L2(R3)∩L1(R3). Let (uN , pN ,wN ),
N ∈ N, be a solution of problem (5.6)-(5.7). Then∥∥∥uN(·, t)

∥∥∥2

2
+
∥∥∥wN(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where C > 0 is a constant which depends only on the L2 and L1 norms of u0 and w0.

Proof. For simplicity, we write uN = u, pN = p and wN = w. Due to Lemma 5.5, Lemma
5.6, and Lemma 5.7, we have that H and Q defined by

H(t) := ‖u(·, t)‖2
2 + ‖w(·, t)‖2

2 , Q(t) := (u,ut) + (w,wt) ,

satisfy H, Q ∈ L2
loc(R), and

1
2
d

dt
H(t) = Q(t) (5.57)

as distributions. Moreover,H is absolutely continuous and identity (5.57) can be interpreted
in the classical sense. Consequently, to prove Theorem 5.12, it is enough to show that

|û(ξ, t)|+ |ŵ(ξ, t)| ≤ C|ξ|−1 (5.58)

holds for all ξ ∈ S(t) (see (4.26)) and then just follow the same steps as in the proof of
Theorem 4.1 to finish the proof. We establish estimate (5.58) in the following

Proposition 5.13. Let u0 ∈ H ∩ L1(R3) and w0 ∈ L2(R3) ∩ L1(R3). Let v(·, t) ∈
L2(R3) ∩C∞(R3) with divv = 0. If (u, p,w) is the unique solution of the problem

ut + (v · ∇)u−∆u+∇p− curlw = 0,
divu = 0,
wt + (v · ∇)w −∆w −∇(divw) + 2w − curlu = 0,
u(x, 0) = u0(x), w(x, 0) = w0(x),

(5.59)

then for ξ ∈ K, K ⊂ R3 a compact set, it holds

|û(ξ, t)|+ |ŵ(ξ, t)| ≤ C|ξ|−1, a.e. in t, (5.60)

where the constant C > 0 depends on K, on the L1 and L2 norms of u0 and w0, and on
the L2 norm of v.
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Proof. Following the ideas in the proof of Proposition 4.3, we write the system (5.59) as

ŷt + A(ξ)ŷ = G(ξ, t)

in the sense of distributions, where y := (u,w), G := (G1,G2),

G1(ξ, t) := −F{∇p+ (v · ∇)u}(ξ), G2(ξ, t) := −F{(v · ∇)w}(ξ),

and A(ξ) is the Hermitian matrix defined in (4.15). Then, to prove the proposition we
only need to show that

|G1(ξ, t)|+ |G2(ξ, t)| ≤ C|ξ| (5.61)

and repeat the arguments used in the proof of Theorem 4.1. To obtain suitable bounds for
G1,G2, we first show that G1,G2 are well defined. First of all, by Lemma 5.9 we have∫ t

0

∫
R3
|p(x, s)|5/3dx ds ≤ C.

Thus ∫
R3
|p(x, t)|5/3dx ≤ C a.e. in t.

Hence, by Lemma 3.3, we get

‖p̂(·, t)‖5/2 ≤ C‖p(·, t)‖5/3.

It follows that p̂(·, t) ∈ L5/2(R3) a.e. in t. Moreover, by Lemma 5.9,

∆p = −div [(v · ∇)u] = −
3∑

j,k=1

∂2

∂xj∂xk
(vjuk). (5.62)

So, taking the Fourier transform of the identity (5.62), we obtain

−|ξ|2 p̂ = −i ξF{(v · ∇)u} =
3∑

j,k=1
ξjξkF{ujvk}.

Thus,

|ξ|2 |p̂| =

∣∣∣∣∣∣
3∑

j,k=1
ξjξkF{ujvk}

∣∣∣∣∣∣ ≤
3∑

j,k=1
|ξjξk|‖ujvk‖1.

Since uj and vk are in L2(R3), it follows that

|p̂| ≤ C.

On the other hand, as
F{∇p}(ξ) = i ξ p̂,

we conclude that
|F{∇p}(ξ)| ≤ C|ξ|, (5.63)

where C is a constant depending only on the L2 norms of u0 and v.
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To be able to obtain a bound as in inequality (5.61) for the terms F{(v · ∇)u}
and F{(v · ∇)w}, we must show that it makes sense in L2(QT ), i.e., F{(v · ∇)u} and
F{(v · ∇)w} ∈ L2(QT ). But, this fact follows from Lemmas 5.6 and 5.7, since

∫ ∫
R3
|(v · ∇)uj|2 dx dt ≤

3∑
k=1

∫ ∫
R3

∣∣∣∣∣vk ∂uj∂xk

∣∣∣∣∣
2

dx dt ≤
∫ ∫

R3
|∇u|2 dx dt ≤ C,

∫ ∫
R3
|(v · ∇)wj|2 dx dt ≤

3∑
k=1

∫ ∫
R3

∣∣∣∣∣vk ∂wj∂xk

∣∣∣∣∣
2

dx dt ≤
∫ ∫

R3
|∇w|2 dx dt ≤ C.

Since divv = 0 and vk, uj and wj are in L2(R3), we have

∣∣∣[F{(v · ∇)u}]j
∣∣∣ =

∣∣∣∣∣i
3∑

k=1
ξkF{ujvk}

∣∣∣∣∣ ≤ |ξ|
3∑

k=1
|F{ujvk}| ≤ C|ξ|, (5.64)

∣∣∣[F{(v · ∇)w}]j
∣∣∣ =

∣∣∣∣∣i
3∑

k=1
ξkF{wjvk}

∣∣∣∣∣ ≤ |ξ|
3∑

k=1
|F{wjvk}| ≤ C|ξ|, (5.65)

where C > 0 is a constant depending only on the L2 norms of u0, w0 and v. Combining
inequalities (5.63), (5.64) and (5.65), one obtains (5.61). Now, we use the inequality (5.61)
to show that (5.60) holds. Set

ϕ(ξ, t) := etA(ξ)ŷ.

