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Abstract

The nonlinear (NL) optical response of matter to optical fields is described by expressing the
induced polarization by a power series of the electric field with NL susceptibilities as coef-
ficients of the series. In the majority of cases reported, the NL behavior of photonic materi-
als is described by the lowest-order susceptibility (second-order in noncentrosymmetric media
and third-order in centrosymmetric media). However, even at moderate intensities, the contri-
butions of high-order nonlinearities (HON) are important and their understanding allows the
exploitation of new NL effects. This thesis presents a comprehensive study on the origin,
fundamentals and measurement procedures of the HON in photonic materials with inversion
symmetry. A metal-dielectric nanocomposite (MDNC) and a highly NL solvent, viz. carbon
disulfide (CS2) , were chosen to represent self-defocusing (SDF) and self-focusing (SF) NL me-
dia, respectively, both exhibiting HON contributions. For MDNCs, its NL response presents
contributions of third- (cubic nonlinearity), fifth- (quintic nonlinearity) and seventh-order (sep-
timal nonlinearity), depending on the properties of the material (volume fraction, environment,
size and shape of the nanoparticles) and the incident laser (wavelength, intensity, pulse duration
and repetition rate). Based on this statement, it was developed a simple, but effective, nonlin-
earity management (NM) procedure which enables to control the magnitude and phase of the
different high-order susceptibilities by adjusting the light intensity and the volume fraction oc-
cupied by the nanoparticles. The NM procedure allowed us to conduct experimental studies of
NL effects induced by HON. Experiments based on transverse phenomena such as spatial self-
and cross-phase modulation and spatial modulation instability in media with HON, as well as
stable propagation of two-dimensional fundamental and vortex solitons, which is only possible
in materials with specific HON, are reported in this thesis by using the NM procedure applied
to MDNCs. On the other hand, a detailed study of a well-known solvent (liquid CS2) shows an
unusual NL behavior depending on the incident pulse duration. In the picoseconds regime, CS2
behaves as a saturable SF medium, while in the femtoseconds regime, it behaves like a cubic-
quintic (focusing-defocusing) medium. Characterization, analysis and understanding of both
types of NL response allowed to perform important contributions in the field of the optical vor-
tex solitons with attractive applications in all-optical devices and manipulation of light-by-light.
All experiments were corroborated by theoretical models and numerical simulations based on
the NL Schrödinger equation properly modified to include contributions of HON.

Keywords: High-order nonlinearities. Photonic materials. Metal-dielectric nanocomposites.
Nonlinearity management. Nonlinear Schrödinger equation.



Resumo

A resposta não linear (NL) da matéria frente aos campos ópticos é descrita expressando a po-
larização induzida como uma série de potências do campo elétrico, onde as susceptibilidades
NLs representam os coeficientes da expansão. Na maioria dos casos reportados, o comporta-
mento NL dos materiais fotônicos é descrito pela susceptibilidade de menor ordem (segunda
ou terceira ordem em materiais não centrossimétricos ou centrossimétricos, respectivamente).
No entanto, inclusive em intensidades moderadas, as contribuições das não linearidades de
altas ordens são importantes e seu entendimento permite a exploração de novos efeitos NLs.
Esta tese apresenta um estudo abrangente sobre a origem, fundamentos e procedimentos de
medição das não linearidades de altas ordens em materiais fotônicos com simetria de inver-
são. Um nanocompósito metal-dielétrico (MDNC) e um solvente altamente NL (dissulfeto
de carbono-CS2) foram escolhidos para representar meios NL autodesfocalizadores e autofo-
calizadores, respectivamente, ambos apresentando contribuições de não linearidades de altas
ordens. A resposta NL dos MDNCs apresentam contribuições de terceira, quinta e sétima or-
dem, dependendo das propriedades do material (fração volumétrica, solvente, tamanho e forma
das nanopartículas) e do laser incidente (comprimento de onda, intensidade, duração do pulso
e taxa de repetição). Com base nessa afirmação, foi desenvolvido um procedimento simples,
porém eficaz, de controlar a resposta NL de MDNCs, permitindo manipular a magnitude e a
fase das diferentes susceptibilidades de altas ordens ajustando a intensidade da luz e a fração
volumétrica ocupada pelas nanopartículas. O procedimento de controle da resposta NL per-
mitiu conduzir estudos experimentais de efeitos NL sendo induzidos pelas susceptibilidades
de altas ordens. Experimentos baseados em fenômenos transversais, tais como automodulação
de fase, modulação de fase cruzada e instabilidade da modulação espacial em meios com não
linearidades de altas ordens, bem como a propagação estável de solitons fundamentais e soli-
tons vorticais foram estudados nesta tese usando o procedimento de controle da resposta NL
aplicado a MDNCs. Por outro lado, um estudo detalhado de um bem conhecido solvente NL
(CS2 líquido) mostra uma resposta NL exótica a qual depende diretamente do tempo de duração
do pulso incidente e do regime de intensidades utilizado. No regime de picosegundos, CS2 se
comporta como um meio autofocalizador saturável, enquanto que no regime de fentosegun-
dos apresenta não linearidades de terceira e quinta ordem, simultaneamente. A caracterização,
análise e compreensão de ambos tipos de resposta NL permitiram introduzir importantes con-
tribuições no campo dos solitons vorticais, com possíveis aplicações em dispositivos totalmente
ópticos e procedimentos de manipulação de luz por luz. Todos os experimentos foram corrob-
orados por modelos teóricos e simulações numéricas baseadas na equação de Schrödinger NL
adequadamente modificada para incluir as contribuições de altas ordens.



Palavras-chave:
Não linearidades de altas ordens. Materiais fotônicos. Nanocompósitos metal-dielétrico.

Controle da resposta não linear. Equação de Schrödinger não linear.
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1 INTRODUCTION

The field of “Optics and Photonics” ranges from the understanding of the light propagation and
light-matter interaction to the design and fabrication of optical devices based on the generation,
control and detection of photons. Nowadays, photonics is emerging as a multidisciplinary
frontier of science and technology due to the potential applications in many areas of present and
future information [1, 2] and image processing technologies [3]. Some classic devices such as:
cameras, telescopes, microscopes and others most commonly used devices as barcode readers,
CD players, LCD TVs, datashows, chemical and biochemical sensors, laser pointers, among
others, combine electronics with photonics (optoelectronic systems) and these are considered
as transition systems to a generation of future photonic devices. Numerous advantages arise
with the photonic applications, essentially in the telecommunications field, being the main
one the significant increase of the transfer rate, detection and processing of information over
long distances [4, 5]. To achieve this goal, several studies are necessary to construct very
efficient data transfer devices such as photonic-crystal fibers [6, 7], highly sensitive detectors
such as photonic sensors [8] and all-optical modulators [9, 10] coupled in photonic integrated
circuits [11, 12] for high-speed data processing. Despite the excellent results obtained so far,
various research groups, around the world, continue conducting extensive studies to optimize
the performance of all-optical devices.

Nonlinear optics plays an important role in the development of scientific and technological
advances obtained in photonic technology, since it is responsible for increasing the strength of
light-matter interaction. From the first observation of second harmonic generation (SHG) in
a quartz crystal, reported by Franken et al. [13], considered as the beggining of NL optics,
different NL processes have been reported in a wide variety of materials. Examples of NL
phenomena that are useful in photonic applications include the ability to modulate the light
frequency [14], inducing self-action effects [15, 16], and manipulate light-by-light such as:
amplification of one light source induced by another source [17], switching processes [18, 19],
wave mixing processes [20], among others.

In the last years, the evolution of photonics has intensified research activities on searching
for new materials that display unusual and interesting NL optical properties. In this way, mate-
rials with fast NL response and large NL susceptibility are attractive for potential applications
in photonic technology. In general, changes in the absorption, refraction and light scattering
properties are signatures of NL optical effects [21]. Commonly, these NL phenomena are prop-
erly described by the lower-order nonlinearity (second-order in noncentrosymmetric media and
third-order in centrosymmetric media). However, there is a large number of materials exhibit-
ing strong contributions of HON that can be detected even using low intensity lasers [22]. Such
contributions of HON have the ability to change the NL effects induced by the lower-order non-
linearity, as well as originate new NL phenomena that depend on high power of electric field,
as presented in this thesis. The rapid development of laser and materials technology has led to
many studies of NL phenomena in light-matter interactions. The discovery of different types
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of materials exhibiting HON and their applications in various fields of science and technology
made the NL optics a fascinating field of research and developments.

The origin of HON depends strongly on the type of material and contributions to its opti-
cal, electrical and magnetic properties can be very relevant. This thesis focuses on the study
of two types of materials: a metal-dielectric nanocomposite (MDNC), represented by silver
colloids, and liquid carbon disulfide (CS2), which is a highly NL solvent. Previous works re-
ported the presence of HON, in both photonic materials, for peak intensities of few GW/cm2,
in the picoseconds and femtoseconds regimes [23, 24, 25]. In the case of MDNCs, HON have
been attributed to direct NL processes (intrinsic effects of NPs) or cascade processes, which
consist of a sequence of low-order interactions to build a high-order response. In both process,
large enhancement of the HON was obtained when the optical frequency is in near-resonance
with the localized-surface-plasmon frequencies associated to the NPs, due to the increased lo-
cal field in the vicinities of the NPs [23, 24]. In particular, MDNCs were chosen due to their
fast response and high NL susceptibility, which are essential characteristics for applications in
a certain class of photonic devices. Also, liquid CS2 was chosen by its large NL response and
because this liquid is the most popular material for applications in NL optics, being frequently
used as a standard reference for measurements of NL parameters. However, only few studies
shows detailed NL characterization of CS2 for high intensities, when HON are significant. In
principle, NL behavior such as saturable self-focusing (SF) nonlinearity [26] and cubic-quintic
nonlinearity1 [25] were identified in the CS2 which are dependent of the time duration of the
incident laser. Also, processes of two-photon absorption (2PA) [27] and three-photon absorp-
tion (3PA) [25, 26] were observed depending on the wavelength analyzed. These different
NL behaviors of CS2 are related to the nature of their nonlinearity, which can be of thermal
origin (nanoseconds regime), molecular reorientation (picoseconds regime) or electronic ori-
gin (femtoseconds regime). However, in either case the HON are relevant to the detailed NL
characterization and understanding of the optical properties of the material. In principle, from
the fundamental point of view, HON are important to understand phenomena such as: light
condensates [28], rogue waves [29], solitons formation [30], and harmonic generation [31]. In
turn, great efforts are being developed with the goal of bringing knowledge of HON for possible
applications in photonics technology, as performed in this thesis.

1.1 THESIS OBJECTIVES

This thesis is intended to provide a study on the origin, fundamentals, measurement proce-
dures and control of HON in photonic materials. At the same time, demonstrate the importance
of their contributions in optical phenomena previously studied for the low-order nonlinear-
ity, but this time induced by HON, such as: spatial self- and cross-phase modulation, spatial
modulation instability and nonlinear polarization rotation; as well as in NL phenomena which
are possible to be observed only with contributions from HON such as: spatial fundamental

1cubic nonlinearity refers to third-order nonlinearity
(

χ(3)
)

, while quintic nonlinearity corresponds to fifth-

order nonlinearity
(

χ(5)
)
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and vortex solitons. From the technological point of view, this thesis aims to show efficient
processes for controlling the NL response of MDNCs, with the goal of demonstrate their appli-
cations in the construction of all-optical devices and in situations that require the manipulation
of light-by-light.

1.2 OUTLINE OF THE THESIS

This thesis is organized in the following manner:

• Chapter 2 discusses the basic aspects of NL optics for the understanding of the exper-
iments performed in this thesis. The fundamental concepts of light-matter interaction
are discussed through of the description of the NL polarization and NL susceptibilities,
which are related to processes of NL refraction and NL absorption. In addition, NL
optical effects based on the third-order nonlinearity are discussed, with emphasis to the
effects induced by the modulation of NL refractive index. Finally, basic notions of HON
are presented as introduction to the theory developed in this thesis.

• Chapter 3 gives a basic introduction on MDNCs, by describing some of their linear and
NL optical properties. Special attention is given to the influence of local field effects,
as well as to the characteristic of the composites (size, shape and environment) on the
effective nonlinearity. The origin and the measurements procedure to characterize the
HON are discussed and analyzed based on a generalization of the Maxwell-Garnet model.

• Chapter 4 describes a method for controlling the NL response of MDNCs. Applications
of the NM procedure for observation of NL optical phenomena induced by HON are
presented and analyzed by using the generalized Maxwell-Garnet model, described in
the previous chapter.

• Chapter 5 discusses the theory necessary for description of the light propagation in NL
media exhibiting HON. The behavior of the laser beam propagation in MDNCs and liquid
CS2 was described by introducing new terms in the standard NL Schrödinger equation
(NLSE). In addition, the theory of NL birefringence in optical fibers was extended to
describe the polarization rotation in capillaries with the core filled with MDNCs.

• Chapter 6 discusses two experiments concerning the stable propagation of fundamental
solitons. The first one corresponds to a theoretical work that aims to identify the stable
and unstable propagation regions of one-dimensional solitons in cubic-quintic-septimal
media 2 by using the variational approximation method. The second one shows the sta-
ble propagation of two transverse dimensional spatial solitons due to competition be-
tween quintic and septimal nonlinearities. Both results are modeled by the cubic-quintic-
septimal NLSE modified to include losses.

2septimal nonlinearity corresponds to seventh-order nonlinearity
(

χ(7)
)
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• Chapter 7 discusses the formation and stable propagation of optical vortex solitons (OVSs)
in SF and SDF media. In CS2 (saturable self-focusing medium) the OVS should be unsta-
ble. However in the section 7.2 it is shown experimentally and numerically that there is a
stability region for the OVSs. Nevertheless, instability regions in CS2 were also identified
and the azimuthal symmetry breaking is observed. Section 7.3 discusses the procedure
to control the emerging beams after the split of an OVS, which can be applied to the
construction of all-optical devices. In addition, processes of guiding and confinement of
light induced by OVSs are discussed in a self-defocusing MDNC.

• Chapter 8 discusses the effects of NL polarization instability in a hollow capillary filled
with cubic-quintic MDNC. The experimental results shown here are corroborated with
the theoretical model developed in section 5.5.

• Finally, Chapter 9 presents the conclusions and perspectives for future works.

The experiments and theories presented in this thesis are original contributions to the study of
HON in photonic materials. The NL effects induced by HON, reported here, would not have
been observed without proper understanding, characterization and control of the NL response
of materials. Contributions such as the NM procedure open new horizons for the study of
novel NL phenomena, as well as technological applications that require highly NL materials
with adequate control of their NL response. On the other hand, the recent observations of
fundamental solitons and OVSs and their applications in switching, confinement and guiding
of light may favor the developement of new devices based on the light-by-light manipulation.

1.3 REVIEW OF PREVIOUS WORKS

Previous works that directly motivated the study of the topics investigated in this thesis are
briefly described below.

1.3.1 High-Order Nonlinearities of MDNCs
Metal-dielectric nanocomposites (MDNCs) present large NL response because to the con-

tribution of surface plasmon resonance (SPR) responsible for enhancement of the local field
effects. It is considered that the electric field inside of each NP is different from that of the
applied field due to the difference in the dielectric functions of the metal and the host. The
local fields may be larger than the average field and thus an enhancement of the optical re-
sponse occurs. Therefore, it is expected the observation of effective HON in the macroscopic
behavior of the MDNCs. In a previous work, Falcão-Filho et al. measure the values of third-,
fifth-, seventh- and ninth-order susceptibilities in a colloid containing silver NPs suspended in
water, for peak intensity of few GW/cm2 [23]. The experiments were performed by exploiting
the large sensitivity of the Z-scan technique, using a laser beam at 532 nm delivering single
80 ps pulses at low repetition rate. Here, because the excitation of the samples was made with
photons of 2.34 eV, the interband transitions of silver are negligible and the mechanism that
contribute to the NL optical response was assigned mainly to the contribution of hot electrons.
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However, the HON were attributed to local field effects due to the mismatch between the dielec-
tric function of the silver NP and the host. Fig. 1.1 illustrates the linear behavior of the third-
and fifth-order nonlinearity as a function of the NPs filling factor. The experimental results
were corroborated by using an effective-medium theory [32], which enabled the understanding
of the origin and the relative magnitude of the effective NL high-order susceptibilities.

Figure 1.1 Dependence of the third- and fifth-order nonlinearity with the NP volume fraction; (a), (b)
refractive indices and (c), (d) absorption coefficients (Reprinted from [23])

Moreover, Jayabalan measured the time dependence of the third-, fifth-, and seventh-order
NL absorption coefficients of silver nanoplatelets suspended in water, by using a 190 fs laser
in 778 nm [33]. Fig. 1.2 shows the experimental and theoretical measured time dependence of
HON absorption coefficients for intensity of hundreds of MW/cm2. By comparing the exper-
imental results with the model of thermalized electrons developed in [33], it has been shown
that the HON have a strong contribution due to the hot electrons in the metal NPs.

Then, he concluded that HON in MDNCs have contributions of hot electrons when these are
analyzed with pulses widths higher than the electron thermalization time (few hundreds of fem-
toseconds). For pulses with shorter pulses widths, HON are of electronic origin. Therefore, the
origin of the HON in MDNCs depends on the properties of NL material and the characteristics
of the light source.

1.3.2 Nonlinear Behavior of CS2 in the Picosecond and Femtosecond Re-
gimes

CS2 is a NL material per excellence. Its linear and NL properties have been extensively
studied by different techniques and research groups. Particularly, important is the work de-
veloped by Sheik-Bahae et al. [27], where the Z-scan technique was discussed in details. In
that study the third-order NL refractive index of CS2 was measured by using lasers with 300
ns pulses at 1064 nm and 27 ps pulses at 532 nm, both with peak intensities around of units
of GW/cm2. Fig. 1.3 illustrates the closed-aperture (CA) Z-scan curves, in the two temporal
regimes, where it is clearly seen a sign reversal of the NL refractive index because the nonlin-
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Figure 1.2 Experimental and theoretical time dependence of (a) third-, (b) fifth-, and (c) seventh-order
absorption coefficients of silver nanoplatelets in water. (Reprinted from [33]).

earity origin changes from thermal SDF (nanoseconds regime) to SF molecular reorientation
(picoseconds regime).

The NL absorption of CS2 was also studied by Ganeev et al. who measured the 2PA and
3PA coefficients by using femtoseconds lasers with low repetition rate in 795 nm and 1054
nm, respectively [34]. Fig. 1.4(a) shows the open− aperture (OA) Z-scan curves obtained
at 795 nm, 110 fs and 10 Hz, for intensities between 4 and 380 GW/cm2. The solid lines
correspond to the fit considering contribution of two-photon absorption (2PA) . Similarly, Fig.
1.4(b) displays the experimental data obtained in 1054 nm, 475 fs and 1 Hz, for intensities of
hundred of GW/cm2. Here, it is possible to observe that the fit corresponding to contribution of
3PA (solid line) is more suitable than the fit corresponding to 2PA (dashed line). It means that
the multiphoton contributions are heavily dependent on the laser wavelength used.

Despite the study conducted by Sheik-Bahae be highly reliable and quite cited in the liter-

Figure 1.3 CA Z-scan curves of a 1 mm thick cell containing liquid CS2 using lasers with (a) 300 ns at
λ = 1064 nm and (b) 27 ps at λ = 532 nm. (Reprinted from [27]).
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Figure 1.4 OA Z-scan curves for CS2 in: (a) 795 nm with intensities of (1) 4, (2) 22 and (c) 380
GW/cm2; (b) 1054 nm with intensities of (1) 220, (2) 320 and (c) 400 GW/cm2. The solid lines corre-
spond to fit considering contribution of (a) 2PA; (b) 3PA (solid line) and 2PA (dashed line). (Reprinted
from [34]).

ature, this is limited to low intensities, losing information on possible contributions of HON.
An analysis at high intensities (532 nm and 12-ps-long pulses) was carried out by Besse et al.
by using the D4σv method [26]. Fig. 1.5(a) shows a nonpolynomial behavior of the effective
NL refractive index as a function of the incident intensity, for peak intensities up to hundred
of GW/cm2. The experimental results were fitted by an empirical expression that simulates a
saturated-like Kerr behavior. In addition, Besse et al. performed measurements of NL absorp-
tion noting that CS2 has contributions of 3PA in 532 nm. Fig. 1.5(b) shows the OA Z-scan
curve for intensity of 25 GW/cm2. The numerical fit shows that the NL absorption behavior is
best described by considering 3PA (red line) in comparison to 2PA (blue line).

The empirical expression proposed in [26] was used to reproduce the formation of filaments
observed experimentally in high intensities.

In the femtoseconds regime, Kong et al. again used the Z-scan technique to characterize the
NL parameters of CS2 in 800 nm, but broaching a broad intensity range [25]. They observed

Figure 1.5 (a) Effective NL refractive index of CS2 for picoseconds regime in 532 nm (red points) and
1064 nm (blue points). The solid lines correspond to the best fit obtained from empirical model. (b)
OA Z-scan curve of CS2 in 532 nm, for intensity of 25 GW/cm2. The red (blue) line corresponds to fit
considering 3PA (2PA). (Reprinted from [26]).
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that for intensities smaller than 75 GW/cm2, the NL refraction is mainly governed by the third-
order process, as previously reported in other works [27, 35]. However, for intensities between
75 and 220 GW/cm2, Kong et al. demostrated that the third- and fifth-order nonlinearities are
relevant. Fig. 1.6(a) illustrates the transmittance variation between peak and valley of CA Z-
scan curves as a function of incident intensity. The parabolic behavior observed indicates the
existence of HON contributions; otherwise the behavior should be linear.

In analogy to the study carried out by Ganeev, measurements of NL absorption were per-
formed using the OA Z-scan technique, as shown in Fig. 1.6(b). Again the absorptive behavior
was attributed to the 3PA process.

It is possible to note that despite the CS2 be a reference material widely used for NL exper-
iments for long time, their NL parameters vary abruptly depending on the conditions used for
incidents lasers.

Figure 1.6 Intensity dependence of |∆Tp-v| for NL refraction of CS2 in femtoseconds regime. (b) OA
Z-scan curve for 146 GW/cm2. Laser wavelength: 800 nm (Reprinted from [25]).

1.3.3 Two Dimensional Fundamental Solitons in Cubic-Quintic Media
A spatial soliton is considered as a solitary wave that travels without suffering spatial defor-

mation (i.e. its shape and size remain constant throughout its propagation). Theoretically, fun-
damental spatial solitons appear as an exact solution for the NL Schrödinger equation (NLSE)
with focusing cubic nonlinearity. The first observation of one-dimensional spatial solitons was
reported in a planar waveguide filled with liquid CS2, where the NL response was dominated
by cubic SF nonlinearity [36], and their behavior is described by the cubic NLSE. Shortly
thereafter, theoretical studies predicted that two-dimensional spatial solitons can not propagate
in media with instantaneous cubic nonlinearity, because catastrophic beam collapse occurs at
high powers [37]. From that moment, various theoretical studies were conducted with the aim
of finding the necessary conditions to obtain the stable solitons propagation in two transverse
dimensions. Among such stabilizing phenomena are nonlocality [38], saturation of the nonlin-
earity [39], photorefractive [40] and thermal effects [41], self-induced transparency [42], and
dissipative effects without and with gain [43, 44]. In the case of homogeneous media, one of
the most attractive theories suggests the use of saturable nonlinearity to arrest the beam collapse
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[39]. The effectiveness of the proposal was corroborated experimentally in heavy-metal- oxide
glasses presenting large 3PA cross section [45, 46]. Moreover, saturation of the nonlinearity
can be modeled by means of HON. Based on this premise, Fan et al. reported the formation and
stable propagation of soliton-like filaments in a cubic-quintic medium, where the 3PA plays an
important role in preventing the filament collapse induced by the Kerr effect [47]. In a similar
way, Falcão-Filho et al. observed the successful excitation of two-dimensional fundamental
solitons in liquid CS2 due to the simultaneous contribution of the refractive third- and fifth-
order nonlinearities, where the dissipative effects due to the 3PA were considered [30]. Fig.
1.7(a) presents the behavior of the output beam waist as a function of the laser intensity for
incident Gaussian beam with waist of 16 and 28 µm. It was possible to observe that for high
intensity the beam waist remains constant, indicating the region of stable propagation of two-
dimensional soliton. Because the experience was performed at 920 nm in resonance with a 3PA
transition and femtoseconds regime, the NL behavior of CS2 corresponds to cubic nonlinearity
at low intensities and cubic-quintic nonlinearity, at high intensities. In this case, the Gaussian
beam diverges due to linear diffraction effect, at low intensities [Fig. 1.7(b)]. However, at
high intensities, the soliton-like behavior is well reproduced by the NLSE when the cubic and
quintic nonlinearities are taken into account, as shown in Fig. 1.7(c). Measurements performed
with cells of thickness 10 and 20 mm show that the fundamental soliton propagates stably for
more than 10 Rayleigh lengths.

The realization of this kind of experiment reveals the importance of HON for the observa-
tion of new NL optical phenomena.

Figure 1.7 (a) Beam waist at the exit face of the cell as a function of the input intensity. Numerical
simulation of the beam profile evolution in liquid CS2 for (b) 80 GW/cm2 and (c) 160 GW/cm2. In
(b) and (c) x-axis and z-axis represent a transverse and longitudinal (propagation direction) dimensions,
respectively; while the color scale represents the beam intensity (Reprinted from [30]).

1.3.4 Spatial Optical Vortex Solitons in Self-focusing Media
Optical Vortex Solitons (OVSs) are light waves with orbital angular momentum (OAM) and

zero amplitude in the center of the transverse profile, which travel without suffering deforma-
tion. This type of structured light presents stable propagation in defocusing NL optical media
[48], but it is unstable in focusing NL media. The effect that produces the instability is called of
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modulational instability (MI) and will be explained later. The first theoretical work that studies
the MI in OVSs was conducted by Firth et al. [49]. In that work, numerical simulations of
the optical vortex beam propagation in a saturable self-focusing medium show the split of the
vortex into filaments that become in fundamental solitons, as shown in Fig. 1.8. The filaments
fly out tangentially from the initial ring, like free Newtonian particles, due to conservation of
the OAM. In addition, the number of filaments is strongly dependent on the input OAM.

Since Firth’s work was published, several experimental and theoretical studies showing
instabilities in SF media were reported. On the contrary, there are no experimental reports
showing the stable propagation of OVS in cubic SF. Nevertheless, there are several theoretical
works that suggest the use of HON to arrest the instabilities, in analogy with the fundamental
soliton behavior [50].

Figure 1.8 (a-c) Splitting of OVSs and (d-f) trajectory of the filaments in saturable SF media, for beams
with OAM per photon: (a, d) h̄, (b, e) 2h̄ and (c,f) 3h̄ (Reprinted from [49]).

To understand a science it is necessary to know its history
- AUGUSTE COMTE
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2 NONLINEAR OPTICS

2.1 INTRODUCTION

In the area of optics the interest is concentrated on the study of the properties of light, as well
as on the light propagation and its interaction with matter. At relatively low light intensities,
the optical properties of materials are essentially independent of the illumination intensity. This
is called the linear optical regime. However, when the illumination is sufficiently intense, the
optical properties become dependent on the intensity of the light and NL optics comes into play,
with its own selection rules and criteria, opening up a completely new and fascinating field of
optical phenomena and applications.

In order to induce NL effects, very strong electromagnetic fields (EMFs), typically pro-
duced by lasers, are needed. However, the NL optical behavior is not observed when light
travels in free space. Rather, the nonlinearity resides in the medium through which the light
travels [51]. In this sense, the role of the EMF impressed on the medium is to modify the wave-
functions of the atomic electrons, which originate a polarization in the medium. If the EMF is
weak compared with the intra-atomic field, the electron wave-functions are slightly perturbed.
Therefore, the resulting polarization effect is, to a good approximation, a linear function of the
field. Nevertheless, for stronger EMF, the electron wave-functions are modified to a significant
degree, producing a NL response of the medium [21].

In the history of NL optics, there are some disagreements on its origin. While some au-
thors agree that an early demonstration of NL optics goes back to 1928, when it was reported
scattering of light through mutual interaction of two frequencies with phonons, known as Ra-
man effect [52]. Others may argue that the beginning of NL optics was marked by the first
observation of second-harmonic generation in a quartz crystal, by Franken et al. [13], which
took place shortly after the demonstration of the first working laser built by Maiman in 1960.
Although the experiment which gave birth to the NL optics continues being debated, it is gen-
erally accepted that both were crucial to the evolution and understanding of the different NL
phenomena known so far.

On the other hand, the pioneer studies in NL optics were not based only on observation of
new phenomena. Few years after the work of Franken, Bloembergen and co-workers developed
the full theory describing the propagation of electromagnetic waves through NL optical active
media [53, 54]. Both works connect the intrinsic NL properties of electrons and ions bound in
atoms, molecules, and dense media with the macroscopic properties of Maxwell’s field quanti-
ties in NL media, as well as at a plane interface between a linear and NL medium. For instance,
in the classical domain, Maxwell’s theory was extended to include high-order interactions be-
tween light and matter in terms of NL susceptibilities. In the quantum domain, perturbation
theory of the atomic wave function was used to obtain the NL optical susceptibilities. The
development and interpretation of these theories allowed the understanding of the different NL
optical phenomena observed experimentally, as well as predict new NL effects.
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Nonlinear optics is divided into three regimes depending on the amplitude of the incident
electric field and the internal electric field that keeps electrons bound to the atomic nucleus. The
regime of the perturbative NL optics occurs for field amplitudes lower than the intra-atomic
fields. Here, the incident field disturbs the atomic levels in non-resonant excitation conditions.
Therefore, energy levels suffer only a small displacement, proportional to the intensity due
to Stark displacement [55]. If the field amplitudes become comparable, or larger, than the
intra-atomic fields experienced by the outermost electrons, there is a large probability that
an electron escape of its bound state, causing the ionization of an atom or molecule. The
range of field intensities which causes this process is referred to as strong-field regime of the
NL optics [56]. Finally, the relativistic regime occurs when free electrons are accelerated to
relativistic velocities, that is, when the electron-nucleus interaction is negligible in comparison
with interaction energy between the light field and the atom. Here, the electron trajectory is
governed by the equations of relativistic motion [55]. The work in this thesis is related only to
the non-relativistic regimes.

This chapter is focused on the fundamentals of the NL polarization and NL susceptibility
of materials with inversion symmetry. Some effects induced by the third-order susceptibility
are described, mainly due to the effects of NL refraction and NL absorption. In addition, these
previous concepts are extended to discuss the origin and properties of HON.

2.2 NONLINEAR POLARIZATION

Light is an electromagnetic wave formed by an electric field
−→
E and a magnetic field

−→
H ,

both rapidly varying in time. The fields are related by Maxwell’s equations, and because the
interaction with the magnetic field is very small, the optical wave can be characterized by defin-
ing only its electric field. The wave equation derived from the Maxwell’s equations, describing
the wave propagation of an electric field vector in an electrically neutral and nonconductive
dielectric medium without macroscopic magnetization is expressed by [57]:

−→
∇ ×
−→
∇ ×−→E (−→r , t)+

1
c2

∂ 2−→E (−→r , t)
∂ t2 =− 1

ε0c2
∂ 2−→P (−→r , t)

∂ t2 , (2.1)

where
−→
E (−→r , t) is the incident electric field,

−→
P (−→r , t) is the induced polarization, ε0 and c is

the electrical permittivity and the light speed in the vacuum, respectively.
To complete the description of the light propagation in a dielectric medium, it is necessary to

define the relationship between
−→
E (−→r , t) and

−→
P (−→r , t). In this way, from the microscopic point

of view, a material can be considered essentially as a system composed of positively charged
particles (ionic nuclei) and negative (electrons). When a light wave passes through a material, it
acts through its electric and magnetic fields on the charges present in this medium. Commonly,
this interaction induces a charge displacement: the positive charges follow the direction of the
incident field, while the negative charges travel in the opposite direction. These processes vary
considerably from one material to another. For example, in a conductive medium, electrons
create an electric current due to their movement when subjected to an incident field. In the case
of a dielectric material, the particles join together to form an "elastic". Thus, its instantaneous
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displacements induces electric dipole moments which oscillate at the same frequency of electric
field. The emergence of dipole moments gives rise to the phenomenon known as polarization.

In principle,
−→
P (−→r , t) is defined as the average of dipoles moments,

〈−→
µ (−→r , t)

〉
, per unit

volume

−→
P (−→r , t) = N

〈−→
µ (−→r , t)

〉
, (2.2)

where N is the number of microscopic dipoles per unit volume.
In order to understand the fundamentals of the optical nonlinearity, we must start with the

use of constitutive equations , i.e. those that relate the induced polarization with the incident
electric field. In general, P̃ is a function of the electric field Ẽ which completely describes the
response of the medium to the applied field. For simplicity, we consider here that Ẽ and P̃ are
scalar quantities1. Besides, the effect of the magnetic field are much smaller than the electric
field and can be neglected. If it is assumed that the incident field is weak, the radiation acts as
a small perturbation and the charges within of the medium behave as harmonic oscillators. For
the case of a material that displays a purely linear response, the relationship between P̃ and Ẽ
can be expressed by:

P̃(−→r , t) = ε0

∞̂

0

R(1) (−→r ′, t ′) Ẽ
(−→r −−→r ′, t− t ′

)
dr′dt ′, (2.3)

where ε0 is the permittivity of free space and R(1) is the linear response function, which gives
the contribution to the polarization produced at time t by an electric field applied at the earlier
time t− t ′ . It is important to note that the effective range of integration in Eq. 2.3 is from 0
to ∞ only, because causality requires, R(1) (−→r ′, t ′) = 0 for t ′ < 0. This condition defines that
P̃(−→r , t) depends only on past and not on future values of the electric field. Then, eq. 2.3
can be transformed to the

(−→
k ,ω

)
domain by introducing the Fourier transforms Ẽ (−→r , t) =´

∞

−∞
E
(−→

k ,ω
)

exp
[
i
(−→

k ·−→r −ωt
)]

dkdω .

P̃(−→r , t) = ε0

∞̂

0

dkdωχ
(1)
(−→

k ,ω
)

E
(−→

k ,ω
)

exp
[
i
−→
k ·−→r − iωt

]
, (2.4)

with χ(1)
(−→

k ,ω
)
=
´

∞

−∞
R(1) (−→r ′, t ′)exp

[
−i
(−→

k ·−→r ′−ωt ′
)]

dr′dt ′ being the linear suscepti-

bility. Furthermore, in the electric dipole approximation, χ(1) (−→r , t) is independent of −→r , as
well as χ(1)

(−→
k ,ω

)
is independent of

−→
k . Then, by replacing the left-hand side of eq. 2.4

with
´

P̃
(−→

k ,ω
)

exp
(

i
−→
k ·−→r − iωt

)
dkdω , and noting that the equality must be maintained

for each frequency ω , we obtain the usual frequency domain description of linear response:

P̃
(−→

k ,ω
)
= ε0χ

(1) (ω)E
(−→

k ,ω
)
. (2.5)

1(∼) is used to denote a quantity that varies rapidly in time
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The coefficient χ(1) is a constant only in the sense of be independent of Ẽ. However, its
magnitude is a function of the frequency of the field used, ω . Eq. 2.3 is valid for the field
strength of conventional sources. The linear susceptibility of an isotropic medium, in optical
frequencies, is related to the relative dielectric function of the medium , ε (ω), by the following
relationship:

ε (ω) = 1+χ
(1) (ω) , (2.6)

with Ẽ (t) = Re
(
Ee−iωt) being the electric field of the incident wave. In addittion, the optical

response of a medium can be represented by its complex refractive index

n2
c (ω) = ε (ω) =

[
n(ω)+ i

α (ω)c
2ω

]2

, (2.7)

where the real part of nc describes the refractive behavior of the medium, while the absortive
behavior is represented by the imaginary part of nc. In the linear regime, the linear refraction
index, n0, and linear absorption coefficient, α0, depend on the field frequency, but are indepen-
dent of the field intensity.

On the other hand, when the laser field is so high as to change the restoring force exerted
by the electron on the nucleus, the charges of the medium behave as anharmonic oscillators
and P̃ has a NL dependence with Ẽ. Since the anharmonicity is very small compared with the
harmonicity, the polarization can be expanded, in the perturbation limit, as a power series of
the electric field

P̃(−→r , t) = ε0

 ∞̂

−∞

R(1) (−→r ′, t ′) Ẽ
(−→r −−→r ′, t− t ′

)
dr′dt ′

+

∞̂

−∞

R(2) (−→r 1, t1,−→r 2, t2)E (−→r −−→r 1, t− t1)E (−→r −−→r 2, t− t2)dr1dt1dr2dt2

+

∞̂

−∞

R(3) (−→r 1, t1,−→r 2, t2,−→r 3, t3)E (−→r −−→r 1, t− t1)E (−→r −−→r 2, t− t2)E (−→r −−→r 3, t− t3)

∞̂

−∞

R(3) ×dr1dt1dr2dt2dr3dt3

 , (2.8)

where the coefficients R(N) (N = 1, 2, 3, . . .) define the degree of nonlinearity and represent
the N-th order response function. Eq. 2.8 describes only the NL optical interactions that occur
in a medium without loss neither dispersion, being χ(N) real , scalar and constant. However, by
considering the vectorial nature of the fields, as well as the tensorial nature of the susceptibil-
ities, which depends on the electronic and molecular structure of the medium, it is possible to
generalize the constitutive relationship between polarization and incident electric field. Thus,
Eq. 2.8 can be expressed more generally, in the frequency domain, by applying the Fourier
transform, of the form:
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P̃
(−→

k ,ω
)
= ε0

[
χ
(1) (ω) ·−→E

(−→
k ,ω

)
+χ

(2) (ω = ω1 +ω2) :
−→
E
(−→

k 1,ω1

)−→
E
(−→

k 2,ω2

)
+χ

(3) (ω = ω1 +ω2 +ω3)
...
−→
E
(−→

k 1,ω1

)−→
E
(−→

k 2,ω2

)−→
E
(−→

k 3,ω3

)
+ . . .

]
,

(2.9)

where χ
(N)are (N +1)-th order tensor representing the linear (N = 1) and NL (N > 1) optical

susceptibilities.

(a) Linear Terms

The χ
(1) (ω) term in Eq. 2.9 is a tensor with 9 components. However, in an isotropic

medium, there is only one nonzero component, and the electric susceptibility or dielectric re-
sponse is written as a scalar quantity. The linear polarization, P(L), is responsible for the effects
of linear refraction, absorption, gain and birefringence. These properties constitute the subject
of classical optics, where if there are various waves incident on a material, they do not influence
each other.

(b) Second-Order Terms

The χ
(2) (ω3 = ω1 +ω2;ω1,ω2) term in Eq. 2.8 correspond to second-order effects, which

in general can be called three-wave mixing. The second-order NL polarization oscillating at
a frequency ω3 due to the presence of fields oscillating at the frequencies ω1 and ω2, with
ω3 = ω1 +ω2, is given by [58]:

P̃(2)
i (ω3) = ε0 ∑

j,k
∑
ω

D(ω3;ω1,ω2)χ
(2)
i jk (ω3;ω1,ω2) Ẽ j (ω1) Ẽk (ω2) , (2.10)

where the first summations over j, k, is simply an explicit way of stating that the Einstein
convention of summation over repeated indices holds. The summation sign ∑ω serves as a
reminder that the expression that follows is to be summed over all distinct sets of ω1, ω2.
Because of the intrinsic permutation symmetry, the frequency arguments appearing in Eq. 2.10
may be written in arbitrary order. The degeneracy factor for the n-th order susceptibility, in the
convention of [58], is formally described as

D(ωn+1;ω1, . . . ,ωn) = 2l+m−n p, (2.11)

where

p = the number of distintic permutations of ω1, . . . ,ωn,

n = the order of the nonlinearity (n = 2) ,
m = the number of angular frequencies that are zero, and

l =
{

1, if ωn+1 6= 0,
0, otherwise.
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Each one of the indices i, j and k are related to the Cartesian coordinates (x, y, z). The
effects, described by χ(2) (ω3 = ω1 +ω2;ω1,ω2), are listed in Table 2.1.

These effects occur only in materials that lack inversion symmetry, since even-order suscep-
tibilities are null in media with such symmetry. In second harmonic generation and parametric
mixing the conversion efficiency per unit length, η , is determined by phase matching conditions
defined by relation (see Section 2.2.1 of [21]):

η =

(
sin(4kL/2)
4kL/2

)2

, (2.12)

where 4k = kω1 + kω2− kω3 is the wavevector mismatch of the process and L is the thickness
of the NL medium. The process will be more efficient when Eq. 2.12 reaches its maximum
value (as close to η = 1, which occurs when4k = 0). It is important to mention that ordinary
materials display natural frequency dispersion (frequency dependence of the refractive index).
Thus, it is impossible to achieve maximum efficiency in these materials, unless a way is found
to phase-match the interaction. One of the most common methods to achieve4k = 0 is to use
birefringent materials. Angle-tuning of these materials is the technique to modify the refractive
indices and tune the phase matching. Other conditions that can be adjusted to increase the
conversion efficiency are the use of different light frequencies and variations in the material
temperature.

NL Effect Mixture of frequencies NL susceptibility

Sum-frequency Generation ω1,ω2,ω3 = ω1 +ω2 χ(2) (ω1 +ω2;ω1,ω2)

Second Harmonic Generation ω1 = ω2 = ω , e ω3 = 2ω χ(2) (2ω;ω,ω)

Parametric Mixing ω1,−ω2,ω3 = ω1−ω2 χ(2) (ω1−ω2;ω1,−ω2)

Optical Rectification ω1 =−ω2 = ω , e ω3 = 0 χ(2) (0;ω,−ω)

Pockels effect ω1 = 0, e ω3 = ω2 = ω χ(2) (ω;0,ω)

Table 2.1 Effects related to the second-order susceptibility

(c) Third-Order Terms

The χ
(3) (ω4 = ω1 +ω2 +ω3;ω1,ω2,ω3) term in Eq. 2.8 correspond to third-order effects,

that occur independently of whether or not a material possesses inversion symmetry. The re-
lationship between the third-order polarization and the third-order susceptibility is given by
[58]:

P̃(3)
i (ω4) = ε0 ∑

j,k,l
∑
ω

D(ω4;ω1,ω2,ω3)χ
(3)
i jkl (ω4;ω1,ω2,ω3) Ẽ j (ω1) Ẽk (ω2) Ẽ l (ω3) , (2.13)

where D(ω4;ω1,ω2,ω3) = 2l+m−n p with n = 3. The most common third-order effects are
given in Table 2.2.
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χ
(3)
i jkl is a tensor with 81 components. Since each of the coordinate axes must be equiva-

lent in an isotropic material, the third-order susceptibility possesses the following symmetry
properties:

χ
(3)
1111 = χ

(3)
2222 = χ

(3)
3333,

χ
(3)
1122 = χ

(3)
1133 = χ

(3)
2211 = χ

(3)
2233 = χ

(3)
3311 = χ

(3)
3322,

χ
(3)
1212 = χ

(3)
1313 = χ

(3)
2323 = χ

(3)
2121 = χ

(3)
3131 = χ

(3)
3232,

χ
(3)
1221 = χ

(3)
1331 = χ

(3)
2112 = χ

(3)
2332 = χ

(3)
3113 = χ

(3)
3223,

 (2.14)

so that only the 21 terms identified above are non-zero. Nevertheless, the elements are related
among themselves by (see Section 4.2 of [21]):

χ
(3)
i jkl = χ

(3)
1122δi jδkl +χ

(3)
1212δikδ jl +χ

(3)
1221δilδk j. (2.15)

In particular, for the case of the instantaneous Kerr effect [see table 2.2], which is studied
in this thesis, the intrinsic permutation symmetry requires that χ

(3)
1122 = χ

(3)
1212. Therefore, Eq.

2.15 is summarized in:

χ
(3)
i jkl = χ

(3)
1122

(
δi jδkl +δikδ jl

)
+χ

(3)
1221δilδk j, (2.16)

and the third-order polarization for distinguishable fields is given by:

−→
P (3) (ω) = 6ε0χ

(3)
1122

(−→
E ·−→E ∗

)−→
E +3ε0χ

(3)
1221

(−→
E ·−→E

)−→
E ∗. (2.17)

NL Effect Mixture of frequencies NL susceptibility

Third Harmonic
Generation

ω1,ω2,ω3 = ω , e ω4 = 3ω χ(3) (3ω;ω,ω,ω)

Non-degenerate Four
Wave Mixing

ω1,ω2,±ω3,ω4 = ω1 +ω2±ω3 χ(3) (ω1 +ω2±ω3;ω1,ω2,±ω3)

Raman Scattering and
Brillouin Scattering

ω1,−ω2 = ω , e ω3,ω4 = ω±Ω χ(3) (ω±Ω;ω,−ω;ω±Ω)

Instantaneous AC Kerr
effect (Degenerate Four

Wave Mixing)

ω1,ω2,−ω3,ω4 = ω χ(3) (ω;ω,ω,−ω)

DC Kerr effect ω1,ω4 = ω , e ω2,ω3 = 0 χ(3) (ω;ω,0,0)
Two Photon
Absorption

ω1,−ω2,ω3,ω4 = ω χ(3) (ω;ω,−ω,ω)

Static electric field
induced Second

Harmonic Generation

ω1,ω2 = ω , ω3 = 0, e ω4 = 2ω χ(3) (2ω;ω,ω,0)

Table 2.2 Effects related to the third-order susceptibility
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All materials in the universe exhibits third-order nonlinearity irrespective of their crystal
structure.

(d) High-Order Terms

High-order NL processes are more difficult to be observed, because they require very high
intensity fields. However, there are many materials that exhibit this type of behavior. The basis
for the HON are discussed at the end of this chapter.

2.3 ORIGIN OF THE NONLINEARITIES

The magnitude of the NL response of a material depends on the physical effects induced
by the light field. These effects have different origins, namely, electronic polarization, nuclear
response, electrostriction and thermal response. The study of nonlinearities presented in this
thesis are related to centrosymmetric materials, i.e. even-order nonlinearities are canceled, and
the third-order is the lowest order susceptibility. For this particular case, χ(3) can be decom-
posed in a sum of terms corresponding to each contribution

χ
(3) = χ

(3)
elec +χ

(3)
nuc +χ

(3)
str +χ

(3)
th . (2.18)

Depending on the duration of the pulse and the repetition rate of the laser, these phenomena
contribute more or less to the nonlinear response.

The Electronic Response

Except near a resonance, the electronic response is quasi -instantaneous, less than one fem-
tosecond. It is due to the spontaneous nonlinear distortion of the electronic distribution around
the nuclei and it is independent of the temperature.

Far from any resonance, the different components of the third-order susceptibility tensor
[Eq. 2.14] for isotropic materials [58] satisfy:

χ
(3)
1111 = 3χ

(3)
1122 = 3χ

(3)
1212 = 3χ

(3)
1221. (2.19)

Thus, all the components of the χ(3) tensor can be defined from the knowledge of only one
of them. Whatever the duration of the pulse and the repetition rate of the laser, the electronic
response is always present. A more detailed description of the electronic nonlinearities is per-
formed in section 2.4. Because the NL response of MDNCs are of electronic origin, Chapters
3, 4, 6 and 8 introduce specifications on the NL response of MDNCs for each condition studied.

The Nuclear Response

The nuclear response depends on the rearrangement of the nuclei position in the modified
potential due to the electrons rearrangements. The nuclei motions are much slower than the
electronic ones and depend on the temperature. There are different types of nuclear response:
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• Molecular reorientation comes from the alignment of the molecules having acquired or
possessing naturally a dipolar moment in the direction of the exciting electric field. This
process is therefore important in polar molecules.

• Molecular redistribution is particularly present in dense polarizable media. The appli-
cation of an intense electric field produces interactions between the created dipoles and
leads to a redistribution of the molecules which acquire a new equilibrium state by mini-
mization of the energy.

• Vibrations are collective motions of molecules , in the same or opposite directions.

• Librations are vibrations based on a rotational motion of the molecules on sites that
prevent overall rotation. They are more descriptively called “rotational vibrations”

The response time of nuclear processes is on the order of several hundreds of femtoseconds to
a few picoseconds.

