Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/25595
Share on
Title: | High-order nonlinearities of photonics materials: fundamentals and applications |
Authors: | REYNA OCAS, Albert Stevens |
Keywords: | Ótica não-linear; Materiais fotônicos; Controle da resposta não linear; Nanocompósitos metal-dielétrico |
Issue Date: | 17-Jan-2017 |
Publisher: | Universidade Federal de Pernambuco |
Abstract: | The nonlinear (NL) optical response of matter to optical fields is described by expressing the induced polarization by a power series of the electric field with NL susceptibilities as coefficients of the series. In the majority of cases reported, the NL behavior of photonic materials is described by the lowest-order susceptibility (second-order in noncentrosymmetric media and third-order in centrosymmetric media). However, even at moderate intensities, the contributions of high-order nonlinearities (HON) are important and their understanding allows the exploitation of new NL effects. This thesis presents a comprehensive study on the origin, fundamentals and measurement procedures of the HON in photonic materials with inversion symmetry. A metal-dielectric nanocomposite (MDNC) and a highly NL solvent, viz. carbon disulfide (CS₂) , were chosen to represent self-defocusing (SDF) and self-focusing (SF) NL media, respectively, both exhibiting HON contributions. For MDNCs, its NL response presents contributions of third- (cubic nonlinearity), fifth- (quintic nonlinearity) and seventh-order (septimal nonlinearity), depending on the properties of the material (volume fraction, environment, size and shape of the nanoparticles) and the incident laser (wavelength, intensity, pulse duration and repetition rate). Based on this statement, it was developed a simple, but effective, nonlinearity management (NM) procedure which enables to control the magnitude and phase of the different high-order susceptibilities by adjusting the light intensity and the volume fraction occupied by the nanoparticles. The NM procedure allowed us to conduct experimental studies of NL effects induced by HON. Experiments based on transverse phenomena such as spatial selfand cross-phase modulation and spatial modulation instability in media with HON, as well as stable propagation of two-dimensional fundamental and vortex solitons, which is only possible in materials with specific HON, are reported in this thesis by using the NM procedure applied to MDNCs. On the other hand, a detailed study of a well-known solvent (liquid CS₂) shows an unusual NL behavior depending on the incident pulse duration. In the picoseconds regime, S₂ behaves as a saturable SF medium, while in the femtoseconds regime, it behaves like a cubicquintic (focusing-defocusing) medium. Characterization, analysis and understanding of both types of NL response allowed to perform important contributions in the field of the optical vortex solitons with attractive applications in all-optical devices and manipulation of light-by-light. All experiments were corroborated by theoretical models and numerical simulations based on the NL Schrödinger equation properly modified to include contributions of HON. |
URI: | https://repositorio.ufpe.br/handle/123456789/25595 |
Appears in Collections: | Teses de Doutorado - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TESE Albert Stevens Reyna Ocas.pdf | 13,89 MB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License