Then
ϕt(ξ, t) = etA(ξ)G(ξ, t), (5.66)

in the sense of distributions. By estimate (5.61), it follows that e−tA(ξ)G ∈ L∞loc(R). Thus,
identity (5.66) can be defined in the classical sense a.e. in t. Therefore,

ϕ(ξ, t) = ŷ(ξ, 0) +
∫ t

0
esA(ξ)G(ξ, s) ds

and estimate (5.60) is proved. This completes the proof of Proposition 5.13.

Now, we just consider v = Ψδ(u) in Proposition 5.13, repeat the arguments in the
proof of Theorem 4.1 and apply Lemma 5.4 to show that the constant C depends only on
the L2 and L1 norms of u0 and w0. This finishes the proof.

Proof of Theorem 5.11. Let (u,w) be the weak solution obtained as the strong limit in
L2(QT ) of the (uN ,wN) through Lemma 5.10. Then

lim
N→∞

∫
R3
|uN(x, t)− u(x, t)|2 dx = 0 = lim

N→∞

∫
R3
|wN(x, t)−w(x, t)|2 dx.

By Theorem 5.12, we have

‖u(·, t)‖2 ≤ ‖uN(·, t)‖2 + ‖(u− uN)(·, t)‖2 ≤ C(t+ 1)−1/4 + ‖(u− uN)(·, t)‖2,

‖w(·, t)‖2 ≤ ‖wN(·, t)‖2 + ‖(w −wN)(·, t)‖2 ≤ C(t+ 1)−1/4 + ‖(w −wN)(·, t)‖2.
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Taking N →∞, one obtains∥∥∥u(·, t)
∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where C is a positive constant depending only on the L1 and L2 norms of u0 and w0.

For the case where the forces f and g do not vanish, we have

Corollary 5.14. Suppose u0 ∈ H ∩ L1(R3), w0 ∈ L2(R3) ∩ L1(R3), and the external
forces satisfy

f ∈ L2(0,∞;V ′),

g ∈ L2(0,∞;H−1(R3)),

divf = 0,

‖f(·, t)‖2 + ‖g(·, t)‖2 ≤ K1(t+ 1)−3/2, ∀ t ≥ 0,

|f̂(ξ, t)|+ |ĝ(ξ, t)| ≤ K2|ξ|, ∀ t ≥ 0 with ξ ∈ R3,

for some positive constants K1 and K2. Then, the unique solution (uN , pN ,wN), N ∈ N,
of problem (5.6)-(5.7) satisfies∥∥∥uN(·, t)

∥∥∥2

2
+
∥∥∥wN(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where the positive constant C depends only on the L1 and L2 norms of the initial data
and on the positive constants K1, K2.

Proof. Set

G1(ξ, t) := F{f−∇pN−(Ψδ(uN) ·∇)uN}(ξ), G2(ξ, t) := F{g−(Ψδ(uN) ·∇)wN}(ξ).

We will show that
|G1(ξ, t)|+ |G2(ξ, t)| ≤ C|ξ| (5.67)

and then we repeat the proof of Theorem 5.12. The same arguments as in the proof of
Theorem 5.12 yield

|F{∇pN}|+ |F{(Ψδ(uN) · ∇)uN}|+ |F{(Ψδ(uN) · ∇)wN}| ≤ C|ξ|,

and, since
|f̂(ξ, t)|+ |ĝ(ξ, t)| ≤ K2|ξ|, ∀ t ≥ 0 and ξ ∈ R3,

bound (5.67) follows. This ends the proof of Corollary 5.14.

The next corollary is the final result of this work



Chapter 5. DECAY RESULTS FOR THE MICROPOLAR SYSTEM: RIGOROUS ARGUMENTS 52

Corollary 5.15. Let u0, w0, f and g be as in Corollary 5.14. Let (u,w) be a weak solution
of the micropolar equations (5.1) obtained as the L2 limit of the solutions (uN ,wN) of
system (5.6). Then ∥∥∥u(·, t)

∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where the constant C ∈ R+ depends only on f , g and the L1 and on L2 norms of u0 and
w0.

Proof. By Lemma 5.10, one has

lim
N→∞

∫
R3
|uN(x, t)− u(x, t)|2 dx = 0 = lim

N→∞

∫
R3
|wN(x, t)−w(x, t)|2 dx

and, by Corollary 5.14, one gets

‖u(·, t)‖2 ≤ ‖uN(·, t)‖2 + ‖(u− uN)(·, t)‖2 ≤ C(t+ 1)−1/4 + ‖(u− uN)(·, t)‖2,

‖w(·, t)‖2 ≤ ‖wN(·, t)‖2 + ‖(w −wN)(·, t)‖2 ≤ C(t+ 1)−1/4 + ‖(w −wN)(·, t)‖2.

Finally, taking N →∞, one obtains∥∥∥u(·, t)
∥∥∥2

2
+
∥∥∥w(·, t)

∥∥∥2

2
≤ C(t+ 1)−1/2,

where the positive constant C depends only on f , g and on the L1 and L2 norms of u0

and w0. The proof of Corollary 5.15 is finished.
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