Of special interest is the nonlinearity produced by molecular reorientation, because it corre-
sponds to the nonlinearity of the CS2, under the conditions studied in this thesis. In particular,
the CS2 molecule has an elongated shape, therefore one can expect that the polarizability in the
longest direction of the molecule is greater than in the transverse direction.

Fig. 2.1 shows the polarizability of an elongated molecule, σ , with associated induced
dipole, p, with the applied electric field. Thus, the longitudinal (pL) and transverse (pT ) com-
ponents of the induced dipole are given by

pL = σLEL, (2.20)
pT = σT ET , (2.21)

where EL and ET are the projections of the electric field in the longitudinal and transverse
directions of the molecule.

In this sense, an incident electric field will produce a reorientation of the molecule to the
position of minimum orientational potential energy, U , when the induced dipole is aligned
with the incident field. For an arbitrary orientation, corresponding to the angle θ , the potential
energy is given by

U =−1
2

ασT E2− 1
2
(σL−σT )E2cos2

θ . (2.22)

If the field is oscillating, as in the case of an incident monochromatic wave, the induced
dipole suffers an oscillation, and Eq. 2.22 is valid for the root mean square of the electric field,
|E|2. In this case, it can be shown that the NL refractive index caused by the incident field is
given by (see Section 4.4 of [21])

n2 =
16π2N
45n2

0c

(
n2

0 +2
3

)4
(σL−σT )

2

kBT
, (2.23)

where N is the number density of molecules, kB is the Boltzmann constant and T is the temper-
ature. Typical values of n2 for CS2 are the order of 10-14 cm2/W.
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Figure 2.1 (a) Longitudinal and transverse polarizabilities of an elongated molecule. (b) Polarization
direction induced by an electric field E, at an angle θ to the longitudinal direction of the molecule.

The Electrostrictive Response

Electrostriction is the process in which the material density increases in response to an
applied electric field. The electric field polarizes the molecules which lead to an intermolecular
attraction and therefore to a compression of the material. The local increase of the pressure
induces an increase of the NL response.

The presence of an optical field within a material produces a pressure given by [59]

Pstr =
γstr

4n0c
I, (2.24)

where I is the intensity, γstr = ρ0

(
∂ε

∂ρ

)
ρ=ρ0

is known as the electrostrictive constant, with ρ0

and εr being the non-disruptive density and the relative dielectric permittivity, respectively.
This parameter can be evaluated using the Lorentz-Lorenz formula [59]

γstr =
(εr0−1)(εr0 +2)

3
, (2.25)

where εr0 is the non- disrupted relative dielectric permittivity.
For a Gaussian beam with a beam waist w0, the change in the density will be established

in a time τp ≈ w0/vs, where vs is the sound velocity in the material. The maximal density
variation on the optical axis is given by the source term of the acoustic differential equation

4ρmax =
γstrI

2n0cv2
s
. (2.26)

This density variation corresponds to a third-order susceptibility of:

χ
(3)
str =

ε0γ2
str

3ρ0v2
s
. (2.27)

The electrostrictive effect has a response time of nanoseconds, the typical transit time of an
acoustic wave crossing the light beam with w0 ∼= 10 µm.
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The Thermal Response

The thermal response is due to the absorption of the electric field energy by the material,
which is then dissipated in the form of heat. This process induces a change in the NL properties
and the response time of thermal effects is on the order of microseconds.

The spatial and temporal temperature change, T (~r, t), in the material obeys to the differen-
tial heat equation with a source term coming from the conversion into heat of part of the energy
described by

ρ0Cp
∂T
∂ t
−κ∇

2T = αI, (2.28)

where ρ0 is the density of the medium, Cp the heat-capacity at constant pressure, κ the thermal
conductivity, α the absorption coefficient and I the irradiance. The term κ∇2T represents the
thermal diffusion. The source term αI represents the fraction of the beam power converted into
heat by unit of volume.

The transient behavior of thermal diffusion is determined by the thermal diffusivity D =
κ

ρ0Cp
. For a Gaussian beam with beam waist w0, the heat will leave the focal region by diffusion

in a time τD ≈ w2
0

4D . For short pulses, the thermal diffusion has no influence on the beam itself.
Therefore, the term κ∇2T in the differential equation 2.28 can be neglected. Thus, Eq. 2.28 can
be integrated to determine the temporal evolution of the temperature vaariation on the optical
axis at the focal region

4T (t) = T (t)−T (−∞) =
α

ρ0Cp

ˆ t

−∞

I (0,τ)dτ. (2.29)

Hence, the variation of the third-order susceptibility associated with the thermal effect can
be written as:

χ
(3)
th =

4ε0n2
0c

3I0

∂n
∂T
4T =

∂ χ(3)

∂T
4T, (2.30)

where ∂n
∂T is the thermo-optical coefficient and I0 the peak irradiance.

2.4 NL REFRACTION AND NL ABSORPTION

It is well known the relationship between the real and imaginary parts of the linear sus-
ceptibility, χ(1), with the corresponding linear refractive index, n0, and the linear absorption
coefficient, α0, of a material. Here, the real part of the susceptibility leads to a change of the
incident wave phase, which is responsible for the refractive index. The imaginary part of the
susceptibility represents the part of the induced polarization which is out of phase in 90◦ with
the applied field, producing the attenuation (absorption) of the incident field.

If the material is centrosymmetric, i.e. admits inversion symmetry, the second-order sus-
ceptibility vanishes and the most important NL term is the third-order susceptibility, this type
of material is called Kerr medium. Similarly to the linear regime, the real and imaginary parts
of the third-order susceptibility, χ(3), are relate to the third-order refractive index, n2, and third-
order absorption coefficient, α2. This can be understood by analyzing the terms of third-order
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polarization that oscillate in the same frequency of the incident optical field. For simplicity, it
is assumed that the incident electric field oscillates in the frequency ω and is given by:

Ẽ (t) = E e−iωt + c.c. (2.31)

The total polarization of the system, for a frequency ω , considering the first- and third-
order terms is:

P̃(ω) = ε0

[
χ
(1) (ω)+

3
4

χ
(3) (ω;ω,−ω,ω) |E|2

]
E, (2.32)

P̃(ω) = ε0
[
χe f f (ω)

]
E, (2.33)

where the effective susceptibility of the medium, χe f f (ω)= χ(1) (ω)+ 3
4 χ(3) (ω;ω,−ω,ω) |E|2,

may be expressed as a function of the electric field amplitude. The coefficient of the third-order
polarization, for the optical Kerr effect, is obtained by considering the degeneracy factor of Eq.
2.11 as D = 21+0−3 (3) = 3/4 [58].

By using a constitutive relation between the electric displacement vector,
−→
D , and the ap-

plied electric field, obtained from Maxwell’s equations, we have

−→
D = εr

−→
E = ε0

−→
E +
−→
P , (2.34)

where
−→
P = ε0χe f f

−→
E and

ε =
εr

ε0
= 1+χe f f , (2.35)

ε = 1+χ
(1) (ω)+

3
4

χ
(3) (ω;ω,−ω,ω) |E|2 . (2.36)

It is possible to derive the NL refractive index and NL absorption coefficient by comparing
Eq. 2.36 with Eq. 2.7, making some small considerations.

NL Refraction

Several mechanisms may contribute to the third-order NL response. Here, it is described
the dependence of the refractive index with the incident light intensity, known as NL refraction
effect. The NL refraction phenomenon is one of the most explored in the scientific litera-
ture and probably the most important effect for building quasi-instantaneous optical switches
(see Chapter 2 of [60]). Nevertheless, their theoretical description and its applications depend
strongly on the origin of their nonlinearity, as seen in Section 2.3. Here, changes of the refrac-
tive index with the intensity, due to electronic polarization, are discussed. Such variations are
induced when the frequency of the incident wave is far from the resonance frequencies of the
material, but the optical field has a large amplitude, enough to distort its electronic distribution.
The origin of the NL refractive index is in the spatial redistribution of the electron cloud.
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By comparing the real part of Eq. 2.7 and Eq. 2.36, and assuming that the absorption
coefficient is much smaller than the refractive index in such a way that it can be neglected, the
refractive index is given by:

n(ω) =

√
1+Re

[
χ(1) (ω)

]
+

3
4

Re
[
χ(3) (ω;ω,−ω,ω)

]
|E|2. (2.37)

Considering the linear refractive index n0 =
√

1+Re
[
χ(1) (ω)

]
and the intensity of the

incident wave I = 1
2n0ε0c |E|2, Eq. 2.37 becomes:

n(ω) = n0

√
1+

3Re
[
χ(3) (ω;ω,−ω,ω)

]
4n2

0

(
2I

n0ε0c

)
. (2.38)

Making a binomial expansion, due to the NL term be less than the linear term, the total
refractive index is given by:

n(ω) = n0 +
3Re

[
χ(3) (ω;ω,−ω,ω)

]
4n2

0ε0c
I. (2.39)

Eq. 2.39 shows that the variation of the linear refractive index depends linearly with the
intensity, where the coefficient is called of third-order refractive index and is proportional to
real part of the third-order susceptibility

n2 (ω) =
3Re

[
χ(3) (ω;ω,−ω,ω)

]
4n2

0ε0c
. (2.40)

The change in refractive index proportional to the incident intensity is known as the Kerr
optical effect, and is responsible for effects such as: self-focusing, self-defocusing, self-phase
modulation, among others. The Kerr optical effect is explained in the Section 2.5.1.

NL Absorption

Saturable Absorption
Saturable absorption is a property of materials where the absorption of light decreases with

the increasing of light intensity. At sufficiently high incident light intensity, atoms or molecules
in an initial state of a saturable absorber material become excited into an upper energy state at
such a rate that there is insufficient time for them to decay back to the ground state before the
ground state becomes depleted, and the absorption subsequently saturates.

A simple kinetic model can be used when the saturation is considered in terms of depletion
of the ground state concentration. Thus, for a two-level system in the steady state,

dN
dt

=
σ I
hv

(Ng−N)− N
τ
= 0, (2.41)
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where N is the concentration of excited state molecules, Ng is the undepleted ground state
concentration, σ is the absorption cross section, hv is the photon energy, and τ is the lifetime
of the excited state population. Assuming that the absorption coefficient α is proportional to
the ground state population, α = σ (Ng−N), we get the following equation describing the
saturation,

α =
α0

1+ Iστ

hv
=

α0

1+ I
Is

, (2.42)

where Is =
hv
στ

is the saturation intensity and α0 = σNg is the linear absorption coefficient. The
case described by the above equation is referred to as homogeneous saturation (see Chapter 1
of [21]).

The main applications of saturable absorbers are in passive mode-locking and Q-switching
of lasers, i.e. in the generation of short pulses [61]. The key parameters for a saturable ab-
sorber are its wavelength range (where it absorbs), its dynamic response (recovery time), and
its saturation intensity and fluence (at what intensity or pulse energy it saturates). Saturable
absorbers are also useful for purposes of NL filtering outside laser resonators, e.g., cleaning up
pulse shapes, and optical signal processing.

Two-Photon Absorption (2PA)
The transition of a system from the ground state to a higher level by the simultaneous ab-

sorption of two photons is termed two-photon absorption. In the degenerate case, two photons
of frequency ω of the incident field are simultaneously absorbed by the system to make the
transition to a state that is approximately resonant at 2ω . A schematic representation of 2PA
can be found in Fig. 2.2.

The intermediate level being virtual, the two photons should be simultaneously absorbed
making the process sensitive to the instantaneous optical intensity of the incident radiation. 2PA
process is proportional to the square of the input intensity. The propagation of a monocromatic
laser light through the system describing the optical loss is given by:

dI
dz

=−α0I−α2I2, (2.43)

where α0 is the linear absorption coefficient (which can be very small), α2 is the 2PA coefficient

Figure 2.2 Schematic representation of two-photon absorption.
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and z is the propagation direction. α2 is a macroscopic parameter that characterizes the material
and is related to the individual molecular 2PA cross section σ2 through,

σ2 =
h̄ωα2

N
, (2.44)

where N is the number density of the molecules in the system and h̄ is the reduced Planck
constant. It is the imaginary part of the third-order NL susceptibility of the system that de-
termines the strength of the 2PA. The relation between the 2PA coefficient and χ(3) of a cen-
trosymmetric system, for linearly polarized incident light, is given by

α2 =
3ω

2ε0n2
0c2 Im

[
χ
(3)
]
. (2.45)

Reverse Saturable Absorption (RSA)
Reverse saturable absorption is a two-step, sequential one-photon absorption process as

shown schematically in Fig. 2.3. In this case the medium has a resonant linear absorption for
the incident laser beam, and some of the molecules in the ground state are excited to another
excited state of higher energy. For a properly chosen medium, it is possible that the excited
molecules make another transition from the excited state 2 to a higher excited state 3 via another
one-photon absorption. (In polyatomic molecules in fact a 5-level model may be considered,
which involves both singlet and triplet states).

The possibility of this process depends on the number of molecules N2 at the first excited
state 2, the incident intensity I, and the excited state absorption cross section σ23. On the other
hand, N2 is related to N1 and I by the expression,

N2 ∝ σ12N1I, (2.46)

where σ12 is the cross-section of the transition from the ground state to state 2. As can be
seen from this relation, the number of molecules in state 2 (N2) continuously grows with the
incident intensity I and the one-photon sequential absorption from state 2 to state 3 becomes
more significant, provided that the cross section σ23 of this transition is considerably larger
than σ12. Under the steady-state condition, the intensity change of the laser beam in the NL
medium along its propagation direction can be expressed as,

Figure 2.3 Schematic representation of reverse saturable absorption.
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dI
dz

=−σ12 (N1−N2) I−σ23N2I. (2.47)

In the simplest case, it can be assumed that N1� N2, N3 = 0, and N1 = N0, where N0 is the
number density of the absorbing molecules. Then according to Eq. 2.46, the above equation
can be rewritten as

dI
dz

=−σ12N0I−bσ12σ23N0I2,

dI
dz

=−α0I−α
′
2I2, (2.48)

where b is a proportionality coefficient, and the linear absorption coefficient α0 = σ12N0 and
NL absorption coefficient α ′2 = bσ12σ23N0.

2.5 OTHER NL EFFECTS

Below are described some of the most important NL effects associated to the NL refractive
index. These NL phenomena will be the basis for studies in HON effects, reported in this thesis.

2.5.1 Optical Kerr Effect
The change in the refractive index of a material in response to the optical intensity is known

as the Kerr effect (see Section 4.1 [21]). As a result, a high intensity beam travelling through
a Kerr medium will undergo self-phase modulation (SPM), a NL effect in which the refractive
index of the medium is changed by a beam of light (Fig. 2.4). Physically the high intensity
light beam induces a NL polarization and this alters the optical path length of the light beam,
resulting in a phase shift at the exit of the sample. The SPM can drive some interesting NL
phenomena, such as self focusing [Fig. 2.4(a)] and self defocusing [Fig. 2.4(b)].

Self-focusing (SF) and self-defocusing (SDF) phenomena are inverse NL effects produced
by positive (4n > 0) and negative (4n < 0) NL refractive index, respectively. When passing
through a Kerr medium a Gaussian beam with uniform phase will experience SPM in proportion
to the intensity of the beam. Thus, a Gaussian beam experience different phase shifts, 4Φ,
across the profile of the beam, due to the nonuniform intensity. The phase shift is expressed by

4Φ = k (4n)Le f f , (2.49)

where Le f f is the effective length of the medium.
In SF media, the high intensity light of a Gaussian beam causes a local increase in the re-

fractive index, n = (n0 +4n)> n0, experiencing a positive phase shift. In thin media, this high
index region acts as a thin convergent lens, inducing the beam focalization. The opposite effect
occurs when the nonlinearity is negative (SDF media), n = (n0 +4n)< n0. High intensity re-
gions of the beam cause a local decrease in the refractive index which induce a negative phase
shift the beam. Therefore the beam diverges, or defocus, faster than it would in a linear regime.
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Figure 2.4 (a) Self-focusing and (b) self-defocusing effects of an intense Gaussian beam. The red lines
illustrate the evolution of a incident beam with plane wavefront when passing through a Kerr material.

It is clear that the sign of the nonlinearity has a drastic effect on the output beam. When
a medium has a positive (negative) nonlinearity, a high intensity beam propagating through it
will experience SF (SDF). It’s important to mention that the output beam has a higher (lower)
peak than the input. However, this does not break any conservation of energy rules because the
integrals of both curves (optical power) are in fact identical. Each output has the same integral
as the input, as one would expect in a closed system when absorption is neglected.

2.5.2 NL Transverse Effects
As explained above, when an intense light beam propagates in a NL medium, the light-

matter interaction modifies the spatial profile of the beam, resulting in various transverse ef-
fects. These NL effects can be self-induced or induced by another intense beam. Below, it is
briefly described some transverse effects induced by the third-order nonlinearity in isotropic
media.

2.5.2.1 Spatial Self-Phase Modulation (SSPM)

When a Gaussian laser beam passes through a NL medium, it may exhibit a characteristic
diffraction ring pattern resulting from SSPM effect [62].

Spatial self-phase modulation is a consequence of the difference in NL refractive index at
different radial positions of a beam due to its non-uniform spatial intensity profile. The variation
of the refractive index not only produces different light speeds leading to self-focusing or self-
defocusing, but also induces changes in the optical path of each part of the beam. Since the
manifestation of SPM is closely related to the temporal and spatial behavior of a light beam, the
analysis of the patterns produced by a thick sample becomes very complicated. This is mainly
due to the fact that SPM and SF (or SDF) effects can generally coexist in a thick sample and
the theoretical treatment becomes rather complex. For the sake of simplicity, we consider only
thin NL samples.
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In thin media, SSPM phenomena caused by Gaussian beam can be described as diffraction
of light through a circular aperture, which introduces a spatial NL phase shift depending on the
local light intensity. The circular aperture corresponds to the beam width on the sample, while
the phase shift profile is due to the NL response of the medium. Following the classical theory
of Fraunhoffer diffraction [63], the light field in rectangular coordinates can be written as:

EF (p,q) =C
ˆ

A
EIexp [−ik (pξ +qη)]dξ dη , (2.50)

where (p,q) are the coordinates of a point P in the diffraction pattern, (ξ ,η) are the coordinates
of a typical point in the aperture and C is a constant [see Fig. 2.5(a)]. Ei is the incident electric
field and k is the wave vector of the incident electromagnetic radiation. For a circular aperture,
it is more convenient to use polar coordinates to represent the light field. Let (ρ,ϑ) be the polar
coordinates of a typical point in the aperture

ρcosϑ = ξ

ρsinϑ = η

}
, (2.51)

and (Ω,ψ) be the coordinates of a point P in the diffraction pattern referred to the geometrical
image of the source

Ωcosψ = p
Ωsinψ = q

}
. (2.52)

It follows that Ω =
√

p2 +q2 is the sine of the angle which the direction (p,q) makes with
the central direction p = q = 0. If a is the radius of the circular aperture, the diffraction integral
now can be written as,

EF (p,q) =C
ˆ a

0

ˆ 2π

0
EIexp [−ikρΩcos(ϑ −ψ)]dϑdρ. (2.53)

For an incident Gaussian beam, the electric field can be written as

EI = E0exp
[
−
(

ρ2

w2

)
−
(

ikρ2

2R

)]
, (2.54)

where ρ is the radial distance of a point on the wavefront from the center of the beam, w is the
beam width, and R is the radius of curvature of the wavefront. Here, it is possible to observe
that, for a Gaussian beam, the intensity is a function of ρ . Hence the NL phase shift introduced
at the aperture should also be a function of ρ . If this NL phase shift can be represented by
φ NL (ρ) =4Φexp

[
−2ρ2

w2

]
, with4Φ given by Eq. 2.49, then Eq. 2.53 must be multiplied by a

phase factor of exp
[
−iφ NL (ρ)

]
EF (p,q) =C

ˆ a

0

ˆ 2π

0
EIexp [−ikρΩcos(ϑ −ψ)]exp

[
−iφ NL (ρ)

]
dϑdρ. (2.55)

By using the standard Bessel functions (see Chapter 3 of [57])
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Figure 2.5 (a) Schematic representation used to analyze the SSPM effects with the theory of Fraunhof-
fer diffraction. Typical diffraction patterns of SSPM for cubic (b) self-focusing and (c) self-defocusing
media [62].

Jn (x) =
i−n

2π

ˆ 2π

0
exp [i(xcosβ )]exp [i(nβ )]dβ , (2.56)

and assuming that Ω ≈ θ , the diffraction angle; the light field at far-field can be written as

EF (p,q) = 2πCE0

ˆ a

0
J0 (kρθ)exp

[
−
(

ρ2

w2

)
−
(

ikρ2

2R

)]
exp
[
−iφ NL (ρ)

]
dρ. (2.57)

It can be seen from the above equation that the diffraction ring pattern, obtained by SSPM
effect, depends mainly on the NL phase shift φ NL (ρ) and the curvature radius R [see Fig. 2.5(b)
and (c)].

2.5.2.2 Spatial Modulation Instability (SMI)

In NL dynamics, much attention has been devoted to the investigations of modulational
instability in the framework of the NL Schrödinger equation (NLSE). Modulational instability
is a characteristic feature of a wide class of NL systems and can be classified into three main
categories: spatial [64], temporal [65] and spatiotemporal [66]. This thesis focuses the studies
of MI in the spatial domain.

SMI occurs due to the interaction between the effects of diffraction and nonlinearity. It
is a fundamental NL phenomenon in which a weak perturbation imposed on the input beam
grows exponentially, resulting into the breaks up of homogeneous beam into numerous small
filaments. Hence SMI is considered as a basic process that classifies the quantitative behavior of
modulated waves and may initialize the formation of stable entities such as envelope of spatial
solitons. In general, SMI typically occurs in the same parameter region where soliton-like
phenomenon occurs and can be loosely considered as a precursor to spatial soliton formation.
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SMI plays an important role in many NL phenomenon such as: cross-phase modulation
[67], four-wave mixing [68], SHG [69], polarization and birefringence [70] and spatial solitons
[71]. In this section, SMI is analyzed due to spatial cross-phase modulation (XPM) effect.

The electric field of two copropagating beams linearly polarized, at frequencies ω1 e ω2, is
expressed by

−→
E (−→r , t) =

1
2

x̂
2

∑
j=1

A j (
−→r , t)exp

[
i
(
k jz−ω jt

)]
+ c.c., (2.58)

where x̂ is the polarization unit vector, k j = n0 jω j/c is the wave number and n0 j = n0
(
ω j
)

is
the linear refractive index, which depends on the frequency due to the chromatic dispersion.
By substituting the Eq. 2.58 in the wave equation [Eq. 2.1], considering the total polarization
as a sum of linear polarization and third-order polarization [Eq. 2.32], and making the paraxial
approximation, the coupled amplitude equations, which describe the propagation of two optical
beam, assume the form:

∂A1

∂ z
− i

2k1

(
∂ 2A1

∂x2 +
∂ 2A1

∂y2

)
=

ik1n2

n01

(
|A1|2 +2 |A2|2

)
A1, (2.59)

∂A2

∂ z
− i

2k2

(
∂ 2A2

∂x2 +
∂ 2A2

∂y2

)
=

ik2n2

n02

(
|A2|2 +2 |A1|2

)
A2, (2.60)

where n2 ∝ Re
[
χ(3)

]
is the third-order refractive index. The first terms of the right-hand sides

represent the SSPM effects, while the second terms correspond to the spatial cross-phase mod-
ulation (SXPM) effects. A more detailed procedure for obtain Eqs. 2.58 and 2.59, will be
specified in Chapter 5.

In order to study the origin of the transverse SMI, the waves are assumed to be plane waves
with constant intensity I j [72], i.e.

A j (x,y,z = 0) =
√

I j. (2.61)

Thus, the analytical solutions of the coupled equations are:

A j (x,y,z) =
√

I jexp
[

ik jz
n2

n0 j

(
I j +2I3− j

)]
, (2.62)

with j = 1, 2. The stability of these solutions are analyzed by introducing a small perturbation
to the exact solutions, of the form:

A′j (x,y,z) = A j (x,y,z)
{

1+u j (z)exp [i(px+qy)]+ v∗j (z)exp [−i(px+qy)]
}
, (2.63)

where p and q are the components of the spatial frequency associated with the transverse per-
turbation. Substituting Eq. 2.63 into Eqs. 2.59 and 2.60 and linearizing in terms of u j and v∗j ,
it is obtained a set of equations with nontrivial solution of the form u j ∝ exp(iKz), where K is
the wave number and obey the dispersion relation:(

K2−h2
1
)(

K2−h2
2
)
=C2, (2.64)
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with

h j =
S

2k j

[
S2− sgn(n2)S2

c j
]1/2

, (2.65)

C = S2
(

Sc1Sc2

k1k2

)
, (2.66)

S2 = p2 +q2, (2.67)

Sc j = 2k j

(
|n2| I j

n0 j

)1/2

. (2.68)

The dispersion relation [Eq. 2.64] shows that K becomes imaginary whenever C > h1h2.
This is the necessary condition for transverse modulation instability. Finally, the growth rate of
SMI induced by third-order nonlinearity is given by Γ = 2Im(K).

2.5.3 Optical Spatial Solitons
In linear media, localized wavepackets typically spread as they propagate. However, in

some NL materials, nonlinearity can under proper conditions stop the spreading, and such
wavepackets do not change their shapes at all as they propagate. These wavepackets are then
called optical solitons in analogy with solitons in hidrodynamics. In 1834, a Scottish scientist
John S. Russell observed a "rounded smooth and well defined heap of water" propagating in
a narrow and shallow canal "without change of form or diminution of speed" [73]. This was
the first scientifically documented observation of solitons in nature. In the spatial domain,
optical solitons are self-trapped light beams that appear due to the balance between the linear
diffraction and the nonlinearity. High intensity light locally increases the index of refraction,
and then this modulation in the index of refraction acts as a waveguide, guiding the beam that
created the modulation itself. In quite a few cases this self-consistent self-trapping also turns
out to be stable, and such a beam is called an “optical spatial soliton” [48].

Theoretically, the possibility of soliton formation was first suggested in 1962 by Askar’yan,
who predicted that “the effects of the gradient of a strong electromagnetic beam on electrons
and atoms can be used to set up waveguide propagation conditions and to eliminate divergence
of the beam (self-focusing)" [74]. Shortly after, Chiao, Garmire and Townes computed the
profile that exhibits a perfect balance between Kerr nonlinearity and diffraction, known as the (2
+ 1)-D (Townes) soliton [75]. However, a year later, Kelley showed that for sufficiently strong
powers, the nonlinearity can dominate the diffraction and hence, the (2 + 1)D Kerr solitons
collapse [76]. Indeed, it became quickly clear that observation of stable spatial solitons in Kerr
media is only possible in planar geometry (D = 1). In addition, it was predicted that stable
solitons in bulk (D≥ 2) can form in media with a saturable nonlinearity [39].

The earliest experimental evidence of spatial self-trapping was provided by Bjorkholm and
Ashkin in 1974 in bulk vapor of sodium atoms [77]. This self-trapping was accompanied by sig-
nificant absorption, hence, it was not true solitonic propagation. It tooks 11 years until the first
observation of true solitons in CS2 gas [36] which has a reorientational nonlinearity. In further
studies, Kerr solitons have been observed in planar waveguides of glass [78], semiconductors
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[79, 80] and polymers [81]. Finally, genuine bulk spatial solitons were observed in polymers
with a cubic-quintic nonlinearity [82]. Studies of spatial solitons have made rapid progress
since the mid-1990’s, when two new soliton-supporting NL optical media became available to
experiments [83]. First, generation of solitons in quadratic media which was identified theo-
retically in the mid-1970’s [84], was demonstrated experimentally in a series of works of the
group of G. Stegeman. In particular, an effective Kerr coefficient in a quadratic medium was
first produced and measured experimentally by De Salvo et al. [85]. Then, (2 + 1)D and (1
+ 1)D spatial quadratic solitons were generated experimentally by Torruellas et al. [86] and
Schiek et al. [87], respectively. Second, Segev et al. [88] predicted that the saturable nonlin-
earities of photorefractive materials can support stable soliton propagation. Soon afterwards, a
variety of photorefractive solitons, of both (1 + 1)D and (2 + 1)D types and for both focusing
and defocusing nonlinearities, have been explored. Vortex soliton dynamics have been the-
oretically investigated in numerous contexts [89, 90] and the angular momentum and spatial
dynamics have been studied experimentally in defocusing Kerr [91], photorefractive [92] and
quadratic NL media [90].

Of all the different types of spatial solitons mentioned above, we will focus on the study
of Kerr-like solitons, which correspond to the experiences presented in this thesis. To have a
preliminary notion of the study of spatial solitons, this section assumes the one-dimensional
propagation of an optical beam through a Kerr medium exhibiting only third-order refractive
index. A more complete mathematical formalism, including contribution of HON, is developed
in Chapter 5.

The evolution of optical fields in NL media can be modeled by using the NLSE, obtained
from Maxwell’s equations. For simplicity, it will be used the normalized cubic NLSE (C-
NLSE) given by:

i
∂u
∂ z

+
1
2

∂ 2u
∂x2 ±|u|

2 u = 0, (2.69)

where u is the normalized field amplitude, z and x are the propagation and transverse direction,
respectively. The positive (negative) sign corresponds to a SF (SDF) medium. For SF media,
one of all solution of Eq. 2.69 is of particular interest:

uBS = u0sech [u0x]exp
[
iu2

0
z
2

]
, (2.70)

where it is possible to note that the intensity of this family of solutions
(

IBS = |uBS|2
)

is z
independent. Therefore, all solution of this type, known as bright solitons, will keep their
shape and size invariant along propagation [Fig. 2.6(a)]. However, in order to observe such
solitons in nature, it is not enough to have a steady state mathematical solution in hand: one
should also check for the stability of this steady state solution to noise and to deviations from
ideal initial condition. If the solution exemplifies a state of stationary propagation - only then
it can be considered as a soliton. It is important to note that a bright soliton exists when the
self-focusing nonlinearity balance the linear diffraction. Thus, a specific power is required for
that the diffraction angle be equal to the self-focusing angle. Therefore, the self-trapping ocurrs
only if the power contained in the beam has the critical value (see Section 7.1 [21]):
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Figure 2.6 One-dimensional (a) bright and (b) dark spatial solitons

Pcr ≈
λ 2

0
8n0n2

. (2.71)

Similarly, for SDF media, a solution of Eq. 2.69 has the form:

uDS = u0tanh [u0x]exp
[
iu2

0z
]
. (2.72)

This last equation represents a dark soliton [Fig. 2.6(b)], which propagates without chang-
ing its size and shape. Dark solitons are more difficult to handle than bright solitons, but they
have shown to be more stable and robust to losses.

2.5.4 Filamentation
A filament is a dynamic optical pulse structure with an intense core that is able to propagate

over extended distances much larger than the typical diffraction length while keeping a narrow
beam size without the help of any external guiding mechanism [93]. The filamentation regime
occurs when the incident beam power is higher than the critical power, Pcr, defined in Eq. 2.71,
so that self-focusing effects predominate on the linear diffraction, producing the break-up of
the original beam [94].

Filamentation can be viewed as a near-forward four-wave mixing process. Figure 2.7(a)
displays the interaction schematically. Two on-axis photons from the main beam are annihi-
lated, creating two off-axis photons, with equal but opposite transverse wave vectors. It is
generally assumed that the main beam is very strong, while the off-axis modes are initially
weak perturbations. In the classical case, these perturbations are slight distortions to the wave-
front, while in the quantum case the perturbations are vacuum fluctuations. Making the strong
pump approximation, the system can then be analyzed by writing and solving a set of coupled
equations for the side modes.

Research into filamentation began soon after the invention of the laser. A detailed theory of
filamentation was first developed by Bespalov and Talanov [95]. According to the these theory,
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Figure 2.7 (a) Schematic representation of filamentation. (b) Filamentation pattern observed in CS2
[26]

the size of the generated filaments is given by:

Λ =
π

k

√
n

2n2I
. (2.73)

Each filament is predicted to contain approximately one critical power (Pcr). During the
formation of each filament, the perturbations are predicted to display exponential growth, where
the exponential gain factor for a given mode is

g = K

√
n2E2

n0
− K2

4k2 , (2.74)

where K is the magnitude of the transverse wave vector of a the given mode and E is the root
mean square field strength. This equation was corroborated experimentally by illuminating a
silicate glass with an intense picosecond laser [96]. Here, molecular excitation is predicted as
a dominating mechanism for the filamentation process rather than the electronic Kerr effect for
filaments of very small size.

For experimental exploration of the properties of filamentation, the side modes are often
purposely populated. This can be achieved by putting a transverse spatial modulation on the
beam. As long as the depth of modulation is weak, the above analysis is still correct. Fig. 2.7(b)
shows an experimental image of laser filamentation obtained in CS2, in picosecond regime [26].

During most of the 34 years since the original development in the field of filamentation,
the new experiments and theoretical studies have involved attempts to quantify and limit the
effects of filamentation. With the recent availability of ultrafast laser systems, filamentation is
also being explored in the femtosecond regime [97]. However, the basic theory being applied
is the same as in other regimes such as picosecond and nanosecond.

2.6 HIGH-ORDER NONLINEARITIES (HON)

Usually, the NL response of centrosymmetric photonic materials has been described by con-
sidering the third-order NL optical contribution, at “relatively” low intensity levels. However,
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HON may become significant at high intensities (e.g, quintic nonlinearity, χ(5), and septimal
nonlinearity, χ(7)), and have to be included to describe the total NL optical response. In some
cases, HON can cause problems (e.g, rapid break-up of a beam even at moderate intensities),
especially when no adequate control of their contributions is made. Nevertheless, for sev-
eral applications HON are desired (e.g, formation of stable multi-dimensional optical solitons).
Therefore, a better understanding of HON in materials is then crucial.

Until few decades ago, HON contributions were totally neglected. However, the character-
ization of materials with intense pico and femtosecond lasers allowed the observation of many
phenomena associated to HON. Up to the present, HON have been reported for glasses [98],
solvents [25], MDNCs [23], gases [31] and atomic systems [99].

In centrossymetric materials, the total polarization having components along a particular
direction µ can be expressed as the sum of linear

(
P̃L) and NL contributions

(
P̃NL):

P̃µ (ω) = P̃L
µ (ω)+ P̃NL

µ (ω) ,

= P̃L
µ (ω)+ ∑

N=1
P̃(2N+1)

µ (ω) . (2.75)

In the perturbation limit, the (2N+1)-th NL polarization in µ-direction, using the notation
of [58], can be expressed by:

P̃(2N+1)
µ (ω2N+2) = ε0 ∑

ς1,ς2,...,ς2N+1

∑
ω

D(ω2N+2;ω1,ω2, . . . ,ω2N+1)

×χ
(2N+1)
µς1,ς2,...,ς2N+1 (ω2N+2;ω1,ω2, . . . ,ω2N+1)

× Ẽς1 (ω1) Ẽς2 (ω2) . . . Ẽς2N+1 (ω2N+1) , (2.76)

where ω2N+2 = ω1 +ω2 + . . .+ω2N+1 = ω . For simplicity, it was assumed that the incident
field is linearly polarized, e.g. in the x-direction. That is, Ẽx (ω) 6= 0, and null along y- and
z-directions. Therefore, Eq. 2.76 is reduced to:

P̃(2N+1)
x (ω) = ε0Dχ

(2N+1)
(2N+2)x (ω)

∣∣Ẽx (ω)
∣∣2N Ẽx (ω) , (2.77)

where χ
(2N+1)
(2N+2)x (ω) with N = 1, 2, . . . is the (2N+1)-th NL susceptibility in frequency ω and D

is given by Eq. 2.11. However, for Kerr-type nonlinearities, where all frequencies are nonzero
(m = 0 and l = 1 in Eq. 2.11) and all nonlinearities are of odd-order (n = 2N +1), it is possible
to express the degeneracy factor only by the order of the nonlinearity:

D = 21−(2N+1)p = 2−2N
[

(2N +1)!
(N)!(N +1)!

]
. (2.78)

Therefore, the total polarization [Eq. 2.75] in the x-direction as a function of electric field
is given by:

P̃x (ω) = ε0χ
(1)
xx Ẽx (ω)+ ε0

[
∑

N=1
2−2N (2N +1)!

(N)!(N +1)!
χ
(2N+1)
(2N+2)x (ω)

∣∣Ẽx (ω)
∣∣2N

]
Ẽx (ω) ,

P̃x (ω) = ε0χe f f Ẽx (ω) , (2.79)
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and the dielectric function is:

ε = 1+χe f f ,

ε = 1+χ
(1)
xx + ∑

N=1
2−2N (2N +1)!

(N)!(N +1)!
χ
(2N+1)
(2N+2)x (ω)

∣∣Ẽx (ω)
∣∣2N

. (2.80)

Following the procedure described in Section 2.4, it is possible to show that the total refrac-
tive index, n, and the total absorption coefficient, α , are expressed by:

n = n0 +
1

2n0
∑

N=1

[
2−2N (2N +1)!

(N)!(N +1)!
Re
[
χ
(2N+1)
(2N+2)x (ω)

]∣∣Ẽx (ω)
∣∣2N
]
, (2.81)

α = α0 +
ω

cn0
∑

N=1

[
2−2N (2N +1)!

(N)!(N +1)!
Im
[
χ
(2N+1)
(2N+2)x (ω)

]∣∣Ẽx (ω)
∣∣2N
]
. (2.82)

On the other hand, the total refraction and absorption coefficients can be written as a func-
tion of the intensity, of form:

n = n0 + ∑
N=1

n2NIN , (2.83)

α = α0 + ∑
N=1

α2NIN . (2.84)

Thus, a relationship between the (2N+1)-th NL refraction (absorption) coefficients and the
real (imaginary) part of the (2N+1)-th NL susceptibilities can be obtained by using the rela-
tionship between the electric field amplitude and intensity

(
I = 1

2ε0n0c |E|2
)

n2N =
1

2n0

(
1

2ε0n0c

)N (2N +1)!
(N)!(N +1)!

Re
[
χ
(2N+1)
(2N+2)x (ω)

]
(2.85)

α2N =
ω

cn0

(
1

2ε0n0c

)N (2N +1)!
(N)!(N +1)!

Im
[
χ
(2N+1)
(2N+2)x (ω)

]
(2.86)

The origin of the HON is also associated to the effects mentioned in Section 2.3, but it will
depend on the type of material being studied. Currently, it is known that HON may arise from
direct or cascade (microscopic and macroscopic) contributions. These different types of HON
contributions are discussed in Section 3.5.2 for the particular case of MDNCs.
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.

In science, when human behavior enters the equation, things go nonlinear.
That’s why Physics is easy and Sociology is hard.

- NEIL TYSON

Nature is nonlinear everywhere
- JOSÉ RIOS LEITE
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3 METAL-DIELECTRIC NANOCOMPOSITES

3.1 INTRODUCTION

Nanocomposites are materials that combine two or more natural or artificial elements (with
different physical or chemical properties), in which at least one of the phases shows dimensions
in the nanometer scale. In particular, metal-dielectric nanocomposites (MDNCs) are artificial
materials formed by metal NPs hosted in a dielectric medium, so that they may surpass the per-
formances of bulk materials [100]. Generally, the optical properties of MDNCs are described
by the effective dielectric constant, as studied in Chapter 2. Metal particles with sizes much
smaller than the wavelength of an external applied EMF interact strongly with the EMF, at op-
tical frequencies. The resulting collective oscillations of the free electrons inside the particles
induce an enhancement of the effective field that modifies the effective dielectric constant of
the MDNC. This effect is called dielectric or classical confinement [101]. On the other hand,
a quantum treatment shows that the optical response of MDNCs is sensitive to particle size,
when it is in the quantum size regime (diameter < 10 nm). This effect called quantum confine-
ment occurs because the electrons in the NPs are confined to regions much smaller than their
mean free path, which is of the order of a few micrometers for the case of bulk noble metals
[102]. As a consequence of these confinements, MDNCs exhibit significant improvement and
modification in their mechanical, thermal, transport and optical properties over bulk materials.

Of special interest is the improvement of the optical properties of MDNCs, which has gen-
erated an enormous evolution in optics and photonics. For instance, it is well known that bulk
metals posses high optical linear and NL response. However, it is difficult to take advantage
of this optical properties in experiments based on the transmission or light propagation, be-
cause light penetrates into metals for only tens of nanometers [101]. On the contrary, much of
the light that illuminates a metal is reflected and for that reason metals are widely used in the
construction of mirrors. Nevertheless, light can penetrate more deeply into metals when they
are combined with dielectric materials. Thus, with recent developments of nanoscience and
nanotechnology combined with an increasing knowledge in surface chemistry and functional-
ization, MDNCs have expanded the applications of metals in the field of optics such as optical
limiters [103], optical tweezers [104] and all-optical switches [105].

However, the application of MDNCs are not limited to the exploration of their optical prop-
erties. Significant technological advances using MDNCs have been made in medical appli-
cations [106], chemical and biological sensing [107], genosensors and immunosensors [108],
plasmonic solar cells [109], detection of chemical pollutants [110], forensic science [111],
among others.

The present chapter aims to discuss a background on the optical properties of MDNCs,
focusing on its NL behavior. In addition, the influence of the local-field effects on the NL
susceptibility of MDNCs, as weel as the internal (size, shape) and external factors (environment
properties) are studied. These concepts are extended for the HON, discussing their origins and
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measurement procedures. The Chapter concludes with an analysis of the NL optical properties
of MDNCs by introducing a generalized Maxwell-Garnett model, which includes the HON
contributions of metal NPs.

3.2 LINEAR OPTICAL PROPERTIES

The interaction between light and metals takes place between the optical electric field and
the conduction electrons of the metals. Normally, some light energy can be transferred to the
host lattice as heat via electron-phonon collisions. In general, the optical properties of metals
can be characterized by two parameters: refractive index, n, and extinction coefficient, K, that
result in the complex refractive index, nc, where:

nc = n+ iK. (3.1)

The refractive index n is defined as the ratio between the velocity of light in vacuum and
the phase velocity of light in the given medium. The extinction coefficient K is related to the
exponential decay of the wave as it passes through the medium. Both parameters depend on the
wavelength and samples’ temperature. The absorption coefficient is related to the extinction
coefficient by comparing Eq. 3.1 with Eq. 2.7:

α =
2ω

c
K. (3.2)

In this way, the expression for an electromagnetic wave propagating in an absorbing medium
can be expressed as:

E = E0exp
[
−i

2π

λ
(n− iK)x

]
exp [−iωt] , (3.3)

resulting in the well known Beer’s law:

I ∝ |E|2 = |E0|2 exp [−αx] . (3.4)

Eq. 3.4 indicates that the flux density will drop by a factor of e−1 after the wave has
propagated a distance δp = 1

α
, which is known as the penetration depth. For a transparent

material the penetration depth is larger than its thickness. However, the penetration depth for
metals is very small. For instance, silver has a penetration depth of only ~2.5 nm for the light
at 532 nm [112].

In solids, the electronic transitions are related to the complex dielectric constant ,ε = ε ′+
iε ′′, and according to Chapter 2, these physical quantities are connected by:

ε
′ = n2−K2, (3.5)

ε
′′ = 2nK. (3.6)

Therefore, the first step to understand the linear optical properties of metals and MDNCs is
to analyze its optical response by investigating its dielectric function.
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(a) In Bulk Metals

Noble metals, in particular Au, Ag and Cu, have similar band structures, which include a
set of five valence bands with low dispersion, called d-bands (associated to atomic d-orbitals),
and a half-filled sp-band called the conduction band. All the electron bands are therefore either
filled or empty, except for the conduction band which is filled up to the Fermi level. Most of
the electronic properties in metals involve only a small number of the electron bands, and often
even involve only the conduction band states near the Fermi energy. This is the case for the
interactions involving the conduction electrons, such as electron-electron and electron-phonon
interactions, and for the optical response in the IR to visible spectral range. However, the
response of the noble metals to an electromagnetic excitation in the UV- visible range should
include the influence of bound electrons in the d-bands.

For the particular case of excitation in the visible regime, the optical properties of metals can
be explained by considering the conduction electrons as a gas of free particles, moving around
fixed ion cores. This model developed by Drude allows to obtain the dielectric function of a
metal, with good accuracy [113]. Drude’s model is based on three fundamental assumptions:

• Free Electron Approximation: The interaction between the electron gas and the fixed
ion cores is modelled by assuming that an electron will occasionally collide with an ion
core and change its trajectory. These collisions are instantaneous events that change
the velocity of the electrons. Between two successive collisions, the interactions of the
electron gas with the ion cores are neglected.

• Independent Electron Approximation: Interactions between individual electrons in the
gas are neglected.

• Relaxation Time Approximation: On average, an electron will travel through the metal
for a relaxation time before experiencing a collision. The relaxation time is related to the
resistivity of a metal R by the relation τr = m/(Rnq2), where n, m and q are the number,
mass and charge of the electron.

The motion of the free electrons in metal subjected to an external electric field E can be express
as:

m0r̈+m0γr ṙ =−qE, (3.7)

where m0 is the effective optical mass of the conduction electrons, γr = 1/τr is the damping
coefficient, with the relaxation time of the free electron τr in the order of 10−4 s, in the room
temperature.

Assuming a harmonic time dependence of the electric field, i.e., E (t) = E0exp(−iωt),
a particular solution of this equation describing the oscillation of the electron in x-direction
x(t) = x0exp(−iωt) is:

x =
q

m0 (ω2 + iγrω)
E (t) . (3.8)

The displaced electrons contribute to the macroscopic polarization P = −Nqx, explicitly
given by

P =− Nq2

m0 (ω2 + iγrω)
E (t) , (3.9)
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where N is the density of the conduction electrons and the dielectric displacement, D= ε0E+P,
is

D = ε0

[
1−

ω2
p

(ω2 + iγrω)

]
E (t) , (3.10)

where ωp =
√

Nq2/(m0ε0) is the plasma frequency of the free electron gas. Therefore the
dielectric function is:

ε (ω) = 1−
ω2

p

(ω2 + iγrω)
. (3.11)

The real and imaginary components of this complex dielectric function εm (ω) = ε ′m (ω)+
iε ′′m (ω) are given by

ε
′
m (ω) = 1−

ω2
pτ2

r

ω2τ2
r +1

, (3.12)

ε
′′
m (ω) =

ω2
pτr

ω (ω2τ2
r +1)

. (3.13)

It should however, be noted that the Drude model is only an idealization and describes none
of the real metals perfectly. The plasma model of metals is valid over a frequency range up to
the ultraviolet for alkali metals and to visible frequencies for noble metals (mainly Au and Ag)
[113], when interband transitions of electrons begin to occur. In addition, for noble metals at
near-infrared frequencies it is possible to consider ω � 1/τr [114]. Therefore:

ε
′
m (ω)≈ 1−

ω2
p

ω2 = 1− λ 2

λ 2
p
, (3.14)

ε
′′
m (ω)≈

ω2
p

ω3τr
=

1
2πcτr

λ 3

λ 2
p
, (3.15)

where λ−2
p =Nq2/

(
4π2ε0m0c2). Typical values of m0 and τr for noble metal are given in Table

3.1.
In particular, Johnson et al. [114] reported experimental measurements of the refractive

indices and absorption coefficients of silver, for different wavelengths. These measurements
were fitted by Eqs. 3.5 and 3.6, where the dielectric function are given by Eq. 3.14 and 3.15,
as shown in Fig. 3.1. This indicates that the Drude model is reliable mainly for low energies.

Metal m0 τr ( f s)
Copper 1.49±0.06 6.9±0.7
Silver 0.96±0.04 31±12
Gold 0.99±0.04 9.3±0.9

Table 3.1 Effective optical masses and relaxation times for noble metals [114]
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Figure 3.1 (a) Refractive index and (b) extinction coefficient of silver in differents wavelengths [114].
The solid lines correspond to Drude model.

(b) In MDNCs

The fascinating optical properties of the MDNCs originate from the interaction between
the nanoparticles and the incident light which results in an electronic oscillatory motion at the
interface metal-dielectric. The optical parameters, n and K are effective quantities and have
contributions of the host and the volume fraction occupied by the NPs. A well-established
model to study the optical properties of MDNCs is the Maxwell-Garnett model [115], which
is simple and convenient for modeling due to its linearity. The Maxwell Garnett model is valid
for dielectric composites with dilute conductive phases (below the percolation threshold1). This
is a model that implies the quasistatic approximation and aims to predict the effective optical
response of a composite, without calculate the microscopic electric field. Its main features are:

• The mixture is electrodynamically isotropic.

• The mixture is non-parametric, that is, its parameters do not change in time according to
some law as a result of external forces (electrical, mechanical, etc.).

• The inclusions are spherical NPs with diameter a separated by distances greater than their
characteristic size (b > a).

• The light wavelength λ used to analyze the optical properties, satisfies λ > b > a.

• If there are conducting inclusions, their concentration should be lower than the percola-
tion threshold.

Under these conditions it is possible to consider that the electric field inside a dielectric sphere,
with radius a and dielectric function εNP, placed in an infinite medium of dielectric constant εh,
on which is applied a static and uniform electric field E0 in the z-direction, is given by:

Eins =
3εh

εNP +2εh
E0. (3.16)

1percolation threshold is the limit in which the conductivity of the medium changes from being dominated by
the conductivity of the dielectric component to be dominated by the conductivity of the metallic component.
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The derivation of this equation is detailed in Section 3.4. Consequently, the field outside
the sphere is given by the electric field E0 plus the electric field due to a dipole p, at the origin.
However, for the topology assumed in the Maxwell-Garnett model, the following approxima-
tion is valid

Eout = E0. (3.17)

The induced polarization, P, per unit volume within the NP is related to the electric field by
P = (εNP− εh)Eins, with an electric dipole moment of the form:

p = vNPP = 3εhvNP

(
εNP− εh

εNP +2εh

)
E0, (3.18)

where vNP is the volume of the NP.
Because the electromagnetic radiation corresponds to harmonic fields, the electric field of

the Maxwell-Garnett model corresponds to an average of the fields inside and outside of the
NPs on the volume of the composite. Thus, the effective Maxwell-Garnet field is:

EMG = f Eins +(1− f )Eout , (3.19)

where f is the volume fraction, which is defined as the ratio between the volume occupied by
the NPs and the host. Both electric fields Eins and Eout are homogeneous within the medium,
independent of the volumetric region analyzed. This is a consequence of the interaction be-
tween the particles is not being considered, besides the electric dipole field in the dielectric
medium is neglected.

By introducing the Eqs. 3.16 and 3.17 in Eq. 3.19, we have

EMG =

[
f
(

3εh

εNP +2εh

)
+(1− f )

]
E0. (3.20)

Similarly, the polarization in the Maxwell-Garnett model corresponds to an average, on the
composite volume and on the polarizations inside and outside of the NPs, given by

PMG = εh [ f (εNP−1)Eins +(1− f )(εh−1)Eout ] ,

= εh

[
3 f εh

(
εNP−1

εNP +2εh

)
+(1− f )(εh−1)

]
E0, (3.21)

and by using the relation PMG = εh
(
εe f f −1

)
EMG, it is possible to obtain an expression for the

effective dielectric function of the form:

εe f f = εh
εNP (1+2 f )+2εh (1− f )
εNP (1− f )+ εh (2+ f )

,

εe f f = εh

[
1+

3Θ f
1−Θ f

]
, (3.22)

with
Θ =

εNP− εh

εNP +2εh
. (3.23)
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By considering the host dielectric function, εh, to be real and the NPs dielectric function
as εNP = ε ′NP + iε ′′NP, the real and imaginary parts of the effective dielectric function, ε ′e f f and
ε ′′e f f respectively, are given by:

ε
′
e f f = εh


[
(ε ′NP)

2 +(ε ′′NP)
2
]
(1− f )(1+2 f )+ εhε ′NP

(
4 f 2 + f +4

)
+2ε2

h (1− f )( f +2)[(
ε ′NP
)2

+
(
ε ′′NP
)2
]
(1− f )2 +2εhε ′NP (1− f )( f +2)+ ε2

h ( f +2)2

 ,

(3.24)

ε
′′
NP = εh

 9ε2
h ε ′′NP f[(

ε ′NP
)2

+
(
ε ′′NP
)2
]
(1− f )2 +2εhε ′NP (1− f )( f +2)+ ε2

h ( f +2)2

 . (3.25)

These equations reveal that incident radiation does not distinguish separately the NPs of
the dielectric medium, but the compound as a whole. Therefore, the optical response of the
MDNC depends on all components of the composite, where the strength of each contribution is
managed by the value of f , for these reasons the dielectric function is called effective dielectric
function

(
εe f f

)
.

Again, from Eqs. 3.24 and 3.25 is possible to obtain the optical parameters of MDNC such
as: effective refractive index, ne f f , and the effective extinction coefficient ,Ke f f , as shown in
Fig 3.2. As a demonstration we use CS2 as the host, where its dielectric constant is given by
[116]

εh (λ ) = [nCS2 (λ )]
2 ,

=

[
1.580826+

1.52389×10−2

λ 2 +
4.8578×10−4

λ 4 +
8.2863×10−5

λ 6 +
1.4619×10−5

λ 8

]2

.

(3.26)

Fig. 3.2 shows the variation of the effective refractive index and effective extinction coef-
ficient of MDNC consisting of silver NPs suspended in CS2, by varying the volume fraction.
f = 0 represents to pure CS2 and f = 1 is the pure metal (silver).

3.3 SURFACE PLASMON RESONANCE

Plasmon resonances arise from the collective, resonant oscillations of the conduction elec-
trons. In this thesis, only the case of metals will be considered. A discussion on plasmon in
semiconductors can be found in [117]. Like all oscillators, the conduction electrons have a
characteristic frequency, ωp =

√
Ne2/me f f ε0, known as the plasma frequency, which depends on

the density of electrons, N, and the effective mass, me f f . Plasmon oscillations can be cate-
gorized into three different modes, depending on the applicable boundary conditions: volume,
surface, and localized surface (or particle) plasmons, which are all schematically illustrated in
Fig. 3.3.
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Figure 3.2 Effective (a) refractive index and (b) extinction coefficient of a MDNC consisting of silver
NPs suspended in CS2, for different volume fractions, obtained from Maxwell-Garnett model.

Volume plasmons [Fig. 3.3(a)] are collective oscillations of the conduction electron gas
in a bulk metal. These resonances are not confined, and cannot be directly excited with an
electromagnetic wave. In bulk metals, the motion of the free conduction electron is similar
to a mass being dragged in a viscous fluid, as a consequence appear more than one resonance
frequency, which will differ based on whether the electrons can respond quickly enough to
the driving force of the incident field. Thus, if the incident light frequency (ωin) is larger
than the plasma frequency (ωp), the electrons will not oscillate and the light will be almost
totally transmitted or absorbed in interband transitions. However, if ωin < ωp, the electrons
will oscillate 180° out of phase with the incident light, causing a strong reflection [118], as
shown in Fig 3.3(a).

For the case where the metal is reduced to a thin film, the oscillations only exist at the
surface, giving rise to propagating charge waves known as surface plasmon polaritons (SPPs).
SPPs occur for example at dielectric-metal interfaces. In essence, these resonances correspond
to the oscillations of the longitudinal charge density confined in one dimension. Considering
the directional plasmon propagation along metal surfaces, the wave equation yields two pos-
sible propagation modes, transverse magnetic (TM) , and transverse electric (TE) . Due to the
boundary conditions at the interface between metal and dielectric, only TM modes may excite
surface plasmons. Moreover, the only allowed TM modes must fulfill the dispersion relation:

kSPP (ω) = k0 (ω)

√
εm (ω)εd (ω)

εm (ω)+ εd (ω)
, (3.27)

where kSP (ω) is the propagation constant of the surface plasmon, k0 (ω) is the propagation
constant of the applied fundamental field, εm (ω) is the dielectric function of the metal, and
εd (ω) is the dielectric function of the surrounding dielectric material. The direct consequence
of the dispersion relation [Eq. 3.27] is that surface plasmons can only exist for opposite signs
of the real parts of εm (ω) and εd (ω). For the case of a metal surrounded by a dielectric
material, this condition is always satisfied, because Re [εm (ω)] has negative values in the visible
and near-infrared spectral regions and dielectrics always possess a positive εd (ω). The above
condition also implies that the electric waves decay exponentially perpendicular to the surface.
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Figure 3.3 Different modes of plasmon resonances in metals: a) volume plasmon (with resonance
frequency ωV P), b) surface plasmon (with resonance frequency ωSPR), and c) localized surface plasmon
(with resonance frequency ωLSPR) [118].

Moreover, the dispersion relation also implies that the surface plasmon and the excitation field
have different wavevectors. Therefore, surface plasmons cannot be excited by light propagating
in free space, but special phase-matching techniques, e.g., using a prism (Kretschmann or Otto
configuration), or diffraction grating, are needed to effectively couple light to surface plasmons
[119]. The dispersion curve in Eq. 3.27 defines an angle for which the grating or the prism can
supply the necessary momentum to excite the SPP. At this angle, light will be absorbed (see
Fig. 3.3(b)), leading to a dip in the reflection or transmission spectrum [118].

Plasmons may be excited also in metal NPs that are three-dimensional structures whose
sizes are of the order of the wavelength of the excitation field or less. The oscillations of the
conduction electrons inside such structures are confined in all three dimensions, and are re-
ferred to as localized surface plasmons (LSP) or particle plasmons. In comparison to surface
plasmon, LSP are non-propagating modes which can be easily excited with direct light illumi-
nation, without the use of any special configurations such as prisms or gratings. The interaction
of the applied field with a collection of metal NPs can be described as an electromagnetic scat-
tering problem. However, existing analytical solutions are limited to spheres, spheroids, and
ellipsoids [120]. The approximated response of the collection of particles much smaller than
the wavelength of the optical field can be obtained within the quasi-static approximation, as
shown in the previous Section. In such case, the sizes of individual particles and the distance
between them are much smaller than the wavelength of the incoming light, which means that
the EM field can be treated locally as a constant. Within this approximation, a spherical particle
in a static EM field is characterized by a polarizability:

σ = 4πa3
(

εNP− εh

εNP +2εh

)
, (3.28)

obtained from Eq. 3.18. When the dielectric functions have opposite signs such that Re [εNP] =
−2εh, the polarizability is maximum and the optical frequency satisfying this condition is re-
ferred as localized surface plasmon resonance (LSPR) , this is the so-called Frohlich condition.
This approximation is valid only for particles with sizes smaller than 100 nm. Then, when the
MDNC is illuminated, the incident electric field exerts a force resulting in displacement of the
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conduction electrons inside the NP. The attraction between the positive ions and the electrons
acts as an effective restoring force causing the electrons to move back to its equilibrium po-
sition. The optical frequency satisfying Frohlich condition can be determined from the Drude
model by using Eq. 3.14

ω =
ωp√

1+2εh
, (3.29)

which implies that the resonance frequency depends on the dielectric medium surrounding
the metal NP. LSPR leads to two very important effects: strong absorption and scattering of
the incident light at LSP frequencies as well as strongly enhanced electric fields near the NP
surface [121].

3.4 LOCAL FIELD EFFECTS

In dielectric materials, the atoms or molecules experience not only the external applied
electric field but also the electric field produced by the dipoles that were oriented in the direc-
tion of applied electric field. The electromagnetic field which is responsible for this internal
polarization is called local field. Its values is different from the external field and the average
field inside the medium. The influence of the local field effects on the optical properties of the
medium becomes substantial when the atomic densities of a material system is larger than ≈
1015 cm−3 [122]. The local field effect results in a modification of the optical properties of the
medium and therefore provide some interesting optical phenomena.

In order to account for local-field effects on the optical properties of a material, one needs
to apply a proper model relating the local field to its macroscopic counterparts. There are dif-
ferent models for performing local field-corrections depending on the medium of interest, and
each one predicts different expressions for the local-field correction factor. For homogeneous
media, the Lorentz local field model and the Onsager model, describe the local field effects
in solids and polar liquids, respectively. On the other hand, the real-cavity model is used to
describe composite materials. In this thesis we are interested in media obeying the geomet-
rical configuration of Maxwell-Garnett constituted by metal NPs suspended in a NL solvent.
Therefore the real-cavity model is the most appropriate, but in this Section, we developed both
the Lorentz and real-cavity model, in order to note the similarities and differences between the
local field effects in MDNCs where the surrounding medium is a solid or a liquid phase. The
identification of both models allows us to understand more appropriately the contributions of
HON in both classes of materials, as discussed in Section 3.5.2.

The Lorentz local field model (or virtual-cavity model) treats the solid media as a cubic
lattice of point dipoles of the same sort. The local field, Ẽloc, acting on a specific dipole is
obtained by creating an imaginary spherical cavity around the dipole with radius much larger
than the distance between the dipoles, and much smaller than the optical wavelength. Here,
the contributions from the dipoles situated within the spherical cavity to the local field are
accounted individually, while the dipoles outside the cavity are characterized by an average
macroscopic polarization. This approach yields the well-known expression:

Ẽloc = Ẽ +
1

3ε0
P̃, (3.30)
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where Ẽ and P̃ are the macroscopic average field and polarization.
The dipole moment induced in a typical molecule (or atom) of a losless and dispersionless

medium can be expressed by

p̃ = ε0σ Ẽloc, (3.31)

where σ represents the microscopic polarizability. The relationship between the macroscopic
polarization and the average field of a material with molecular (or atomic) number density N is

P̃ = N p̃,

P̃ = Nε0σ

[
Ẽ +

1
3ε0

P̃
]
. (3.32)

In addition, the macroscopic polarization can be expressed as a sum of linear and NL con-
tributions:

P̃ = P̃L + P̃NL. (3.33)

When considered only the linear term and the linear polarization, given by Eq. 2.3, it
is possible to find a relationship between the linear susceptibility, χ(1), and the microscopic
polarizability, given by

χ
(1) =

Nσ

1− 1
3Nσ

. (3.34)

However, the linear dielectric constant of the medium, ε(1), is related to linear susceptibility
by Eq. 2.6. Thus, it is possible to obtain the relationship of Lorentz–Lorenz (or Clausius–
Mossotti) relation:

1
3

Nσ =
ε(1)−1
ε(1)+2

, (3.35)

and the linear susceptibility can be written as:

χ
(1) =

ε(1)+2
3

Nσ . (3.36)

Finally, by substituting Eq. 3.36 in Eq. 2.3, and inserting the result in Eq. 3.32 and then
using the relationship 3.31, we obtain the equation relating the local field to the average field:

Ẽloc =
ε(1)+2

3
Ẽ, (3.37)

where

LLor =
ε(1)+2

3
, (3.38)

is known as the Lorentz local-field correction factor.
Note that the local field factor defined in Eq. 3.38 differs from the correction factor used

in Eq. 3.16 (the factors are reversed). This discrepancy occurs due to the way in which is
considered the analysis region. In the Onsager [123] and real-cavity models [124], a molecule
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(or atom) is treated as being in a real spherical cavity in the medium, i.e. the cavity has the
same size of a molecule. While the Lorentz model assumes a large cavity. Therefore, the local
field that acts on the molecule is due to the existent field in the center of the real cavity, which
is surrounded by a dielectric medium. The mathematical expression for the field inside the
spherical cavity , Ẽins, is commonly studied in courses of classical electrodynamics and has the
form (see Chapter 4 of [57]):

Ẽins =
3

ε +2
Ẽ, (3.39)

where Ẽ represents the applied macroscopic field. For the special case of MDNCs containing
metal NPs suspended in a host ε = εNP/εh, with εNP and εh being the dielectric function of the
NPs and the host, respectively. In this model, the local-field correction factor is given by:

LCRM =
3εh

εNP +2εh
, (3.40)

which it is the same used for the Maxwell-Garnett model [Eq. 3.16]. Although models lead
to different local-field correction factors, there are sophisticated theories that reconcile both
treatments [125]. Hereafter, the local field factor corresponds to the expression given in Eq.
3.40 and is labeled only as η 2. It is important to note that when εNP ≈ −2εh, the local field
factor increases considerably and as a consequence the local field effects are enhanced.

3.5 NL OPTICAL PROPERTIES

Metal-dielectric nanocomposites have generated considerable interest in NL optics and
nanophotonics technology due to its large third-order NL susceptibility, ultrafast response time,
tunable surface plasmon resonance (SPR) frequency and considerable enhancement of their ef-
fective NL optical response. Such enhancement is due to the local field effects for frequencies
near the LSPR. This can be understood by extend the Maxwell-Garnett model, discussed in Sec-
tion 3.2, considering NL contributions. In this way, Sipe et al. developed an expansion of the
Maxwell-Garnett model for the case where the metal NPs and the host exhibit third-order non-
linearities [100]. For instance, assuming a centrosymmetry medium interacting with linearly
polarized light, it was possible to show that the effective third-order susceptibility

(
χ
(3)
e f f

)
, for

small volume fractions ( f ), is related to the third-order susceptibility of each components by :

χ
(3)
e f f = f

χ
(3)
NP

R2 |R|2
+

χ
(3)
h

{
1− f

{
1−0.4

[
4 |Θ|2 Θ2 +

(
3 |Θ|2 Θ2 +Θ3

)
+9
(
|Θ|2 +Θ2

)]}}
|1−Θ f |2 (1−Θ f )2 ,

(3.41)
com

R = (1−Θ f )
εNP +2εh

3εh
=

1−Θ f
η

, (3.42)

2In this thesis, η is used instead of the original notation L to avoid confusion with the sample length in the next
chapters
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where Θ is given by Eq. 3.23, χ
(3)
NP and χ

(3)
h are the third-order susceptibility of the NPs and

host, respectively. Eq. 3.41 reveals the importance of the local field contributions to increase
the effective third-order susceptibility, since these depend on a fourth-order power. Deduction
of third-order susceptibility [Eq. 3.41] as well as an expansion to higher-order susceptibilities
is shown in Section 3.6.

The first report on the optical nonlinearity of the MDNCs was published in 1985 by Ricard
et al. [126]. Using the optical phase conjugation, under picosecond laser pulse excitation, their
experiments showed a resonance enhancement of the order of 109 and 106 for gold and silver
NPs, respectively. They categorize the resonant and non resonant interaction regime in context
of local field factor. In an effort to understand the source of the NPs nonlinearity, they invoked
three types of NL contributions:

• Intraband contribution: This is due to quasi-free electrons in the conduction band and
is associated with electron transitions at the Fermi level in incompletely filled bands, or
when a filled band overlaps in energy with an empty band. These transitions also provide
an absorption mechanism but at lower energies. Electrons at the Fermi level in metals
are excited by photons of very small energies, for that reason they are essentially consid-
ered as quasi-free electrons. The contribution of the quasi-free electrons to the dielectric
function can be described classically via the Drude model [see Section. 3.2]. Intraband
contributions is a size dependent contribution arising from the confinement of conduction
electrons in the nano-dimension. Correspondingly the contribution is vanishingly small
for nanoparticles having sizes of the order of 10 nm.

• Interband contribution: This contribution is related to optical transitions between two
electronic bands, or interband transitions (from filled bands to states in the conduction
band, or from the latter to empty bands of higher energy). By virtue of the Pauli exclusion
principle, a d-band electron can only be excited into an unoccupied state of the conduc-
tion band, i.e., above the Fermi energy. Thus, there is a minimal photon energy for which
the interband transition can occur, corresponding to the excitation of an electron from the
top of the valence band to the Fermi level situated in the conduction band. This defines
an energy threshold below which the imaginary part of the interband contribution to the
dielectric function is zero. In particular, this threshold falls in the UV range for silver
(3.9 eV) [127] and in the visible range for gold and copper (at around 2.4 and 2.1 eV,
respectively) [127, 128].

• Hot-electrons contribution: This contribution results from the heating of conduction elec-
trons induced by a light pulse with duration time shorter than the thermalization time of
electrons [33]. When a short light pulse illuminates a MDNCs, part of the energy in the
pulse is absorbed by the electrons in the metal, and the energy distribution among the
electrons can be highly nonthermal. Subsequent electron-electron scattering results in
thermalization of the electrons, which happens during the first few hundreds of femtosec-
onds. Shortly thereafter, the hot-electron relaxation process occurs on ultrafast timescales
due to strong electron-phonon interactions. This ultrafast process allows to modify the
metallic dielectric function to a considerable extent.
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From these contributions, it is possible to observe that the NL response of MDNCs depends
on extrinsic parameters such as: frequency and pulse duration of incident laser. However, the
NL optical properties are also heavily dependent on the material parameters, such as: sizes and
shape of the NPS, as well as of the surrounding dielectric environment. Proper manipulation of
these parameters allows to enhance substantially the NL response of the composite.

3.5.1 Influence of the Size, Shape and Environment on the NPs Nonlinea-
rities

Size and shape dependence

The dependence of LSPR wavelength on the size of the nanoparticles can be clearly seen by
the size dependence in the scattering and absorption cross-section, as defined by the Mie theory
[129]. Fig. 3.4(a) displays the dependence of LSPR wavelength with the size of spherical silver
NPs. The red-shifting of the plasmon resonance for larger particles, in most simple terms, can
be attributed to the reduction in the restoring force due to the increasing distance between the
conduction electrons and the positive ions. Further increase in the size of the nanoparticles leads
also to higher modes of oscillations as the electrons are no longer able to respond homogenously
to the applied field due to field retardation across the NP [130].

Variation in the LSPR not only depends on the particle size, but also on the NP shape [131].
Probably, the most exotic example of this can be seen in the case of rod shaped nanostruc-
tures. Nanorods can be approximated as nanoparticles elongated along one of its axis. The
elongated shape of the nanorod causes the conduction electrons to oscillate in two different
directions depending upon the polarization of the incident light. The two LSPRs are termed as
either longitudinal or transverse resonances depending on whether the direction of oscillation
is along the long or short axis of the nanorod. Besides nanospheres and nanorods, various other
nanostructures of different shapes have been designed and fabricated showing different optical
properties. Fig. 3.4(b) exhibits the dependence of LSPR wavelength with the shape of different
silver NPs.

Therefore, it is possible to conclude that both the size and the shape dependence of the
LSPR produce changes on the linear optical properties of the material such as: linear refractive
index and linear extinction coefficient [131].

However, since the variation in size and shape of the particles alters the intensity and po-
sition of the LSPR, and this in turn modifies the effects of local field, then the NL optical
properties are also affected by variations of the intrinsic parameters of MDNCs (size and shape
of NPs). Accordingly, Uchida et al. reported an increase of two orders of magnitude in the
effective third-order susceptibility of cooper-doped glasses (with NP radius between 2.5 nm
and 47.7 nm) and silver-doped glasses (with NP radius between 2.1 nm and 15.3 nm), using a
degenerate four-wave mixing (DFWM) experiment [134]. Nevertheless, the results show that
the third-order susceptibility of the metal is almost independent of the particle size. A proper
interpretation of this phenomenon was performed in terms of the increase of the mean free path
of the conduction electrons in the metal NPs. Here, the NL response was due to thermo-optic
contribution. A similar study was reported in copper nanoclusters [135]. With the evolution
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Figure 3.4 (a) Size and (b) shape dependence of the extinction spectra of silver NPs. (Reprinted of
[132] and [133])

of the nanotechnology, different types of routines were developed allowing to prepare MDNCs
with proper control of the particle size. Thus, several other works showing the size dependence
of nonlinearity in MDNCs were reported [136, 137, 138, 139, 140].

Recently, a theoretical and numerical approach predicts the size dependence of the third-
order susceptibility of the metal NPs based on quantum finite-size effects of conduction elec-
trons in metal particles [141]. Experimental results that corroborate this theory were performed
with silver NPs deposited on a SiO2 substrate [142]. Here, quantum size effects lead to an
increase in the nonlinearity of Ag NPs with size between 3 nm and 16 nm. Fig. 3.5 shows the
increase of the real and imaginary part of the third-order susceptibility of Ag with the decrease
in the particle size [142].

In analogy, studies of the nonlinearity in MDNCs depending on the NP shape were reported
due to changes in the LSPR [143, 144, 145, 139]. In addition, a numerical model based on the
effective medium approximation combined with the discrete dipole approximation allows to
predict large enhancements of the NL susceptibility by manipulate the size and shape of the
metal NPs, in order to tune the LSPR to a desired frequency [140]. Fig. 3.6 shows the varia-

Figure 3.5 Size dependence of (a) real and (b) imaginary components of the third-order susceptibility
of Ag particles with diameters ranging from 3.0 to 16 nm. (Reprinted of [142])
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tions of the NL susceptibility for three different shapes of Ag NPs (nanosphere, nanorod and
nanotriangle) hosted in silica [140]. Here, it is possible to note that thee number of peaks of the
NL susceptibility increases for the NPs with many sharp edges, offering the possibility of con-
trol their NL properties. Moreover, the amplitude of the resonance peaks of the susceptibility
decreases for particles with several sharp edges, but the nonresonant susceptibility in the long-
wavelength tail is enhanced for such particles. The field redistribution and enhancement in this
case results from excitation of both dipole resonances and quadrupole resonances in each type
of NP.

Although most studies associate the shape dependence of nonlinearity with variations in the
LSPR, it was also shown that the electron relaxation times varies with the shape of the NPs; as
a consequence the contributions of hot-electrons vary the NL response of the MDNC [146].

Figure 3.6 Real and imaginary components of third-order susceptibility of silver (a) nanospheres, (b)
nanorods and (c) nanotriangles. (Reprinted of [140])

Influence of the Environment/Host

The LSPR wavelength of the metal NPs is also influenced by the dielectric properties of the
surrounding media. Higher values of the dielectric function of the surrounding media (εh) re-
sult in smaller restoring force because more surface charges are compensated by the polarized
charges of the surrounding medium. In general, for non-absorbing surroundings, an increase
in the index of refraction of the surroundings leads to a red-shifts of the LSPR. The interplay
between the substance and the surroundings is critical, and occasionally non-intuitive. Specifi-
cally, differences in the wavelength-dependent behavior of the dielectric functions involved can
substantially alter both the position and strength of the LSPR.

In MDNCs, the environment usually corresponds to a dielectric host and the stabilizing
agents. Both surrounding media can change the NL response of the MDNC. For instance,
the dielectric constant of the host acts directly on the effective NL susceptibility, as seen in
the Maxwell-Garnett model [Eq. 3.41]. Also a stabilizing agent covering the NPs as a shell,
changes the dielectric function of the NP and consequently the effective NL response of the
MDNC. Table 3.2 shows the values of the effective third-order susceptibilities for silver col-
loids stabilized with three different agents, reported by Gómez et al. [147]. Changes in the
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Samples Re
[
χ
(3)
e f f

] (
×10−22 m2/V 2) Im

[
χ
(3)
e f f

] (
×10−22 m2/V 2)

Sodium citrate capped Ag NPs −9.7±1.4 1.8±0.3
PVP capped Ag NPs −7.8±1.2 4.2±0.6
PVA capped Ag NPs −15±2.2 4.7±0.7

Table 3.2 Effective third order susceptibility for silver colloids stabilized by different agents [147].

magnitude of the χ
(3)
e f f of more than 100% illustrate the strong dependence of the NL response

of a MDNC with the stabilizing medium and the route of synthesis. The results can be under-
stood as the influence of adsorbed molecules, used as the stabilizing agent, on the NP surface
which lead to changes in its dielectric function, being able to increase the NL interaction with
electromagnetic field.

Also, Gómez et al. [148] reported changes in the effective third-order susceptibilities of
silver colloids when suspended in different solvents, as shown in Table 3.3. The interpretation
of why the host acts on the nonlinearity of the MDNC is directly observed in Eq. 3.41 from
the Maxwell-Garnett model. However, the experimental results also reveal that solvents with
molecules presenting large electric dipole moment significantly change the NL response of the
MDNC.

On the other hand, it is well known that the NL response of MDNCs is strongly influenced
by the local field effects, which in turn is directly related with the time taken by LSP to lose its
coherence. Although the local field enhancement is relevant to the NL behavior of MDNCs, it
is often neglected because its dephasing time is very short (few femtoseconds) [149]. Almeida
et al. reported variations in the LSP dephasing (LSP-DTs) in silver colloids depending on
the stabilizing agents used in their preparation [150]. The persistent spectral hole burning
(PSHB) technique was used to measure LSP-DTs of 3.0, 2.3 and 1.8 fs for silver NPs stabilized
by trisodium citrate, PVP and PVA, respectively. The differences between LSP-DTs were
attributed to changes in the electronic density of states due to the interaction between the NPs
and the capping agents caused mainly by Landau damping and chemical interface damping
(CID) effects [150]. Effects of size and shape of the NPs can also vary the LSP-DTs producing
changes in the NL response of the MDNCs [151, 152].

Host Re
[
χ
(3)
e f f

] (
×10−20 m2/V 2) Im

[
χ
(3)
e f f

] (
×10−22 m2/V 2)

Methanol −1.00 5.32
Water −0.36 10.6

Acetone −1.62 3.05
Ethylene glycol −3.76 6.99

Table 3.3 Effective third order susceptibility for silver colloids suspended in different solvents [148].
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3.5.2 Origin of HON in MDNCs
Although the NL behavior of MDNCs is being studied for a long time, only in the last

decade it was reported the presence of HON [23, 24]. In principle, HON in MDNC were pre-
dicted as a result of the large third-order nonlinearity of the metal NPs, which are enhanced by
tuning the LSPR [126]. On this base, theoretical studies show that large third-order nonlinearity
can lead to fifth-order NL response in MDNCs [153, 32]. The origin of the quintic nonlinearity
can be thought of as an iterative effect, because the field inside the particle depends on the
dielectric function of the metal and in the NL regime, the dielectric function itself depends on
the applied field. In this sense, HON in MDNCs frequently appear by using intense light pulse
with short time duration (of the order of picosecond or femtosecond). However, the strength
and origin of the HON vary with the wavelength and pulse duration [23, 154]. Concerning to
the wavelength dependence of the nonlinearity, for the special case of silver NPs, it is known
that for photon energies smaller than 2 eV the light absorption is dominated by intraband tran-
sitions. Moreover, photons of 3eV the optical absorption is dominated by the LSPR, while for
photon energies above 4 eV interband transitions dominate the optical response [23]. On the
other hand, HON in MDNCs are of electronic origin when the pulse duration is shorter than
the electron thermalization time (few hundreds of femtoseconds), and for higher pulse duration
their origin is the contribution of hot electrons [33].

One of the first theoretical works that considers the presence of HON in MDNCs, due to
large third-order nonlinearity, was developed by Kothari [32]. This model introduced an exact
solution to the effective dielectric function of the MDNC, by using the effective-medium theory
based on the T-matrix approach, which predicts that the local electric field should be the same
in all NPs, independent of the local arrangement inside a composite. Under these conditions,
considering the dielectric function of one NP as: εNP + χ

(3)
NP |EL|2 and assuming to be a very

diluted media ( f � 1) with a linear host
(

χ
(3)
h = 0

)
, it is possible to rewrite the Eq. 3.41 in

the form:

χ
(3)
e f f = f

χ
(3)
NP

R′2 |R′|2
, (3.43)

with R′ = (εNP +2εh)/3εh = η−1. In addition, the total effective dielectric function of the
MDNC can be written as a function of local field as [32]:

εtotal = εNP,e f f +
χ
(3)
NP,e f f |R′|

2 |EL|2

1+a0 |EL|2
, (3.44)

where εNP,e f f and χ
(3)
NP,e f f correspond to the contribution of the dielectric functions and third-

order susceptibilities of all NPs, respectively. Also,

a0 =

(
χ
(3)
NP

εNP +2εh

)
, (3.45)
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and the local field, EL, is related to the mean macroscopic field E by:

E = R′EL

(
1+a0 |EL|2

)
. (3.46)

For weak fields, Eq. 3.44 can be expanded as a power series in function of the macroscopic
field, such that it is possible to express the total dielectric function as:

εtotal = εNP,e f f +χ
(3)
total, (3.47)

with

χ
(3)
total = χ

(3)
NP,e f f + χ̄

(5) |E|2 + χ̄
(7) |E|4 + χ̄

(9) |E|6 + . . . , (3.48)

where

χ̄
(5) =− ς0χ

(3)
NP,e f f ς0 =

2a0 +a∗0
|R′|2

χ̄
(7) =

(
ς1 + ς

2
0
)

χ
(3)
NP,e f f ς1 =

a2
0 + |a0|2 +

(
a∗0
)2

|R′|4
(3.49)

χ̄
(9) =−

(
ς2 +2ς1ς0 + ς

3
0
)

χ
(3)
NP,e f f ς2 =

2a3
0 +3 |a0|2

(
a0 +a∗0

)
+2
(
a∗0
)3

|R′|6

From these equations, it is possible to observe that the HON depend only on the third-order
nonlinearity, previously obtained in the Maxwell-Garnett model.

A quick interpretation of the Kothari model reveals that the origin of HON is due to
cascaded-like contributions of the third-order nonlinearities. However, this model disregards
the intrinsic contributions of the HON in MDNCs. For a better understanding of the origin of
HON in MDNCs, it is useful to distinguish the different mechanisms that contribute to enhance
their magnitude and effects. In recent work, Dolgaleva et al. define the concepts and mark
the differences between three types of NL contributions in nanocomposites, corresponding to
the direct (intrinsic) and the two cascaded contributions (microscopic and macroscopic) [155].
To give rise to a simple interpretation of the NL response in nanocomposites, Dolgaleva treats
the medium as a two-level atomic system and analyzes the nature of the fifth-order nonlin-
earities taking into consideration the local field effects. However, a treatment in atomic scale
requires to express the NL response in terms of the NL hyperpolarizability, γNL. The three NL
contributions are briefly discussed below.

Intrinsic Optical Nonlinearities

The third- and fifth-order optical susceptibilities have the direct contributions from the
corresponding third- and fifth-order microscopic hyperpolarizabilities, respectively, which are
called the intrinsic optical nonlinearities. “Direct contribution” is understood as the linear de-
pendence between χ( j) and γ

( j)
at , when N and LLor are assumed to be constant. Here, the NL

responses are expressed by the local field corrected effective susceptibilities as [156]
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χ
(3)
int = Nγ

(3)
at |LLor|2 L2

Lor, (3.50)

χ
(5)
int = Nγ

(5)
at |LLor|4 L2

Lor, (3.51)

where N is the molecular or atomic density, LLor is the Lorentz local field correction factor, γ
(3)
at

and γ
(5)
at are the third- and fifth-order microscopic hyperpolarizabilities, respectively. It can be

seen that the intrinsic contribution has a linear dependence with N.

Microscopic cascaded contribution

Microscopic cascade has a local nature, i.e. the fields acts on individual molecules (or
atoms) in the medium and the NL polarization induced can couple with the generated field but
the process does not require propagation nor phase matching [157]. If a medium lacks inversion
symmetry, the local field effect creates the microscopic cascaded contribution from the second-
order hyperpolarizability

(
γ
(2)
at : γ

(2)
at

)
to the third-order nonlinear optical susceptibility

(
γ
(3)
at

)
[157]. In analogy, the third-order hyperpolarizability of a centrosymmetric material, that does
not possess the second-order hyperpolarizability, gives rise to the fifth-order NL response by
microscopic cascading

(
γ
(5)
at ∝ γ

(3)
at : γ

(3)
at

)
[158]. It was shown that the microscopic cascaded

contribution to the fifth-order optical nonlinearity
(

χ
(5)
micro

)
are also affected by local field effect

and can be expressed by [156]:

χ
(5)
micro =

24π

10
N2
[
γ
(3)
at

]2
|LLor|4 L3

Lor +
12π

10
N2
∣∣∣γ(3)at

∣∣∣2 |LLor|6 LLor. (3.52)

Notice that in this case the fifth-order susceptibility has a quadratic dependence with N.

Macroscopic cascaded contribution

Macroscopic cascade process are of nonlocal nature. That is, an intermediate field gen-
erated by a lower-order NL process propagates to contribute to a higher-order NL process by
nonlinearly interacting with the fundamental field [159]. For instance, the intensity-dependent
refractive index, which is a χ(3) process, can be mimicked by a two-step sequence of the
second-harmonic generation

[
χ(2) (2ω;ω,ω)

]
followed by the difference-frequency genera-

tion
[
χ(2) (ω;2ω,−ω)

]
with a fundamental wave at ω . It was shown that the measured

χ(3) contains contributions proportional to
∣∣∣χ(2)

∣∣∣2 for materials having no inversion symme-
try [160]. Similarly, the macroscopic contribution to the total electric field generated by the

fifth-order nonlinear process χ
(5)
macro is proportional to

∣∣∣χ(3)
∣∣∣2 for any material and therefore to

N2 [155]. The mathematical expression for this type of contribution strongly depends on the
configuration to be studied, because macroscopic cascade process are affected by the propaga-
tion and phase matching conditions.

Similar expressions for the high-order susceptibilities of MDNCs, corresponding to intrin-
sic and microscopic cascaded contributions, are presented in Section 3.6 based on the Maxwell-
Garnett model.
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3.5.3 Measurement and Analysis of HON
Nowadays, several works are dedicated to the study of HON in different physical systems

by using a wide variety of characterization techniques. In special, HON in MDNCs are widely
explored by one of the most known NL characterization techniques, called: Z-scan technique
[27]. This thesis also makes use of this simple and elegant technique to characterize the NL
response of the metal colloids studied here.

The Z-scan technique bases its principle of operation on the self-focusing and self-defocusing
effects, discussed in Section 2.5.1. This technique has gained much popularity because it al-
lows to identify the sign and magnitude of the NL parameters with a simple analysis of the
transmittance curve. However, it has been demonstrated that the Z-scan technique has a high
sensitivity to detect HON [23]. In general, short light pulse with intensities on the order of
GW/cm2 are needed to explore the HON in MDNCs. In order to perform the measurements
of NL refraction, a light beam is focused onto a thin cell, containing the NL material, mov-
ing along the direction of propagation (z-direction) around the region where the laser beam is
focused. The intensity of the transmitted light is detected after passing through a small aper-
ture placed in front of a photodetector in the far-field. For this reason, this configuration is
called closed-aperture (CA) Z-scan scheme. For focusing (defocusing) media, corresponding
to nNL > 0 (nNL < 0), the Z-scan transmittance curve shows a valley (peak) followed by a peak
(valley) to displacement of the sample from before to after the focal plane of the laser. Fur-
ther details on the Z-scan technique are given in Appendix A. Changes of the transmittance in
far-field are related to the phase-shift experienced by a beam when it passes through a material
with NL refractive index nNL. The NL phase obtained from the Z-scan experiments considering
HON terms can be expressed by [23]:

4ΦNL = ∑
N=1
4Φ

(2N+1)
0 , (3.53)

with

4Φ
(2N+1)
0 = kn2NIN

[
1− exp(−Nα0L)

Nα0

]
, (3.54)

where4Φ
(2N+1)
0 is the (2N +1)th-order phase-shift, I is the incident intensity, L is the sample

length, k = 2πn0/λ , λ is the laser wavelength, n0 and α0 are the linear refraction index and
linear absorption coefficient, respectively. By using the Gaussian decomposition method [27],
it is possible to obtain an expression for the normalized transmittance at far-field, given by [23]:

T (z,4ΦNL)∼= 1+ ∑
N=1

(4N)4Φ
(2N+1)
0 (z/z0)[

(z/z0)
2 +(2N +1)2

][
(z/z0)

2 +1
]N , (3.55)

where z0 is the Rayleigh length of the focused beam. Eq. 3.55 is the general expression for
the CA Z-scan transmittance curves as a function of the propagation distance around the focal
plane. However, for the characterization of the HON there are a large number of parameters
that must be fitted to the experimental results, leading to significant errors in the calculation of
NL coefficients. In order to improve the fit procedure, a better way is to express the peak-valley
transmittance variation,4Tp,v, as a function of the incident intensity of the form [23]:
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4Tp,v ∼= 0.4064Φ
(3)
0 +0.2104Φ

(5)
0 +0.1304Φ

(7)
0 +0.0874Φ

(9)
0 + . . . , (3.56)

where the coefficients were obtained by considering the mean peak–valley separation4zp,v =
1.7z0. This value can vary depending on the experimental setup. Falcão et al. [23] emphasizes
that the value of 4zp,v depends also on the intensity, i.e. NL contributions of different orders
will present their peaks and valleys in different positions. By substituting Eq. 3.54 in Eq. 3.56,
we have

4Tp,v

I
∼= 0.406kn2

[
1− exp(−α0L)

α0

]
+0.210kn4I

[
1− exp(−2α0L)

2α0

]
+0.130kn6I2

[
1− exp(−3α0L)

3α0

]
+0.087kn8I3

[
1− exp(−4α0L)

4α0

]
+ . . . ,

(3.57)
4Tp,v

I
= n2,e f f +n4,e f f I +n6,e f f I2 +n8,e f f I3 + . . . , (3.58)

which reduce the number of terms to be fitted. Eq. 3.58 also reveals that 4Tp,v/I will be
constant in media with only cubic nonlinearity. In cubic-quintic media, 4Tp,v/I will have a
linear dependence with the intensity. Media exhibiting HON higher than fifth-order, will show
a polynomial dependence of4Tp,v/I with the intensity.

The analysis of the NL absorption regime is similar. The only modification in the experi-
mental setup of the Z-scan technique is that the small aperture is removed, so it is called open-
aperture (OA) Z-scan scheme. In this configuration, the transmittance curve displays only one
valley (or peak) in the region of highest intensity, that is around the focus plane (z = 0), due
to NL absorption (or saturated absorption) effects. Here, the original expression to dissipative
media, developed in [27], is used to model the normalized transmittance in far field:

T (z,q0) =
1√
πq0

∞̂

−∞

ln
[
1+q0exp

(
−τ

2)]dτ, (3.59)

with

q0 =
αNLI

1+
(
z2/z2

0
) [1− exp(−α0L)

α0

]
, (3.60)

αNL = ∑
N

α2N,e f f IN (3.61)

and α2N,e f f being the effective (2N +1)th-order absorption coefficient of the medium. In anal-
ogy to the refractive treatment, the intensity dependence of4T can be expressed by [23]:

4T
I

= (2)−
3
2

[
1− exp(−α0L)

α0

][
α2 +α4I +α6I2 +α8I3 + . . .

]
. (3.62)
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Eq. 3.62 shows also a polynomial dependence of4T/I with the intensity, where the coef-
ficients correspond to the NL absorption coefficients of different orders.

Therefore, high-order NL susceptibilities are obtained by measuring the transmittance vari-
ation, 4T , in the experimental CA and OA Z-scan curves and plot a graphics of 4T/I vs I.
Then, Eqs. 3.58 and 3.62 are used to fit the experimental points, allowing to find the values
of the NL parameters

(
n2N,e f f and α2N,e f f

)
. Finally, these coefficients are used in Eqs. 3.55

and 3.59 to model the CA and OA Z-scan curves, corroborating the values previously found.
High-order NL susceptibilities are obtained by using the Eqs. 2.85 and 2.86.

3.6 GENERALIZED MAXWELL-GARNETT MODEL

Section 3.2 presented the importance of using the Maxwell-Garnett model to interpret the
linear optical properties of MDNCs. An extension of this model was performed in [100] in-
cluding the contributions of lower-order nonlinearity, as shown in section 3.5. However, in both
theoretical treatments the contributions of HON were neglected.

In order to understand the high-order NL optical properties exhibited by the MDNCs, it has
been developed an extension of the Maxwell-Garnett model including the contributions of χ

(3)
e f f ,

χ
(5)
e f f and χ

(7)
e f f . This section and the next chapters correspond to original contributions of this

thesis. Here, the MDNC is considered to be composed by spherical NPs with diameter a, being
smaller than their relative distance b, suspended in a NL solvent (host). The nanocomposite
is supposed to be homogeneous and highly diluted, f � 1, where f corresponds to volume
fraction occupied by metal NPs. The light wavelength, λ , satisfies the condition: λ > b > a.

Under these conditions the optical field Ẽ0 , considered uniform on each particle, induces
an optical polarization that in the quasi-static approximation regime can be written as:

P̃ = P̃h +
1
V

NNP

∑
i=1

p̃i, (3.63)

where P̃h is the host polarization, NNP is the number of NPs inside the volume V and p̃i =
εhσiẼ0 is the induced dipole moment of each NP; σi = 3viβ is the NP polarizability, with
Θ = (εNP− εh)/(εNP +2εh) [Eq. 3.23], where εNP (εh) is the dielectric function of the NPs
(host) and vi is the NP volume; Θ depends on |E0| through of the dielectric functions of NP
(εNP) and the host (εh). Hence, the optical polarization is given by:

P̃ = ε
L
h

{
εh

εL
h

[
χh +

3Θ f
1−Θ f

]}
Ẽ0,

= ε
L
h

{
χ

(∣∣Ẽ0
∣∣2)} Ẽ0, (3.64)

where f = V−1
∑

NNP
i=1 vi is the volume fraction, χh is the host susceptibility, εNP and εh can be

expressed as a sum of the linear and NL contributions as εh,NP = εL
h,NP + εNL

h,NP, where the NL
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terms are given by:

ε
NL
NP = ε

L
h

[
3
4

χ
(3)
NP

〈∣∣ẼNP
∣∣2〉+ 5

8
χ
(5)
NP

(〈∣∣ẼNP
∣∣2〉)2

+
35
64

χ
(7)
NP

(〈∣∣ẼNP
∣∣2〉)3

]
, (3.65)

ε
NL
h = ε

L
h

[
3
4

χ
(3)
h

〈∣∣Ẽ0
∣∣2〉] , (3.66)

with χ
( j)
NP , j = 3, 5, 7 , being the j-th susceptibility of the NPs and χ

(3)
h belongs to the host,〈∣∣Ẽ0

∣∣2〉 correspond to the mean square modulus of the applied electric field. The contributions

of χ
(2 j+1)
h , j ≥ 2, were neglected because the solvents (host) used for the experiments exhibits

only third-order nonlinearity for the range of intensities used. The numerical coefficients of
Eqs. 3.65 and 3.66 correspond to the degeneracy factors for the i-th order process in the con-
vention of [58], adopted in this thesis. Due to the small value of f the intensity dependent
susceptibility is written as:

χ

〈∣∣Ẽ0
∣∣2〉= χh +3Θ f , (3.67)

where the NL terms in f were neglected because: (Θ f ) j� 1+Θ f , j ≥ 2. The mean squared
modulus of the electric field inside the NP is represented by

〈∣∣ẼNP
∣∣2〉= |η ′|2

∣∣Ẽ0
∣∣2 with η ′ =

3εh/(εNP +2εh).
The effective NL susceptibilities of different orders are determined by performing two se-

ries expansions in terms of
∣∣Ẽ0
∣∣2 and

∣∣ẼNP
∣∣2. The first expansion consists in expressing χ (y)

as a Taylor series up to third order in y =
∣∣Ẽ0
∣∣2 that assumes the form:

χ (y)≈ χ (0)+
(

∂ [χ (y)]
∂y

)
y=0

y+
1
2

(
∂ 2 [χ (y)]

∂y2

)
y=0

y2 +
1
6

(
∂ 3 [χ (y)]

∂y3

)
y=0

y3, (3.68)

with the coefficients of the expansion obtained by introducing Eqs. 3.65 and 3.66 in Eq. 3.64
and calculating the derivatives of χ (y) with respect to y. Since f � 1, the coefficients in Eq.
3.68 can be written as:

(
∂ [χ (y)]

∂y

)
y=0

=
3
4

χ
(3)
h +

3
4

f η
2 |η |2 χ

(3)
NP, (3.69)(

∂ 2 [χ (y)]
∂y2

)
y=0

=
5
4

f η
2 |η |4 χ

(5)
NP−

3
8

f η
3 |η |4

[
χ
(3)
NP

]2
, (3.70)(

∂ 3 [χ (y)]
∂y3

)
y=0

=
105
32

f η
2 |η |6 χ

(7)
NP +

9
32

f η
4 |η |6

[
χ
(3)
NP

]3
− 15

8
f η

3 |η |6
[
χ
(3)
NPχ

(5)
NP

]2
,

(3.71)

where η = 3εL
h /
(
εL

NP +2εL
h

)
[Eq. 3.40]. Equations 3.69-3.71 were derived neglecting χ

(5)
h and

χ
(7)
h , and terms proportional to

(
χ
(3)
h

)2
and

(
χ
(3)
h χ

(3)
NP

)
. These considerations are based on
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the assumption that χ
(3)
h � χ

(3)
NP . For instance, silver colloids used in the next chapters display

values of χ
(3)
NP that are approximately five orders of magnitude larger than χ

(3)
h , when f = 10−5.

In order to obtain an expression of the electric field inside the NPs in terms of Ẽ0, a second

expansion was performed for |η ′|2 as function of z =
√〈∣∣ẼNP

∣∣2〉 written as:

〈∣∣ẼNP
∣∣2〉≈(∣∣η ′∣∣2)

z=0

1+
1
2

∂ 2
(
|η ′|2

)
∂ z2


z=0

∣∣Ẽ0
∣∣2 + 1

4

∂ 2
(
|η ′|2

)
∂ z2

2

z=0

(∣∣Ẽ0
∣∣2)2

 |E0|2 ,

(3.72)
considering

(
∂ |η ′|2 /∂ z

)
z=0

= 0 and
〈∣∣ẼNP

∣∣2〉= |η ′|2
∣∣Ẽ0
∣∣2. Introducing Eqs. 3.65 and 3.66

in the expression for |η ′|2 and calculating the derivatives with respect to z, we obtain〈∣∣ẼNP
∣∣2〉≈ |η |2{1− 1

2
|η |2 Re

[
ηχ

(3)
NP

]∣∣Ẽ0
∣∣2 + 1

4
|η |4

(
Re
[
ηχ

(3)
NP

])2 ∣∣Ẽ0
∣∣4}∣∣Ẽ0

∣∣2 . (3.73)

The expansion of χ as a Taylor series up to third order in z2 is given by:

χ
(
z2)≈ χ (0)+

(
∂
[
χ
(
z2)]

∂ (z2)

)
z2=0

z2+
1
2

(
∂ 2 [χ (z2)]

∂ (z2)
2

)
z2=0

(
z2)2

+
1
6

(
∂ 3 [χ (z2)]

∂ (z2)
3

)
z2=0

(
z2)3

,

(3.74)
and substituting Eq. 3.73 in Eq. 3.74 we have

χ

(∣∣Ẽ0
∣∣2)≈ χ (0)+ |η |2
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∂
[
χ
(
z2)]

∂ (z2)
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∣∣Ẽ0
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1
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∂ (z2)
2 −

∂
[
χ
(
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∂ (z2)
Re
[
ηχ

(3)
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])
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∣∣Ẽ0
∣∣4

+
1
6
|η |6

(
∂ 3 [χ (z2)]

∂ (z2)
3 −3

∂ 2 [χ (z2)]
∂ (z2)

2 Re
[
ηχ

(3)
NP

]
+

3
2

∂
[
χ
(
z2)]

∂ (z2)

(
Re
[
ηχ

(3)
NP

])2
)

z2=0

∣∣Ẽ0
∣∣6 . (3.75)

Expressing the effective dielectric function of the MDNC as 2.80:

εe f f = εh + ∑
j−odd

j!21− j[
j−1
2

]
!
[

j+1
2

]
!
χ
( j)
e f f (ω)

∣∣Ẽ0
∣∣ j−1

, (3.76)

it is possible to obtain the effective susceptibility as a function of
∣∣Ẽ0
∣∣2 that can be written,

according to [58], as

χe f f

(∣∣Ẽ0
∣∣2)= χ

(1)
e f f +

3
4

χ
(3)
e f f

∣∣Ẽ0
∣∣2 + 5

8
χ
(5)
e f f

∣∣Ẽ0
∣∣4 + 35

64
χ
(7)
e f f

∣∣Ẽ0
∣∣6 . (3.77)
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Finally, by comparison of Eqs. 3.76 and 3.77, using the coefficients given by Eqs. 3.69-
3.71, we obtain expressions for the effective third-, fifth- and seventh-order susceptibilities as:

χ
(3)
e f f = f η

2 |η |2 χ
(3)
NP +χ

(3)
h , (3.78)

χ
(5)
e f f = f η

2 |η |4 χ
(5)
NP−

6
10

f η
3 |η |4

[
χ
(3)
NP

]2
− 3

10
f η |η |6

∣∣∣χ(3)
NP

∣∣∣2 , (3.79)

χ
(7)
e f f = f η

2 |η |6 χ
(7)
NP +

12
35

f η
4 |η |6

[
χ
(3)
NP

]3
+

3
35

f |η |8
[
4 |η |2 χ

(3)
NP + |η |2

(
χ
(3)
NP

)∗]∣∣∣χ(3)
NP

∣∣∣2
− 4

7
f η |η |6

[
2η

2
χ
(3)
NP + |η |2

(
χ
(3)
NP

)∗]
χ
(5)
NP. (3.80)

It can be seen from Eq. 3.78 that χ
(3)
e f f may be cancelled adjusting f and the result is inde-

pendent of the laser intensity. However, Re
(

χ
(3)
e f f

)
and Im

(
χ
(3)
e f f

)
are canceled for different f

values. Eq. 3.79 indicates that the effective fifth-order susceptibility, χ
(5)
e f f , is due to the NPs

nonlinearity corresponding to intrinsic contribution, χ
(5)
NP , and contributions depending on the

second power of χ
(3)
NP , in analogy to the treatment developed by Dolgaleva [Eqs. 3.51 and 3.52].

Similarly, Eq. 3.80 shows that the NPs contribution to χ
(7)
e f f are due to χ

(3)
NP , χ

(5)
NP , and χ

(7)
NP , with

different powers. Notice that the contributions of the NPs susceptibilities are enhanced due to
the high powers of η and |η |. .

Out of the cradle onto dry land here it is standing: atoms with
consciousness; matter with curiosity.

Stands at the sea, wonders at wondering: I a universe of atoms an atom in
the universe.

- RICHARD FEYNMAN
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4 NONLINEARITY MANAGEMENT (NM) OF OF
MDNCs

4.1 INTRODUCTION

Metal-dielectric nanocomposites is attracting large interest due to their high NL optical sus-
ceptibility, fast response and the possibility of controlling their optical behavior manipulating
its LSP. Glasses, polymers and liquids containing metallic NPs are illustrative examples of MD-
NCs of interest for photonics, nanoscience and nanotechnology [145, 161, 162, 163, 164, 165].

The NL response of a MDNC to optical fields is described by effective susceptibilities
containing information on the host and the NPs. Therefore, the induced polarization of a
centro-symmetric MDNC is described by a power series in the optical field having the ef-
fective susceptibilities, χ

(2 j+1)
e f f , j = 1, 2, 3, . . ., as coefficients of the expansion. However,

most of the NL studies reported are related to lowest-order NL susceptibility
(

χ
(3)
e f f

)
that is

responsible for effects such as 2PA, coherent Raman scattering, among other. Up to now,
the majority of studies based on the NL optical properties of MDNCs were focused on χ

(3)
e f f

[166, 162, 167, 163, 168, 169, 170, 171].
Nowadays, due to the development of short pulse lasers it is possible to use high optical

fields without destruction of samples and the contributions of HON become detectable. Due to
the mismatch between the dielectric function of the NPs and the host, there is an enhancement
of the electromagnetic field that depends on the laser frequency and its detuning from the
LSPR of NPs. Therefore, high values of the effective susceptibilities are observed that may
favor detection of effects related to HON either associated to intrinsic NL processes or due to
cascade processes [23, 24, 33, 158].

In particular, contributions of fifth-order suceptibility are significant at high intensities due
to dependence on the quintic power of the incident field. The interest in effects related to quin-
tic and cubic-quintic nonlinearities has led several authors to investigate theoretically new NL
phenomena and propose experiments with MDNCs [172, 173, 174, 108, 175, 176]. Neverthe-
less, these new proposals require apart from a high NL response, an appropriate control on the
contributions of the different HON, which is non-trivial. Concerning to this point, MDNCs are
very interesting systems because their NL response can be controlled by a simple procedure
which consists in vary the NPs volume fraction [171].

In this chapter we present a procedure for nonlinearity management of a MDNC aiming its
exploitation for practical realization of mathematical models and experiments related to HON.
As model systems we use colloids consisting of metallic NPs suspended in transparent NL
liquids (acetone and CS2). HON up to seventh-order can be measured as a function of the
NP volume fraction for intensities of few GW/cm2. Here, by varying the volume fraction, f ,
occupied by silver NPs and the incident laser intensity it is possible to enhance, decrease and
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even suppress a specific NL susceptibility due to the interference between the contributions
of χ

(3)
e f f , χ

(5)
e f f and χ

(7)
e f f derived from intrinsic and cascade processes. Analysis of the results

were performed by using the generalized Maxwell-Garnet model, developed in Section 3.6,
that includes the HON contributions. Under these conditions, the NM procedure was applied
to silver colloids in order to investigate for the first time the phenomena of SSPM, SXPM and
SMI in MDNCs presenting quintic and septimal refractive nonlinearities, in the absence of
contributions due to the lower order NL refractive indices. In addition, a proposal for practical
applications of the NM procedure in all-optical switches based in MDNCs is introduced and
validated by performing proof-of-principle experiments with metal colloids.

4.2 DESCRIPTION AND ANALYSIS OF THE NM PROCEDURE

The concept of NM emerges in optics as a theoretical proposal to study the stable propaga-
tion of intense optical beams in layered Kerr media [177, 178]. The idea of managing the NL
parameters of a medium (NL refractive index and NL absorption coefficient) allowed to predict
the collapse arrest of [(2+1)D] two-dimensional soliton in Kerr-type optical media [178, 179],
as well as in Bose–Einstein condensate [180].

In MDNCs, NM procedure refers to a method for controlling their NL response by varying
intrinsic parameters (such as: size, shape, environment and volume fraction of metal NPs) and
extrinsic parameters (such as: wavelength, repetition rate, laser intensity and pulse duration).
This thesis introduces a NM procedure that consists in varying the volume fraction, occupied
by metallic NPs with respect to the host volume, and the incident intensity. To analyze the NM
procedure, this section was divided into three stages:

(A) Measurement of NL parameters

The MDNCs used for these studies are colloids containing silver NPs suspended in acetone
(labeled as sample A) and in CS2 (labeled as sample B). Both NL samples were prepared by
chemical reduction methods and then subjected to a laser photofragmentation process to obtain
an homogeneous size distribution of silver NPs. Details on the preparation and characterization
of the MDNCs are specified in Appendix B.

Nonlinear characterization of the MDNCs, which consists in measurements of effective NL
refractive indices and NL absorption coefficients was performed using the Z-scan technique
[27]. The basic principle of operation of the Z-scan technique can be found in Appendix A.
Fig. 4.1 shows the experimental setup used to measure the contributions of HON in metal
colloids. The second harmonic of a Q-switched and mode-locked Nd: YAG laser (80 ps, 532
nm, maximum pulse energy of 10 μJ) was used as light source. Single pulses at 10 Hz were
selected using a pulse picker, with extinction ratio of 500:1, in order to avoid thermal con-
tributions. Control of the total power and the linear polarization of the incident beam was
accomplished by using a λ/2 plate followed by a Glan prism. A spatial filter was mounted to
obtain a beam with a nearly Gaussian spatial profile corresponding to the beam quality factor
M2 ≈ 1.1. The laser beam was focused by a 10 cm focal distance lens (beam waist: 20 μm)
on a sample with thickness of 1 mm, contained in a quartz cell. Slow photodetectors placed in
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Figure 4.1 Experimental setup for the Z-scan measurements. (PP) Pulse picker, (P) polarizer, (M)
mirrors, (SF) spatial filter, (L) lenses, (BS) beam splitter and detectors for the closed-aperture (DCA)
and open-aperture (DOA) schemes.

the far-field region with adjustable apertures in front of them were used to measure the beam
intensity transmitted by the sample. The aperture radius, ra, is related to its transmittance by
S = 1− exp

(
−2r2

a/w2
a
)
, with wa being the beam radius at the aperture plane. CA (S < 1) and

OA (S = 1) schemes were used to determine the NL refractive indices and the NL absorptive
coefficients, respectively. The detected signals were processed by boxcar integrators and com-
puter. In order to improve the signal-to-noise ratio in the measurements, mainly caused by
lasers intensity fluctuations and beam-point instability1, a reference channel was added to the
typical Z-scan setup as in [181]. CS2 with NL refractive index equal to 3.1×10−14 cm2/W [27]
was the reference standard for calibration of measurements.

The methodology used to obtain the high-order NL parameters of the MDNCs was de-
scribed in Section 3.5.3. Fig. 4.2 and 4.3 display the Z-scan traces for samples A and B, respec-
tively. Figure 4.2(a) shows CA Z-scan traces corresponding to four f values. The colloid inside
a 1-mm-long quartz cell was scanned along the Z axis using a translation stage. Figures 4.2(a-
i) and 4.2(a-ii) show profiles that indicate positive NL refractive index for f = 0.8×10−5 and
f = 1.3×10−5, respectively. The normalized peak-to-valley transmittance change,

∣∣4Tp,v
∣∣, is

smaller in Fig. 4.2(a-ii) than in Fig. 4.2(a-i) because the NPs contribute to the NL refractive
index with the opposite sign than acetone that has n2 = +2.16×10−15 cm2/W [182]. Figures
4.2(a-iii) and 4.2(a-iv), corresponding to f ≥ 2×10−5, indicate that the NL refractive index of
the colloid became negative because the silver NPs dominate the NL response. For small laser
intensities (I ≤ 2.0 GW/cm2) we determined n2,e f f for different f values using the expression

1Beam-point instability refers to fluctuations in the transverse position or direction of the output beam of a
laser, which can cause significant problems in the alignment of experiments, light coupling and light filtering,
among others. In our case, beam-point instability is mainly caused by temperature variations within the laser
cavity.
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Figure 4.2 Typical (a) closed-aperture and (b) open-aperture Z-scan traces obtained for sample A with
different volume fractions. Negative values of Z correspond to locations of the sample between the
focusing lens and its focal plane. Laser peak intensity: 5.0 GW/cm2.

4Tp,v = 0.406kL(1)
e f f n2,e f f I [see Eq. 3.57], where k = 2πn0/λ , L(1)

e f f = [1− exp(−α0L)]/α0, L
is the sample length, α0 is the linear absorption coefficient, and λ is the laser wavelength. The
sign reversal of n2,e f f as a function of f was observed for all intensities used.

Open-aperture Z-scan profiles did not show NL absorption for f ≤ 0.8× 10−5. However,
for 1.3× 10−5 < f ≤ 3.0× 10−5 the colloid presented saturated absorption as shown in Fig.
4.2(b) due to the small detuning between the laser frequency and the LSPR.

Closed-apertureand OA Z-scan measurements were also performed for sample B with f
varying from 0.4× 10−5 to 4.5× 10−5 as displayed in Figs. 4.3(a) and 4.3(b), respectively.
Sign-reversal of the NL refractive index as a function of f can also be seen in the interval
1.3×10−5 < f ≤ 3.3×10−5.

A similar measurement procedure was performed by fixing f and changing the incident in-
tensity, I, for the whole range of f values. Here, no sign reversal of n2,e f f was observed, in both
samples. However, Fig 4.4(a) shows additional features in the CA Z-scan profiles of sample
A due to HON for I > 6.0 GW/cm2 and Fig. 4.4(b) shows OA profiles for various laser inten-
sities. The appearance of a second structure of peaks and valleys, to the highest intensities of
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Figure 4.3 Typical (a) closed-aperture and (b) open-aperture Z-scan traces obtained for sample B with
different volume fractions. Negative values of Z correspond to locations of the sample between the
focusing lens and its focal plane. Laser peak intensity: 0.2 GW/cm2.

Figure 4.4(a), is related to contributions of HON, since HON produce maximum and minimum
transmittance at different positions to those who corresponds to the third-order nonlinearity, as
discussed in Section 3.5.3. The solid curves were obtained by plot the Eqs. 3.55 and 3.59 using
the NL parameters found by fitting the curve

∣∣∆Tp,v
∣∣/I versus I, as shown in the next stage. Be-

cause the results for the sample B are very similar, these are not shown in this thesis. After each
Z-scan experiment no changes were observed in the linear absorption spectrum indicating that
the energy of the laser pulses did not change the samples’ characteristics. All NL experiments
were repeated more than one time with each sample and the results were reproduced.
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Figure 4.4 Normalized Z-scan traces for sample A obtained for different laser peak intensities: (a)
Closed-aperture scheme and (b) open-aperture scheme. From bottom to top, the curves correspond to 2,
4, 6, 8, and 9 GW/cm2. Volume fraction: f = 5.0× 10−5. The curves were normalized and shifted in
the vertical to prevent overlap.

(B) Analysis of HON

After performing several Z-scan measurements for different volume fractions and each one
for different intensities, we calculate the transmittance variation, 4Tp,v, and we plot

∣∣∆Tp,v
∣∣/I

versus I following the procedure described in Section 3.5.3. Figure 4.5(a) illustrates the results
for sample A. For f < 0.8×10−5 the ratio

∣∣∆Tp,v
∣∣/I remains constant for intensities up to 10

GW/cm2, indicating negligible contributions of χ
(2 j+1)
e f f ( j > 1). For f ≈ 1.3×10−5, the ratio∣∣∆Tp,v

∣∣/I presents linear dependence with the laser intensity and from the slope of the straight

line we can determine n4,e f f ∝ Re
[
χ
(5)
e f f

]
. For f ≥ 2.0×10−5 the laser intensity dependence of∣∣∆Tp,v

∣∣/I is a polynomial function that allows obtaining the refractive indices associated to NL
susceptibilities up to the seventh order. The effective NL parameters were obtained by fitting
Fig. 4.5(a) with Eq. 3.57. The polynomial fit was performed based on 20 experimental points
corresponding to intensities between 2 and 10 GW/cm2, for each f value, with a measurement
uncertainty of 15% due to the laser intensity fluctuations. The algorithm used to obtain the
best fit was a combination of the Levenberg-Marquardt and the least-squares minimum method
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Figure 4.5 Intensity dependence of |∆Tp,v|/I for sample A in the (a) NL refraction and (b) NL absorp-
tion regimes. (Sample length: 1 mm). The solid lines are fit curves obtained from Eqs. 3.57 and 3.62.

with determination coefficient, R2 > 0.95. For instance, when f = 2.5× 10−5 and I = 9.0
GW/cm2 we determined n2,e f f = −1.1× 10−15 cm2/W, n4,e f f = +6.9× 10−25 cm4/W2, and
n6,e f f =−1.1×10−34 cm6/W3.

The ratio
∣∣∆Tp,v

∣∣/I also exhibited a polynomial dependence with I in the OA experiments,
as shown in Fig. 4.5(b). Here, we obtained α j,e f f ( j = 2, 4, 6) for different values of f by
fitting Fig. 4.5(b) using Eq. 3.62. For example, for f = 5.0×10−5, we have α2,e f f =−4.9×
10−10 cm/W, α4,e f f =+1.4×10−19 cm3/W2, and α6,e f f =−1.7×10−29 cm5/W3.

Notice that the values of n2,e f f , n4,e f f , n6,e f f and α2,e f f , α4,e f f , α6,e f f obtained from the
polynomial fit were used to adjust the experimental Z-scan profiles shown in Figs. 4.2, and
4.4 with good agreement. It is important to remark that if the NL coefficients values used
(including their signs) were different, the Z-scan traces would present other profiles. The same
treatment is used for sample B. The error bars shown in the figures of this chapter were obtained
by computing the standard deviation of the values after at least five times’ averaging.

Summary of the results for sample A is shown in Figure 4.6, showing that n2,e f f , n4,e f f ,
n6,e f f , α2,e f f , α4,e f f and α6,e f f present linear dependence with f . Notice that for f ≈ 1.6×
10−5 we have n2,e f f = 0 but n4,e f f = +3.2× 10−25 cm4/W2. It is important to note that the
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Figure 4.6 Dependence of the effective third-order coefficients (n2,e f f ∝ Reχ
(3)
e f f and α2,e f f ∝ Imχ

(3)
e f f ),

effective fifth-order coefficients (n4,e f f ∝ Reχ
(5)
e f f and α4,e f f ∝ Imχ

(5)
e f f ) and the effective seventh-order

coefficients (n6,e f f ∝ Reχ
(7)
e f f and α6,e f f ∝ Imχ

(7)
e f f ) versus the NP volume fraction, f : (a) n2,e f f , n4,e f f I

and n6,e f f I2; (b) α2,e f f , α4,e f f I and α6,e f f I2. Laser peak intensity: I = 9.5 GW/cm2.

solvent nonlinearity plays an important role to annul the effective third-order refractive index,
because the sign of its refractive cubic nonlinearity is contrary to the contribution of silver
NPs. However, HON of the solvent are negligible and the effective fifth- and seventh-order
nonlinearities are due to the intrinsic and cascade contributions of the NPs.These results do not
violate the powers series of the NL polarization and opens routes for exploitation of unique
effects considering that under the conditions identified here Reχ

(5)
e f f is the lowest-order NL

refractive response. The solid lines are fit curves obtained by using the generalized Maxwell-
Garnett model, which is discussed in the next stage.

The silver colloid with f ≈ 1.6×10−5 reveals an exotic material, that had not been reported
in the literature so far, because its NL behavior corresponds to a quintic refractive medium, in
absence of the cubic refraction. This behavior can also be deduced from the CA Z-scan curves.
Figure 4.7(a) shows the NL refractive response of sample A for f = 1.6× 10−5 ( Reχ

(3)
e f f = 0

and Reχ
(5)
e f f 6= 0). For laser intensities up to 4 GW/cm2 no feature is observed in the CA Z-

scan trace while for 9 GW/cm2 a positive effective NL refractive index is observed due to the
HON (mainly of positive quintic nonlinearity). On the other hand, when f 6= 1.6× 10−5 and
for laser intensity of 2 GW/cm2 larger CA Z-scan signal, dominated by the negative third-order
nonlinearity, is observed. This behavior is illustrated in Fig. 4.7(b) which shows the Z-scan
trace obtained for 4 GW/cm2 . For larger intensities clear indication of HON contribution is
observed in the Z-scan traces as illustrated in Fig. 4.7(b) corresponding to n2,e f f = −5.5×
10−15 cm2/W, n4,e f f = +2.1× 10−24 cm4/W2, and n6,e f f = −2.6× 10−34 cm6/W3 for f =
5.0×10−5.

Similarly, the results for sample B are summarized in Fig. 4.8. Figure 4.8(a) illustrates the
destructive interference between the n2,e f f ∝ Reχ

(3)
e f f and n4,e f f ∝ Reχ

(5)
e f f contributions versus

f . For f = 3.3×10−5 we obtain a NL refractive MDNC with n6,e f f =−1.1×10−30 cm6/W3

(septimal refractive nonlinearity). Analogously, a NL refractive MDNC with n4,e f f = +1.1×
10−22 cm4/W2 (quintic refractive nonlinearity), is shown in Fig. 4.8(b) for f = 1.5×10−5 due
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Figure 4.7 CA Z-scan profiles, for sample A, obtained for different laser peak intensities with two NPs
volume fractions: (a) f = 1.6× 10−5 and (b) f = 5.0× 10−5. The solid lines were obtained using Eq.
3.55.

to destructive interference between the third- and seventh-order contributions. Figure 4.8(c)
exhibits a NL absorptive behavior with α6,e f f = −7.5× 10−27 cm5/W3 , for f = 1.2× 10−5

and I = 2.5×108 W/cm2.

(C) Interpretation of HON by using the Maxwell-Garnett model

The last step of our NM procedure involves the interpretation of the results of Figs. 4.6 and
4.8 by using the generalized Maxwell-Garnett model, described in Section 3.6.

By fitting Eqs. 3.78-3.80 in Figs. 4.6 and 4.8, we obtained the third-order susceptibility of
the acetone, χ

(3)
acetone = 1.67×10−21 m2/V2 and the CS2, χ

(3)
CS2

=
(
2.9×10−20 + i3.41×10−22)

m2/V2 in agreement with [182] and [27, 183], respectively. In the same way, the NL susceptibil-
ities for the NPs are given by χ

(3)
NP = (−5.9− i8.5)×10−16 m2/V2, χ

(5)
NP = (−1.0− i17)×10−33

m4/V4 and χ
(7)
NP = (−3.2+ i1.6)× 10−52 m6/V6 for the sample A, while the values of χ

(3)
NP =

(−6.4+ i2.0)×10−16 m2/V2, χ
(5)
NP =(−1.37− i2.2)×10−33 m4/V4 and χ

(7)
NP =(−4.1+ i5.1)×

10−51 m6/V6 were calculated for the sample B. Notice that the values of χ
(3)
NP are in agreement

with [171] that was determined in the absence of HON. However, we recall that the silver NPs
susceptibility depends on its shape, size, stabilizing agents attached to the NPs surface as well
as the host solvent, as discussed in Section 3.5.1.

Probably, one of the most significant results is the manipulation of the NL response of
a MDNC to obtain a refractive quintic medium with Reχ

(3)
e f f = 0, which was predicted only

theoretically. Eqs. 3.78 and 3.79 allows to understand this phenomenon. Eq. 3.78 shows that
the sign reversal of χ

(3)
e f f as a function of f is mainly due to competition between the terms

containing Re
[
χ
(3)
NP

]
and Re

[
χ
(3)
h

]
that have opposite signs. Thus, χ

(3)
e f f may be cancelled
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Figure 4.8 Dependence of the effective third-, fifth- and seventh-order coefficients of sample B as a
function of the volume fraction, f . Notice that the sample presents: septimal refractive nonlinearity at
f = 3.3× 10−5 (a) and quintic refractive nonlinearity at f = 1.5× 10−5 (b). Figures (a) and (b) were
obtained with laser peak intensity of 108 W/cm2. When f = 1.2× 10−5 and the laser peak intensity is
2.5×108 W/cm2, the NL absorption is due to α6,e f f ∝ Imχ

(7)
e f f .

adjusting f and the result is independent of the laser intensity. At first, one might think that
because the NL susceptibility responds to an expansion in power series of electric field, if
the lowest-order susceptibility is zero, then the higher-order susceptibilities also should be
zero, in order to not violate the expansion criterion. However, it is important to note that the
expansion is performed for the susceptibilities of the host and NPs, separately. This means that
the expansion has physical sense when

∣∣∣χ(2 j+3)
NP,h

∣∣∣ |E|2 <
∣∣∣χ(2 j+1)

NP,h

∣∣∣ with j =1, 2, 3, so that the
power series converges. This condition is fulfilled for all our cases. Nevetheless, when the
expressions for the effective NL susceptibilities are analyzed [Eqs. 3.78-3.80], it is possible
to note that χ

(5)
e f f and χ

(7)
e f f depends only on the intrinsic and cascade contributions of NPs,

because the high-order contributions of the solvent are neglected, whereas χ
(3)
e f f depends on

χ
(3)
NP and χ

(3)
h . Thus, χ

(3)
e f f = 0 due to balance between the contributions of χ

(3)
NP and χ

(3)
h and

not because χ
(3)
NP = 0. As a consequence, sample A with f = 1.6× 10−5 can be considered

as a quintic medium, since that the NL susceptibility used to characterize the NL response of
the composite is the effective susceptibility. In addition, contributions of septimal nonlinearity
are significant at higher intensities, depending strongly on the incident intensity. Using this
to our advantage, it is possible to add the intensity as a new parameter to our NM procedure.
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Therefore, varying both the volume fraction and the incident intensity is possible to induce
constructive and destructive interferences between the susceptibilities of different NL orders in
order to enhance, decrease and even suppress a specific NL susceptibility, as shown in Fig 4.8.

4.3 APPLICATION OF THE NM PROCEDURE TO EXPLOIT HON

One of the main applications of HON in MDNCs is the enhancement of its NL response,
and consequently the improvement of the NL effects related to the cubic nonlinearity. How-
ever, without an adequate control of high-order susceptibilities, it is very difficult to use their
contributions in favor of observing and analyzing new optical phenomena. In this way, the
NM procedure described in the previous section arises as an excellent alternative to exploit the
different applications based on HON. In this section, we will discuss and show the importance
of the NM procedure in the study of transverse NL effects, already known for the lowest-order
nonlinearity (cubic nonlinearity), but being induced by HON. In addition, it will be demostrated
how the use of a proper NM procedure allows optimize the performance of all-optical devices
based in MDNCs.

4.3.1 Spatial Self-Phase Modulation
The interaction of an intense coherent beam with a NL medium that presents an intensity

dependent refractive index can produce changes in the beam phase, which are reflected on the
transverse beam profile [51]. This effect known as spatial self-phase modulation (SSPM) can
generate concentric ring intensity patterns observed in far-field [Fig. 2(a)]. The first obser-
vation of SSPM was reported in CS2, illuminated by a He-Ne laser, due to refractive index
modulation induced by thermal effects [184]. Subsequently, several studies were reported in
media exhibiting thermal nonlinearities [185, 186, 187], Kerr-type media [188, 189, 190], pho-
torefractive crystals [191], nematic-liquid-crystals [192], among others [193, 194, 195]. In
particular, SSPM effect in MDNCs has been studied on the basis of the lowest-order nonlinear-
ity. However, a previous work has reported that in high intensities SSPM is influenced by HON
and the simultaneous presence of third- and fifth-order nonlinearities allow the propagation of
spatial solitons in liquids [30].

Figure 4.9 illustrate the experimental setup used to investigate the SSPM effects induced
by HON. Here, the light source used was the second harmonic of a Q-switched and mode-
locked Nd: YAG laser (the same used in the Z-scan technique), but being focused by a 2 cm
focal length lens2, producing a beam waist of 7 μm (confocal parameter: 0.8 mm). The far-
field diffraction patterns produced by the strong interaction of the Gaussian beam with a silver
colloid were captured by a charge-coupled device (CCD) camera located 20 cm from the exit
plane of the sample (sample length: 1 mm). Dependence of intensity distribution patterns with
the nonlinearity and the curvature radius of the wavefront, R, were analyzed by locating the
sample on the focal plane of the lens L (R→ ∞), 0.3 mm before (R < 0) and 0.3 mm after
(R > 0) the focal plane.

2A strong focus was used to obtain high light intensities.
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Figure 4.9 Experimental setup for study the SSPM effects. (L) lens with focal length fL = 2 cm, (R)
curvature radius of the wavefront.

Figures 4.10(a)-(c) show the experimental diffraction patterns observed in the beam trans-
mitted by sample A (with f = 1.6× 10−5) due to the SSPM effect. The f value used corre-
sponds to a medium having NL response dominated by Reχ

(5)
e f f with Reχ

(3)
e f f = 0. The diffraction

patterns observed in the far-field consist of concentric rings that vary in number, thickness and
positions depending on the NL phase shift4ΦNL, given by Eq. 3.53 with n2,e f f = 0, and laser
intensity. The noise observed in Fig. 4.10 is coming from mostly effects introduced by cell
walls and the colloid-glass interface. This statement was corroborated by perform a measure-
ment with an empty cell and with a cell containing only the solvent. This effect is also present
in Figs. 4.11, 4.13, 4.14 and 4.15.

To describe the conical diffraction we used the Fraunhofer approximation of the Fresnel-
Kirchhoff diffraction integral, described in Section 2.5.2.1, but considering the contribution of
HON, given by:

I = I0

∣∣∣∣∣
ˆ

∞

0
J0 (kθr)exp

[
− r2

w2
p
− iφ (r)

]
rdr

∣∣∣∣∣
2

, (4.1)

where I0 = 4π2 |E (0,z0)exp [−α0L/2]/(iλD)|2, E (0,z0) is the electric field at the beam axis,
z0 is the focal plane position, θ is the far-field diffraction angle, and J0 (kθr) is the first kind
zero-order Bessel function. φ (r) = kn0r2/(2R)+4ΦNLexp

[
−2r2/w2

p
]

represents to the total
phase-shift, including the Gaussian phase due to the linear propagation plus the transverse
NL phase-shift, r is the radial distance from the laser axis measured in a plane perpendicular
to the z-axis, R is the wavefront radius of curvature, wp is the beam radius at the entrance
plane of the NL medium, and D is the distance from the exit plane of the cell and the far-field
detection plane. It is important to mention that this model only considers the effects of NL
phase variation induced by NL refractive indices. Effects due to NL absorption, scattering,
stimulated effects, among others were disregarded for simplicity. Besides, propagation effects
inside the NL medium were also neglected because the cell thickness is slightly larger than the
confocal parameter. However, all these effects may produce differences between experimental
and numerical results.

Figures 4.10(d)-(f) show the intensity distribution versus the radial coordinate (black line)
obtained from CCD images processed as intensity matrices. The red lines correspond to the
numerical results obtained from Eq. 4.1, considering the NL phase-shift due to n4,e f f and n6,e f f
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Figure 4.10 Diffraction patterns of a Gaussian beam induced by a NL medium dominated by quintic
refractive nonlinearity, placed in the focal plane. Laser peak intensities: (a, d) 70 GW/ cm2, (b, e)
90 GW/ cm2 and (c, f) 100 GW/ cm2. The black lines in (c-f) represent the experimental intensity
distribution versus the radial coordinates obtained from (a-c). The red lines were obtained by numerical
simulation of Eq. 4.1 using the NL parameters determined in the Z-scan.

obtained from the Z-scan experiments
(
n2,e f f = 0

)
. A low-intensity background is observed

in the experimental profile due to linear light scattering. Notice that the number of rings, their
thickness and the spacing are in good agreement with the numerical results.

Figures 4.11(a) and 4.11(b) illustrate the SSPM effect in the sample A for f = 1.6×10−5.
Notice that different diffraction patterns are observed when the sample is located of 0.3 mm
before (R < 0) and 0.3 mm after (R > 0) the focal plane, respectively. The curves in Figs.
4.11(c)-(d) show that the analysis of the experimental images (black line) are consistent with
the theoretical result (red line), for R ≈ ±0.4 mm. The present experimental results are in
agreement with the numerical results of [62] that predicted a far-field diffraction pattern for-
mation that depends on the sign of the product between the wavefront curvature radius and the
NL phase-shift induced in the sample. It is important to notice that diffraction patterns, due to
HON, in absence of the third-order nonlinearity, are reported here for the first time, presenting
good agreement with theoretical predictions.
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Figure 4.11 Diffraction patterns of a Gaussian beam induced by a NL medium dominated by quintic
refractive nonlinearity, placed 0.3 mm (a) before and (b) after of the focal plane with laser peak intensity
of 70 GW/ cm2. Intensity distribution as a function of the radial coordinates considering (c) R ≈ −0.4
mm ; (d) R≈+0.4 mm . The red curves were obtained by numerical simulation of Eq. 4.1 using the NL
parameters determined in the Z-scan experiments.

4.3.2 Spatial Modulation Instability
Spatial modulation instability is a common phenomenon in NL optics, which appears as

a result of the exponential growth of small amplitude or phase perturbations, due to competi-
tion between nonlinearity and diffraction effects. In NL systems, SMI is strongly affected by
various mechanisms such as: higher order dispersive terms [66], saturation of the nonlinearity
[196], nonlocal nonlinearity [197, 198] and coherence properties of optical beams [199, 200].
This growth of spatial instability produces changes in the transverse beam profile, along its
propagation, which may lead to a filamentation regime [95].

Of special interest is the study of SMI effect induced by HON, which was reported in the-
oretical works [201, 202, 203, 204]. In order to demonstrate experimentally this phenomenon,
experiments of SXPM were mounted to analyze the response of the MDNCs managed to
present cubic, quintic and septimal nonlinearities. The experimental setup is illustrated in Fig.
4.12. Here, the light exiting the laser, after passing through the pulse picker, λ/2 and Glan
prism, was split into probe and pump beams with intensity ratio 1:10. The probe beam was
weak in order to not induce NL changes in the beam profile. The pump and probe beams were
aligned to counterpropagate along the sample (cell length: 5 cm) and a careful adjustment of
the spatial and temporal overlap between the pulses was made. The pump (probe) beam waist
was of ∼ 100 μm (∼ 80 μm) with Rayleigh length of ∼ 8 cm (∼ 5 cm). The beams’ profiles,
obtained at the exit face of the cell, were imagined in the CCD’ plane by using a lens with focal
length of 10 cm.
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Figure 4.12 Experimental setup for the SXPM measurements in a counter-propagating pump-probe
scheme. (PP) Pulse picker, (P) polarizer, (M) mirrors, (SF) spatial filter, (L) lenses and (BS) beam
splitter.

Figure 4.13 shows the results of the transverse SMI induced by SXPM, for three volume
fractions of silver NPs suspended in acetone (sample A). Due to the f values used, the three
columns of Fig. 4.13 correspond to a refractive cubic medium

(
f = 0.5×10−5), refractive

quintic medium
(

f = 1.6×10−5) and cubic-quintic medium
(

f = 2.5×10−5), respectively.
Septimal nonlinearities were neglected due to the low incident intensity (Ipump = 2 GW/cm2).
Figs. 4.13(a)-(c) display the probe transverse beam profiles, after crossing the NL sample, in
presence of the pump beam. The amplitude of the signal shown in Fig. 4.13(b) is approximately
threefold smaller than the signals corresponding to 4.13(a) and 4.13(c) because it is due to the
quintic nonlinearity only. We analyzed the spatial profile of the probe beam as an intensity
matrix; the curves in Figs. 4.13(d)-(f) represent column matrix components passing through
the axis of the probe beam exhibiting the beam intensity versus the radial coordinate. Here, it
is clearly appreciated two features associated to the HON that induces SXPM and SMI effects.
The first one is the difference in the beam spot size, which is expected because the contributions
of cubic [Fig. 4.13(a)] and quintic nonlinearities [Fig. 4.13(b) and 4.13(c)] have opposite signs.
While the second feature refers to the formation of new spatial frequencies induced by SMI
effect, that can be identified by the decline formed in the center of the probe beam profile [Fig.
4.13(b) and Fig. 4.13(c)]. Figs. 4.13(g)-(i) are the result of numerical simulations based on
two-coupled NLSE considering the contributions of cubic and quintic nonlinearities, for each
sample, as shown in Eqs. 4.2 and 4.3. The experimental results show excellent agreement with
the numerical analysis. It is important to emphasize that the experimental results shown in Fig.
4.13 represent a demonstration of SMI due to the fifth-order susceptibility in a system with
n2,e f f = 0 and n4,e f f 6= 0, which has not been demonstrated so far. All numerical simulations
of this section were initiated with a Gaussian beam whose field is described by Eq. 2.54.

Another experiment was performed with colloids containing silver NPs suspended in CS2
(sample B), in order to observe and analyze the SXPM and SMI effects induced by septimal
nonlinearities. In this case, adjustable displacements between the centers of the incident pump
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Figure 4.13 Probe beam profile in the presence of the counterpropagating pump beam: (a) f1 = 0.5×
10−5; (b) f2 = 1.6× 10−5; (c) f3 = 2.5× 10−5. Probe beam intensity versus the radial coordinate:
(d) f1; (e) f2; (f) f3. Numerical results using the values of n2,e f f and n4,e f f determined in the Z-scan
experiments for sample A (silver NPs suspended in acetone) for each f as in (d)–(f). Pump beam
intensity: 2.0 GW/cm2; probe beam intensity: 0.2 GW/cm2.

and probe beams were produced to characterize the local influence of the SXPM induced by the
pump beam. To obtain a refractive septimal medium, due to destructive interference between
the cubic and quintic nonlinearities, the sample B was prepared with f = 3.3× 10−5 and the
pump beam intensity used in the SXPM experiments was of 0.1 GW/cm2. Here, the probe-to-
pump intensities ratio was also of 1:10 to ensure that the NL phase shift is due to the pump
beam only.

Figure 4.14 shows the pump beam profile after propagation through the refractive septimal
medium . Figure 4.14(a) exhibits the beam profile at the far-field region for Ipump = 106 W/cm2,
while Fig. 4.14(b) shows the spatial broadening by a factor of∼ 2, for Ipump = 108 W/cm2, due
to n6,e f f =−1.1×10−30 cm6/W3. Figure 4.14(c) shows the intensity distribution of the pump
beam transverse profile (black lines), obtained from Figs. 4.14(a)-(b). The red and blue lines
correspond to the calculated profile for pump intensity of 106 W/cm2(linear regime) and 108
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Figure 4.14 Pump beam profile after propagation through sample B (silver NPs suspended in CS2),
for f = 3.3× 10−5 : (a) I1 = 106 W/cm2 ; (b) I2 = 108 W/cm2. (c) Self-defocusing traces due to χ

(7)
e f f

obtained from (a) and (b). The red and blue lines are theoretical results for the respective intensities.

W/cm2 (NL regime), respectively, by using the Eq. 4.2 considering A2 = 0.
The XPM effects due to χ

(7)
e f f were also studied by changing the relative distance (x/w0)

between the centers of the incident pump and probe beams. Figures 4.15(a)-(c) shows the ex-
perimental probe beam profiles after propagation through a refractive septimal medium (sample
B with f = 3.3×10−5), in presence of pump beam, Ipump = 108 W/cm2, for different values of
relative distance (x/w0). The pink and white lines represent the positions of incident probe and
pump beams, respectively. Black lines in Fig. 4.15(d)-(f) correspond to the intensity profiles of
the probe beam in the presence of the pump beam, obtained from Fig. 4.15(a)-(c), respectively.
Dashed red lines represent the output probe beam profiles in absence of the pump beam, i.e. the
probe beam being affected only by the linear diffraction. Figs. 4.15(a) and 4.15(d), correspond-
ing to the total spatial overlap of the beams, show the generation of new spatial frequencies,
in analogy with Fig. 4.13(b)-(c), but induced by septimal nonlinearities. Notice in particular a
partial focusing of the probe beam induced by the pump beam, in the position of beams overlap,
although the sample presents negative value of n6,e f f [Figs. 4.15(b), (e) and 4.15(c), (f) ]. This
effect is analogous to the third-order induced focusing effect reported in [67] where the sample
presented a cubic self-defocusing behavior at the laser frequency used.

The experimental results of SXPM-induced transverse SMI are understand by modeling the
propagation, in opposite directions, of the probe and pump beams using the two-coupled NLSE
considering the NL contributions up to the seventh-order, given by:

−2ik
∂A1

∂ z
+∇

2
⊥A1 =−

ω2

c2

[
3χ

(3)
e f f

(
|A1|2 +2 |A2|2

)
A1

+10χ
(5)
e f f

(
|A1|4 +6 |A1|2 |A2|2 +3 |A2|4

)
A1

+35χ
(7)
e f f

(
|A1|6 +18 |A1|2 |A2|4 +12 |A1|4 |A2|2 +4 |A2|6

)
A1

]
,

(4.2)
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Figure 4.15 Experimental probe beam profile due to χ
(7)
e f f for a distance of (a) x = 0; (b) x = w0 and

(c) x = 2.2w0 between the centers of the incident pump (white line) and probe (pink line) beams; (d)-
(f) Normalized intensity distribution of the probe beam transverse profile without the pump beam (red
dashed line) and with the pump beam (black line); (g)-(i) Theoretical probe beam profile calculated
using Eqs. 4.2 and 4.3 with the NL coefficients determined in the Z-scan experiments for the relative
distances of (a)-(c). Pump beam intensity: 108 W/cm2; probe beam intensity: 107 W/cm2.

2ik
∂A2

∂ z
+∇

2
⊥A2 =−

ω2

c2

[
3χ

(3)
e f f

(
2 |A1|2 + |A2|2

)
A2

+10χ
(5)
e f f

(
3 |A1|4 +6 |A1|2 |A2|2 + |A2|4

)
A2

+35χ
(7)
e f f

(
4 |A1|6 +12 |A1|2 |A2|4 +18 |A1|4 |A2|2 + |A2|6

)
A2

]
, (4.3)

where A1 and A2 are the optical field amplitudes of the pump and probe beams, respectively;
∇2
⊥ = ∂ 2

∂x2 +
∂ 2

∂y2 is the transverse Laplacian operator, ω is the laser frequency and c is the speed

of light in vacuum. The values of χ
(3)
e f f , χ

(5)
e f f and χ

(7)
e f f , for each volume fraction f , is obtained

by using the generalized Maxwell-Garnett model considering the measures carried out using
the Z-scan technique. Details on the deduction of cubic-quintic-septimal NLSE are given in
Section 5.3.1. However, as in this section are described experiments based on the propagation
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of two counterpropagating and linearly polarized beams, then the total incident field can be
expressed by:

−→
E (−→r , t) =

1
2

x̂
2

∑
j=1

A j (
−→r , t)exp

[
i
(
(−1) j k0z−ωt

)]
+ c.c. (4.4)

Equations 4.2 and 4.3 were obtained by introducing Eq. 4.4 into the wave equation [Eq.
5.11] and follow the same procedure described in Section 5.3.

Figures 4.15(g)-(i) show the theoretical probe beam transverse profile, obtained from Eqs.
4.2 and 4.3, using the NL parameters measured in the Z-scan experiments (n2,e f f = n4,e f f = 0
and n6,e f f = −1.1× 10−30 cm6/W3) when f = 3.3× 10−5, Iprobe = 107 W/cm2 and Ipump =
108 W/cm2. A good agreement is observed between experimental and theoretical results that
support the given interpretation.

In this way, the experimental and numerical results of Figs. 4.13 and 4.15 allow to rec-
ognize the importance of the HON on the SMI effect. These interesting results were possible
thanks to the application of the NM procedure, which consist of a simple, but effective, way
to control the NL response of MDNCs. In addition, several applications of HON contributions
become extremely attractive, since the SMI effect has important connections with numerous
NL processes. A particular example is the spatial soliton, which is discussed in Chapters 6 and
7. The relation between SMI and spatial solitons is manifested in the fact that the filaments that
emerge from the SMI process have the behavior of solitary waves that travel without suffering
deformation [198]. Therefore, at first instance, SMI can be considered to be a precursor of the
spatial solitons.

4.3.3 Metal-Dielectric Nanocomposites in All-Optical Switches
The rapid increase in global communications networks requires data processing devices

ever faster. This need motivates the development of the all-optical devices (AODs), allowing
the processing of signals at bit rates from hundreds of GB/s up to 1 TB/s [205]. To achieve
very high data processing speeds, these ultrafast devices exploit the strong NL interaction be-
tween the light and highly NL materials. For this reason, the choice of suitable NL material is
extremely important to achieve the proper performance of an AOD. Among the main physical
systems of interest, MDNCs deserve special attention due to their high optical susceptibility, ul-
trafast response and the possibility of changing their NL susceptibility by changing the NPs vol-
ume fraction. However, the presence of large NL absorption limits their applications in devices
such as all-optical switches (AOS) . This problem is common to all materials with large non-
linearity, since that large NL refractive index corresponds to large NL absorption coefficients
[206], and therefore it becomes difficult to find proper materials for efficient AOS. To circum-
vent this problem, two figures-of-merit for AOS are considered: T =

∣∣∣α2,e f f λ
(
n2,e f f

)−1
∣∣∣ and

W =
∣∣∣4n(α0λ )−1

∣∣∣, where λ is the laser wavelength, α0 is the linear absorption coefficient,

α2,e f f ∝ Imχ
(3)
e f f is the two-photon absorption coefficient, n2,e f f ∝ Reχ

(3)
e f f is the third-order re-

fractive index and 4n is the maximum variation of the refractive index that can be induced in
the material [207, 208]. In order to obtain efficient AOSs, it is required that T < 1 and W > 1.
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Figure 4.16 Dependence with the NPs volume fraction of the total effective (a) NL refractive index
and (d) NL absorption coefficient, for different intensities, corresponding to sample A.

In this Section we applied the NM procedure of MDNCs in order to demonstrate the opti-
mization of AOS in proof-of-principle experiments with silver colloids. However, as MDNCs
present HON, it was necessary to redefine one of the figures-of-merit by: T ′=

∣∣∣αNLλ (nNL)
−1
∣∣∣,

where nNL = ne f f
2 +ne f f

4 I+ne f f
6 I2 and αNL = α

e f f
2 +α

e f f
4 I+α

e f f
6 I2. Fig. 4.16(a) and 4.16(b)

show the linear dependence of the total effective NL refractive index, nNL, and total effective
NL absorption coefficient, αNL, with f , for different intensities, corresponding to sample A.
For NL refraction, it is possible to observe that the magnitude of nNL increases while increas-
ing the laser intensity. Nevertheless, for the NL absorption, αNL reaches a minimum value for
intensity of 8.6 GW/cm2. The solid lines were obtained using the generalized Maxwell-Garnett
model, as discussed above. These behaviors can be corroborated with the CA and OA Z-scan
curves. Figures 4.17(a) and 4.17(b) show the CA and OA Z-scan profiles for sample A with
the same intensities as in Figs. 4.16(a) and 4.16(b), where f = 5.9× 10−5. Cancellation of
NL absorption in Fig. 4.16(b) is due to destructive interference between the imaginary parts
of the third-, fifth- and seventh-order susceptibilities. Therefore, the results of Figs. 4.16 and
4.17 show that using the NM procedure, which consists in controlling the NL response of a
MDNC by selecting appropriate values of f and I, it is possible to obtain large nNL and small

Figure 4.17 Normalized (e) Closed-aperture and (f) Open-aperture Z-scan profiles for sample A with
f = 5.9×10−5, obtained for different laser peak intensities.
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αNL simultaneously.
From these new NL parameters, it is possible to calculate the figures-of-merit W and T ′.

However, for better visualization of the results we plotted (T ′)−1 instead of T ′. Figure 4.18(a)
shows W versus f for intensities between 7.0 and 10 GW/cm2. The dependence of4n and α0
with f was considered. For example for f = 5.9×10−5 the values of4n≈ 10−4 and α0 = 0.06
mm-1 were used. Then, W > 1 was obtained for intensities larger than 7.0 GW/cm2. Figure
4.18(b) shows (T ′)−1 versus f . Notice, for instance, that for 10 GW/cm2 we obtained (T ′)−1 ≈
3 corresponding to f > 2.0× 10−5, while for 8.6 GW/cm2 the value of (T ′)−1 increases by
about two orders of magnitude.

For a more detailed evaluation, Table 4.1 gives the values of the NL parameters for partic-
ular choices of f , laser intensity and the corresponding figures-of-merit for AOS. Notice that
the values of nNL increase by approximately a factor of 3 for an increase of f from 3.0×10−5

to 8.0×10−5, for a constant intensity. However, a dramatic variation of αNL, which produces a
significant reduction of the figure of merit T ′, is observed for small variations in intensity and
fixed value of f . The very small values of αNL, for I0 = 8.6 GW/cm2, were obtained due to the
cancelling contributions between the contributions of negative α2,e f f and α6,e f f with positive
α4,e f f . Therefore, metal-colloids with appropriate values of f and laser intensity may present
optimal figures-of-merit for all-optical switching.

It is important to consider that the use of MDNCs in AOS is possible since it is found that
the metal-colloids have a fast NL response. To corroborate this condition in our samples, a
Kerr shutter experiment was conducted using the same light source. The experimental setup is
shown in Fig. 4.19 and details on its principle of operation are discussed in Appendix A. The
laser beam was split into probe and pump beams with relative intensities: Iprobe = 0.1Ipump.
The angle between the beams was 2.3° and the angle between their electric fields was 45°.
Both beams were focused inside the sample by a 10 cm focal length lens. When the two beams
overlap spatially and temporally inside the sample, the pump beam induces a NL birefringence
that produces rotation of the probe beam electric field. Then, a fraction of the transmitted
Iprobe by the sample passes through a polarizer crossed to the input probe beam electric field.
A detector was used to record the transmitted Iprobe versus the delay time, τ , between the
pump and probe pulses. Liquid CS2 was also the reference standard for calibration of the

Figure 4.18 Figures-of-merit for all-optical switching.
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f(
×10−5) I0(

GW/cm2) nNL(
×10−15cm2/W

) αNL(
×10−11cm/W

) W T

3.0
7.0
8.6

10.0

−2.04
−4.28
−6.85

−1.16
−1.75×10−3

−3.27

0.91
1.87
3.39

0.30
3.07×10−3

0.28

3.8
7.0
8.6

10.0

−3.56
−5.98
−8.84

−1.33
−3.75×10−3

−3.81

0.95
2.32
3.79

0.20
2.87×10−3

0.25

5.9
7.0
8.6

10.0

−4.94
−8.19
−13.30

−0.91
−3.72×10−3

−6.92

1.45
2.45
4.34

0.13
2.80×10−3

0.24

8.0
7.0
8.6

10.0

−7.47
−14.68
−20.68

−1.61
−3.68×10−3

−9.72

1.56
2.83
4.62

0.12
2.85×10−3

0.25

Table 4.1 NPs volume fraction, f , laser intensity, I, and the corresponding total NL refractive indices,
nNL, total NL absorption coefficients, αNL, and figures-of-merit (W and T ).

measurements.
Figure 4.20(a) shows the Kerr shutter signals for sample A with f = 5.9×10−5 and pump

intensities equal to 10 , 8.6 , 8.0 , and 7.0 GW/cm2. The symmetric profiles are due to the fast
NL response of the free electrons in the NPs. Similar behavior was observed for other values of
f . The inset of Fig. 4.20(a) shows the CS2 signal that exhibits asymmetry with respect to τ due
to molecular reorientation. The result for CS2 is shown to illustrate the fast temporal response
of the apparatus. The signal for pure acetone is smaller than our detection limit.

Figure 4.20(b) shows a polynomial dependence of 4T/Ipump versus Ipump (red line) due
to HON. For Ipump ≤ 4 GW/cm2 the ratio 4T/Ipump is constant and the signal is properly

Figure 4.19 Experimental setup of the Kerr shutter technique. (PP) Pulse picker, (P) polarizer, (M)
mirrors, (L) lens, (BS) beam splitter and (D) fast detector.
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Figure 4.20 (a) Transmitted Kerr signal in 532 nm for silver colloid for pump intensities of: I1 =
10 GW/cm2, I2 = 8.6 GW/cm2, I3 = 8.0 GW/cm2 and I4 = 7 GW/cm2 and Iprobe = 0.1(Ipump). The inset
is the Kerr signal for CS2. (b) Dependence of 4T/Ipump as a function of the pump intensity. Volume
fraction: f = 5.9×10−5. Solid lines are guides to the eyes.

described by n2,e f f . For 4 GW/cm2 < Ipump ≤ 7 GW/cm2 the ratio pump 4T/Ipump presents
linear dependence with Ipump and the slope of the straight line is related to n4,e f f . For Ipump >
7 GW/cm2 the contribution of n6,e f f becomes relevant, in analogy with the Z-scan results.

Therefore, it was demonstrated that MDNCs have a fast NL response, of the order of pi-
coseconds (which was limited by the pulse duration time), and that the NM procedure applied
on them can be much useful for the fabrication of efficient AOS.

The only thing that we keep under control, is the illusion that we have
control over something.

- UNKNOWN
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5 LIGHT PROPAGATION IN NONLINEAR ME-
DIA

5.1 INTRODUCTION

The spatiotemporal evolution of light in NL media is one of the main fields of study of
NL optics. In principle, the characteristics of the EMFs and behavior of light are governed
by Maxwell’s equations. From them a wave equation can be deduced, in a very simple and
straightforward way, to describe the essential propagation characteristics of light. In particu-
lar, light propagation in NL media is modeled by the well known NL Schrödinger equation
(NLSE), which allows to know the step-by-step evolution of optical fields being affected by the
NL parameters of the medium (NL refraction, NL absorption, NL dispersion, among others).
However, the NLSE can take different forms depending on the type of medium nonlinearity and
the type of phenomenon that it is intended to be described. In this chapter, the NLSE including
contributions of HON is deduced starting from Maxwell’s equations. Two special cases of the
NLSE are developed to model the light propagation in MDNCs and CS2, in picosecond and
femtosecond regimes, in order to be applied in the study of spatial solitons. A description of
the analytical variational technique is also introduced to obtain approximate solutions of the
NLSE and to analyze the stability and instability regimes of spatial solitons propagation. In
addition, a model to describe the evolution of the light polarization state in a capillary is devel-
oped considering the contributions of the third- and fifth-order susceptibilities. All theoretical
models introduced and discussed here are extremely important to corroborate the experimental
results observed in the next chapters.

5.2 MAXWELL’S EQUATION AND THE WAVE EQUATION

Similarly to all electromagnetic phenomena, the light propagation in a NL medium is also
governed by Maxwell’s equations. By assuming a dielectric medium with no free charges
(ρ = 0) and currents

(−→
J = 0

)
, we can write:

−→
∇ ·−→D = 0, (5.1)
−→
∇ ·−→B = 0, (5.2)

−→
∇ ×−→E =−∂

−→
B

∂ t
, (5.3)

−→
∇ ×−→H =−∂

−→
D

∂ t
, (5.4)
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where
−→
E and

−→
H are the electric and magnetic field vectors, respectively;

−→
D is the electric

displacement vector and
−→
B is the vector magnetic flux density.

−→
∇ = x̂∂/∂x+ ŷ∂/∂y+ ẑ∂/∂ z

is the differential nabla operator.
Vectors

−→
D and

−→
B originate from the response of the medium to electric and magnetic

fields
−→
E and

−→
H , respectively, and are connected with them through the following constitutive

relations:

−→
D = ε0

−→
E +
−→
P , (5.5)

−→
B = µ0

−→
H +
−→
M , (5.6)

where µ0 is the magnetic vacuum permeability,
−→
P and

−→
M are the induced electric and magnetic

polarizations, respectively.
For nonmagnetic dielectric media, we have

(−→
M = 0

)
, and by considering that the nonlin-

earity of the medium is included over the constitutive relation given by Eq. 5.5, the polarization
can be separated in linear and NL contributions, making

−→
P =

−→
P (L)+

−→
P (NL). Then, it is possi-

ble to rewrite the electric displacement vector as follows:
−→
D = ε0

−→
E +
−→
P (L)+

−→
P (NL),

−→
D =

−→
D (L)+

−→
P (NL), (5.7)

where
−→
D (L) = ε

−→
E is the linear part of the electric displacement vector, with ε = ε0

(
1+χ(1)

)
being the linear permittivity tensor of the medium

Using Maxwell’s equations, it is possible to obtain the wave equation which describes the
light propagation in a NL medium. By following the standard procedure to obtain the wave
equation, we take the curl of Eq. 5.3, then we change the order of the spatial and temporal
derivatives on the right side of the resulting equation, and by using Eqs. 5.6 and 5.4, we get:

−→
∇ ×
−→
∇ ×−→E +µ0

∂ 2−→D
∂ t2 = 0. (5.8)

Substituting the value of
−→
D by Eq. 5.7 and using the vector identity

−→
∇ ×

−→
∇ ×−→E =

−→
∇

(−→
∇ ·−→E

)
−
−→
∇ 2−→E , we can rewrite the previous equation as:

−→
∇

(−→
∇ ·−→E

)
−
−→
∇

2−→E +
1

ε0c2
∂ 2−→D (L)

∂ t2 =− 1
ε0c2

∂ 2−→P (NL)

∂ t2 , (5.9)

where c = (µ0ε0)
−1/2 is the light speed in the vacuum. Eq. 5.9 is the most general form of the

wave equation used in NL optics. Nevertheless, by neglecting the first term on the left side,
which is common in most cases of interest in NL optics, for example when

−→
E is described as a

transverse plane wave, this term vanishes. Thus, we can write the wave equation as follows:

−
−→
∇

2−→E +
1

ε0c2
∂ 2−→D (L)

∂ t2 =− 1
ε0c2

∂ 2−→P (NL)

∂ t2 . (5.10)
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For the simplest case, of a NL isotropic medium without loss and without dispersion
(−→

D (L) =

ε0ε(L)
−→
E
)

, the wave equation takes the following form:

−
−→
∇

2−→E +
ε(L)

c2
∂ 2−→E
∂ t2 =− 1

ε0c2
∂ 2−→P (NL)

∂ t2 , (5.11)

where ε(L)is the dimensionless relative permittivity which is different for each material. Here,
it can be seen that Eq. 5.11 has the form of an inhomogeneous wave equation, where the NL
polarization acts as a source of new frequency components of the EMF.

5.3 NONLINEAR SCHRÖDINGER EQUATION FOR HON

NLSE, commonly used to model the light propagation in NL media, can be found by ex-
pressing the wave equation in the frequency domain

(
∂

∂ t → iω
)

given by:[
−→
∇

2 +
ω2

c2

(
1+χ

(1)
)]−→

E (ω) =−µ0ω
2−→P (NL) (ω) , (5.12)

where it is assumed that the polarization response of the medium is instantaneous, i.e.,
−→
P is

determined only by the present conditions, there is no delayed response or memory effect in
the system. Also, it should be recognized that the electric field has a time structure that has
a slow and a fast varying component. The fast time scale corresponds to the optical cycle,
which is order of λ/c∼ 3 fs. The slow time scale corresponds to the width of the pulse, being

proportional to
∣∣∣−→E ∣∣∣2, which is typically 100 fs or much longer. Rarely do we have to deal with

pulses less than 10 fs, where this separation of the time scales is not so clean anymore. Thus,
the polarization,

−→
P , and electric field,

−→
E , propagating along the z−axis, with frequency ω0

and associated to a wavevector~k0 = k0k̂, are given in the frequency domain by:

−→
E (−→r ,ω) =

−→
A (−→r ,ω−ω0)exp[ik0z]+ c.c., (5.13)

−→
P (−→r ,ω) =

−→
P (−→r ,ω−ω0)exp[ik0z]+ c.c.. (5.14)

From linear optics, it is known that in lossless media: n2
0 (ω) = 1+ χ(1) (ω) and k (ω) =

[ω/c]n0 (ω). Therefore:

χ
(1) (ω) =

c2k2 (ω)

ω2 −1. (5.15)

Thus, using Eq. 5.15 is possible to write Eq. 5.12 of the form:[−→
∇

2 + k2 (ω)
]−→

E (ω) =−µ0ω
2−→P (NL) (ω) , (5.16)

which is known as the NL Helmholtz equation.
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From here we assume that the field is polarized in a fixed direction in the plane perpendicu-
lar to the direction of propagation. In addition, by substituting Eqs. 5.13 and 5.14 in Eq. 5.16,
we have:[

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 +2ik0
∂

∂ z
− k2

0

]
A(−→r ,ω−ω0)

+k2 (ω)A(−→r ,ω−ω0) =−µ0ω
2P(NL) (−→r ,ω−ω0) . (5.17)

The first parenthesis groups all the spatial terms, the next term incorporates dispersion and
the term on the right describes the NL corrections to this otherwise linear equation.

Moreover, we make the usually very well justified approximation that k (ω) is a reasonably
slowly varying function of ω , such that it can be expanded in powers of ω as:

k (ω) = k0 + k1 (ω−ω0)+
1
2!

k2 (ω−ω0)
2 +

1
3!

k3 (ω−ω0)
3 + · · · , (5.18)

where k0 = n0ω0/c is related to the phase velocity of light in the medium, k1 = (dk/dω)
ω=ω0

is the inverse of the group velocity
(
k1 = v−1

g
)
. k2 =

(
d2k/dω2)

ω=ω0
is the second order

dispersion and kn gives the n−th order dispersion.
To return to the time domain, Eq. 5.17 is multiplied by exp [−i(ω−ω0)t] and integrated on

ω . This results in:[
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 +2ik0
∂

∂ z
− k2

0

]
A(−→r , t)

+

[
k0 + ik1

∂

∂ t
− 1

2
k2

∂ 2

∂ t2 + . . .

]2

A(−→r , t) =−µ0

[
ω0 + i

∂

∂ t

]2

P(NL) (−→r , t) . (5.19)

As a next step, we will make a reference frame transformation to that of the pulse, which
propagates nominally at the group velocity (vg): (z, t)→ (z,τ = t− z/vg). Thus, the function
that represents the optical pulse is described by A′ (−→r ,τ), where:

∂

∂ z
=

∂

∂ z
+

∂

∂τ

∂τ

∂ z
=

∂

∂ z
+

(
− 1

vg

)
∂

∂τ
=

∂

∂ z
− k1

∂

∂τ
, (5.20)

∂

∂ t
=

∂

∂ z
∂ z
∂τ

+
∂

∂τ

∂τ

∂ t
=

∂

∂τ
, (5.21)

∂ 2

∂ z2 =

(
∂

∂ z
− k1

∂

∂τ

)(
∂

∂ z
− k1

∂

∂τ

)
=

∂ 2

∂ z2 −2k1
∂

∂ z
∂

∂τ
+ k2

1
∂ 2

∂τ2 . (5.22)

Therefore, Eq. 5.19 can be rewrite in the new coordinates by:

[
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

]
A′ (−→r ,τ)+2ik0

[
1+ i

k1

k0

∂

∂τ

]
∂

∂ z
A′ (−→r ,τ)

+

[
2k0

(
1+ i

k1

k0

∂

∂τ

)
D+D2

]
A′ (−→r ,τ) =−µ0ω

2
0

(
1+ i

1
ω0

∂

∂τ

)2

P′(NL) (−→r ,τ) , (5.23)
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with

D =
1
2!

k2

(
i

∂

∂τ

)2

+
1
3!

k3

(
i

∂

∂τ

)3

+ · · · . (5.24)

Here, we will make several important approximations:

• The slowly varying envelope approximation (SVEA) in time domain
(

k1
k0
= c

n0ω0vg
= 1

ω

vp
vg

∼ 1
ω

)
⇒
(

k1
k0

∂

∂τ
∼ Toptical

Tpulse
� 1

)
[

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

]
A′ (−→r ,τ)+2ik0

∂

∂ z
A′ (−→r ,τ)

+
[
2k0D+D2]A′ (−→r ,τ) =−µ0ω

2
0 P′(NL) (−→r ,τ) . (5.25)

• The SVEA in spatial domain
(

∂ 2A′
∂ z2 � k0

∂A′
∂ z

)
[

∂ 2

∂x2 +
∂ 2

∂y2

]
A′ (−→r ,τ)+2ik0

∂

∂ z
A′ (−→r ,τ)

+
[
2k0D+D2]A′ (−→r ,τ) =−µ0ω

2
0 P′(NL) (−→r ,τ) . (5.26)

• Ignoring the contribution of D2, which is already too weak to be of interest to us.[
∂ 2

∂x2 +
∂ 2

∂y2

]
A′ (−→r ,τ)+2ik0

∂

∂ z
A′ (−→r ,τ)+ [2k0D]A′ (−→r ,τ) =−µ0ω

2
0 P′(NL) (−→r ,τ) .

(5.27)

Finally, the NLSE in its most general form is given by:

2ik0
∂A′

∂ z
+∇⊥A′− k0k2

∂ 2A′

∂τ2 =−µ0ω
2
0 P′(NL), (5.28)

where D = 1
2!k2

(
i ∂

∂τ

)2
in first approximation and ∇⊥ is the transverse Laplacian operator.

Is worth mentioning that Eq. 5.28 was developed neglecting losses. However, for dissipa-
tive NL media, the NLSE is given by:

2ik0
∂A′

∂ z
+∇⊥A′− k0k2

∂ 2A′

∂τ2 + ik0α0A′ =−µ0ω
2
0 P′(NL), (5.29)

where α0 represents the linear absorption coefficient and the contribution of NL absorption is
included in the imaginary part of the NL polarization.
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5.3.1 NLSE for Metal-Dielectric Nanocomposites
As seen in the previous chapter, the MDNCs that were used for the experiments of this

thesis present relevant nonlinearities up to the seventh-order. Therefore, the NL polarization,
P′(NL), in Eq. 5.29 is given by [Eq. 2.79]:

P′(NL) = P′(3)+P′(5)+P′(7)

=
3
4

ε0χ
(3)
e f f

∣∣A′∣∣2 A′+
5
8

ε0χ
(5)
e f f

∣∣A′∣∣4 A′+
35
64

ε0χ
(7)
e f f

∣∣A′∣∣6 A′. (5.30)

By substituting Eq. 5.30 in the NLSE (Eq. 5.29), we have:

i
∂A′

∂ z
+

1
2k0

∇⊥A′− 1
2

k2
∂ 2A′

∂τ2 +
i
2

α0A′ =− k0

2n2
0

[
3
4

χ
(3)
e f f

∣∣A′∣∣2 + 5
8

χ
(5)
e f f

∣∣A′∣∣4 + 35
64

χ
(7)
e f f

∣∣A′∣∣6]A′.

(5.31)

Eq. 5.31 is known as cubic-quintic-septimal NLSE (CQS-NLSE).

5.3.2 NLSE for Liquid Carbon Disulfide
For the special case of liquid CS2, different types of NL behavior have been reported by

varying the incident laser parameters such as: wavelength, pulse duration time, repetition rate
and intensity [209]. In this thesis, studies in CS2 were performed by using two intense short-
pulse lasers at: (a) 532 nm with pulses of 80 ps and (b) 800 nm with pulses of 100 fs. At high
intensities, it was observed that the NL refractive behavior of CS2 simulates a saturable-type
medium in picosecond regime [26], while in femtosecond regime, CS2 acts as a cubic-quintic
refractive medium [25]. Further, in both regimes, CS2 presents dissipative terms which vary de-
pending on the wavelength used, as discussed with more details in Appendix C. These different
NL behaviors have a strong influence on the propagation of the fields inside the material.

In 532 nm and picosecond regime, Besse et al. reported an unusual behavior of the NL
refractive index, as observed in Fig. 1.5(a). Based on experimental results, they developed an
empirical expression that allowed to adjust the effective third-order refractive index, n2,e f f ,as a
function of intensity, given by [26]:

n2,e f f (I) =
aI

1+b2I2 , (5.32)

where a = 3.39×10−32 m4/W2 and b = 5.76×10−15 m2/W. As concerns the NL absorption,
it was also concluded in [26] that the 2PA is negligible, while the 3PA must be taken into
account, with respective coefficient α4 = 9.3× 10−26 m3/W2. Considering these parameters,
we can define the equations of evolution of the phase,4Φ, and intensity, I, as:



114

∂4Φ

∂ z
= k0

[
n2,e f f (I)

]
I = k0

aI
1+b2I2 I, (5.33)

∂ I
∂ z

=−α4I3. (5.34)

On the other hand, NL polarization in Eq. 5.29 can be expressed as P′(NL) = ε0χ
(NL)
e f f A′,

where χ
(NL)
e f f represents a total effective NL susceptibility. Separating the amplitude and phase

of A′ = |A′|ei4Φ , Eq. 5.29 becomes:

i
∂ [|A′|]

∂ z
−
∣∣A′∣∣ ∂ [4Φ]

∂ z
+

1
2k0

[
∂ 2 |A′|

∂x2 +2i
∂ |A′|

∂x
∂4Φ

∂x
+ i
∣∣A′∣∣ ∂ 24Φ

∂x2 −
∣∣A′∣∣(∂4Φ

∂x

)2
]

+
1

2k0

[
∂ 2 |A′|

∂y2 +2i
∂ |A′|

∂y
∂4Φ

∂y
+ i
∣∣A′∣∣ ∂ 24Φ

∂y2 −
∣∣A′∣∣(∂4Φ

∂y

)2
]
=− k0

2n2
0

χ
(NL)
e f f

[∣∣A′∣∣] ,
(5.35)

where it was considered that α0 = 0, because CS2 is a transparent liquid in 532 nm.
Separating the real of the imaginary part and using the plane wave approximation, we have:

∂ [4Φ]

∂ z
=

k0

2n2
0

Re
[
χ
(NL)
e f f

]
, (5.36)

∂ [|A′|]
∂ z

=− k0

2n2
0

Im
[
χ
(NL)
e f f

]∣∣A′∣∣ . (5.37)

Multiplying both sides of Eq. 5.37 by 2 |A′| and using the relationship between the electric
field amplitude and intensity, I = 1

2cε0n0 |A′|, Eq. 5.37 is rewritten as:

∂ I
∂ z

=− k0

2n2
0

2Im
[
χ
(NL)
e f f

]
I. (5.38)

Then, comparing Eqs. 5.36 and 5.38 with the Eqs. 5.33 and 5.34, we obtain:

Re
[
χ
(NL)
e f f

]
=

2n2
0

k0

[
k0

aI
1+b2I2 I

]
, (5.39)

Im
[
χ
(NL)
e f f

]
=

2n2
0

k0

[
α4

2
I2
]
. (5.40)

Finally, substituting Eqs. 5.39 and 5.40 in the expression for the NL polarization
(

P′(NL) =

ε0χ
(NL)
e f f A′

)
, it is possible to write the NLSE [Eq. 5.29] of the form:

i
∂A′

∂ z
+

1
2k0

∇⊥A′− 1
2

k2
∂ 2A′

∂τ2 =−
[

k0aI2

1+b2I2 + i
α4I2

2

]
A′. (5.41)
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Eq. 5.41 governs the evolution of a light pulse (532 nm and picosecond regime) in CS2.
The first term in brackets represents the saturable-type NL refraction while the second term
corresponds to the 3PA.

On the other hand, the NL behavior of CS2 in 800 nm and femtosecond regime is attributed
to the cubic, n2, and quintic, n4, refractive indices, as well as to the losses processes which are
summarized in a NL coefficient, αNL, given by Eq. C.4. Thus, following the same procedure
used for the picosecond regime, but substituting Eqs. 5.33 and 5.34 by:

∂4Φ

∂ z
= k0 [n2 +n4I] I, (5.42)

∂ I
∂ z

=− [αNL (I)] I =−B

(
exp
[ I−C

D

]
− exp

[
−C

D

]
exp
[ I−C

D

]
+1

)
I, (5.43)

where B, C and D are constants defined in Appendix C (B = 5.39 cm-1, C = 186.7 GW/cm2

and D = 27.16 GW/cm2). We can describe the propagation of a light pulse in 800 nm and 100
fs in CS2 by:

i
∂A′

∂ z
+

1
2k0

∇⊥A′− 1
2

k2
∂ 2A′

∂τ2 =−

[
k0 (n2 +n4I) I +

i
2

B

(
exp
[ I−C

D

]
− exp

[
−C

D

]
exp
[ I−C

D

]
+1

)]
A′.

(5.44)
In two transverse dimensions (2+1)D, the laser beam propagation in CS2 can be modeled by

solving numerically Eqs. 5.41 and 5.44 for picosecond and femtosecond regimes, respectively.

5.4 ANALYTICAL VARIATIONAL TECHNIQUE

Variational calculus is a powerful analytical technique that allows to find an approximate
solution of NLSE, in cases in which there is no exact analytical solution [210]. In order to apply
the mathematical formalism of variational calculus we initiate by identifying the conditions
under which a type of integral assumes a stationary value, which can be a maximum, minimum
or saddle point 1. The simplest integral can be written as:

J =

x2ˆ

x1

L
(
x,y,y′

)
dx, (5.45)

where L is a known function that depends on the variables x, y and the derivatives y′ = dy/dx.
It will be seen later that L is related with the Lagrangian function and Eq. 5.45 is sometimes
called the action integral. The integration limits are given by x1 = (x1, y1) and x2 = (x2, y2),
and J depends on the integration path between these two points.

We assume that the integral of y = y(x), between the points x1 and x2, results in a stationary
value Jm. In addition, we define a curve Y = y(x)+ ςh(x), neighboring to y = y(x), which also

1A saddle point is a point in the domain of a function where the slopes of orthogonal function components
defining the surface become zero, but are not a local extremum on both axes.
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passes through points x1 and x2, whose integral is Jm+δJm. Here, ς is a parameter that defines
if the function y = y(x) is subject to weak or strong variations; h(x) is a function only of x,
which is zero at x1 and x2, and has a continuous second derivative in the interval from x1 to x2.
These assumptions are mathematically expressed by:

Jm =

x2ˆ

x1

L
(
x,y,y′

)
dx, (5.46)

Jm +δJm =

x2ˆ

x1

L
(
x,y+ ςh,y′+ ςh′

)
dx. (5.47)

Both equations can be related using the mean-value theorem for functions of several vari-
ables, given by:

L
(
x,y+ ςh,y′+ ςh′

)
= L

(
x,y,y′

)
+ ς

[
h

∂L
∂y

+h′
∂L
∂y′

]
+

ς2

2

[
h2 ∂ 2L

∂y2 +2hh′
∂ 2L

∂y∂y′
+h′2

∂ 2L
∂y′2

]
+O

(
ς

3) . (5.48)

Integrating Eq. 5.48 in x, between the points x1 and x2, and using Eqs. 5.46 and 5.47, we
obtain

δJm = ς

x2ˆ

x1

[
h

∂L
∂y

+h′
∂L
∂y′

]
dx+

ς2

2

x2ˆ

x1

[
h2 ∂ 2L

∂y2 +2hh′
∂ 2L

∂y∂y′
+h′2

∂ 2L
∂y′2

]
dx+O

(
ς

3) , (5.49)

where the integral terms with ς and ς2 are known as the first and second variations, and they
are denoted by J1 and J2, respectively. It is possible to note that in a stationary point, the first
derivatives of L are zero, i.e. the first-order variation vanishes. Nevertheless, J2 is the term that
establishes the type of stationary value (if it is a minimum, maximum or saddle point).

We focus our attention in the first-order variation. At a stationary point, δJ1 can be ex-
pressed in a more simple form by integrating by parts the term concerning to h′, as follow:

δJ1 =

(
∂J1

∂ς

)
ς=0

dς ,

=

x2ˆ

x1

[
∂L
∂y
− d

dx
∂L
∂y′

]
δydx, (5.50)
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where δy = (∂Y/∂ς)
ς=0 dς , with Y = y(x)+ ςh(x). Also, δJ1 = 0 for being evaluated at a

stationary point. Thus, by using the fundamental lemma of variational calculus2, Eq. 5.50 can
only be satisfied if:

∂L
∂y
− d

dx
∂L
∂y′

= 0. (5.51)

Eq. 5.51 is known as the Euler-Lagrange equation and L is referred to Lagrangian function.
This equation can be generalized for N dependent variables and M independent variables, of
the form:

∂L
∂yp
−

M

∑
q=1

d
dxq

(
∂L

∂ypq

)
= 0, (5.52)

with p = 1, 2, . . . , N, ypq =
(
∂yp/∂xq

)
and the Eq. 5.45 is rewritten as:

J =

ˆ
. . .

ˆ
L
(
x1,x2, . . . ,xM,y1,y2, . . . ,yN ,y11, . . . ,ypq, . . . ,yNM

)
dx1dx2 · · ·dxM. (5.53)

The derivation of the Euler-Lagrange equations were performed of the more general na-
ture, without reference to a specific physical system. However, in Section 6.1, the variational
method is applied to the CQS-NLSE, in order to obtain the stability and instability regions of
fundamental solitons, identified by using the Vakhitov-Kolokolov criterion [211].

5.5 NONLINEAR BIREFRINGENCE IN CAPILLARIES WITH METAL
COLLOIDS CORE

The study of NL polarization instability, discussed in Chapter 8, was conducted for prop-
agating a linearly polarized laser pulse on a hollow capillary filled with a silver colloid. For
the intensity regime used in the experiments, silver colloids behave like a cubic-quintic media.
Thus, in this section, it is developed a theoretical model that describes the evolution of the right-
and left-circular polarization in media exhibiting cubic-quintic nonlinearities. This theoretical
proposal is based on the typical model used for the propagation of light in fibers, as discussed
in [212].

We begin expressing the complex electric field associated with an arbitrarily polarized op-
tical wave by:

−→
E (−→r , t) =

1
2
(x̂Ex + ŷEy)exp [−iω0t]+ c.c., (5.54)

where Ex and Ey are the complex amplitudes of the polarization components of the field in the
x− and y−axis, with the carrier frequency ω0.

2The fundamental lemma of variational calculus states that: if f (x) is continuous in the interval (x1,x2) and
the integral

´ x2
x1

f (x)g(x)dx vanishes for every g(x) continuously differentiable in (x1,x2) and that vanishes at x1

and x2, then f (x) = 0 in the closed interval [x1,x2].
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The NL light propagation inside the colloid hosted by the capillary can be modeled by using
the Helmholtz equation given by

∇
2−→E (−→r ,ω)+

(
k′0
)2−→

ε (ω) ·−→E (−→r ,ω) = 0, (5.55)

where
−→
E (−→r ,ω) and −→ε (ω) represent the frequency-dependent field and the dielectric tensor,

respectively. ∇2 is the Laplacian operator, k′0 = ω0/c, ω0 is the laser frequency and c is the
speed of light in vacuum3. By using the relationship between the total polarization and total
dielectric function, given by Eqs. 2.79 and 2.80, we have to Eq. 5.55 is equal to the expression
derived in 5.16.

As follows from Eqs. 5.54 and 5.55 the field components obeys the Helmholtz equation:

∇
2Eµ (

−→r ,ω)+
(
k′0
)2

εµσ (ω) ·Eσ (−→r ,ω) = 0, (5.56)

with µ and σ equal to x or y. In the principal-axis system, the dielectric tensor is represented
as a diagonal matrix

(
εµσ → εµσ δµ,σ

)
, with εxx = εx and εyy = εy being the only nonzero

components. This complex dielectric function
(
εµ

)
is associated to the refractive index, nµ , and

the absorption coefficient, αµ , of the material through the expression εµ =
[
nµ + iαµ/(2k′0)

]2.
For media exhibiting NL response, the dielectric function can be expressed as a sum of the
linear and NL contributions as εµ (ω) = εL

µ (ω)+ εNL
µ (ω), where the NL term is related to the

NL optical polarization by:
PNL

µ (ω) = ε0ε
NL
µ (ω)Eµ (ω) . (5.57)

For media exhibiting cubic-quintic nonlinearities, the NL polarization is adequately de-
scribed by the sum of the third- and fifth-order contributions, PNL

µ = P(3)
µ +P(5)

µ , with:

P(3)
µ (ω) =

3
4

ε0

{
2χ

(3)
xxyy (ω)Eµ (ω)

[−→
E (ω) ·−→E ∗ (ω)

]
+ χ

(3)
xyyx (ω)E∗µ (ω)

[−→
E (ω) ·−→E (ω)

]}
, (5.58)

P(5)
µ (ω) =

5
8

ε0

{
10
3

χ
(5)
xxyyxx (ω)

∣∣Eµ (ω)
∣∣2 [−→E (ω) ·−→E (ω)

]
E∗µ (ω)

+
5
3

χ
(5)
xxyyyy (ω) ∑

σ=x,y
|Eσ (ω)|4 Eµ (ω)

}
. (5.59)

A detailed explanation to obtain Eqs. 5.58 and 5.59 is given in Appendix D. By comparing
Eq. 5.57 with Eqs. 5.58 and 5.59 we obtain an expression for the dielectric function in the

3the symbol (′) was used to differentiate k′0 = ω0/c from k0 = n0ω0/c, used in the analysis of the NLSE
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form:

ε
NL
µ (ω) =

3
4

[(
2χ

(3)
xxyy (ω)+χ

(3)
xyyx (ω)

)∣∣Eµ (ω)
∣∣2 +2χ

(3)
xxyy (ω) ∑

σ=x,y
|Eσ (ω)|2

(
1−δµ,σ

)]

+
5
8

[
10
3

χ
(5)
xxyyxx (ω)

∣∣Eµ (ω)
∣∣4 + 5

3
χ
(5)
xxyyyy (ω)

(∣∣Eµ (ω)
∣∣4 + ∑

σ=x,y
|Eσ (ω)|4

(
1−δµ,σ

))]

+

[
3
4

χ
(3)
xyyx (ω)+

5
8

10
3

χ
(5)
xxyyxx (ω)

∣∣Eµ (ω)
∣∣2] ∑

σ=x,y
|Eσ (ω)|2

(
1−δµ,σ

) E∗µ (ω)

Eµ (ω)
.

(5.60)

The Helmholtz equation [Eq. 5.56] can be solved by the separation of variables method for
each component of the electric field:

Eµ (
−→r ,ω) = F (x,y)Aµ (z,ω−ω0)exp

(
iβ0,µz

)
, (5.61)

where F (x,y) is the transverse mode pattern supported by the capillary, Aµ (z,ω−ω0) is the
slowly varying amplitude and β0,µ is the propagation constant for µ = x, y. Substituting Eq.
5.61 in Eq. 5.56, and separating the terms dependent upon the propagation distance (z) and the
transverse coordinates (x, y), we obtain:

2iβ0,µ
∂Aµ

∂ z
+
(

β
2
µ −β

2
0,µ

)
Aµ = 0, (5.62)

∂ 2F
∂x2 +

∂ 2F
∂y2 +

[
εµ (ω)

(
k′0
)2−β

2
µ

]
F = 0, (5.63)

where the slowly varying envelope approximation
[(

∂ 2Aµ/∂ z2)� β0,µ
(
∂Aµ/∂ z

)]
was made

to obtain Eq. 5.62. The dielectric function in Eq. 5.63 can be approximated by:

εµ =
(
n0,µ +4Nµ

)2 ≈
(
n0,µ

)2
+2
(
n0,µ

)(
4Nµ

)
, (5.64)

where 4Nµ = iα0,µ/2k′0 +
[
4nµ + i4αµ/(2k′0)

]
, n0,µ

(
α0,µ

)
is the linear refractive index

(linear absorption coefficient) and 4nµ

(
4αµ

)
represents the NL contributions of the re-

fractive index (absorption coefficient). The linear and NL dielectric functions are given by
εL

µ =
[
n0,µ + iα0,µ/(2k′0)

]
and εNL

µ = 2
(
n0,µ

)[
4nµ + i4αµ/(2k′0)

]
, and substituting in Eqs.

5.60 and 5.61, we have:(
4nµ + i

4αµ

2k′0

)
=

3
8n0,µ

|F |2
[(

2χ
(3)
xxyy +χ

(3)
xyyx

)∣∣Aµ

∣∣2 +2χ
(3)
xxyy ∑

σ=x,y
|Aσ |2

(
1−δµ,σ

)]

+
5

16n0,µ
|F |4

[
10
3

χ
(5)
xxyyxx

∣∣Aµ

∣∣4 + 5
3

χ
(5)
xxyyyy

(∣∣Aµ

∣∣4 + ∑
σ=x,y

|Aσ |4
(
1−δµ,σ

))]

+
1

2n0,µ
|F |2

[
3
4

χ
(3)
xyyx +

5
8

10
3

χ
(5)
xxyyxx |F |2

∣∣Aµ

∣∣2] ∑
σ=x,y

[Aσ ]
2 (1−δµ,σ

)
×

A∗µ
Aµ

exp
[
2i
(
β0,σ −β0,µ

)
z
]
. (5.65)
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βµ can be determined by solving Eq. 5.63 using the first-order approximation
(
βµ → βµ +4βµ

)
,

where F and the eigenvalue β 2
µ → β 2

µ +2βµ4βµ are represented by:

F = F(0)+ξ F(1)+ . . . , (5.66)

β
2
µ =

(
βµ

)2
+ξ 2βµ

(
4βµ

)
+ . . . , (5.67)

where ξ is a perturbation parameter which can vary over a continuous range from 0 (no pertur-
bation) to 1 (full perturbation). Inserting Eqs. 5.66 and 5.67 into the eigenvalue equation 5.63,
and using the Eq. 5.64, we obtain:

ξ
(0) :

[(
∂ 2

∂x2 +
∂ 2

∂y2 +(n0,µk′0)
2
)
−β

2
µ

]
F(0) = 0, (5.68)

ξ
(1) :

[(
∂ 2

∂x2 +
∂ 2

∂y2 +(n0,µk′0)
2
)
−β

2
µ

]
F(1)

+
[
2
(
n0,µ

)(
4Nµ

)
(k′0)

2−2βµ

(
4βµ

)]
F(0) = 0. (5.69)

In order to find an expression for F(0), Eq. 5.68 is written in cylindrical coordinates
(ρ, φ , z) and by using the separation of variables F(0) (ρ,φ) = F(0) (ρ)exp [imφ ], it is pos-
sible to recognize Eq. 5.68 as the modified Bessel differential equation: ∂ 2F(0)

∂ρ2 + 1
ρ

∂F(0)

∂ρ
+[

(n0,µk′0)
2−β 2

µ − m2

ρ2

]
F(0) = 0. Then, a solution for the region filled with a NL medium, cor-

responding to the capillary core
(
ncore = n0,µ

)
is:

F(0)
core (ρ) =C1Jm

(
ρ

√
(n0,µk′0)

2−β 2
µ

)
, (5.70)

where Jm is the first kind m−order Bessel function. For the region formed by the capillary’
wall

(
n0,µ = ncladding

)
, F(0) should decay exponentially for ρ . A function that describes such

behavior is the modified Bessel function of second kind, Km, given by

F(0)
cladding (ρ) =C2Km

(
ρ

√
β 2

µ − (ncladdingk′0)
2
)
, (5.71)

where C1 and C2 are determined by considering the boundary conditions.
From Eq. 5.69, corresponding to the first-order of perturbation, we get

4βµ = k0

´ ´ (
4Nµ

)∣∣∣F(0)
∣∣∣2 dxdy

´ ´ ∣∣F(0)
∣∣2 dxdy

, (5.72)

where F(0) is given by Eqs. 5.70 and 5.71, and4Nµ was defined in Eq. 5.64.
On the other hand, by considering βµ → βµ +4βµ into Eq. 5.62 we obtain the expression

∂Aµ

∂ z
= i
(
βµ +4βµ −β0,µ

)
Aµ , (5.73)
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where the approximation β 2
µ −β 2

0,µ → 2β0,µ
(
βµ −β0,µ

)
was used. Nevertheless, as an exact

functional form of βµ is generally unknown, an expansion in Taylor series about the frequency
ω0 is made to obtain the more specialized expression

βµ (ω) = β0,µ +β
(1)
µ (ω−ω0)+

1
2

β
(2)
µ (ω−ω0)

2 +O
[
(ω−ω0)

3
]
, (5.74)

where β
(N)
µ =

(
dNβµ/dωN), N = 1, 2, represent the dispersion terms and the last term rep-

resents higher-order contributions that will be neglected. Then, substituting Eq. 5.74 in Eq.
5.73 and using Eqs. 5.65 and 5.72, we obtain two coupled differential equations that describe
the evolution of the two polarization components along a capillary filled with a cubic-quintic
isotropic media. Both equations can be summarized as:

∂Aµ

∂ z
+β

(1)
µ

∂Aµ

∂ t
+ i

β (2)

2
∂ 2Aµ

∂ t2 +
α0

2
Aµ

= i
k′0

2n0,µ

3
4

F(1)

{[(
2χ

(3)
xxyy +χ

(3)
xyyx

)∣∣Aµ

∣∣2 +2χ
(3)
xxyy ∑

σ=x,y

(
1−δµ,σ

)
|Aσ |2

]
Aµ

+χ
(3)
xyyx

[
∑

σ=x,y

(
1−δµ,σ

)
(Aσ )

2

]
A∗µexp

[
2i
(
β0,σ −β0,µ

)
z
]}

+ i
k′0

2n0,µ

5
8

F(2)

{[
10
3

χ
(5)
xxyyxx

∣∣Aµ

∣∣4 + 5
3

χ
(5)
xxyyyy

[∣∣Aµ

∣∣4 + ∑
σ=x,y

(
1−δµ,σ

)
|Aσ |4

]]
Aµ

+
10
3

χ
(5)
xxyyxx

[
∑

σ=x,y

(
1−δµ,σ

)∣∣Aµ

∣∣2 (Aσ )
2

]
A∗µexp

[
2i
(
β0,σ −β0,µ

)
z
]}

,

(5.75)

with µ = x, y, F(1) =
(´ ´ |F(0)|4dxdy

)
/
(´ ´ |F(0)|2dxdy

)2
and F(2) =

(´ ´ |F(0)|6dxdy
)
/
(´ ´ |F(0)|2dxdy

)3
.

The modal birefringence of the capillary is expressed by 4β0 = β0,x−β0,y = 2π/λ
∣∣nx−ny

∣∣,
which leads to different group velocities for the two polarization components

(
β
(1)
x 6= β

(1)
y

)
.

However, β (2) and α0 are assumed to be the same for both polarization components.
For convenience, we rewrite Eq. 5.75 using the circularly polarized components A± =

2−1/2
(
Āx± iĀy

)
, where Āx = Axexp [i4β z/2] and Āy = Ayexp [−i4β z/2], and by performing

some manipulations we obtain:

∂A±
∂ z

+
1
2

[
β
(1)
+

∂A±
∂ t

+β
(1)
−

∂A∓
∂ t

]
+

i
2

β
(2)∂ 2A±

∂ t2 +
α0

2
A±

=
i
2
(4β0)A∓+ i

3ω0

4n0c
F(1)

[
χ
(3)
xxyy

(
|A+|2 + |A−|2

)
+χ

(3)
xyyx |A∓|2

]
A±

+ i
5ω0

32n0c
F(2)

{
10
3

χ
(5)
xxyyxx

[
|A++A−|2 (A++A−)

∗∓|A+−A−|2 (A+−A−)
∗
]

A∓

+
5
6

χ
(5)
xxyyyy

[
|A++A−|4 + |A+−A−|4

]}
A±, (5.76)
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with β
(1)
± = β

(1)
x ±β

(1)
y . Eq. 5.76 describes the evolution of the right- and left-circular polar-

izations A+ and A− along a hollow capillary filled with an isotropic cubic-quintic media.
The theoretical models developed in this chapter correspond to an expansion of the already

known models for lowest-order nonlinearity
(

χ(3)
)

, but considering the different behavior of
the HON, corresponding to our materials.

... what is theory? An uninitiated see just a mass of incomprehensible
formulas ... However, they are not its essence.

- LUDWIG BOLTZMANN
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6 FUNDAMENTAL SPATIAL SOLITONS IN OFF
MDNCS

This chapter is devoted to study the formation and propagation of fundamental spatial solitons
in one- [(1+1)D] and two-transverse dimensions [(2+1)D], when HON are relevant. Here,
fundamental spatial solitons are understood as first-order bright solitons propagating in the spa-
tial domain. The notation “(N +1)D” refers to N transverse dimensions plus the propagation
direction (which corresponds to the z-axis in all our cases). In (1+1)D, fundamental spatial
solitons are known to be stable, when it propagates in cubic SF media. However, in media
exhibiting HON, stability and instability regions are formed depending on the order of the non-
linearity, its sign and magnitude, as well as the incident power. These regions are identified and
analyzed in Section 6.1 by using the variational method, discussed in Section 5.4, and a linear
stability analysis. In Section 6.2, it is reported the observation of the stable propagation of
(2+1)D fundamental spatial solitons, which are unstable in cubic media, due to the simultane-
ous contributions of quintic and septimal nonlinearities. Both works were inspired by the HON
observed in MDNCs and in the NM procedure developed to control them. The theoretical and
experimental results were corroborated with numerical simulations based on the CQS-NLSE
obtained in Section 5.3.

6.1 ONE-DIMENSIONAL SPATIAL SOLITONS IN CUBIC-QUINTIC-OFFF
SEPTIMAL MEDIA

6.1.1 Introduction
Optical spatial solitons are self-trapped light beams whose shape and transverse dimen-

sion remain invariant in the course of propagation, due to the balance between diffraction and
nonlinearity [75, 83, 213]. Different physical mechanisms may contribute to the generation of
spatial solitons in NL media [48, 214]. In this thesis, we focus on the NL processes induced
by the Kerr effect. In particular, it is well established that focusing Kerr-type media support
the stable propagation of bright solitons in (1+1)D [36, 78]. Usually, the soliton’s dynamics
is described by the C-NLSE, which gives rise to the commonly known stable solution with
the hyperbolic-secant envelope shape. However, unstable soliton propagation is observed in
(1+1)D when the system exhibits HON [215]. For example, in focusing quintic NL media the
diffraction effect is not sufficient to balance the self-focusing, and consequently the beam is
subject to critical collapse [216]. Nevertheless, the inclusion of higher-order dissipative terms
can suppress the collapse. In (2 + 1)D, the stationary soliton solutions of the C-NLSE (Townes’
solitons) are extremely unstable against propagation [217]. Therefore they are not observed in
the usual Kerr media [76, 218], however stable propagation can be observed when refractive
and/or dissipative HON are considered.
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Large HON were reported in various physical settings [219, 220, 23, 158, 221, 222] playing
an important role for the understanding of filamentation [223, 224], harmonic conical diffrac-
tion [31, 225], and other transverse NL phenomena. In particular, as mentioned above, HON
may help to stabilize the propagation of spatial solitons. The theoretical analysis shows that
the formation of (1+1)D spatial solitons depends on the sign and magnitude of the third- and
fifth-order NL terms [226, 227]. In (2 + 1)D, stable soliton solution of the cubic-quintic NLSE
(CQ-NLSE) was predicted by considering the competition between focusing third-order and
defocusing fifth-order nonlinearities [228]. The experimental observation of stable (2 + 1)D
fundamental solitons in cubic-quintic media, including a dissipative effect due to the three-
photon absorption, was recently reported [30].

Several works dealt with the stable propagation of solitons in media with other modifica-
tions of cubic-quintic nonlinearities [229, 174, 175, 230]. A special case, which was studied,
thus far, only theoretically, is critical collapse in focusing quintic media in the absence of the
third-order nonlinearity. The corresponding model is provided by the quintic NLSE (Q-NLSE),
which displays a degenerate family of 1D Townes’ solitons [172, 231, 232]. The addition of an
external potential allows one to arrest the beam collapse in one [172, 231] and two [233] trans-
verse dimensions. In focusing cubic-quintic media, the cubic nonlinearity lifts the degeneracy
that is characteristic of the Townes’ solitons, making the solitons’ propagation stable against
small perturbations [234].

In addition to the cubic and quintic terms, septimal nonlinearity may also play an important
role for the evolution of optical fields. For instance, a case of interest is the study of the spatial-
soliton propagation in septimal media. A highly unstable behavior, due to the high degree of
the seventh-order nonlinearity, is expected, and hence HON can give rise to a supercritical
collapse of the beam. Thus, the study of the cubic-quintic-septimal NL model is relevant to
complement the previous studies, and it can suggest additional possibilities for experiments.
This is where MDNCs play an important role to investigate fundamental spatial solitons. In
fact, the NM procedure applied to MDNCs allows controlling the interplay between different
NL terms, which leads to enhancement or suppression of specific HON, as discussed in Chapter
4. Therefore, the availability of the management technique, which allows to obtain a quintic
or septimal medium, justifies the theoretical effort to study the respective mathematical mod-
els that identify the stability region of fundamental spatial soliton propagation as well as the
instability regions where the critical and supercritical collapse occurs.

In this section, the conditions for the stable propagation of (1+1)D spatial solitons in me-
dia exhibiting nonlinearities up to the seventh order are analyzed by using the CQS-NLSE. In
addition, a variational approximation (VA) , based on the raised-sech ansatz [173], and the
Vakhitov-Kolokolov (VK) stability criterion [211] are used to identify stability and instability
regions of the spatial soliton propagation. The analytical predictions obtained from the theo-
retical model were corroborated with numerical simulations that demonstrates the evolution of
stable and unstable fundamental spatial solitons in cubic-quintic-septimal media.
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6.1.2 Variational Approximation to Cubic-Quintic-Septimal Nonlinear OF
Schrödinger Equation

The evolution of optical fields in a medium exhibiting nonlinearities up to the seventh-order
is modeled by the CQS-NLSE, given by Eq. 5.31. For simplicity, we neglect the dispersion
effects (k2 = 0) and the contributions of both linear (α0 = 0) and NL absorption. Thus, in
(1+1)D, the CQS-NLSE of a non-dispersive and non-dissipative medium takes the form:

i
∂A′

∂ z
+

1
2k0

∂ 2A′

∂x2 =− k0

2n2
0

[
3
4

χ
(3)
e f f

∣∣A′∣∣2 + 5
8

χ
(5)
e f f

∣∣A′∣∣4 + 35
64

χ
(7)
e f f

∣∣A′∣∣6]A′, (6.1)

where the (2N +1)th-order susceptibility, χ
(2N+1)
e f f with N = 1, 2, 3, are real parameters. How-

ever, the most practical way to analyze the Eq. 6.1 is by using the normalized CQS-NLSE
given by:

i
∂ψ

∂Z
+

1
2

∂ 2ψ

∂X2 +g3ψ |ψ|2 +g5ψ |ψ|4 +ψ |ψ|6 = 0, (6.2)

which is obtained by making a change of variables: X = x/w0, Z = z/LD, where LD = k0w2
0 and

w0 is the beam waist of the input beam. The field amplitude was normalized by the septimal

susceptibility of the form: ψ = A′√
Ir

with Ir =

[
2n2

0
k2

0w2
0

64
35

1
χ
(7)
e f f

]1/3

. The dimensionless coefficients

g3 =
[

27
35

k4
0w4

0
4n4

0

]1/3 χ
(3)
e f f[

χ
(7)
e f f

]1/3 and g5 =
[

40
49

k2
0w2

0
2n2

0

]1/3 χ
(5)
e f f[

χ
(7)
e f f

]2/3 represent the strengths of the third and

quintic NL terms, while g7 = +1 corresponds to a normalized focusing septimal nonlinearity.
The stability of the spatial solitons was studied by varying g3 and g5 both between −1.5 and
+1.5. We stress that the models in which the magnitudes of g3, g5, and g7 are comparable,
or, in some cases, g7 is dominant, do not violate the convergence principle of the power-series
expansion. Clear examples of that was observed experimentally in the NL behavior of the
MDNCs studied in Chapter 4.

We begin by considering that the stationary solution of Eq. 6.2 with a real propagation
constant K have the form of ψ (X ,Z) = ϕ (X)exp [iKZ], where the real function ϕ = ϕ (X)
satisfies the stationary equation

0 =−Kϕ +
1
2

d2ϕ

dX2 +g3ϕ
3 +g5ϕ

5 +ϕ
7. (6.3)

An effective potential energy U can be defined by casting Eq. 6.3 into the form of d2ϕ/dX2 =

−dU/dϕ . Therefore, the corresponding Lagrangian density L = (ϕ ′)2 /2−U is given by:

L =
1
2
(
ϕ
′)2

+Kϕ
2− 1

2
g3ϕ

4− 1
3

g5ϕ
6− 1

4
ϕ

8. (6.4)

In analogy to the case of the Q-NLSE, Eq. 6.2 is nonintegrable; hence the VA, discussed in
Section 5.4, is necessary to predict conditions for stable soliton propagation. Thus, taking into
regard the commonly known fact that, for the ordinary cubic nonlinearity, the exact solution for
the (1+1)D C-NLSE is ϕ (X) ∝ sech

(√
2KX

)
, we here adopt the raised-sech ansatz [173]
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ϕ (X) = Λ

[
sech

(√
2KX

)]η

, (6.5)

where Λ and η are variational parameters. This ansatz allows one to control the beam’s radius
by changing the parameter η . It is important to emphasize that while the Ansatz is closer to the
exact solution of Eq. 6.2, the predictions of the variational model will be much more accurate.

In addition, the total power P =
´

∞

−∞
[ϕ (X)]2 dX of ansatz 6.5 is

P =
Λ2
√

2K

[ √
πΓ (η)

Γ
(1

2 +η
)] , (6.6)

where Γ is the Gamma-function. Then, by substituting the raised-sech ansatz into Eq. 6.4
and integrating over the 1D space, the following expression for the effective Lagrangian, L, is
obtained:

L =
Λ2Kη2

2
√

2k

[
1
η
−
√
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)]− Λ8

4
√

2K

[ √
πΓ (4η)

Γ
(1

2 +4η
)] , (6.7)

where F21 is the hypergeometric function. Eq. 6.7 can be simplified by using the properties of
the gamma function:

Γ(1+ t) = tΓ(t) , (6.8)

Γ(mt) =
∏

m−1
s=0 Γ

(
t + s

m

)
(2π)

m−1
2 (m)

1
2−mt

. (6.9)

By using the recurrence relations for hypergeometric functions:

(c−a)F21 (a−1,b,c;z) =−(2a− c−az+bz)F21 (a,b,c;z)−a(z−1)F21 (a+1,b,c;z) ,

(6.10)
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)} ,

(6.12)
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we obtain that:

F21 (2+2η ,2+η ,3+η ;−1)= 2−1−2η
√
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)
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π

]
.

(6.13)
Therefore, the simplified expression for the effective Lagrangian is:

L = KP
[
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]
−
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with g7 =+1 and
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[
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Γ
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2 +mη
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)
Γ (η)

]m

. (6.15)

The respective Euler-Lagrange equations for the variational parameters [see Section 5.4],
∂L/∂P = 0 and ∂L/∂α = 0, lead to the following system of equations:

0 = K
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−

3
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with
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where Γ ′ is the derivative of the Gamma-function.
So far, an analytical procedure of the VA applied to the solution of the CQS-NLSE was

developed. However, in order to identify the soliton’s stability regions, we performed a study
of the linear stability analysis. Here, we open a parenthesis to discuss the basis of a stability
analysis criterion developed by Vakhitov and Kolokolov [211]. To facilitate the interpretation,
we express the CQS-NLSE (Eq. 6.2) in a more general form, given by:

i
∂ψ

∂Z
+

1
2

∂ 2ψ

∂X2 +F (I)ψ = 0, (6.19)

where I (X ,Z) = |ψ (X ,Z)|2 is the beam intensity and the function F (I) characterize the NL
properties of the medium. As mentioned above, the shape-preserving solution of Eq. 6.19 has



128

the form: ψ (X ,Z) = ϕ (X)exp [iKz]. For a linear stability analysis, we add a small perturbation
to the stationary solution:

ψ (X ,Z) = {ϕ (X)+ [v(X)−w(X)]exp(iK̄Z)+ [v∗ (X)−w∗ (X)]exp(−iK̄∗Z)}exp [iKz] ,
(6.20)

where v(X) and w(X) represents small perturbations. By introducing Eq. 6.20 in Eq. 6.19 and
linearizing as a function of v= v(X) and w=w(X), we have two coupled eigenvalue equations:

L0w = K̄v, (6.21)
L1v = K̄w, (6.22)

with L0 =
[
−d2/dX2 +K−F (I)

]
, L1 =

[
−d2/dX2 +K−F (I)−2I∂F(I)/∂ I

]
and L0ϕ = 0. How-

ever, since the operator L0 is positive for any function orthogonal to ϕ (X), then its inverse
operator L−1

0 exist in a space function orthogonal to ϕ (X). Thus, Eqs. 6.21 and 6.22 can be
associated in a single eigenvalue equation

L1v = K̄2L−1
0 v, (6.23)

where v(X) and ϕ (X) are orthonormal functions:

∞̂

−∞

v∗ (X)ϕ (X)dX = 0, (6.24)

∞̂

−∞

|v(X)|2 dX = 1. (6.25)

From Eq. 6.23, it is possible to obtain an expression for K̄, multiplying both sides by v∗ (X)
and integrating with respect to X , of the form:

K̄2 =

´
∞

−∞
v∗L1vdX´

∞

−∞
v∗L−1

0 vdX
. (6.26)

In this case, the instability appears when K̄2 < 0, because K̄ should be imaginary. Thus,
as the denominator is always positive, then the condition for instability is related only to the
numerator:

min

 ∞̂

−∞

v∗ (X)L1v(X)dX

< 0. (6.27)

A method to analyze the local minimum of the function
´

∞

−∞
v∗ (X)L1v(X)dX , which is

subject to equality constraints given by Eq. 6.24 and 6.25, is by using the Lagrange multipliers.
Here, the functional can be expressed by:
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L̄ =

∞̂

−∞

v∗ (X)L1v(X)dX−κ

∞̂

−∞

v∗ (X)v(X)dX−µ

∞̂

−∞

v∗ (X)ϕ (X)dX , (6.28)

where κ and µ are the Lagrange multipliers. Without loss of generality, we can assume that
µ ≥ 0 (otherwise the sign of the function v(X) can be inverted). Then, the extrema of the
functional L̄ can be found by the condition δL̄ /δv∗ = 01, resulting in:

L1v(X) = κv(X)+µϕ (X) . (6.29)

Therefore,
´

∞

−∞
v∗ (X)L1v(X)dX = κ

´
∞

−∞
v∗ (X)v(X)dX = κ and the instability occurs

when κ < 0.
On the other hand, we can expand the functions v(X) and ϕ (X) in a complete orthonor-

malized system of eigenfunctions of the operator L1 (L1φn = `nφn) a

v(X) = ∑
n

Dnφn (X) , (6.30)

ϕ (X) = ∑
m

Cmφm (X) , (6.31)

with Cm =
´

∞

−∞
φ∗m(X)ϕ (X)dX and Dn =

´
∞

−∞
φ∗n (X)v(X)dX . By substituting Eqs. 6.30 and

6.31 in Eq. 6.29 we have:

Dn =
µCn

(`n−κ)
, (6.32)

and the orthogonality condition (Eq. 6.24), it is possible to obtain the following relation:

µ ∑
n

|Cn|2

(`n−κ)
= µ f1 (κ) = 0. (6.33)

Therefore, if Eq. 6.33 has a solution when κ < 0, the instability occurs, as mentioned
earlier.

• For µ = 0, Eq. 6.33 has a trivial solution and it can be observed of Eq. 6.29 that v(X) is
a eigenfunction of L1 and is orthogonal to ϕ (X).

• For µ 6= 0 (and positive as defined above), we have, in first approximation, that:

∑
n

(
|Cn|2

`n
+
|Cn|2

`2
n

κ

)
= f1 (0)+

(
∑
n

|Cn|2

`2
n

)
κ = 0. (6.34)

1δ denotes the variational derivative
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Since f1 (κ) increases monotonically from −∞ to ∞ and ∑n
|Cn|2
`2

n
≥ 0, then to determine the

sign of κ it is sufficient to determine f1 (0), that is: for f1 (0)< 0, then κ > 0 and the solution
is stable. Nevertheless, for f1 (0)> 0 the instability occurs, because κ < 0. In addition, we can
express f1 (0), by using Eq. 6.29, of the form:

f1 (0) = ∑
n

|Cn|2

`n
=

∞̂

−∞

ϕ
∗(X)L−1

1 ϕ (X)dX . (6.35)

Moreover, by differentiate the relation L0ϕ = 0 with respect to K, we have:

L1
∂ϕ

∂K
=−ϕ. (6.36)

Therefore, applying the inverse operator, L−1
1 , in Eq. 6.36 and then introducing the result

in Eq. 6.35, we have:
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2
∂
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 ∞̂
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|ϕ(X)|2 dX

=−1
2

∂P
∂K

. (6.37)

This is, a soliton solution is stable whenever f1 (0)< 0 and as a consequence ∂P/∂K > 0.
This condition is known as the VK criterion [211] and we use it to identify the stability and
instability regions for (1+1)D spatial solitons in cubic-quintic-septimal media.

Returning to our discussion on the analysis of the CQS-NLSE, we can model the behavior
of the power, P, as a function of K through two procedures: the first one consists in solving
the equation system given by Eqs. 6.16 and 6.17 obtained from the VA. However, due to
their complexity, we resort to numerical solutions. These results will be compared with the
second procedure, which consists in the direct numerical solution of Eq. 6.3 by using a finite
difference method. Fig. 6.1 shows results obtained by numerical solution of the full stationary
version of the CQS-NLSE, Eq. 6.3 (circles and triangles), and produced by the VA (dashed
lines), i.e., by the numerical solution of Eqs. 6.16 and 6.17. The red line and circles illustrate
the dependence of the propagation constant K on the soliton’s power P for the septimal-only
medium (g3 = 0, g5 = 0) while the blue line and the triangles display the same for a quintic-
septimal medium (g3 = 0, g5 6= 0). The soliton’s stability regions were identified on the basis
of the VK stability criterion ∂P/∂K > 0. For the two cases shown in Fig. 6.1 we observe
∂P/∂K < 0, indicating that the spatial soliton is unstable in the septimal-only and quintic-
septimal media. We recall that the quintic-only medium also gives rise to the instability [217].
In the present case, the addition of the positive seventh-order term leads to additional strong
self-focusing, which may result in a supercritical collapse, as shown below.

By contrast, when the focusing cubic nonlinearity is also present (g3 > 0), regions of sta-
bility are observed for different values of g5, as shown in Fig. 6.2, where the third- and
seventh-order nonlinearities are fixed to be g3 = +1 and g7 = +1, respectively. In that figure,
solid (dashed) lines correspond to regions of stable (unstable) soliton propagation, identified
by ∂P/∂K > 0 (∂P/∂K < 0). Also, it is possible to observe that the maximum power Pmax for
the stable soliton propagation in media with g5 =−1 (red line and circles) is larger than in the
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Figure 6.1 The soliton propagation constant K versus the total power P for media with suppressed
third-order nonlinearity (g3 = 0). Discrete points correspond to the solution of Eq. 6.3 with g5 = 0
(circles) and g5 = 1 (triangles). Dashed lines were obtained using the variational approximation.

medium with g5 = 0 (blue line and triangles), and larger too than in the medium with g5 =+1
(black line and squares). This is because the negative (defocusing) fifth-order nonlinearity
balances the self-focusing effect, enlarging the stability region, while the positive (focusing)
fifth-order term accelerates the onset of the critical self-focusing.

To extend these conclusions, numerical solutions of Eqs. 6.3, 6.16 and 6.17 were obtained
for various values of g5 between −1.5 and +1.5, with fixed g3,g7 = +1. For each value of
g5, the maximum power Pmax which allows the stable soliton propagation was found. Fig.
6.3 shows that, with the growth of the quintic nonlinearity (going from negative to positive,
i.e., from defocusing to focusing), the stability region for the soliton propagation is reduced.

Figure 6.2 Dependence of the soliton propagation constant K on the total power P obtained from
solution of Eq. 6.3 and from the VA for media with g3 = 1 and g5 = −1 (red line and circles), g5 = 0
(blue line and triangles), and g5 = +1 (black line and squares). Solid (dashed) lines represent stable
(unstable) solitons, as per the VK criterion.
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Therefore, large negative values of g5 help to stabilize the soliton, while large positive values
of g5 promote the onset of the collapse, even at low powers.

From the analysis of Figs. 6.1-6.3, we conclude that the VA using the raised-sech ansatz
adequately describes the spatial soliton propagation in media exhibiting nonlinearities up to the
seventh order.

Figure 6.3 The maximum power Pmax admitting the stable soliton propagation, as per the VK criterion,
in media with the focusing cubic and septimal nonlinearity (g3,g7 =+1) and different values of the
quintic coefficient g5.

6.1.3 Numerical Simulations of the One-Dimensional CQS-NLSE
The beam propagation in a cubic-quintic-septimal medium was simulated by solving nu-

merically the full CQS-NLSE, Eq. (1), using the split-step compact finite-difference method
[235]. Stability and instability regions, predicted by the VA with the help of the VK criterion,
were verified by using the raised-sech ansatz, given by Eq. 6.5, as the input for the direct simu-
lations. The details on the numerical method used to simulate the evolution of optical fields in
NL media are discussed in Appendix E.

Figure 6.4 exhibits the beam’s collapse in the medium without third-order nonlinearity
(g3 = 0), after a very small propagation distance (less than 1.5 times the length diffraction, LD).
Fig. 6.4(a) corresponds to the beam propagation in the septimal-only medium (g3 = g5 = 0),
for the soliton propagation constant K = 1, with the respective values P = 1.51 and η = 1.97
obtained from Eqs. 6.16 and 6.17. Strong self-focusing is observed at Z ≈ 1.3, resulting in the
formation of jets induced by the seventh-order nonlinearity (the supercritical collapse). A still
faster collapse is observed by adding the focusing quintic term (g3 = 0, g5 =+1), which addi-
tionally contributes to the development of the collapse, as shown in Fig. 6.4(b). The values of
K = 1, P = 1.23, and η = 1.90, predicted by the VA, were used to construct the input beam for
the simulations of the quintic-septimal medium. In both cases, unstable propagation of spatial
solitons is observed due to the dominant role of the septimal nonlinearity, in agreement with
Fig. 6.1. Here and in Fig. 6.5, the region after the onset of the collapse is not displayed, as
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Figure 6.4 The supercritical collapse of the beam produced by numerical solutions of the CQS-NLSE
in media with the third-order nonlinearity suppressed (g3 = 0) and (a) g5 = 0; (b) g5 =+1.

simulations of the present model are not sufficient for tracing the postcollapse evolution.
Figure 6.5 shows the predicted beam propagation in the cubic-quintic-septimal medium,

for different values of K. Figures 6.5(a)-6.5(d) exhibit a stable family of solitons obtained
by solving the CQS-NLSE with g3 = +1 and g5 = +1. For values of K and P below the
limit values for the stable propagation (Kmax, Pmax) = (1.19, 1.11), it is possible to observe
the formation of periodically oscillating breathers, probably due to a small inaccuracy of the
input with respect to the exact wave form. On the other hand, Figs. 6.5(e) and 6.5(f) show
the collapse for (K = 1.5, P = 1.11) and (K = 2.0, P = 1.10), respectively. Thus, the stability
boundaries, predicted by the VA in combination with the VK criterion, enable the identification
of the stability boundaries, which separate the formation of the fundamental soliton and the
collapse, with good accuracy.

Additional simulations of Eq. 6.2 were performed to confirm the predictions of the VA. In
particular, similar results were obtained for the media with (g3 =+1, g5 =−1) and (g3 =+1,
g5 = 0), in agreement with Fig. 6.2.

From the experimental point of view, suitable conditions for observing stability regions, as
well as the critical and supercritical collapse, may be provided by the NM procedure reported
in MDNCs. In principle, manipulating the volume fraction of silver colloids studied in Chapter
4, we can obtain a focusing quintic medium which would allow to observe the critical collapse.
However, to observe the supercritical collapse is necessary a positive septimal nonlinearity,
contrary to what was observed in the Ag colloids of Chapter 4. Nevertheless, experiments in
the infrared will help to expand the relevant parameters space, as one may flip the signs of the
NL refractive indices of different orders by varying the detuning with respect to the SPR in the
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Figure 6.5 The evolution of stable and unstable fundamental solitons in the focusing cubic-quintic-
septimal media (g3 = g5 = g7 =+1) with values of (K, P, η) taken as (a)

(
10−4, 0.05, 1.47

)
, (b)

(0.05, 0.63, 1.48), (c) (0.3, 1.0, 1.60), (d) (1, 1.11, 1.69), (e) (1.5, 1.11, 1.70), and (f) (2, 1.10, 1.77).

NPs. Thus, taking into regard nonlinearity parameters reported in Chapter 4 and the perspective
of further experiments with different laser wavelengths and pulse durations, it should be quite
realistic to reach conditions for the observation of the effects predicted in the present work,
using planar waveguides filled with silver colloids.

6.2 TWO-DIMENSIONAL SPATIAL SOLITONS IN QUINTIC-SEPTIMAL
MDNCS

6.2.1 Introduction
The study of NL phenomena induced by laser pulses propagating in transparent media is

a complex subject of great interest. For moderate laser intensities the NL propagation of light
is understood in terms of the optical Kerr effect which describes light-induced changes in the
materials’ refractive index that may lead to beam self-focusing, spectral broadening, and sev-
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eral other NL phenomena [21]. For large light intensities the optical response is affected by
saturation of the Kerr effect and HON may induce optical phenomena such as multiphoton
absorption and change of the refractive index due to plasma formation [223, 236]. Although
for some applications HON may cause problems, in several cases their contributions are very
important and desired. For instance, HON may enable formation of stable solitons in homo-
geneous isotropic media [173, 237] and influence many aspects of filamentation in gases and
condensed matter [93, 97]. HON-assisted phenomena such as liquid light condensates [28],
harmonic conical diffraction [225], and filamentation [26, 224, 238] are largely studied with
basis on the NL interaction of light with various physical systems. Also of great interest is the
exploitation of HON for quantum information [239], quantum memories [240], and for coher-
ent quantum control [241]. From the theoretical point of view analogies between superfluids
[242], plasmas [243], and Bose-Einstein condensates [244] can be evaluated from the behavior
of highly NL optical systems. In studies related to the phenomena mentioned above, several au-
thors devoted special attention to the concept of nonlinearity management which also inspired
large activity in theoretical physics and mathematics research [214, 178, 179, 245, 246]. In the
present Section the management of HON is performed to investigate the formation of optical
spatial solitons.

As mentioned earlier, spatial solitons are self-trapped optical beams that propagate with
invariant shape due to a balance between linear diffraction and NL interaction with the medium
where they propagate [48]. Various kinds of spatial solitons supported by different types of
nonlinearities were studied since the report of self-trapping of optical beams in [75], aiming to
be implemented for applications such as optical interconnects [247], image transmission [248],
and waveguides for optical communication devices [249, 250]. In particular, the observation
of (1+1)D spatial solitons was reported in [36, 78] and their behavior is described by the cubic
NL Schrödinger equation. However, the stable propagation of (2+1)D spatial solitons is not
supported in homogeneous isotropic media with instantaneous cubic nonlinearity (Kerr media),
due to catastrophic self-focusing [76, 218, 251]. Nevertheless, HONs are manifested in media
with large NL susceptibility allowing arrest of the catastrophic beam collapse. Indeed, the
propagation of stable (2+1)D spatial solitons was reported in a glass presenting large 3PA
cross section [45, 46]. More recently, there was a report of the propagation of stable (2+1)D
spatial solitons in liquid CS2 due to the simultaneous contributions of third- and fifth-order
susceptibilities, χ(3) and χ(5), respectively [30]. The theoretical description based on the CQ-
NLSE including 3PA showed good agreement with the experimental results. The opposite
signs of Re

(
χ(3)

)
> 0 and Re

(
χ(5)

)
< 0, as well as the contribution of Im

(
χ(5)

)
> 0, were

the ingredients that allowed the observation of robust bright spatial soliton propagation for a
long distance.

Unfortunately, homogeneous systems do not allow easy control of HON in order to suppress
or enhance particular NL contributions. On the other hand, NM of nanocomposites enables the
control of effects associated with NL susceptibilities of different order, as discussed in Chap-
ter 4. Thus, HONs of colloids containing silver NPs are very interesting for demonstration of
unique optical effects, among these, applications in optical spatial solitons. In principle, NL
parameters previously determined in MDNCs have been considered in theoretical papers that
proposed the observation of many NL effects in systems with quintic and cubic-quintic nonlin-
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earity [172, 174, 252, 175]. However, as seen in the previous section, septimal nonlinearities
can also generate important contributions to the evolution and stable propagation of spatial
solitons.

In this Section, we exploit the NM procedure presented in Chapter 4 and report the propa-
gation of (2+1)D spatial solitons in a quintic-septimal nanocomposite. Robust spatial solitons
propagating by ∼ 10 Rayleigh lengths were observed due to simultaneous contributions of the
focusing fifth- and defocusing seventh-order susceptibilities. Here, the behavior of the propa-
gating optical pulses was described by numerical solution of the CQS-NLSE with appropriate
relative contributions of χ

(2N+1)
e f f , N = 1, 2, 3, for different f values, as discussed in Section

5.3.1.

6.2.2 Experimental Details
The experimental setup for investigation of bright spatial solitons is illustrated in Fig. 6.6.

The second harmonic of a Q-switched and mode-locked Nd:YAG laser (80 ps, 10 Hz, 532 nm)
with maximum pulse energy of 10 μJ was used. The control of the incident beam power on the
sample was made with a λ/2 plate followed by a Glan prism. A spatial filter was used to obtain
a beam with a nearly Gaussian spatial profile, which was focused by a 1-cm focal length lens
on the input face of the quartz cell (length: 10 mm) containing silver NPs suspended in acetone
(sample A of Appendix B).

Characterization of input beam was performed by placing a CCD camera on a motorized
displacement stage and by capturing several images around the focus of the lens L1, as schema-
tized in Fig. 6.7(a). Transverse images were analyzed by a numerical program in Matlab

Figure 6.6 Experimental setup. Polarizer (P); mirror (M); spatial filter (SF); spherical lens with f = 10
mm (L1). The CCD1 camera was used to obtain the transmitted beam spatial profile. Cylindrical lenses
with f = 40 mm (CL1) and f = 80 mm (CL2), and CCD2 were used in the SLIM setup. Sample length:
10 mm.
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Figure 6.7 (a) Experimental scheme for characterization of the input Gaussian beam. (b) Transverse
beam profile of the input Gaussian beam and its respective intensity distribution (black circles). The
red line corresponds to a Gaussian fit. (c) Beam radius of Gaussian beam [w(z)] as a function of the
propagation distance, z. The red line was obtained by fitting Eq. 6.38.

which allows to find the full-width of the beam at half of the maximum intensity (FWHM),
see for example Fig. 6.7(b). Fig. 6.7(c) shows the radius of the input beam at different positions
along the propagation axis. The experimental points were adjusted by the expression of the
beam radius as a function of the propagation distance, given by:

w(z) = w0

√
1+
(

z− z0

zR

)2

, (6.38)

where w0 is the beam waist in the focus of the lens L1, located at position z = z0, zR =
n0πw2

0
λM2

is the Rayleigh length, n0 is the linear refractive index (n0 = 1 for the air), λ is the light
wavelength and M2 is the beam quality (or propagation) factor. A beam waist of 7.2 μm with
Rayleigh length of 0.27 mm and beam quality factor M2 = 1.13 were measured for our experi-
mental setup.

The spatial profile of the propagating beam along the sample was characterized following
two complementary procedures. The first procedure was used in [30, 253] and consists in
imaging the transverse beam profile in the output face of the cell by placing a lens L2 and
a CCD camera (1360×1024 pixels) in the far-field region, aligned with the beam-propagation
axis. Lens L2 was used to obtain the beam’s image with magnification of 5. The second
procedure was based on the scattered light imaging method (SLIM) [254]. This method allows
the observation and characterization of the beam propagation inside the sample by monitoring
the light scattered in the direction perpendicular to the beam axis. To perform measurements an
imaging optical system, consisting of two cylindrical lenses oriented with orthogonal axes and
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a CCD camera, were used as shown in Fig. 6.6. Lenses with 40-mm and 80-mm focal lengths
focusing on the y-axis (transverse direction) and z-axis (the beam-propagation direction) were
used to obtain an image magnification of 7 and 1/2, respectively.

For calibration of the SLIM, it was used a liquid scattering medium (soluble oil). Fig 6.8(a)
shows the scattered light image for a laser intensity of 5 GW/cm2. NL behavior of soluble
oil was not observed even for the maximum laser intensity, and the evolution of the beam
radius along propagation can be adequately described by Eq. 6.38. Notice that the beam can
be visualized in the entire cell. The image is processed as a matrix where each element is an
image pixel. Each column represents a specific z position and the elements of the row are the
measured intensity along the y-direction. Fig 6.8(b) shows the beam radius as a function of the
z position obtained by numerical fit of the laser beam profile using a Gaussian function along
the columns. From this figure and using Eq. 6.38, we can find the values of beam waist and
its position along the z-axis, as well as the beam quality factor and the Rayleigh length, which
allows the comparison with the results of Fig. 6.7. Values of w0 = 7.1 μm, zR = 0.26 mm and
M2 = 1.14 were found using the SLIM.

Figure 6.8 (a) Scattered light image obtained by SLIM of a Gaussian beam propagating in soluble oil
(linear scattering medium). (b) Beam radius of Gaussian beam [w(z)] as a function of the propagation
distance, z. The red line was obtained by fitting Eq. 6.38.

After characterization of the input beam, the cell containing the silver colloid was placed
with its input face located at the focus position of the lens L1, which was identified by the
characterization techniques mentioned above. This position guarantees that the Gaussian beam
is entering into the sample with a plane wavefront.

As an additional comment, our research group developed a methodology to implement the
SLIM for measurement of NL parameters of scattering media, precisely where Z-scan tech-
nique presents great limitations. This work will not be discussed in this thesis, but further
details can be seen in [255].

6.2.3 Results and Discussions
The experiments were performed with various laser intensities to investigate the formation

of the bright spatial solitons.



139

Figure 6.9 Dependence of the transmitted laser beam radius as a function of the input intensity for (a)
f1 = 0.5×10−5, (b) f2 = 1.6×10−5, and (c) f3 = 2.5×10−5 using a 2-mm-long cell. A CCD camera
acquired the beam profile at the output face of the cell; for (d) f1, (e) f2, and (f) f3 using a 1-cm-long cell.
The CCD camera was placed 7 cm away from the output face. The red solid lines represent theoretical
results obtained from the CQS-NLSE taking into account the beam diffraction in the propagation from
the cell to the camera.

Figures 6.9(a)-(c) summarize the beam radius measurements obtained according to the first
procedure as a function of the incident intensity. The data were collected after the beam passed
through a 2-mm-long sample. A telescope with magnification of 5 was placed in front of the
CCD camera in order to obtain an image of the exit plane of the sample over a large detection
area. The black dots represent the experimental data while the red lines were obtained by
solving the CQS-NLSE, as described below. For I ≤ 10 GW/cm2 the beam radius does not
change much for the three volume fractions and its value is equal to that of a beam propagating
in a linear host medium with linear refractive index equal to 1.36; the small changes are only
due to the linear diffraction. For I > 10 GW/cm2 a gradual decrease in the beam radius size
is observed due to the samples’ nonlinearity, reaching a minimum radius for I ≈ 60 GW/cm2,
as shown in Figs. 6.9(b) and 6.9(c). The minimum radius reached, w ≈ 7 μm, is equal to the
input beam waist. The behavior shown in Fig. 6.9(b), where a beam waist remains constant for
I ≥ 60 GW/cm2, indicates the formation of stable spatial solitons.

Figures 6.9(d)-(f) show similar results using a 1-cm-long sample. The CCD camera was
placed 7 cm away from the exit face of the cell to exploit a large detection area. A similar
behavior of the beam radius as a function of the incident intensity was observed for the three
volume fractions, with minimum beam radius of w ≈ 750 μm, recorded by the camera posi-
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tioned in the far-field region, for I ≈ 60 GW/cm2. Numerical results were obtained by solving
the NL propagation equation using the parameters determined by Z-scan measurements for
each f value, considering a light propagation distance of 2 mm inside the cell corresponding
to Figs. 6.9(a)-(c); the results shown in Figs. 6.9(d)-(f) were obtained by considering the light
propagation inside the 10-mm cell and 7 cm in the free space where the beam suffers only linear
diffraction.

The results shown in Figs. 6.9(a) and 6.9(d) for I < 20 GW/cm2 are essentially due to
χ
(3)
e f f while Figs. 6.9(b) and 6.9(e) correspond to a colloid with NL behavior dominated by

Re
[
χ
(5)
e f f

]
> 0 and Re

[
χ
(7)
e f f

]
< 0, with Re

[
χ
(3)
e f f

]
= 0. Figures 6.9(c) and 6.9(f) show results

contributed by χ
(3)
e f f , χ

(5)
e f f , and χ

(7)
e f f , as characterized in Chapter 4. For intensities larger than

20 GW/cm2 the contribution of χ
(7)
e f f becomes relevant in all cases illustrated by Fig. 6.9. The

corresponding values of the effective NL parameters, determined using the Z-scan technique,
were n2,e f f =+1.7×10−15 cm2/W, n4,e f f =+1.3×10−25 cm4/W2, and n6,e f f =−2.0×10−35

cm6/W3 for f = 0.5×10−5; n2,e f f = 0, n4,e f f = +3.2×10−25 cm4/W2, and n6,e f f = −7.0×
10−35 cm6/W3 for f = 1.6×10−5; and n2,e f f = −1.3×10−15 cm2/W, n4,e f f = +7.0×10−25

cm4/W2, and n6,e f f =−1.1×10−34 cm6/W3 for f = 2.5×10−5.
Figure 6.10(a) shows transverse beam images for f = 1.6× 10−5 with intensities varying

from 7 GW/cm2 to 85 GW/cm2, obtained using the SLIM. For I > 20 GW/cm2, it is possible
to observe a region where the beam radius remains constant, which corresponds to the stable
propagation of bright solitons. A (2+1)D spatial soliton with maximum

Figure 6.10 Transverse beam images: (a) experimental data obtained using the SLIM and (b) numerical
results obtained from Eq. 6.39, for f = 1.6×10−5.
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propagation distance of ∼ 2.3 mm was reached for I ≥ 70 GW/cm2.
In order to describe the laser beam propagation we solved numerically the CQS-NLSE,

discussed in Section 5.3.1, given by

i
∂A0

∂ z
+

1
2k0

∇⊥A0 =−
k0

2n2
0

[
3χ

(3)
e f f |A0|2 +10χ

(5)
e f f |A0|4 +35χ

(7)
e f f |A0|6

]
A0, (6.39)

where A0 is the optical field amplitude (A0 = A′/2 in Eq. 5.31). Dispersion effects and linear
losses were ignored due to the linear absorption coefficient α0, at 532 nm for the three volume
fractions discussed above, are approximately two orders of magnitude smaller than the contri-
butions of α2N,e f f IN with N = 1, 2, 3, for the intensities studied. The values of χ

(3)
e f f =−i6.3×

10−22 m2/V2, χ
(5)
e f f =

(
+3.7×10−38 + i3.3×10−37) m4/V4 and χ

(7)
e f f =

(
−4.2×10−54− i3.5

×10−54) m6/V6, for f = 1.6×10−5, were obtained from the NL characterization of sample A
measured in Chapter 4.

Figure 6.10(b) shows the numerical results obtained by solving Eq. 6.39, using the split-
step compact finite difference method [235] for the five laser intensities corresponding to Fig.
6.10(a). Further details on the numerical simulations can be obtained in Appendix E. The
agreement between the numerical and the experimental results corroborates the observation of
(2+1)D stable soliton propagation with maximum propagation distance for I ≥ 70 GW/cm2.

Figure 6.11 (a) Experimental and (b) theoretical beam radius as a function of propagation dis-
tance obtained from Fig. 6.10. The shaded areas indicate the region of stable soliton propagation(

f = 1.6×10−5
)
.
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Figure 6.11 shows the variation of the laser beam radius along the pathway inside the sample
with f = 1.6× 10−5, determined from the images of Fig. 6.10, using the SLIM. The experi-
mental results in Fig. 6.11(a) clearly show that as the laser intensity increases, the propagation
distance at which the beam waist remains constant also increases. The maximum propagation
distance of ∼ 2.3 mm corresponding to ∼ 10 Rayleigh lengths was observed at the highest
input intensities. The good agreement between the experimental and theoretical results can be
observed comparing the shaded rectangles drawn in Figs. 6.11(a) and 6.11(b).

Results of similar measurements and analysis for f = 2.5× 10−5 are shown in Fig. 6.12.
Here, soliton propagation was not observed for intensities between 3 and 85 GW/cm2 due to the
negative third-order refractive index that dominates the NL response. Notice that Fig. 6.12(a)
for I ≥ 54 GW/cm2 shows a change in the laser beam radius followed by formation of a new
focus around of z = 2 mm; Fig. 6.12(b), obtained solving Eq. 6.39, displays similar behavior.

For f = 0.5×10−5 the scattered light intensity was very weak and transverse beam images
based on the SLIM were not acquired because of the low sensitivity of the CCD camera.

Therefore, through the NM procedure in MDNCs, it was possible to manage a quintic-
septimal (focusing-defocusing) medium which supports the stable propagation of (2+1)D bright
solitons for approximately 10 Rayleigh lengths. In other cases, where the nonlinearity is domi-
nated by a defocusing cubic nonlinearity or both cubic and quintic nonlinearities are focusing,
the brigth spatial solitons were observed to be unstable.

Figure 6.12 (a) Experimental and (b) theoretical beam radius as a function of propagation distance for
f = 2.5×10−5.
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What is now proved was once only imagined.
- WILLIAM BLAKE
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7 OPTICAL VORTEX SOLITONS

7.1 INTRODUCTION

Optical vortices (OVs) are singularities in phase fronts of light beams [90]. The spiral
phase of OV beams rotates about the optical axis that causes the wavefront of the light to
twist like a corkscrew as it propagates. Thus, one of the most essential characteristic of these
helical beams is that it carry a phase factor, exp(imθ), where θ is the azimuthal coordinate
and m is the topological charge, which indicates the number of complete 2π twists of the
phase on the transverse plane perpendicular to the beam axis. The topological charge can be
integer or fractional [256], with positive or negative signal depending on the handedness of the
twist. Another important feature of the OV beams is the special behavior of the phase near the
vortex pivot which gives rise to a circular flow of energy in a given direction, being related to
the ability of OVs to carry orbital angular momentum (OAM) l [257]. In fact, an interesting
phenomenon occurs in the center of the vortex, because the velocity of this rotation become
infinite and thus the light intensity vanishes at the vortex pivot [90]. In most cases, studies in
OVs tend to be driven to beams with azimuthal symmetry, called cylindrical OVs. This special
type of vortices, which is studied in this thesis, are characterized by exhibiting the same values
of topological charge, m, and the average classical OAM per photon, l [258]. However, this
equality is violated to shaped-OV beams, which are asymmetric beams that can be obtained,
for example, by distributing the topological charge in different asymmetric geometries [259].

OVs can be generated by using different schemes, such as computer-synthesized holograms
[259, 260], spiral phase plates [261, 262], double cylindrical lens phase converter [263], inter-
ference of three and more plane waves [264] and NL optical processes [265, 266]. In all our
experiments, OV beams were produced by a spiral phase plate or also called vortex phase plate
(VPP), which was manufactured by RPC Photonics. VPP is a disc-shaped optical component
with refractive index n0 and optical thickness 4t that increases with azimuthal angle, θ , ac-
cording to the function: 4t = θ (n0−1)mλ/(2π), where m and λ are the topological charge
and the laser wavelength, respectively. The function of this optical component is to introduce
a phase exp(imθ) during the transmission of an incident plane wave, in order to produce a OV
beam with its associated OAM. Fig. 7.1 shows a representative diagram of how to generate a
doughnut-shaped OV beam with m =±1 after pass a Gaussian beam through a VVP, just as it
was done in our experiments.

The study and understanding of the formation and propagation of OV beams allowed signif-
icant contributions in many areas that include optical tweezers [268, 269], astrophysics [270],
microscopy [271], plasmonics [272, 273] and optical communication systems [274, 275]. In the
context of NL optics, OVs are analyzed on the basis of self-trapped beams or solitons. Optical
vortex solitons (OVSs) are stable (2+1)D structures which appears in defocusing Kerr media,
contrary to the bright solitons discussed in the previous chapter [91]. It comes about when the
defocusing effect is balanced by diffraction of the vortex core. Thus, an OVS will propagate
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Figure 7.1 OV beam generation by passing a Gaussian beam through a VPP [267].

without any change of size, assuming an infinite plane wave background [90]. However, it
is well known that OVSs are highly sensitive to azimuthal instability. In particular, OVSs in
self-focusing Kerr media are subject to spontaneous azimuthal symmetry breaking into one or
more beams due to the modulational instability [49]. Although there are several theoretical
proposals to stabilize the OVSs in SF media (see [90] and references therein), only one was ex-
perimentally proved by using an external potential such as optically induced photonic lattices
[276, 277].

In this chapter, we study the OVS propagation in SF and SDF Kerr media, as well as we
describe two applications based on the manipulation of light-by-light using OVSs. In sec-
tion 7.2, we show, for the first time, the observation of the stable propagation of OVSs in a
saturable self-focusing medium. This stability region, which is not identified by theoretical
models studied so far, was obtained by exploiting a simultaneous contribution of the satura-
tion of the refractive nonlinearity and 3PA, corresponding to the NL behavior of CS2 in the
picosecond regime (see Appendix C). However, at larger intensities, the OV beams lose their
stability, spontaneously breaking into bright fragments due to spatial modulation instability, as
predicted by previous theory [49]. In section 7.3, we exploit the instability regime of saturable
SF media (CS2) in order to control the emerging beams, produced by the spontaneous splitting
of the OVSs, by adding a weak Gaussian beam propagating collinearly with the OVS. Rota-
tion of the emerging beams and energy transfer between them were obtained using a control
Gaussian beam with smaller intensity than the vortex beam, revealing an alternative approach
for the design of all-optical modulators. Numerical simulations based on the NLSE, including
the 3PA and nonpolynomial saturation of the refractive nonlinearity, discussed in Section 5.3.2
for CS2 in picosecond regime, demonstrate close agreement with experimental results obtained
in Sections 7.2 and 7.3. On the other hand, Section 7.4 is focuses on the stability regime to
produce an optically induced OVS waveguide in a cubic-quintic SDF medium (silver colloid).
The waveguide effect induced by the bright region of the vortex beam, is mainly due to the
defocusing nonlinearity that allows the guiding and confinement of a probe beam propagating
inside of the OVS dark region. In this case, the experimental results were corroborated by
numerical simulations based on the CQ-NLSE, discussed in Section 5.3.1, showing excellent
agreement.
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7.2 OVS IN SATURABLE SELF-FOCUSING MEDIA

7.2.1 Introduction
The spatiotemporal evolution of light beams in NL media is a subject of broad interest in

fundamental and applied research [278, 279, 280]. In transparent condensed (solid or liquid)
materials, the beam propagation is generically dominated by the nonresonant Kerr nonlinear-
ity, which induces changes in the materials’ refractive index that may lead to the beam’s self-
focusing (or defocusing), spectral broadening, and other NL phenomena (see Section 7.5.2 of
[21]). The beam propagation in centrosymmetric materials with the nonlinearity described by
the third-order susceptibility, χ(3), is usually modeled by the C-NLSE [21]. Of particular in-
terest are beams representing spatial solitons, with diverse applications to photonics, optical
computing, telecommunications, etc. It is commonly known that SF media allow the stable
propagation of (1+1)D spatial brigth solitons, due to the balance between the linear diffraction
and self-focusing [36, 78, 75]. However, (2+1)D optical solitons in media with the instanta-
neous cubic nonlinearity are unstable, due to the catastrophic self-focusing (critical collapse)
at high powers [76, 218, 251]. Nevertheless, saturation of the nonlinearity may prevent the
collapse, securing stable soliton propagation. In particular, the analysis has shown that the
NLSE produces stable solutions for materials exhibiting an interplay of the focusing third-order
and defocusing fifth-order susceptibilities, with Re

[
χ(3)

]
> 0 and Re

[
χ(5)

]
< 0, in one, two,

and three dimensions [228, 281]. Recently, the stable propagation of (2+1)D spatial solitons
in carbon disulfide, CS2, supported by this mechanism, has been demonstrated experimen-
tally [30]. On the other hand, by using resonant nonlinearity in the rarefied gas of three-level
atoms—which includes competing cubic and quintic nonlinearities, along with the four-wave
mixing (FWM)—it was possible to demonstrate the stabilization, on a long propagation dis-
tance (∼ 20 diffraction lengths), of various soliton species including fundamental, dipole, and
vortex ones. The FWM in a nonresonant medium (glass) was exploited too to arrest the col-
lapse of (2+1)D quasisolitons [282, 283]. Furthermore, applying a NM procedure in MDNCs,
it was possible to observe stable (2+1)D spatial solitons in a composite with suppressed χ(3)

but conspicuous focusing χ(5) and defocusing χ(7) susceptibilities, as discussed in Section 6.2.
In defocusing media, spatial solitons appear as optical vortices and dark solitons [284, 48].

Contrary to bright (fundamental) spatial solitons, delocalized (dark) optical vortex solitons
(DOVSs), supported by a finite background, are stable structures in defocusing NL Kerr me-
dia [91]. Experimental observations of DOVSs in defocusing media were reported by several
groups [237]. However, bright (self-trapped) optical vortex solitons in self-focusing media are
subject to spontaneous azimuthal symmetry breaking due to the corresponding modulational in-
stability [49, 285, 286, 287, 288, 289]. Many works have aimed to identify suitable conditions
for the stabilization of self-trapped OVSs [290, 291, 292, 293, 50, 294, 295, 296]. In particu-
lar, bright OVSs in media combining cubic focusing and quintic defocusing nonlinearities have
regions of stability and azimuthal instability, depending on the beams’ power [50, 295, 297].
While this subject has been elaborated upon theoretically, no experimental report showing the
stable propagation of a self-trapped vortex beam in a SF uniform medium with local nonlinear-
ity has been presented, thus far.
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In this section, we report the observation of effectively stable propagation of (2+1)D self-
trapped vortex beams, with topological charge m = 1, in a condensed optical medium, viz.,
liquid CS2, which features strong self-focusing [209]. The stable propagation of self-trapped
OVSs, which keep their shape and size unaltered over approximately five Rayleigh lengths, is
obtained by exploiting a combination of the saturation of the refractive nonlinearity and 3PA.
The behavior of the self-trapped vortex beam is reproduced by using a modified NLSE which
very well models the filamentation of light in CS2, generated by a picosecond laser input at 532
nm [26]. In the instability regime, splitting of the vortex beam into two separating fragments is
observed at large intensities, in agreement with the numerical simulations.

7.2.2 Experimental Details
The setup used to study the vortex-beam propagation is displayed in Fig. 7.2. The second-

harmonic beam at 532 nm, obtained from a Nd:YAG laser (80 ps, 10 Hz, 1064 nm), with the
maximum pulse energy of 10 μJ, was used. An optical vortex beam with topological charge
m = 1 was produced by passing the Gaussian beam through a VPP. The control of the incident
beam’s power was provided by a λ/2 plate followed by a Glan prism, which assures that the
beam is linearly polarized. A telescope was used to adjust the beam waist, in order to illuminate
a large area of the VPP, and a spatial filter was used to eliminate higher-order diffracted light.
The OV beam was focused by a 5-cm focal distance lens (L1) on the input face of a glass cell
filled by CS2.

Following the same procedure used for the characterization of a Gaussian beam (see Section
6.2.2), we recorded several images of the transverse OV beam profiles around the focus of the
lens L1. Fig. 7.3(a) displays an example of the transverse image of our incident OV beam
being focused by the lens L1. Subsequently, a two dimensional (2D) fit was performed for each

Figure 7.2 Experimental setup for investigation of OVSs in CS2: polarizer (P); mirror (M); telescope
(T); vortex phase plate (VPP); spatial filter (SF); spherical lenses with f1 = 5 mm (L1) and f2 = 5 mm
(L2). The CCD 1 camera produced the transmitted-beam spatial profile. Cylindrical lenses with f = 40
mm (CL1) and f = 80 mm (CL2), and CCD 2 were used in the SLIM setup. The cell’s length is 10 mm.
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image by using the expression: I (r) = I0

{
exp
[
0.347(r/wBG)

2
]

tanh(r/wv)
}2

, where wBG and
wv are the radius of the Gaussian background (bright region of the OV beam) and the vortex

core1, respectively; r =
√

(x− x0)
2 +(y− y0)

2 with (x0,y0) being the position of the vortex
core [I (x0,y0) = 0] . Fig. 7.3(b) shows the numerical reconstruction of the transverse OV beam
profile corresponding to Fig. 7.3(a), obtained from 2D fit. Fig. 7.3(c) shows the radius of
the Gaussian background (black squares) and the vortex core (red circles) at different positions
along the propagation axis. The solid lines were obtained by fitting Eq. 6.38 in both cases.
Values of wBG = 11 μm and wv = 3 μm, at the focus of lens L1, were measured to the OV beam
used in this experiment. In addition, to confirm the presence of the topological charge carried
by the beam, the triangle aperture method was used [298]. The respective diffraction pattern is
shown in Fig. 7.3(d), where the two bright points on each side of a triangular lattice indicate
that the topological charge is m = 1.

In order to characterize the formation and propagation of OVSs, we use two procedures of
measurement corresponding to the capture of the transverse and longitudinal profiles of a OV
beam along propagation direction, as shown in Fig 7.2. In the first procedure, transverse vortex-
beam profiles were recorded using a CCD camera aligned with the beam propagation direction
(the z-axis). Cells of thickness 1, 2, 3, 4, and 5 mm filled by CS2 were used to image the
propagation of the vortex beam over different distances, in analogy to the procedure described

Figure 7.3 (a) Experimental and (b) Numerical transverse profiles of the incident OV beam. (c) Radius
of the Gaussian background (black squares) and the vortex core (red circles) as a function of the prop-
agation distance, z. The solid lines were obtained by fitting Eq. 6.38. (d) The diffraction pattern of the
beam with topological charge m = 1, produced by the triangle aperture method [298].

1In this thesis, vortex core is defined as the dark region of the vortex beam.
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in [299]. Lens L2 was used to obtain the beam’s image at the output face with magnification
of 4. The imaging system, consisting of lens L2 and the CCD 1, can scan along z to image
the input and output face of the five cells, maintaining the same magnification. Small marks
on the input and output faces of the cells help to identify the correct position of the imaging
system, by observing a sharp image of the mark in the CCD. To observe the evolution of
the vortex beam in the transverse plane, measurements were first performed with 1-mm-long
cell. The imaging system was translated along the z-axis to image the entry (at z = 0) and
output of the cell (at z = 1 mm). Then, the 1-mm-long cell was replaced by a 2-mm-long cell
maintaining the same position of the input face, with respect to lens L1, and translating the
imaging system over z = 2 mm. The initial position of the cell was corroborated using side-
view measurements (with precision of ∼ 1 μm), as described below. The same procedure was
performed for the other cells with different thicknesses. In addition, side-view beam images
were obtained using the SLIM [255], by measuring the weak scattered light in the direction
perpendicular to the beam’s pathway. A cell 10 mm long was used for these measurements.
The setup collecting the scattered light consisted of two cylindrical lenses with 40-mm (y-
axis) and 80-mm (z-axis) focal lengths, used to obtain images with magnification of 7 and 1/2,
respectively. The experiments were performed with intensities adjusted from I = 0.5 GW/cm2

to I = 25 GW/cm2, to identify regions of stable and unstable propagation of the vortex beam.
The margin of error in the experimental measurements is given by the camera pixel size (4.6
μm) divided by the magnification. To ensure that the images correspond to the same laser
pulses, both CCD cameras were triggered by Nd:YAG laser pulses, at the repetition rate of 10
Hz. Additionally, to keep control over intensity fluctuations of the laser, a postfiltering selection
was carried out to keep records solely of images corresponding to the intensities varying at most
by ±2%.

7.2.3 Results and Discussions
Figure 7.4 presents the beam profiles at the entrance and exit faces of each cell used, for

two values of the laser intensity. Figure 7.4(a), corresponding to relatively low intensity, I = 1
GW/cm2, shows that the transverse profile of the initial doughnut-type beam diverges along the
propagation pathway without changing its ringlike shape, NL effects being negligible in this
case. On the other hand, it is observed in Fig. 7.4(b) that, for I = 9 GW/cm2, the beams’ shape
and radius remain constant for the propagation over 3 mm, which corresponds to approximately
five Rayleigh lengths; this result clearly indicates the formation of a stable self-trapped vortex
beam. At z > 3 mm, the beam diverges because the intensity is depleted by the NL absorption.
As shown below, numerical simulations corroborate that a long distance of the stable propaga-
tion of self-trapped vortex beams can be attained. Figures 7.4(c) and 7.4(d) show the intensity
distribution along the radial coordinate corresponding to Figs. 7.4(a) and 7.4(b), respectively.
The solid and dashed lines are guides to the eyes, which represent the evolution of the beam
size.

Figure 7.5 displays side-view images recorded for intensities from 1 to 18 GW/cm2. Fig-
ures 7.5(a) and 7.5(b), in conjunction with Fig. 7.4(a), demonstrate that, for I ≤ 5 GW/cm2, the
vortex beam does not change its ring shape, while diverging due to the linear diffraction. For
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Figure 7.4 Transverse vortex-beam profiles at input and output faces for cells with thicknesses 1, 2, 3,
4, and 5 mm: (a) I = 1 GW/cm2 and (b) I = 9 GW/cm2. The lines are guides to the eye. (c,d) Normalized
intensity distributions of the beam at each position from (a,b).
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Figure 7.5 Experimental side-view images of the vortex-beam propagation for intensities (a) 1
GW/cm2, (b) 5 GW/cm2, (c) 8 GW/cm2, (d) 9 GW/cm2, (e) 10 GW/cm2, and (f) 18 GW/cm2. (g-l)
The beam’s radius as a function of the propagation distance, corresponding to (a-f), respectively. The
shaded areas indicate the region of the stable vortex-beam propagation.

5 GW/cm2 < I < 8 GW/cm2, the beam’s divergence weakens with the increase of the intensity,
due to the self-focusing effect. Figures 7.5(c)-(e), obtained for 8 GW/cm2 ≤ I ≤ 10 GW/cm2,
exhibit the stable propagation of the vortex beam up to the distance of ∼ 3 mm. Thus, Figs.
7.4(b) and 7.5(c)-(e) provide the direct evidence for the propagation of a stable ring-shaped vor-
tex. However, at I > 10 GW/cm2, strong concentration of the power was observed in the course
of the first 3 mm of the propagation, and the transverse images exhibit distortion of the beam
profiles. These asymmetries gradually increase, up to splitting of the vortex beam observed at
I ≥ 18 GW/cm2, as shown in Fig. 7.5(f). The low resolution of the image after the splitting is
due to the weakness of the scattered light. Figures 7.5(g)-(l) present the variation of the beam’s
radius in the course of the propagation, corresponding to Figs. 7.5(a)-(f), respectively. Shaded
rectangles display the regions where the self-trapped vortex beam is stable. Fig. 7.5(l) shows
the beam radius analysis only until before vortex splitting. The formation of the two emergent
beams, after the vortex split, can be clearly seen in the transverse images shown in Fig. 7.8.

To describe the propagation of the vortex beams, we used a modified NLSE given by Eq.
5.41, which includes the saturable-refractive index and the 3PA concerning the NL behavior of
CS2 in the picosecond regime, as described in Appendix C. However, for numerical simulations
it is more convenient to work with the normalized expression of the Eq. 5.41, which takes the
form:
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∂U
∂Z

=
i
2

(
∂ 2U
∂X2 +

∂ 2U
∂Y 2

)
+ i

η |U |4U

1+ |U |4
−µ |U |4U, (7.1)

where were used the dimensionless variables: X = x/wBG, Y = y/wBG, Z = z/LD, U = A′/A′r,
with LD = k0w2

BG and A′r = (1/2bn0cε0)
−1/2, where c the speed of light in vacuum and ε0 the

vacuum permittivity. Further, η = LDk0a/b2, µ = α4LD/
(
2b2) and the intensity is related to

the normalized field by I = |U |2 /b.
Simulations of Eq. 7.1 were initiated with the input wave form U (R,θ ,Z = 0) ∝ exp

(
−R2

+imθ) tanh [wBGR/(2wv)], where R =
√

X2 +Y 2 and θ are the adimensional polar coordinates
and m is the topological charge. Numerical results for the vortex-beam propagation in the 10-
mm-long cell filled by CS2 were produced for L = 2.3 mm, η = 28, and µ = 3.3.

Figure 7.6 shows the evolution of the transverse beam’s profiles for intensities between
1 and 15 GW/cm2, obtained by simulations of Eq. 7.1, which were performed by using the
split-step compact finite-difference method [235]. Figure 7.6(a) displays the divergence of the
doughnut-type beam for I = 1 GW/cm2, which is similar to what happens in the linear regime,
according to Figs. 7.4(a) and 7.5(a). For I = 9 GW/cm2, the propagation of the self-trapped
vortex beam can be observed over a distance of ∼ 3 mm, as shown in Fig. 7.6(b), which agrees
with Figs. 7.4(b) and 7.5(d). Figure 7.6(c) shows a deformation of the beam’s profile for I = 12
GW/cm2, which gradually grows, leading to the complete split of the vortex beam at I = 15
GW/cm2, as shown in Fig. 7.6(d).

Figure 7.7 shows a longitudinal cross section of the vortex beam propagation, produced by
simulations of Eq. 7.1. At I = 1 GW/cm2 [Fig. 7.7(a)], the vortex beam keeps the ring shape
but diverges due to the diffraction. On the other hand, in Fig. 7.7(b), corresponding to I = 8.5
GW/cm2, the beam slightly diverges at first, but, after passing ∼ 1.2 mm, it keeps constant
shape and width in the course of the propagation over∼ 3 mm, and diverges afterwards. Figure
7.7(c) shows the variation of the vortex-beam radius at several positions in the cell for different
intensities, the shaded rectangles displaying the region of the stable propagation of the (2+1)D
self-trapped vortex beams, for I = 8 and 9 GW/cm2. For 15 GW/cm2, the curve ends at z = 3
mm, as the vortex splits in two fragments beyond this point.

To highlight the effect of the 3PA (α4 > 0), Fig. 7.7(d) shows the evolution of the vortex-
beam radius produced by simulations of Eq. 7.1 with α4 = 0. In this case, at I < 7 GW/cm2 the
beam diverges, as in Fig. 7.7(c). At I = 7.5 GW/cm2, it initially diverges, passing 1.2 mm, but
features stable propagation of the self-trapped vortex beam over the subsequent 2.5 mm. For
I = 8 GW/cm2, the vortex is unstable, splitting into two fragments.

Figure 7.8(a), corresponding to instability regime, shows, at I = 18 GW/cm2, two bright
fragments of radius 17 μm at the output face, with distance 68 μm between them, the intensity
of each beam being 10% of the initial value. The intensity loss is caused by the 3PA, while the
difference between the fragments results from a small asymmetry in the input beam. Figure
7.8(b) shows the respective numerical result, obtained from Eq. 7.1 for I = 15 GW/cm2. The
spiral emerging around the fragments in the simulations (it is more salient at I = 16 GW/cm2)
was not observed in the experiment, as the camera was not sensitive enough for that.

The experiment was repeated for the input beam with vorticity m =−1, obtained by revers-
ing the input face of the VPP. Figures 7.8(c) and 7.8(d) display the respective experimental and
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Figure 7.6 Numerically generated images showing the evolution of transverse vortex-beam profiles
(with m = 1) along the propagation direction, for intensities of 1 GW/cm2 (a), 9 GW/cm2 (b), 12
GW/cm2 (c), and 15 GW/cm2 (d).
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Figure 7.7 Numerical results for the vortex-beam propagation at (a) I = 1 GW/cm2 and (b) I = 8.5
GW/cm2, obtained by simulations of Eq. 7.1. (c,d) The beam’s radius as a function of the propagation
distance, produced by the simulations considering the 3PA coefficient (c) α4 = 9.3× 10−26 m3/W2

and (d) α4 = 0, with various intensities. The shaded area in (c) indicates the intensity range of stable
propagation of self-trapped vortex beams. The beam radius for I ≥ 9 GW/cm2 in (d) were calculated
only until before vortex splitting.

numerical results, with two fragments similar to those in Figs. 7.8(a) and 7.8(b), but rotated by
90°. The experimental and related numerical images obtained for m =−1 demonstrate that the
results are highly reproducible. Similar results have been obtained for other input intensities.

In the simulations, the fragments emerging after the splitting of the vortex beam move
along tangents to the vortex ring, due to conservation of the OAM. However, unlike previous
theoretical results which predict the formation of fundamental solitons after the splitting [49,
285, 286], in the present case the fragments are not solitons, because of the losses induced
by the 3PA. The model presented here can be applied to the propagation of vortex beams with
multiple topological charges too, but they tend to be unstable against splitting, unlike the vortex
with m = 1.

Simulations were also performed with I/
(
1+b2I2) in Eq. 7.1 replaced by I/(1+b′I),

which is the most common form of the saturable nonlinearity described in Appendix C and
adopted in [49]. Varying the input intensity from 1 to 25 GW/cm2, no stability region for
self-trapped vortex beams was found in that case. Thus, the crucially important ingredients
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Figure 7.8 (a,c) Experimental images obtained in the output face of the cell, after the splitting of the
vortex beam with topological charge m = +1 (a) and m = −1 (c), for laser intensity I = 18 GW/cm2.
(b,d) Simulations of Eq. 7.1 for (b) m =+1 and (d) m =−1, at I = 15 GW/cm2.

necessary for the stable propagation of the self-trapped vortex beams are the appropriate in-
tensity dependence of the NL refractive index, as derived in [26], and the 3PA. Actually, the
3PA term in Eq. 7.1 helps to expand the stability region for the self-trapped vortex beam. In
particular, with this term kept in Eq. 7.1, the splitting of the vortex into two fragments is ob-
served at I > 13 GW/cm2, while the stable propagation occurs at 8 GW/cm2≤ I < 10 GW/cm2.
However, if the 3PA term is dropped, the splitting occurs at I ≥ 8 GW/cm2, with a tiny stability
region spotted at 7.4 GW/cm2 ≤ I ≤ 7.6 GW/cm2.

Therefore, experimental and numerical results presented in this Section demonstrate the
first evidence of stable propagation of OVSs, with topological charge m = 1, in a saturable
SF medium. Strictly speaking, the stability of the self-trapped vortex beams reported here is
a transient effect, as the 3PA eventually causes degeneration into the linear regime,while the
saturablerefractive nonlinearity alone cannot stabilize self-trapped vortex beams in the absence
of the NL loss [49].

7.3 TAMING THE UNSTABLE BEHAVIOR OF OVSS IN SELF-FOCUSING
SATURABLE MEDIA

7.3.1 Introduction
The control of light by light is one fascinating process in NL optics with important ap-

plications in high speed optical processing and telecommunications [205, 223]. Usually the
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all-optical control of a laser beam is obtained using an intense laser which couples with the
weaker beam through cross-phase modulation (XPM) inducing polarization rotation and/or
light bending [21]. Nowadays all-optical devices and prototypes can be operated with basis on
the XPM allowing signal processing with high bit rates [300, 301, 302, 303]. In this context,
temporal and spatial solitons have attracted great attention because the invariance of their shape
is an important feature in long-distance data transmission where solitons may play the role of
information bits [83, 304, 305, 306, 307].

However, the exploitation of solitons for optical processing is affected by several insta-
bilities. In particular, it is known that the propagation of OVSs in SF media are subject to
spontaneous azimuthal symmetry breaking due to the SMI, as discussed in the previous Sec-
tion. As a consequence the OVS is split into bright fragments, which have characteristics of
fundamental solitons when the propagating medium is lossless. In most cases, the number of
fragments is equal to twice the OVSs topological charge, but this number may also be depen-
dent on the incident power, as reported for a cubic SF medium [288]. However, although many
studies analyzing the splitting of OVSs were reported [308, 309, 310], no experimental study
showing a way to manage the emerging beams, via all-optical control, is known.

In this Section, we report two schemes for controlling the relative azimuthal position and
energy transfer (ET) between the emerging beams after the splitting of an OVS propagating in
CS2. The superposition of copropagating Gaussian and vortex beams allowed the control of
the fragments producing an angular rotation in the transverse plane that may reach ∼ 90° by
adjusting the Gaussian beam intensity. Additionally, ET between the fragments, with efficiency
up to 92%, is observed by varying the size and the relative positions of the vortex and Gaussian
beams’ axis. The experimental results were reproduced by numerical simulation considering
the saturation of the NL refractive index and the 3PA coefficient that characterizes the NL
behavior of CS2 (see Appendix C). It is important to notice that the procedure presented here is
general enough to be successfully applied for other saturable SF media.

7.3.2 Experimental Details
The experimental setup used is sketched in Fig. 7.9(a). The second-harmonic beam at 532

nm, obtained from a Nd:YAG laser (80 ps, 10 Hz, 1064 nm), with the maximum pulse energy
of 10 μJ, was split into two beams using a 50:50 beam splitter (BS1). The variation of the total
beam power was made using a λ/2 plate followed by a Glan prism which assures the linear
polarization of the beam. Two telescopes, formed by lenses L1-L2 and L1-L3, were used to
adjust the transverse beams’ dimensions. The beam transmitted by the BS1 passes through a
phase plate (VPP) which produces a vortex beam with m = 1 [the signal beam (SB) with inten-
sity IS]. A spatial filter, located after the VPP, was used to eliminate high-order diffracted light.
The reflected beam by BS1 with Gaussian profile was the control beam (CB) with intensity
IC. This beam was collimated by lens L3, which allows adjustment of its diameter2. Neutral
density filters were used to vary IC maintaining constant the beams’ polarization. The SB and
CB were combined using a beam splitter (BS2) and focused by a 5-cm-focal-distance lens (L4)

2To adjust the Gaussian beam diameter were used lenses with different focal distances, which are represented
in Fig. 7.9 by the lens L3.
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Figure 7.9 (a) Schematics of the experimental setup: polarizer (P); telescopes (L1-L2 and L1-L3);
vortex phase plate (VPP); mirror (M); spatial filter (SF); beam splitters (BS1 and BS2); neutral density
filter (F); spherical lenses with f4 = 50 mm (L4) and f5 = 50 mm (L5). The CCD camera records the
transverse beam spatial profile with magnification M. Transverse beam profiles at the cell’s entry face
used for the experimental schemes: A (b) and B (c), where SB and CB is the signal and control beam,
respectively.

on the input face of a 10-mm-long quartz cell filled by CS2. The transverse beams’ profiles
were imaged on a CCD camera aligned with the beam-propagation direction. The lens L5 was
used to obtain the beam’s image at the output face of the cell with magnification M = 4. Single-
pulse images were captured by triggering the CCD, using a digital delay and pulse generator
(DDPG), which was triggered by the Nd:YAG laser pulses, at 10 Hz, avoiding contributions of
slow NL response due to thermal effects. The SB at the input face (positioned in the focal plane
of the lens L4) consists of a Gaussian background, with beam waist of 11 μm, and the vortex
core with radius of 3 μm, values obtained by using the OV beam characterization described
in Section 7.2.2. Under these conditions and for 8 GW/cm2 ≤ IS ≤ 10 GW/cm2 a self-trapped
vortex beam is formed and propagates along ∼ 3 mm as reported in previous Section. For
IS > 10 GW/cm2, the SMI produces distortions in the transverse beam profile, which gradually
increase up to splitting of the OVS. At 3 mm from the entrance face of the cell, the OVS is split
into two bright fragments for IS ≥ 18 GW/cm2.

In order to control the azimuthal positions and relative intensities of the OVS fragments, two
experimental schemes (A and B) were implemented varying the radius, position, and intensity
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of the CB with respect to the SB. Scheme A consisted of the collinear propagation of the two
beams with the CB located on the side of the vortex around the core, as shown in Fig. 7.9(b).
The CB radius is 3.5 μm. In scheme B, the SB and CB have the same transverse dimensions (the
CB and vortex beam radii are of 11 μm) and their axes are coincident, as indicated in Fig. 7.9(c).
The maximum ratio IC/IS used was of 0.5 and 0.1 in scheme A and scheme B, respectively. In
both cases, the signal and control beams were overlapped spatially and temporally inside the
sample.

7.3.3 Results and Discussions
Figure 7.10 shows images of the OVS fragments at the exit face of the cell corresponding

to scheme A. Figure 7.10(a) shows the two emerging beams when IS = 18 GW/cm2, in the
absence of the CB. The two fragments, resulting from the splitting of a single vortex beam
with approximately uniform field background, have equal shape, size, and intensity. Figures
7.10(b)-(h) show the rotation of the fragments, in the transverse plane, for 0.5 GW/cm2 ≤ IC ≤
10 GW/cm2. The initial angle, ϕ0 = π/22, between the vertical direction and the line along
the fragments, in the absence of the CB, depends on the phase-plate position and the samples’
nonlinearity [308, 310, 311]. By rotating the phase plate in a plane transverse to the beams’
axis we observed changes of ϕ0, but in the experiments described here the VPP is kept fixed.
The maximum rotation angle induced by the CB, ϕ ≈ ϕ0 + π/2, was obtained for IC = 10
GW/cm2 and IS = 18 GW/cm2. The results suggest the possibility for operation of an optical
switch, where the emerging beams obtained from the split of an OVS are controlled by a CB
with smaller intensity than the SB intensity. It is known that CS2 has two response times: an
ultrafast one (< 50 fs) and a fast one of ∼ 2 ps [35]. However, in our case, the NL response of
CS2 is limited by the pulse duration of the incident beam (80 ps), as observed in Fig. 4.20(a).
Thereby, the modulation is as fast as the duration of the pulse.

The rotation of the fragments was investigated by placing the CB in different azimuthal
positions around the vortex core and the largest rotation angle was obtained when the CB was
located approximately at the bottom of the vortex on the line corresponding to ϕ0 = π/22.

Figure 7.11 presents the spatial profiles of the fragments at the exit face of the cell following
scheme B, for IS = 18 GW/cm2. In the absence of the CB, the two fragments have identical
characteristics, as shown in Fig. 7.10(a). Figure 7.11(a) shows ET of ∼ 10% between the two
fragments when IC = 0.3 GW/cm2. The ET was controlled by varying IC reaching a maximum
efficiency of 92% for IC = 2 GW/cm2 as shown in Fig. 7.11(d). In Figs. 7.11(a)-(d), the color
scale, which represents the intensity in the transverse plane, was normalized with respect to its
maximum value in each case, but the total power was conserved in all cases. The white dashed
lines (pink cross) correspond to the initial (final) position of the vortex core, in the absence
(presence) of CB.

In order to understand the results of Figs. 7.10 and 7.11 we recall that the vortex beam
propagation is very sensitive to the presence of external perturbations. For the IS used, in the
absence of CB, the splitting of the vortex is due to the SMI effect, as discussed in previous
Section. In the present experiments, the SMI is enhanced by the presence of the CB that
induces changes in samples’ refractive index in the region where the CB and SB overlap. In
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Figure 7.10 Experimental images of the emerging beam’s profiles at the output face of the cell obtained
using scheme A. Vortex beam intensity: 18 GW/cm2. Gaussian beam intensity (in GW/cm2): (a) 0, (b)
0.5, (c) 1, (d) 3, (e) 5, (f) 7, (g) 9, and (h) 10. Cell length: 10 mm and ϕ0 = π/22.
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Figure 7.11 Experimental images of the resultant transverse beam profiles at the output face of the
cell obtained when the axis of the vortex and Gaussian beams are coincident (scheme B). Vortex beam
intensity: 18 GW/cm2. Gaussian beam intensity: (a) 0.3, (b) 0.8, (c) 1.4, and (d) 2 GW/cm2. Cell length:
10 mm.

scheme A the CB is an off-axis perturbation for the SB. Then, the refractive index induced in
the region illuminated by the CB is larger because the CS2 is a SF medium. Thus, the bright
fragments formed after the splitting of the OVS suffer changes in their rotation, which alter its
final relative position, when they pass through the region where the refractive index is larger.
Then, the largest rotation angle is obtained when the CB is placed closer to the position of
one of the fragments, just after the split of the OVS3. On the other hand, in scheme B, the CB
field affects the whole area of the SB. The superposition of the Gaussian and vortex beams
provides a coherent field which induces a displacement of the vortex core in the radial direction
that increases with the propagation distance, incident intensity, and nonlinearity of the medium
[312]. Nonuniformity in the intensity profile and asymmetries in the spatial shape of the CB
contribute for enhancement of the vortex core displacement [313]. Therefore, the SB splitting is
affected by the azimuthal asymmetry caused by the displacement of the vortex core. Then, the
two emerging beams have different size and shape, and one of them, which has higher energy, is
located in the opposite direction to the displacement direction of the vortex core. The intensity
ratio between the emerging beams is controlled by IC which also controls the displacement of

3This statement is proposed based on the results observed in the numerical simulations of Eq. 7.1, after several
simulation of the SB evolution with the CB located at different positions along the vortex ring. Experimentally,
different positions of the CB were tested until a larger rotation angle was reached (∼ π/2).
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the vortex core. Nevertheless, the total power in the output face of the sample is conserved.
In order to compare the experimental results with a theoretical model, the propagation of

both beams was described by the normalized Eq. 7.1, which consider the contributions of the
saturated refractive nonlinearity and the 3PA previously demonstrated for CS2 at 532 nm, in the
picosecond regime [26]. Numerical simulations of Eq. 7.1 were performed by using the split-
step compact finite-difference method [235] with the input beam profile in adimensional polar
coordinates

(
R =
√

X2 +Y 2 and θ

)
given by: U (R,θ ,Z = 0)=USexp

(
−R2 + iθ

)
tanh [wBGR/

(2wv)]exp(i4φ)+UCexp
[
−(wBG/wG)

2 (R−d)2
]
, where US and UC correspond to incident

vortex (signal) and Gaussian (control) field amplitudes. d is the initial transverse distance be-
tween SB and CB and4φ is the phase difference between the beams. wBG, wv, and wG are the
waists of the Gaussian background, vortex core, and CB, respectively. Values of L = 2.3 mm,
η = 28, µ = 3.3, and 4φ = 0 were used to model the beams’ propagation in the 10-mm-long
cell filled by CS2.

Figure 7.12 shows numerical images of the emerging beams when scheme A is used, ac-
cording to Fig. 7.9(b). Figure 7.12(a) shows the spontaneous azimuthal symmetry breaking of
the SB when IS = 15 GW/cm2 and IC = 0, in agreement with Fig. 7.10(a). Figures 7.12(b)-(h)
illustrate the control over the fragments’ rotation obtained from Eq. 7.1 with IS = 15 GW/cm2

and 0.5 GW/cm2 ≤ IC ≤ 9.3 GW/cm2. The dashed lines indicate the angular positions of the
fragments corresponding to Fig. 7.10.

Figure 7.13 shows the numerical results corresponding to scheme B, indicated in Fig.
7.9(c). The ETs between the emerging beams with 15%, 44%, 68%, and 92% efficiency were
obtained for IS = 15 GW/cm2 and IC values of 0.15, 0.75, 1.2, and 2.2 GW/cm2, respectively.
Figures 7.13(a)-(d) reproduce the experimental results shown in Figs. 7.11(a)-(d). Displace-
ment of the vortex core, by varying the value of IC, is observed in Fig. 7.13 corroborating our
interpretation given above. The SB intensity used for the numerical calculations (15 GW/cm2),
slightly different from the experimental SB intensity (18 GW/cm2), was used to obtain very
good agreement between the experimental and numerical results, for both schemes. The dashed
lines correspond to the position of the vortex core when IC = 0. The different IC values used
in the simulation and in the experiment are acceptable since fluctuations of ∼ 20% of the laser
peak intensity are observed.

In order to get a qualitative understanding of the results we recall that in a nondissipative
medium the emergent beams are fundamental solitons [49] that fly along the tangent of the
initial ring-type beam profile due to OAM conservation. The movement of these emerging soli-
tons is adequately described by using Newtonian conservation laws for energy, momentum, and
angular momentum. In dissipative media, as in the case of CS2, the fragments are not funda-
mental solitons because of the energy losses due to the 3PA, which allows linear diffraction to
be again dominant. However, the conservation of angular momentum must be respected so that
the emerging beams will travel tangentially to initial vortex ring, acquiring an angular velocity
which will decrease when the beams move away from each other. Therefore, the final position
and distance between the two spots, after a certain distance, strongly depend on the charac-
teristics of the input vortex beam and the nonlinearity of the medium. On the other hand, the
control of rotation and the ET between the emerging fragments depend on the initial intensity,



162

Figure 7.12 Images of the emerging beam’s profiles obtained from Eq. 7.1, following the input scheme
of Fig. 7.9(b). IS = 15 GW/cm2 and IC values of (a) 0 (only SB), (b) 0.5, (c) 1, (d) 2.8, (e) 4.4, (f) 6.3,
(g) 8.1, and (h) 9.3 GW/cm2.
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Figure 7.13 Numerical output images of the fragments obtained from Eq. 7.1, following the scheme of
Fig. 7.9(c). IS = 15 GW/cm2 and IC values of (a) 0.15, (b) 0.75, (c) 1.2, and (d) 2.2 GW/cm2.

position, and radius of the control beam.
The results shown here reveal an effective method to control the relative positions and

energy of the emerging beams after the splitting of an OVS in saturable SF media. These
results allow us to introduce an alternative and efficient approach for the design of all-optical
modulators, where the output beams are strongly related because they are generated from a
single initial beam.

7.4 GUIDING AND CONFINEMENT OF LIGHT INDUCED BY OVSS IN
SELF-DEFOCUSING MEDIA

7.4.1 Introduction
Confinement and guiding of light essentially relies on the phenomenon of total internal re-

flection (TIR) in a high refractive index medium surrounded by a low refractive index region.
Exploitation of the TIR phenomenon in the fabrication of optical waveguides/fibers revolution-
ized telecommunications, enabling fast information transfer over long distances (see Chapter 9
of [60]). The all-optical analog of conventional waveguides/fibers can be obtained exploiting
effects induced by intense light beams propagating through NL materials. For instance, the
proper choice of a NL material allows the excitation of optical spatial solitons that propagate
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with constant transverse dimensions as self-induced waveguides, thanks to the balance between
the linear diffraction and its nonlinearity [75]. Of special interest are the self-trapped beam
originated from the Kerr effect, such as: bright and dark spatial solitons, which appear in SF
and SDF media, respectively [48]. Initially, experiments involving both types of Kerr solitons
were conducted in NL planar waveguides, being limited to one-transverse dimension [36, 314].
Subsequent works showed the formation of discrete bright and dark spatial solitons when an
intense light beam is coupled into waveguide arrays [250, 315]. Under these conditions, the
spatial solitons do not have full autonomy, because one of the transverse dimensions is limited
by the walls of a rectangular waveguide. However, the geometric constraint is not necessary for
(2+1)D spatial solitons, where the self-trapped beam propagates freely maintaining its shape
and size constant.

A particular class of (2+1)D spatial solitons is the OVS that present stable propagation in
defocusing NL media [91]. OVS is a type of dark soliton which carry finite OAM, as described
in previous Sections. For this reason, one of the main proposals for OVSs applications is
the transfer of the OAM from light to matter [316] but, due to the ring-like intensity profile
that describes a bright cylindrical surface during its propagation, OVSs can be used for light
guiding [317]. Indeed, the intense field region of a vortex beam can modify the refractive
index of a SDF medium, producing the waveguide effect. Demonstrations of optically induced
waveguides were reported using dark solitons (beams without OAM) in thermal defocusing NL
media [318], atomic vapor [319], and photorefractive materials [320]. More recently, an OVS-
induced waveguide was reported in a LiNbO3 crystal due to the action of the photorefractive-
photovoltaic effect [321]. Unfortunately, thermal or photorefractive nonlinearities are slow and
not suitable for fast dynamic circuitry based on spatial solitons.

In this Section, we report the formation of an optically induced waveguide by an OVS
propagating in a SDF medium that is based on the excitation of electronic local nonlinear-
ity. Colloids containing silver nanoparticles in acetone (sample A of Appendix B), managed
to exhibit a cubic-quintic (defocusing-focusing) nonlinearity, were used to support the stable
propagation of the OVS for up to 10 mm. An intense vortex beam was used to modify the
refractive index in the bright-field region compared to the vortex core, in order to induce the
waveguide effect. Confinement and guiding of a probe Gaussian beam (PGB) through the 10
mm long induced waveguide were obtained. Numerical simulations based on the CQ-NLSE
corroborate the effectiveness of our experimental approach.

7.4.2 Experimental Details
The setup used is illustrated in Fig. 7.14. The excitation (pump) beam is the second har-

monic of a Nd:YAG laser (80 ps, 10 Hz, 532 nm, maximum pulse energy of 10 μJ). Control of
the total power and the linear polarization of the incident beam was accomplished by using a
λ/2 plate followed by a Glan prism (P). An optical vortex beam with topological charge m = 1
was produced by passing the pump beam, previously magnified by a telescope (T), through
a phase plate (VPP). A spatial filter (SF) located after the VPP was used to eliminate higher
order diffracted light. The vortex beam was focused by a 5 cm focal distance lens (L1) on the
input face of a glass cell containing the sample. The waist of the background Gaussian beam
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Figure 7.14 Experimental setup: P, polarizer; T, telescope; VPP, vortex phase plate; M, mirror; SF,
spatial filter; BS, beam splitter; spherical lenses with f1 = 5 mm (L1) and f2 = 5 mm (L2). Camera
CCD1 produced the transmitted-beam spatial profile. Cylindrical lenses with f = 40 mm (CL1) and
f = 80 mm (CL2), and CCD2 were used in the SLIM setup. The cell’s length is 10 mm.

of the vortex beam was 18 μm and the vortex core radius at the focus was 4.8 μm. A He-Ne
laser (632.8 nm, 10 mW) was used as the PGB to be guided by the OVS. A telescope with
magnification of 10 was used to increase the beam size, so that when focused by lens L1, the
waist of the PGB is approximately equal to the vortex core radius.

Characterization of the transverse and longitudinal pump beam and PGB profiles were per-
formed by using two CCD cameras, following the two complementary processes described in
Figs. 6.6 and 7.2. Magnification of 6, produced by the lens L2, was used for the transverse im-
ages, whereas for side-view images, lenses CL1 and CL2 produce magnifications of 7 and 1/2
in y- and z-planes, respectively. Glass filters were used in both detection systems to separate
the green (vortex beam) and red (PGB) signals.

The silver colloids were prepared as described in Appendix B with a volume fraction of
f = 3× 10−5. According to the NL characterization performed in Chapter 4, for the inten-
sities used here, this value of f corresponds to an effective third-order susceptibility χ

(3)
e f f =

−(8.3+ i2.7)× 10−21 m2/V2 and an effective fifth-order susceptibility χ
(5)
e f f = (2.8+ i0.2)×

10−35 m4/V4. In order to recreate the vortex beam propagation by a distance of 10 mm inside
the sample, the Ag-colloid was contained in cells with thicknesses of 3, 5, and 10 mm.

7.4.3 Results and Discussions
In order to produce our OVS-induced waveguide, we must first find the proper conditions

for stable propagation of a OVS. Thus, Figs. 7.15(a)-(h) show the transverse beam images after
propagation through the cells filled with silver colloid. Figures 7.15(a) and 7.15(e) illustrate
the beam’s intensity profile at the entrance face of the cell (focal plane of lens L1)4. Figures
7.15(a)-(d) show the divergence of the initial doughnut-type beam when the incident intensity

4Note the difference in scale between Figs. 7.15(a)-(d) and 7.15(e)-(h)
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Figure 7.15 Transverse vortex-beam profiles (a), (e) at the entrance face of the cell and (b), (f) after 3
mm; (c), (g) 5 mm and (d), (h) 10 mm of propagation in silver colloids. Beam intensity: (a)-(d) Iv = 0.1
GW/cm2; (e)-(h) Iv = 3 GW/cm2.
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is Iv = 0.1 GW/cm2. The NL effects for Iv < 0.5 GW/cm2 are very weak, and the images
illustrate the linear regime where the beam propagation is affected mainly by linear diffraction.
For Iv = 3 GW/cm2, the sample exhibits NL behavior. Figures 7.15(e)-(h) show that the beams’
shape and the external radius of the vortex beam remain constant for propagation over 10 mm,
corresponding to ∼ 6 Rayleigh lengths. The vortex core diverges slightly in the first millimeter
and then remains constant with a radius of 5.6 μm, which will define the inner waveguide radius.
Experiments using cells longer than 10 mm were performed showing that the vortex beam
loses the OVS characteristic after ∼ 13 mm, due to NL absorption. The pointed and dashed
lines correspond to the inner and outer diameters of the vortex beam, obtained by numerical
simulation of the CQ-NLSE, as described below.

Figures 7.16(a) and 7.16(b) show the images of the vortex beam collected by the side-view
measurement system (corresponding to the SLIM). Figure 7.16(a), corresponding to Iv = 0.1
GW/cm2, shows the vortex beam propagation being affected by linear diffraction, in accor-
dance with Figs. 7.15(a)-(d). Nevertheless, for Iv = 3 GW/cm2, the external radius of the
vortex beam remains constant over a 10 mm propagation distance, as shown in Fig. 7.16(b).
It is worth mentioning that, to define a stable propagation region of an OVS, it is necessary to
ensure that the shape and size of the beam remain invariant during propagation. In the present
case, the shape-invariance region of the vortex beam is analyzed along the propagation, as seen
in Figs. 7.15(e)-(h), while the invariance of the beam radius is monitored using the side-view
technique [Fig. 7.16(b)]. Therefore Figs. 7.15(e)-(h) and Fig. 7.16(b) demonstrate the stable
propagation of the OVS.

To corroborate the formation and stable propagation of the OVS, numerical simulations
were performed based on the CQ-NLSE, given by Eq. 5.31 with χ

(7)
e f f = 0 and optical field

amplitude Av = A′/2, that is: i∂Av
∂ z + 1

2k0
∇⊥Av = − k0

2n2
0

[
3χ

(3)
e f f |Av|2 +10χ

(5)
e f f |Av|4

]
Av. Figures

7.16(c) and 7.16(d) show a longitudinal section of the vortex beam propagation obtained from
the numerical solution of the propagation equation, using the method described in Appendix
E. The simulations were performed using as an initial condition the function Av (r,θ ,z = 0) ∝

exp
(
−r2/w2

BG + imθ
)

tanh [r/(2wv)], where r and θ are the polar coordinates, m is the topo-
logical charge, and wBG and wv are the waists of the Gaussian background and vortex core,
respectively. Figure 7.16(c) exhibits the divergence doughnut-type beam due to the linear
diffraction, for Iv = 0.1 GW/cm2, while Fig. 7.16(d) shows the stable propagation of the
OVS, at Iv = 3 GW/cm2, in accordance with Figs. 7.16(a) and 7.16(b), respectively. There-
fore, the experimental [Figs. 7.15(e)-(h) and Fig. 7.16(b)] and the theoretical [Fig. 7.16(d)]
results demonstrate the stable propagation of robust (2+1)D OVSs. Numerical simulations
were also performed considering χ

(5)
e f f = 0. The results show that the outer diameter of the vor-

tex beam for the same experimental conditions is not constant along the propagation, contrary
to the results observed in Figs 7.16(b) and 7.16(d). These results show that, although the self-
defocusing third-order nonlinearity is dominant, the contribution of the self-focusing fifth-order
nonlinearity is crucial to obtain a stable optically induced waveguide for a long distance.

Figure 7.17 shows the transverse profiles of the PGB propagating in the Ag colloid. Figures
7.17(a)-(d) exhibit the normalized intensity distributions of the PGB as a function of the radial
coordinate at the entrance face of the cell and after propagation by 3, 5, and 10 mm, in the
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Figure 7.16 (a), (b) Experimental side-view images of the vortex-beam propagation for (a) Iv = 0.1
GW/cm2 and (b) Iv = 3 GW/cm2. (c), (d) Theoretical longitudinal images obtained from CQ-NLSE for
the intensities used in (a) and (b), respectively.

absence of the OVS. The circles represent the radial intensity distribution obtained from the
images shown in the insets of Figs. 7.17(a)-(d). These pictures show the divergence of the
PGB due to the linear diffraction along the length of propagation (the beam radius increases
from 7 to 178 μm after propagation of 10 mm). Figures 7.17(e)-(h) show the PGB evolution
when propagating inside the OVS core with Iv = 3 GW/cm2, for propagation distances of
z = 0, 3, 5, and 10 mm. The triangles of Figs. 7.17(i)-(l) were obtained from the images [Figs.
7.17(e)-(h)] processed as intensity matrices.

To ensure that the guiding process is due to the fast electronic response, both CCD cam-
eras were triggered using a digital delay/pulse generator (DDPG), which was triggered by the
Nd:YAG laser pulses, at 10 Hz, as shown in Fig 7.18. The first pulse created by the DDPG have
a duration of τ1 = 20 μs, which is the minimum exposure time required by the CCDs. A first
measurement (background) was performed by introducing a time delay4τ = 20 μs (including
the CCD timing jitter 2 μs) between the pulse used for triggering the CCDs and the pulse de-
livered by the Nd:YAG laser, such that the camera stop captured before the arrival of the green
pulse. Then the recorded signal shows the behavior of the cw laser when it propagates through
the Ag colloid in the absence of an OVS. A second measurement was performed with the same
time delay, 4τ , but with a duration of τ2 = (20 μs+ τ3), where τ3 = 135 ps corresponding to
the time interval when the OVS is present. Figures 7.17(e)-(h) and Fig. 7.19(a) were obtained
by subtracting the images of the second and first measurements. Thus, the experimental images
are related to NL effects of electronic origin, because corresponds to an integration time of 135
ps. It is important to note that the camera stops capturing images after 135 ps, therefore, effects
related to the slow NL response of the sample are discarded.

The waveguide effect induced by the OVS allows confinement and guiding of the central
region of the PGB over 10 mm propagation (∼ 25 Rayleigh lengths of the PGB), compensating
for the beam divergence. Nevertheless, a fraction of the beam escapes from the core of the OVS
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Figure 7.17 Normalized intensity distribution of Gaussian beam in absence of the OVS, for (a) z = 1
mm, (b) 3 mm, (c) 5 mm, and (d) 10 mm. The insets correspond to the transverse beam profile in each
position. (e) Transverse Gaussian-beam profile at the entrance face of the cell and after being guided by
the vortex by a distance of (f) 3 mm, (g) 5 mm, and (h) 10 mm. (i)-(l) Experimental normalized intensity
distribution for Iv = 3 GW/cm2 (blue triangles) obtained from (e)-(h). The red lines were obtained from
Eq. 7.2.
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Figure 7.18 Camera trigger process to capture the transversal and side-view images. τ1 = 20 μs,
τ2 = (20 μs+ τ3) and τ3 = 135 ps.

for larger propagation distances, which can be identified by the ring formed in Fig. 7.17(h).
The solid lines of Figs. 7.17(i)-(l) show the theoretical intensity distributions obtained solving
the two coupled CQ-NLSEs given by:

2ik j
∂A j

∂ z
+∇⊥A j =−

ω2
j

c2

{
3χ

(3)
e f f

[∣∣A j
∣∣2 +2

(
|AG|2 δ j,v + |Av|2 δ j,G

)]
+10χ

(5)
e f f

[∣∣A j
∣∣4 +6 |Av|2 |AG|2 +3

(
|AG|4 δ j,v + |Av|4 δ j,G

)]}
A j,

(7.2)

where j = v, G corresponds to the vortex and PGB, respectively. The NL contribution of the
Gaussian beam is negligible due to its small intensity

(
|AG|2� |Av|2

)
, and, therefore, for

j = v, Eq. 7.2 has the same form as the CQ-NLSE obeyed by the OVS alone. However, for
j = G, the propagation of the PGB is strongly affected by the NL contributions of the vortex
beam. In Figs. 7.17(i)-(l), the red lines show the theoretical PGB transverse profile obtained
from Eq. 7.2 by using the NL parameters measured in Z-scan experiments for Iv = 3 GW/cm2

and IG = 10 kW/cm2. Dispersion effects between the red and green beams were not considered,
because NL contributions induced by the PGB are negligible.

Figure 7.19 illustrates the longitudinal cross section of the PGB along its propagation in
the presence of the OVS. Figure 7.19(a) was obtained using the SLIM apparatus. From the
picture, it is possible to observe that the central region of the PGB is guided along the 10 mm
long cell; the region of the PGB confinement corresponds to the vortex core. The spreading
of the Gaussian beam beyond the vortex core is observed for longer propagation distances, in
accordance with Fig. 7.17. The numerical simulation of the PGB propagation being guided
by the OVS, obtained from Eq. 7.2, is displayed by Fig. 7.19(b). Note that, after propagation
by 1 mm, a fraction of the beam intensity passes through the “walls” induced by the OVS and
continues diverging along its propagation, generating the light ring observed in Fig. 7.17(h).
Guiding efficiency of 22% was obtained in all measurements after propagation by 10 mm.

The intensity losses of the PGB during propagation are due to linear scattering and diffrac-
tion. The linear absorption of the Ag colloid at 632.8 nm and its NL contributions are negligible.
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Figure 7.19 (a) Experimental and (b) numerical Gaussian beam propagation being guided by an OVS.
Iv = 3 GW/cm2 and IG = 10 kW/cm2.

Escape of radiation and ring formation in Figs. 7.17(h) and 7.19(a) are related to an imperfect
coupling of the PGB into the vortex core, and to the small refractive index difference induced
between the core and the bright region of the OVS.

Therefore, the results presented here reveal, for the first time, the importance of HON (quin-
tic nonlinearities) in the formation and stable propagation of OVSs (vortex core and Gaussian
background), essential to produce the effect of guiding and light confinement. In addition, the
fast NL response of the materials used, open new routes for applications of optical phenom-
ena induced by HON in the construction of all-optical devices and procedures of light-by-light
control.

Experimental confirmation of a prediction is merely a measurement. An
experiment disproving a prediction is a discovery.

- ENRICO FERMI
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8 NONLINEAR POLARIZATION INSTABILITY
IN CUBIC-QUINTIC MDNC

In this Chapter, I report a study of the NL birefringence induced in a MDNC due to the con-
tributions of third- and fifth-order nonlinearities. Control of the NL polarization of a light
beam was performed by using the NM procedure discussed in Chapter 5, which consists in
manipulate the NL response of MDNC by changing the NPs volume fraction, f , and the light
intensity. Large NL phase-shift (∼ 20π) was observed using a 9 cm long capillary filled with
silver NPs suspended in CS2. Proof-of-principle experiments were performed by using the
sample B of Appendix B with 1.0× 10−5 ≤ f ≤ 4.5× 10−5 and maximum light intensities
of tens of MW/cm2. Here, we demonstrated that the modulation instability is highly sensi-
tive to the quintic nonlinearity contribution. In addition, a model to describe the evolution of
the light polarization state was developed considering the contributions of the third- and fifth-
order susceptibilities. Numerical simulations were performed showing good agreement with
the experimental results.

8.1 INTRODUCTION

As considered in the previous chapters, the NL optical polarization induced by a laser beam
propagating through a system with inversion symmetry can be described mathematically by
an expansion in powers series of the electric field where the even-order terms are null, unless
the symmetry is disturbed. The nonzero expansion coefficients, χ(2N+1), with N = 1, 2, . . .,
called of (2N +1)th-order susceptibility, provide a measure of how strong is the light-matter
interaction [51]. The majority of articles in the literature are related to the cubic nonlinearity,
due to χ(3), which is the parameter that describes phenomena such as third-order self-focusing,
coherent anti-Stokes Raman scattering and two-photon absorption, among other phenomena
[21]. However, in several cases, the odd HON are essential for the complete characterization
of the NL response [158, 220, 23, 33, 322]. For instance, novel effects such as liquid light
condensates [28], high-harmonic generation [31], filamentation [243, 224, 238], stable propa-
gation of two dimensional spatial solitons in homogeneous media [30] and optical rogue waves
generation [29] are associated to HON. In addition, an important consequence of HON is the
NL birefringence effect which is manifested by the polarization rotation of an elliptically po-
larized light beam along its propagation [212]. This effect can be much influenced by HON
when the highly NL materials currently available are excited with moderate laser intensities or
even when gasses are excited with intense laser pulses [219]; for instance, some years ago an
experimental study showed how HON can enhance the polarization rotation of a weak probe
beam induced by a strong beam [219]. The authors were able to identify HON contributions for
the NL birefringence in air and determined the NL refractive indices associated to third, fifth,
seventh, ninety and eleventh order susceptibilities of the main air components (nitrogen, oxy-
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gen and argon). Subsequently, a simple formalism was presented for precise characterization
of the non-resonant NL birefringence [323].

Nowadays, it is well known that further advances in the telecommunications area require in-
depth studies of light propagation in highly NL optical fibers [324]. Indeed, NL birefringence
has been widely studied with important applications in all-optical devices [325, 326, 327].
However, the main limitation of optical fibers in all-optical circuits is related to the long prop-
agation distances required to obtain induced polarization rotation. To minimize this problem,
highly NL-core waveguides were developed allowing increasing of the polarization rotation of
the coupled light field in small propagation distances [328]. A particular example was reported
in the past using an optical capillary where the core was filled with nitrobenzene that is highly
NL [329]. Therefore large NL phase shift of 4ΦNL ≈ 12π in the infrared was obtained for
propagation distances of ≈ 10 cm.

On the other hand, MDNCs consisting of a dielectric host containing metal NPs emerged
as excellent systems with high NL susceptibility and ultrafast response that can be used as
platforms to study many associated HON phenomena. In particular, silver colloids have been
extensively studied under different conditions exhibiting important HON contributions. The
exploitation of these HON allowed enhancement of the NL response and even suppress NL
absorption effects by using a NM procedure, as discussed in Chapter 4. In this sense, metal-
colloids are strong candidates to investigate the contribution of the NL birefringence in short
propagation distance, with potential applications in the construction of all-optical devices.

In this Section, we demonstrate large NL phase-shifts when picosecond laser pulses prop-
agate in a 9 cm long capillary filled with silver NPs suspended in liquid CS2. Control of
the NL response was obtained by varying the NPs volume fraction from f = 1.0× 10−5 to
f = 4.5×10−5, obtaining4ΦNL ≈ 20π for peak intensities of tens of MW/cm2. In this regime
of intensity, silver colloids behave like a cubic-quintic media, where depending on the values
of f the NL response is dominated by the third- or fifth-order nonlinearity. The experimental
results were modeled by two coupled differential NL equations that describe the evolution of
the right- and left-circular polarization in samples exhibiting cubic-quintic nonlinearities, fol-
lowing the model developed in Section 5.5. The gain spectra of the modulation instability were
obtained, showing that the instabilities increase significantly due to the presence of the quintic
nonlinearity.

8.2 EXPERIMENTAL DETAILS

The setup used to study the intensity-dependent birefringence of the silver colloids is illus-
trated by Fig. 8.1(a). The second harmonic of a Q-switched and mode-locked Nd: YAG laser
(532 nm, 80 ps, 10 Hz) was used to excite the samples with maximum pulse energy of 10 µJ. A
system composed of a Glan prism (P) located between two λ/2 plates was used to control the
incident power and rotate the polarization axis of a linearly polarized laser pulse by an azimuth
angle θ . A 40x microscope objective (L1) was used to couple the laser light into a fused-silica
capillary (n0 = 1.46) with inner (outer) diameter of 2 µm (285 µm). The capillary (length: 9
cm) had at the entrance and exit faces two reservoirs with the input and output sides of the
capillary touching the reservoirs windows. The silver colloid (sample B of Appendix B) was
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Figure 8.1 (a) The experimental setup: polarizer (P), beam splitter (BS), spherical lenses with f = 5 cm
(L), 40x microscope objective (L1), 20x microscope objective (L1), polarizing beam splitter cube (PBS)
and reference detector (RD). The transmitted light on the vertical and horizontal axis were captured in
the fast detectors D1 and D2, respectively. (b) Inner diameter of capillary, in a portion of 5 mm, showing
small asymmetries. The inset is an optical microscope image of a small section of the hollow capillary
core (length: 1 mm).

filled in one of the reservoirs, and using a strong air pressure the colloid was conveyed through
the capillary to the other reservoir, in order to guarantee that the capillary is completely filled
with a homogeneous sample (no air bubbles were observed in the end of the filling process). A
20x microscope objective (L2) was used to collimate the laser light after the propagation along
the capillary. The laser beam was split by a polarizing beam splitter cube (PBS) to separate the
vertical (V) and horizontal (H) polarization components, that were monitored by fast detectors
D1 and D2, respectively. A reference detector (RD) was used to correct for the laser intensity
fluctuations. Fig 8.1(b) displays the inner diameter of the capillary, in a fragment of 5 mm,
showing small asymmetries that induce linear birefringence in the sample. The inset of Fig.
8.1(b) shows an image of the capillary’ core (length: 1 mm), obtained using a high resolution
optical microscope.

Two experiments were performed to study the NL birefringence of the samples. In one
experiment made to analyze the optical transmission as a function of the optical field polariza-
tion, the laser beam intensity was fixed and the incident polarization direction was rotated by
the second λ/2 plate using a motorized rotation stage, with step of ∼ 3.6 degrees. The second
experiment, performed to investigate the transmittance intensity dependence was performed by
rotating the first λ/2 plate using another motorized rotation stage with intensity step of ∼ 350
kW/cm2, maintaining fixed the polarization angle of the incident electric field.
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8.3 RESULTS AND DISCUSSIONS

The evolution of the right- and left-circular polarization in media exhibiting cubic-quintic
nonlinearities was discussed in Section 5.5 and can be generally described by Eq. 5.76. How-
ever, this expression corresponding to two coupled differential NL equations can take a specific
form depending on the origin of the medium nonlinearity. In particular, silver colloids exhibit
fast electronic NL response but their NL optical properties depend on the nature, shape and
volume fraction of the silver NPs, the laser frequency, which it is related with the resonant
and nonresonant excitation processes, and the mismatch between the dielectric functions of the
NPs and their host [148, 147, 142]. In fact, for the conditions used in our experiment, the com-
plex NL susceptibilities, that correspond to nonresonant processes of electronic origin, obey
the relationship: χ

(3)
xxyy = χ

(3)
xyyx = 1/3χ

(3)
xxxx and χ

(5)
xxyyxx = χ

(5)
xxyyyy = 1/5χ

(5)
xxxxxx [323].

In addition, for the case of a capillary filled with a silver colloid, the induced birefringence
is due to the refractive index shift (4n) induced by the NPs nonlinearity. For peak intensity of
tens of MW/cm2 (used in this work), we have 4n < 10−5, corresponding to a weak birefrin-
gence. Therefore, we may assume β

(1)
x ≈ β

(1)
y = β (1) and making a transformation of Eq. 5.76

to the pulse reference frame (z, t)→ (z,τ = t− z/vg), with vg =
[
β (1)

]−1
, we obtain:

∂A±
∂ z

+
i
2

β
(2)∂ 2A±

∂τ2 +
α0

2
A±

=
i
2
(4β0)A∓+ i

ω0

4n0c
F(1)

χ
(3)
xxxx

[(
|A+|2 + |A−|2

)
+ |A∓|2

]
A±

+ i
5ω0

192n0c
F(2)

χ
(5)
xxxxxx

{
4
[
|A++A−|2 (A++A−)

∗∓|A+−A−|2 (A+−A−)
∗
]

A∓

+
[
|A++A−|4 + |A+−A−|4

]}
A±, (8.1)

where the dispersion coefficients for silver-colloids can be obtained by using the Maxwell-
Garnett model. Here, the effective dielectric function for a macroscopically isotropic medium is
given by εe f f (λ ) = εh (λ ) [1+ 3Θ(λ ) f/1−Θ(λ ) f ], with Θ = [εNP(λ )−εh(λ )]/[εNP(λ )+2εh(λ )] [see Eqs.
3.22 and 3.23], where εNP and εh are the linear dielectric functions of the silver NPs and the
host, and f is the volume fraction occupied by the silver NPs. For the experiments reported in
this Section, liquid CS2 was used as the solvent (host) and its dielectric function can be written
by εh (λ ) = [nCS2 (λ )]

2 , where the refractive index of CS2 is given by Eq. 3.26.
On the other hand, the dielectric function of the silver NPs found by using the Drude’s

free-electron model [Eqs. 3.14 and 3.15] is given by:

εNP (λ ) =

(
1− λ 2

λ 2
p

)
+ i

(
1

2πcτr

λ 3

λ 2
p

)
, (8.2)

where λ−2
p = Nq2/

(
4π2ε0m0c2), N and q are the density and charge of the conduction elec-

trons, m0 is their effective mass, and τr is the relaxation time of the electrons in the metal.
For silver, the values of λp = 0.138 µm and τr = 31 fs were reported in [114]. Hence, the
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dielectric function can be written as εNP (λ ) =
(
1−52.51λ 2)+ i

(
0.899λ 3) and consequently,

by substituting Eqs. 3.26 and 8.2 in the effective dielectric function, εe f f (λ ), and defining the

effective refractive index by ne f f (λ , f ) = 2−1/2
√

Re
[
εe f f (λ , f )

]
+
∣∣εe f f (λ , f )

∣∣, we obtain the
dispersion coefficients

β
(1) (λ , f ) =

1
c

[
ne f f (λ , f )−λ

∂
[
ne f f (λ , f )

]
∂λ

]
, (8.3)

β
(2) (λ , f ) =

λ 3

2πc2

∂ 2 [ne f f (λ , f )
]

∂λ 2 . (8.4)

For instance, for λ = 532 nm and f = 10−5 we determined β (1) = 6.06 ns/m and β (2) =
0.717 ps2/m.

The evolution of the x- and y-components of the electric field being affected by the NL bire-
fringence of a 9 cm long capillary filled with silver NPs suspended in CS2 were analyzed by
solving numerically the two coupled equations [Eq. 8.1], using the compact finite-difference
method based on the Crank–Nicolson scheme [235], described in Appendix E. In order to com-
pare the contributions of the NL susceptibilities of different order on the polarization instability
effect, we use pure CS2 (host) and silver-colloid with four different volume fractions (sample
B of Appendix B), whose corresponding values of α0, β (2), χ

(3)
xxxx and χ

(5)
xxxxxx are displayed in

Table 8.1. Sample B1 (S-B1), corresponding to pure CS2 ( f = 0), exhibits only third-order
nonlinearity, for the intensities used in this Section. The other four samples (S-B2, S-B3, S-B4
and S-B5), containing silver NPs with 1.0× 10−5 ≤ f ≤ 4.5× 10−5, display contributions of
third- and fifth-order susceptibilities which depend on the f value, as discussed in Chapter 4.
Notice that, S-B2 represents a cubic-quintic (self-focusing) medium, where the NL refraction is
dominated by the positive Re

[
χ
(3)
xxxx

]
. By contrast, S-B4 and S-B5 correspond to cubic-quintic

(defocusing-focusing) media, because their NL responses are dominated by the negative value

Sample Volume
fraction ( f )

α0
(m-1)

β (2)

(ps2m-1)
χ
(3)
xxxx

(×10−20 m2V-2)
χ
(5)
xxxxxx

(×10−35 m4V-4)
S-B1 0 0 0.717 2.92+ i0.04 (2.9+ i0.9)×10−2 *

S-B2 1.0×10−5 9.02 0.717 1.79− i0.20 2.05+ i0.20
S-B3 1.8×10−5 16.23 0.718 −i0.41 2.98+ i0.31
S-B4 3.0×10−5 27.05 0.719 −2.07− i0.65 6.36+ i0.64
S-B5 4.5×10−5 40.57 0.720 −4.89− i1.02 9.04+ i0.87

Table 8.1 Linear absorption coefficient (α0), second-order dispersion coefficient
(
β (2)

)
, third-

order susceptibility
(

χ
(3)
xxxx

)
, and fifth-order susceptibility

(
χ
(5)
xxxxxx

)
for pure CS2 (S-B1) and sil-

ver colloids with different NPs volume fraction. The values of α0 and β (2) were obtained fol-
lowing the Drude model, while the χ

(3)
xxxx and χ

(5)
xxxxxx values were reported in Chapter 4.

* χ(5) for pure CS2 was determined by using 12-ps laser pulses, with intensities of GW/cm2 [330].
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of Re
[
χ
(3)
xxxx

]
. The change from self-focusing to self-defocusing media is due to the compe-

tition between the host (CS2) and silver NPs nonlinearities, which have opposite signs. How-
ever, S-B3 exemplifies a refractive quintic medium

(
Re
[
χ
(3)
xxxx

]
= 0
)

due to the destructive
interference of the third-order susceptibilities of the host and the NPs, obtained by using the
NM procedure of Chapter 4.

Figure 8.2 shows the numerical pulse shape evolution, for the five samples, with input in-
tensity of 60 MW/cm2. For all cases, the input beam has a Gaussian profile with pulse duration
of 80 ps. A temporal window of 400 ps, with steps of 0.1 ps, was used for the numerical simu-
lations. For S-B1 (black line) the pulse propagates keeping its Gaussian shape, but suffering a
small broadening from 80 ps to ~89 ps. Due to the small concentration of NPs the contribution
of the fifth-order nonlinearity is negligible is this case. On the other hand, the pulse propaga-
tion inside S-B2 (red line) is influenced by temporal-modulation instability (TMI). In this case
n2,e f f ∝ Re

[
χ
(3)
xxxx

]
of S-B2 is less than of S-B1 [see Table 8.1] and then we concluded that the

main contribution for TMI is due to n4,e f f ∝ Re
[
χ
(5)
xxxxxx

]
. To corroborate our interpretation,

we studied the pulse propagation in a quintic refractive medium (blue line), corresponding to
S-B3. The TMI effect increased due to the larger n4,e f f than in the samples S-B1 and S-B2.
Moreover, more intense TMI effect is observed in S-B4 (green line) and S-B5 (pink line), cor-
responding to more concentrated silver-colloids. Intensity losses along the propagation, in all
samples, are due to linear and NL absorptions.

In order to analyze the dependence of TMI on the third- and fifth-order nonlinearities, we
studied the laser pulse stability, along its propagation, by performing a perturbation analysis of
the pulse amplitude. For simplicity, we assume that the polarization state is oriented along the
fast axis (Ax = 0). Therefore, considering a Gaussian laser pulse profile, the field amplitude is
represented by:

A± (z,τ) =±iB(z,τ)exp
(
−α0z

2
− i
4β0

2
z
)

exp
(
−τ2

τ2
0

)
, (8.5)

where B(z,τ) = B0exp [Λ(τ)z+ iϕ (τ)z] is the unperturbed pulse amplitude. B0 is the incident
power at z = 0, τ0 is the initial pulse duration, Λ(τ) and ϕ (τ) are given by:

Λ(τ) =−B0ω0

c
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(8.6)
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. (8.7)

The modulated amplitude of the laser pulse may be written as the superposition of perturbed
and unperturbed amplitudes, as:
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Figure 8.2 Numerical pulse shape evolution for the sample B1 (S-B1), sample B2 (S-B2), sample B3
(S-B3), sample B4 (S-B4) and sample B5 (S-B5), with input intensity of 60 MW/cm2. Pulse duration:
80 ps. Propagation length: 9 cm.

a± (z,τ) =±i
{

B0exp [Λ(τ)z]+B1,± (z,τ)
}

exp [iϕ (τ)z]exp
(
−α0z

2
− i
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2
z
)
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(
−τ2

τ2
0

)
,

(8.8)
where B1,± (z,τ) is the complex perturbed beam amplitude. Then, by introducing Eq. 8.8 in
Eq. 8.1 and linearizing as a function of B1,± (z,τ), we obtain
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Solutions of Eq. 8.9 were found by neglecting further variations in the pulse shape and
considering the perturbed wave amplitude to be a sinusoidal varying function of z and τ , that
is, B1,± = u±exp [i(Kz−Ωτ)]+ iv±exp [−i(Kz−Ωτ)], with K and Ω being the wave number
and frequency of the perturbed wave amplitude, respectively. Nontrivial solutions are obtained
only when the perturbation satisfies the following dispersion relation:
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K−M = 0, (8.10)
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Figure 8.3 shows the local gain spectra of TMI versus the frequency shift along the fast
axis, obtained from the imaginary part of K [g(Ω,z) = 2Im(K)]. The local gain depends only
on the field amplitude in the z position, since the amplitude varies with propagation due to
dissipative terms. Local TMI gain curves were calculated for a peak intensity of 42 MW/cm2

that corresponds to the pulse intensity at τ = 0.1τ0, after a propagation distance of 1.5 mm.
In the normal-dispersion regime

(
β (2) > 0

)
, the S-B1 sample, which is a self-focusing cu-

bic medium, presents a very small modulation instability gain compared to the other samples.
However, under the same conditions, samples exhibiting NL contributions of fifth-order (from
S-B2 to S-B5) display a growth of the local modulation instability gain with nonlinearity in-
creasing. The local gain curve obtained for S-B3 (refractive quintic media) clearly shows that
the growth rate of TMI strongly depends on the quintic nonlinearity contribution, since that the
refractive cubic nonlinearity is null, as identified in Table 8.1. Distortions in the sidebands are
attributed to the presence of linear loss [203]. To obtain an analytical expression for the total
gain generated after a propagation distance L, it is necessary to integrate the local gain with
respect to z in the interval from 0 to L [331]. Notice however that by performing the numerical
simulation based on the NL propagation equations this is automatically considered.

Figure 8.4 shows the normalized transmittance as a function of the incident polarization
azimuth angle, θ , for the five samples. From top to bottom, the incident peak intensities corre-
spond to 6, 24, 42 and 60 MW/cm2, in each column. For I ≤ 6 MW/cm2 [first row of Fig. 8.4],
all samples behave as linear isotropic media. As a consequence, the normalized experimental
transmittance exhibits a cos2 (θ) dependence (black circles) for the vertical (V)-polarization
(captured in D1) and a sin2 (θ) dependence (red squares) for the horizontal (H)-polarization
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Figure 8.3 Local gain spectra of modulation instability versus the frequency shift along the fast axis,
for the five samples.

(captured in D2). Black and red lines represent the normalized transmittance on the V- and
H-polarization, obtained by numerical solution of Eq. 8.1 and using the coefficients of Table
8.1. At I = 24 MW/cm2 [second row of Fig. 8.4], the transmittance response as a function
of θ shows significant NL contributions, dominated by third-order nonlinearity. For the cu-
bic self-focusing samples (S-B1 and S-B2), the transmittance response displays a more slowly
variation, which increases with χ(3), compared to the linear response shown in the first row of
Fig. 8.4. The quintic self-focusing medium (S-B3 with Re

[
χ(3)

]
= 0) shows small response

variation at 24 MW/cm2 because the contribution of χ(5) is negligible. In contrast, the cubic
self-defocusing samples (S-B4 and S-B5) show a larger response as a function of the incident
polarization azimuth angle. With the increase of the incident intensity, the refractive index
variation between the slow and fast axis of the capillary increases or decreases depending of
the sign of total NL susceptibilities (sum of the third- and fifth-order NL contributions) and the
direction of the incident field polarization in the transverse plane. In this way, rotation of the
incident polarization direction, in high intensities, generate multiple regions where the varia-
tion of the NL birefringence increases or decreases the polarization instability effects. As a
consequence, regions of small and larger response are simultaneously observed for high inten-
sities by varying the incident polarization azimuth angle, as shown in the third and fourth row
of Fig. 8.1 that corresponds to intensities of 42 MW/cm2 and 60 MW/cm2, respectively. Note
that in the last two rows of Fig. 8.1, the fifth-order contribution is very important to increase
the modulation instability effect, in agreement with Fig. 8.3. Numerical simulations of Eq.
8.1, represented by the solid lines, were made using as initial condition a 80 ps Gaussian pulse.
However, the relative orientation of the capillary fast- and slow-axis in relation to the labora-
tory frame (x, y) was treated as a free parameter. Values of4β0 between 0.07 and 0.12, which
correspond to

∣∣nx−ny
∣∣ ≈ 10−6, were used. These values are reasonable since the refractive

index variation produced by the nonlinearities, 4n = n2,e f f I + n4,e f f I2, are of the same order
of magnitude.

Figure 8.5 shows the transmittance behavior, in the V-polarization (black circles) and H-
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Figure 8.4 Normalized transmittance as a function of the incident polarization azimuth angle for (a)
sample B1, (b) sample B2, (c) sample B3, (d) sample B4 and (e) sample B5. From top to bottom, the
incident peak intensities are 6, 24, 42 and 60 MW/cm2, in each column. Black circles and red squares
correspond to vertical and horizontal polarization transmittance, respectively. Solid lines were obtained
from numerical solutions of Eq. 8.1 and the parameters of Table 8.1.

polarization (red squares), for incident peak intensities between 0.1 MW/cm2 and 70 MW/cm2.
An incident azimuth angle of 43° in relation to V-polarization was used for all samples. For
non-birefringent materials or materials exhibiting only linear birefringence, the transmittance
remains constant for different intensities. However, Fig. 8.5(a), corresponding to S-B1 (pure
CS2), shows modulation of the transmittance response with increasing intensity, induced by
cubic nonlinearity. Each oscillation observed in the transmittance response corresponds to 2π

phase-shift. It is possible to observe that with the addition of silver NPs [Fig. 8.5(b)-(e)],
the modulation increases due to their large effective NL susceptibility. It is worth noting that
the fifth-order nonlinearities are essential for the modulation growth, as shown in Fig. 8.5(c),
which corresponds to a refractive quintic medium with Re

[
χ(3)

]
= 0. A maximum NL phase

shift of ∼ 20π was observed for intensities up to 70 MW/cm2, using S-B5 sample, as shown in
Fig. 8.5(e). Black and red solid lines represent the numerical simulations of Eq. 8.1, showing a
good agreement with the experimental results. The blue dashed lines in Figs. 8.5(b)-(e) display
the transmittance behavior neglecting the Re

[
χ(5)

]
contribution, showing that the modulation

is highly modified due to the fifth-order contribution.
Small discrepancies between the experimental and theoretical results are due to the capil-

lary, used for all experiments, that supports few propagation modes (V-number is ∼ 9), while
in the theory it was assumed, for simplicity, that the propagation occurs in a single-mode capil-
lary. Therefore, coupling effects between the different modes were neglected in the numerical



182

Figure 8.5 Vertical (black circles) and horizontal (red squares) polarization transmittance as a function
of the incident peak intensities variation, for (a) sample B1, (b) sample B2, (c) sample B3, (d) sample
B4 and (e) sample B5. Black and red solid lines were obtained from numerical solutions of Eq. 8.1 and
the parameters of Table 8.1. Blue dashed lines represent the numerical solutions of Eq. 8.1 neglecting
the contribution of Re

[
χ(5)

]
.

simulations. Free parameters used in the simulation, such as the angle of incidence of the beam
and the refractive index shift (4n), can also introduce discrepancies between the experimental
and numerical results.

Nowadays, it is well known that the NL birefringence effect is very attractive for application
in all-optical switches. For the samples used in this work, a large NL phase shift (∼ 20π) was
observed in moderately diluted silver-colloids

(
f = 4.5×10−5). However, more concentrated

samples will present larger NL phase-shift due to the increased third- and fifth-order nonlinear-
ities. In addition, we recall that using the NM procedure discussed in Chapter 4, it is possible to
improve the figures-of-merit of all-optical switches based on MDNCs, as seen in Section 4.3.3.
Therefore, once again we showed that the MDNCs are strong candidates for applications in the
construction of high-speed optical devices due to its fast NL response, high NL susceptibility
and the procedure for controlling its NL behavior by varying the volume fraction and incident
intensity.
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We cannot solve our problems with the same thinking we used when
we created them.

- ALBERT EINSTEIN
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9 CONCLUSIONS AND FUTURE WORKS

In this thesis was studied the NL response of metal-dielectric nanocomposites (MDNCs) and
liquid carbon disulfide (CS2), with the aim of analyzing the importance of their contributions in
the generation of new NL optical phenomena induced by high-order nonlinearities (HON). In
MDNCs, it was identified and characterized susceptibilities up to seventh-order, for intensities
of tens of GW/cm2. A nonlinearity management (NM) procedure, which enables to control the
magnitude and phase of the different high-order susceptibilities, was developed to MDNCs by
adjusting the light intensity and the volume fraction occupied by the metal nanoparticles (NPs).
Thus, refractive quintic and septimal media, with suppressed cubic nonlinearity, were experi-
mentally obtained for the first time. This control of the NL response was used to study optical
phenomena commonly known for cubic nonlinearity such as spatial self- and cross-phase mod-
ulation (SSPM and SXPM), spatial modulation instability (SMI) and NL birefringence, but
now being induced by HON. A generalization of the Maxwell-Garnet model, that includes the
direct contributions of the NPs and the host medium as well as contributions due to lowest-
order susceptibilities of the NPs, was developed to understand the behavior of the HON and
corroborate the experimental results. In addition, the fast NL response of MDNCs allowed to
develop potential applications of NM procedure for fabrication of all-optical devices based on
NL birefringence. Further, figures-of-merit for all-optical switching were enhanced by about
two orders of magnitude by using the NM procedure.

Special attention was devoted to the topic of two-dimensional (2+1)D spatial solitons,
which are not stable in materials that exhibit only cubic nonlinearity. Here, the NM proce-
dure was used to observe the stable propagation of (2+1)D bright solitons, for approximately
10 Rayleigh lengths, in a MDNC managed to present fifth-seventh (focusing-defocusing) sus-
ceptibilities with suppressed third-order refractive nonlinearity. In addition, a cubic-quintic
medium, whose NL response is dominated by defocusing third-order susceptibility, was pre-
pared to support the stable propagation of optical-vortex solitons (OVSs) with finite Gaussian
background and topological charge m = 1. The OVS produced a NL change in the refrac-
tive index according to the vortex beam shape, allowing the formation of an optically induced
waveguide capable of confine and guide a weak Gaussian beam by∼ 25 Rayleigh lengths. The
behavior of the bright spatial solitons and OVS was corroborated by numerical solutions of the
CQS-NLSE and CQ-NLSE, using the NL susceptibilities measured by the Z-scan technique,
showing very good agreement.

In addition, it was demostrated for the first time the stable propagation of OVS in a sat-
urable self-focusing medium with local nonlinearity. It was observed that the OVS with topo-
logical charge m = 1 are azimuthally stable at moderate values of the input intensity, due to
the saturation of the refractive nonlinearity and the instability-suppressing effect of the 3PA
(three-photon absorption), which characterizes the NL response of CS2. However, it was also
observed that at higher intensities, the vortex beams are unstable, spontaneously splitting into
a pair of fragments. For the latter case, we developed a procedure to control the behavior of



185

the emerging beams, due to the spontaneous splitting of the OVS, by adding a weak Gaus-
sian beam propagating collinearly with the OVS. Rotation of the emerging beams and energy
transfer between them were obtained using a control Gaussian beam with smaller intensity than
the vortex beam, revealing a new approach for the design of all-optical modulators. Stability
and instability regions of OVSs were accurately modeled by numerical simulations based on
the modified NLSE, which consider the saturable NL refractive index and the 3PA coefficient,
gathered from measures for the CS2 in the picosecond regime.

As perspective of future works, we are planning to study new optical phenomena induced by
HON, as well as study further properties of optical solitons in Kerr-like media (bright, dark and
OVSs). In the first case, a recent work shows a new vision for NL optics, which expands their
field of study beyond the limits of the perturbative regime [332]. Thus, the adaptation of our
NM procedure to such experiments would allow us to work with NL metamaterials, whose NL
behavior will be ideal for investigation of new NL optical phenomena. For the second proposal,
there is currently a variety of theoretical models directed to the study of optical solitons from
the point of view of fundamental and applied physics, many of them lacking of experimental
demonstrations. Thus, experiments that allow the stable propagation of OVSs in self-focusing
media over long distances, as well as the formation and propagation of cluster solitons are
within of our plans. In addition, we intend to consider the temporal domain in our studies of
optical solitons, which are of great interest for applications in telecommunications.

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not "Eureka!" but "That’s funny..."

- ISAAC ASIMOV
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APPENDIX A: NONLINEAR CHARACTERIZA-
TION TECHNIQUES

This appendix describes the characterization techniques that were used to find the NL parame-
ters of the samples used in this thesis.

Z-scan Technique

Z-scan is a simple and accurate technique for measuring the NL refraction index and NL
absorption coefficient based on the induced lens effects. This elegant technique introduced
by Sheik-Bahae et al. [27] is widely used due to the simplicity of the experimental setup,
measurement procedures and data acquisition, as well as easy interpretation of results.

The Z-scan technique consists of moving a thin NL sample through the focal region of
a well-behaved Gaussian laser beam 1. The strong interaction of the NL medium with the
light beam produces transmittance variations, measured in far-field, because the sample expe-
riences different intensities depending on the sample position (in z-direction) relative to the
focus (z = 0). The restriction of thin media is necessary because in the Z-scan theory, the
propagation effects are neglected [27]. Two configuration corresponding to closed-aperture
(CA) and open-aperture (OA) Z-scan schemes are established for the study of the NL refrac-
tion and NL absorption regimes, respectively. For measurements of NL refraction, an small
aperture (S� 1) is placed in front of the detector, where S represents the light fraction trans-
mitted by the aperture. This optical component produces a more sensitive measure of the beam
divergence or focusing, in far field, and is related to a transformation of phase distortion into
amplitude distortion. Fig. A.1 illustrates a basic setup of the Z-scan scheme.

A medium displaying NL refraction acts as a lens of variable focal length when it is moved
along the z-axis (propagation direction), due to SF or SDF effects [see Section 2.5.1]. Thus,
the Z-scan results are due to interplay between the curvature of the wavefront and the positive
or negative induced lens effect, which is dependent on the intensity.

In order to understand the operation of the Z-scan technique and be able to interpret the
results, a medium with negative NL refraction index (SDF medium) is analyzed. In principle,
a SDF medium exhibits negligible NL refraction when it is far from the focal region, due to the
low intensity laser in this position. When the sample is moved toward the focus (assuming the
starting point before the focus), the wavefront curvature is negative and the SDF medium begins
to act as a negative lens collimating the beam and varying the laser beam radius. The result is
a smaller, and consequently more intense spot at the aperture placed in front of the detector,
producing a higher transmittance after passing through aperture. This effect increases to a
maximum when the sample is closer the focus because the intensity is higher. When the sample

1Laser beams with different shapes can be used in the Z-scan technique since this new profile is considered in
the expressions for the analysis of experimental results.
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Figure A.1 Basic setup of the (a) closed-aperture and (b) open-aperture Z-scan technique.

is positioned exactly in the focal plane (z = 0), the wavefront curvature is zero and the medium
behaves as a thin lens, resulting in a minimal change in the laser beam radius in the far field, and
thus, the transmittance assumes the same value that it had in a position far from the focus. After
passing through the focus, the behavior is reversed, i. e. the maximum in transmittance (peak)
will drop to a minimum (valley). This is because a positive curvature radius plus to the negative
induced lens effect produces a larger beam divergence, as a consequence a lower transmittance
is detected after the aperture. Finally, the transmittance will return to the linear values when the
sample is moved further from the focus. The final result is a curve of transmittance vs position
which has a peak followed by a valley, as shown in Fig. A.1(a).

On the other hand, when the sample exhibits a positive NL refraction index (SF medium),
the graph is inverted due to positive induced lens effect.

In the OA Z-scan scheme (configuration for measurements of NL absorption), the aperture
is removed and the measures correspond to the total power transmitted after the beam passing
through the NL sample [Fig. A.1(b)]. If the NL sample presents a decrease in the absorption
with increasing intensity, then it is expected an increase in the signal measured by the detector
when the sample is located at the focus (where the intensity is the highest). On the contrary, if
the absorption effects increase with the intensity, a reduction of the input signal is observed at
the focal plane. These behaviors are related to the effects of saturable absorption or multiphoton
absorption. Therefore, OA Z-scan curves exhibit a peak or valley in the focus position (z = 0)
when the NL absorption coefficient is negative or positive, respectively.

In order to describe quantitatively the Z-scan experimental results the following assump-
tions are made:

• The incident beam is described by a linearly polarized Gaussian electric field of the form:

E (r,z, t) = E0 (z, t)
w0

w(z)
exp
[
− r2

w2(z)
− ikr2

2R(z)

]
, (A.1)

where r =
√

x2 + y2 is the radial coordinate, E0 (z, t) is the on-axis (for r = 0) part of

amplitude w(z) = w0

√
1+ z2/z2

0 is the beam radius, R(z) = z
(
1+ z2

0/z2) is the curvature
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radius of the wavefront, z0 = πw2
0/λ is the Rayleigh length, w0 is the beam waist in the

focal plane and λ is the laser wavelength.

• The light propagation in a NL medium is described under the slowly varying enve-
lope and the thin sample approximations. The second assumption obeys the relation-
ship L < z0, where L is the sample length, so both linear diffraction and NL refraction
modifications of the beam profile within the NL sample are negligible. Therefore the
propagation of the phase,4Φ, and the intensity of the optical beam, I ∝ |E|2, inside the
NL medium can be separated in two equations:

d4Φ

dz′
=−k [4n(I)] , (A.2)

dI
dz′

=− [α (I)] I, (A.3)

where z′ is the propagation length inside the medium. For the third-order nonlinearity,
we have that4n(I) = n2I and α (I) = α0 +α2I.

For Pure NL Refraction (α2 = 0):
The electric field at the exit face of the sample is given by:

Ee (r,z, t) = E (r,z, t)exp
[
−αL

2

]
exp [i4Φ(r,z, t)] , (A.4)

where

4Φ(r,z, t) =
4Φ

(3)
0 (t)

1+ z2/z2
0

exp
[
− 2r2

w2(z)

]
, (A.5)

4Φ
(3)
0 (t) = kn2I0 (t)Le f f , (A.6)

with Le f f = [1− exp(−α0L)]/α0 denoting the effective length of the sample and I0 (t) is the fo-
cal on-axis intensity. Once the amplitude and the phase of the beam at the output of the sample
are known, the field distribution at far-field aperture is calculated by using the Gaussian decom-
position method [27]. Accordingly, the field at the output face of the sample is decomposed
through a series expansion of exp [i4Φ(r,z, t)] and the several Gaussian components propa-
gate in the free space to the aperture plane where they are summed for reconstruction of the
beam giving an output electric field, Eout (r,z, t). Finally, the normalized energy transmittance
is calculated by integrating spatially and temporally the output intensity

T (z) =

´
∞

−∞
dt
´ ra

0 dr
[

r
∣∣∣Eout

(
r,z, t,4Φ

(3)
0

)∣∣∣2]
S
´

∞

−∞
dt
´

∞

0 dr
[
r |Eout (r,z, t,0)|2

] , (A.7)

where |Eout (r,z, t,0)|2 represents the light irradiance in absence of the nonlinearity, S = 1−
exp
(
−2r2

a/w2
a
)
, ra is the aperture radius and wa is the beam waist in the aperture plane in the

linear regime.
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The measured normalized energy transmittance in a Z-scan experiment can be fitted nu-
merically to Eq. A.7 in order to find n2. However, the characterization of NL refraction is
usually simplified by applying an analytical solution for the normalized transmittance that can
be derived for the on-axis intensity (S ≈ 0, very small aperture) in the far field condition and
for very small steady-state nonlinearity:

T (z,S≈ 0) = 1+
44Φ

(3)
0 (z/z0)[

(z/z0)
2 +9

][
(z/z0)

2 +1
] . (A.8)

Based on the analytical relation expressed in Eq.A.8 it was found numerically that the
following expression describes4Tp,v within 3% accuracy for |4Φ0|< π:

4Tp,v ∼= 0.406(1−S)0.25
∣∣∣4Φ

(3)
0

∣∣∣ . (A.9)

For instance, the sensitivity of the measurement for a pinhole aperture S ≈ 0 is 0.406.
Therefore, if the experimental system is able to resolve transmittance changes of about4Tp,v≈
1% for S≈ 0, then the related measurable NL phase shift will be about 25 mrad corresponding
to an optical path length of ∆nL = λ/250.

NL Refraction with Absorption (α2 6= 0):
In the presence of NL absorption the solution of Eqs. A.2 and A.3 for the third-order

nonlinearity are given by:

4Φ(r,z, t) =
kn2

α2
ln [1+q(r,z, t)] , (A.10)

Ie (r,z, t) =
I (r,z, t)exp [−α0L]

1+q(r,z, t)
, (A.11)

where q(r,z, t) = α2Le f f I (r,z, t). Since the absorptive and refractive contributions are coupled
inside the phase term, NL absorption distort the shape of the Z-scan far-field transmittance. For
example, 2PA will enhance the valley and reduce the peak while the saturable absorption will
produce an opposite effect. To separate these contributions, we analyze only the OA Z-scan
squeme (S = 1). In such configuration, the transmittance is insensitive to beam distortion and
is only a function of NL absorption. Thus the output energy transmittance can be obtained by
integrating spatially and temporally the intensity outgoing from the sample [Eq. A.11] without
having to include the free space propagation process. After a spatial integration we get:

T (z, t,S = 1) =
1+ z2/z2

0
q0

´
∞

−∞
dt
[
ln
(
1+q0 f (t)/

(
1+ z2/z2

0
))]

´
∞

−∞
dt [ f (t)]

, (A.12)

where f (t) is the temporal profile of the laser pulse and q0 =α2Le f f I0. By assuming a Gaussian
temporal shape, the OA normalized transmittance can be approximated by:

T (z,S = 1) =
∞

∑
m=0

(q0)
m(

1+ z2/z2
0
)m

(m+1)3/2 , (A.13)
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for |q0|< 1.
If |q0| < 1 and |α2| < 2k |n2| a simple division of the CA data by the ones obtained with

the OA gives a valley-peak curve where 4Tp,v closely approximates (within 10%) a purely
refractive Z-scan.

Kerr Shutter Technique

Kerr shutter is a pump-probe experiment where the high-intense pump beam is used to in-
duce a birefringence inside the NL medium in order to change the polarization state of weak
probe light beam. This technique allows to analyze both the magnitude and the temporal dy-
namics of the NL response of a Kerr medium. Fig. A.2 shows the experimental configuration
for implementation of the Kerr shutter technique. The NL medium is placed between two
crossed polarizers so that in absence of the pump beam the linearly polarized probe light can
not pass through the system. This configuration is often referred as an optical Kerr cell. In the
presence of a strong pump beam an anisotropic refractive index is induced. By spatially and
temporally overlapping the two beams a phase difference is “written” by the pump beam and
“read” by the probe beam. Consequently, the polarization plane of the probe beam is changed
and a small fraction of light is detected after the analyzer. The expression for the intensity
outgoing from the Kerr cell is given analytically by [333]

IKerr = Iprobesin2 (2θ)sin2
(
4Φ

(3)/2
)
, (A.14)

where Iprobe is the intensity of the incident probe beam, θ is the angle between the polarization
planes of the probe and pump beams and 4Φ(3) is the induced NL phase retardation between
the ortogonal probe components.

Generally, the Kerr shutter experiment is performed in such way that the pump and a probe
beam propagate in nearly collinear direction (with very small angle between them) and their
polarization planes are at θ = 45° with respect to each other in order to maximize IKerr. In this
case, the induced birefringence inside the isotropic medium is described by (see Section 4.2.1

Figure A.2 Basic configuration of the Kerr shutter technique where Ein is the input electric field of
probe beam with arbitrary polarization, (E1)the incident linearly polarized electric field, (E2) the non-
linearly rotated electric field, (Ekerr) the output electric field, (NL) the NL medium, (P) the polarizer and
(A) is the analyzer.
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of [21])

δn = n‖−n⊥ =
3
n0

[
χ
(3)
xyyx +χ

(3)
xyxy

]∣∣Epump
∣∣2 , (A.15)

where n‖ and n⊥ are the effective refraction indices experienced by the parallel and the perpen-
dicular components of the probe light with respect to the polarization plane of the pump beam.
Epump is the amplitude of the pump electric field. The relative phase difference between the
two ortogonal components of the weak field at the exit face of the sample is expressed as:

4Φ
(3) =

2π

λprobe
L

3
2n2

0ε0c

[
χ
(3)
xyyx +χ

(3)
xyxy

]
Ipump. (A.16)

Notice that the term 3
[
χ
(3)
xyyx +χ

(3)
xyxy

]
/
(
2n2

0ε0c
)

plays the role of the NL refraction. Usu-
ally, an induced phase shift is small so that the intensity transmittance of the Kerr cell can be
approximated by:

TI =
IKerr

Iprobe
≈

(
4Φ(3)

2

)2

. (A.17)

Therefore, a procedure to find the NL refraction index consists in measure the intensity
transmittance for the NL sample and compare it with a reference material, maintaining the
same intensity of the pump and probe beams.
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APPENDIX B: FABRICATION AND CHARAC-
TERIZATION OF MDNCs

In order to conduct the experiments involving MDNCs, two colloids containing silver NPs
suspended in acetone and CS2 were prepared by chemical reduction methods, following the
procedures of [334] and [171], respectively.

• Sample A: Silver NPs hosted in acetone were obtained by diluting 90 mg of silver nitrate
(AgNO3) in 500 ml of water at 100°C. 10 ml of 1% sodium citrate solution (Na3C6H5O7)
was added for reduction the Ag+ ions, and later was boiled and strongly stirred for 1 h.
As result, a colloid with Ag NPs of various shapes and sizes was obtained [334].

• Sample B: Silver NPs hosted in CS2 were obtained by adding dropwise 3.75 ml of a 0.03
mol/l AgNO3 aqueous solution to a 0.05 mol/l N(C8H17)4Br solution in toluene at 100
drops/min. After 10 min, 50 μl of dodecanethiol (dodecanethiol-to-silver molar ratio of
2:1) were introduced in the mixture. Then 3.1 ml of a freshly prepared NaBH4 aqueous
solution (0.4 mol/l) was rapidly added to the mixture. The reacting medium was stirred
for 3 h, and the organic layer was extracted. The resulting dodecanethiol-stabilized Ag
NPs were precipitated by adding ethanol and cooling to −18 °C for 4 h. Finally, the NPs
were centrifuged, washed several times with ethanol and redispersed in toluene.

In order to obtain an homogeneous distributions of Ag NPs, the pristine colloids were subjected
to a process of laser photofragmentation, under slow stirring, using the second harmonic beam
at 532 nm obtained from a Nd: YAG laser (8 ns, 85 mJ/pulse, 10 Hz) for 1 h, according to [335].
The photofragmentation of the NPs is due to their melting and vaporization because of the large
absorption of the laser energy by the particles and low heat-transfer for the hosting medium
[336, 337]. After photofragmentation, were obtained colloids with homogeneous distributions
of spherical NPs with average diameter of (9.0 ± 2.2) nm and (6.0 ± 3.0) nm for sample A
and sample B, respectively. Fig. B.1(a) shows the size distribution histogram, for sample A,
of the spherical NPs with average diameter of ~9 nm, obtained using a Transmission Electron
Microscope (TEM) . While for the sample B, the size distribution histogram was obtained using
the Dynamic Ligth Scattering (DLS) technique, as shown in Fig B.1(b). TEM image for sample
B is presented in [171].

Colloids with f varying from 0.5×10−5 to 2.5×10−4 for sample A, and from 0.2×10−5 to
4.5×10−5 for sample B, were obtained by adding 20 μl to 300 μl of the Ag-water suspension
in 1 ml of acetone, and adding 2 μl to 40 μl of the Ag-toluene suspension in 1 ml of CS2,
respectively.

The linear absorption spectra of the samples were measured from 200 nm to 800 nm us-
ing a commercial spectrophotometer. Fig. B.2 show the linear absorbance spectra of samples
A and B for f = 4.0× 10−5. Fig. B.2(a) shows the linear absorbance spectra of sample A
before (dotted line) and after (solid line) photofragmentation of the original NPs synthesized.
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Figure B.1 Size distribution histogram of the NPs after photofragmentation for (a) sample A and (b)
sample B.

The smaller LSP resonance linewidth exhibited by the laser-ablated colloid indicates a homo-
geneous distribution of Ag NPs sizes. The absorbance spectrum of pure acetone (dashed line)
presents large transparency window, corroborating that the resonance at ~400 nm is due to the
LSP in the Ag NPs. For the case of Ag NPs in CS2 [Fig. B.2(b)], the LSPR is broader due
to the large chemical interaction of sulfur and the Ag surface. CS2 is also a transparent liquid
between 400 and 800 nm.

For sample A, the Ag NPs do not aggregate due to the sodium citrate molecules attached to
their surface; the shape and size of the NPs remained unchanged for at least 3 months. However,
the sample B is stable for approximately one hour, then begins to precipitate. Nevertheless,
after introducing the sample in the ultrasound for a few minutes, it returned to its homogeneous
phase.

Figure B.2 Linear absorption spectra of the (a) sample A (cell thickness: 1 mm) and (b) sample B (cell
thickness: 5 mm), both with f = 4.0×10−5.
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APPENDIX C: NONLINEAR CHARACTERIZA-
TION OF CARBON DISULFIDE IN THE PICO-
SECOND AND FEMTOSECOND REGIMES

Carbon disulfide (CS2) is the NL liquid par excellence. Its high NL behavior has been studied
by different characterization techniques, revealing different NL phenomena. Frequently, CS2 is
used as a reference standard for NL optical measurements. However, a variety of results show
that the magnitude of the NL response of CS2 can vary by more than 1 order of magnitude,
depending on the characteristics of the incident light beam. Recently, Reichert et al. provide
a detailed NL characterization of CS2 by varying the wavelength and pulse duration time of
the incident laser [209]. Nevertheless, the study was focused on the third-order nonlinearity
only. In this appendix is discussed two models that were adopted to study the evolution of light
pulses in (a) 532 nm with duration time of 80 ps and (b) 800 nm with duration time of 100 fs,
when propagated inside a cell containing liquid CS2. Both models were proposed based on the
experimental results.

Some discussions in this appendix are focused on the subject of optical vortex beams, be-
cause CS2 was used as a NL medium for experiments with OVSs.

(a) NL behavior of CS2 at 532 nm and picosecond regime

Besse et al. investigated the NL behavior of CS2 in 532 nm and picosecond regime [26].
The effective third-order refractive index, n2,e f f , was measured by using the D4σ method,
which allows very sensitive measurements for the second moment of the intensity distribution
of the transmitted beam [338]. Instead of measuring the variation of the transmitted intensity,
as in the Z-scan technique, the D4σ method directly measures changes in the spatial profile
of the transmitted beam. Besse noted that n2,e f f has a saturated type behavior, as shown by
the red points in Fig. 1.5(a), reaching its maximum value

(
n2,e f f = 2.9×10−14 cm2/W

)
for

an intensity of ∼ 17 GW/cm2. For I > 17 GW/cm2, n2,e f f decreases with increasing intensity.
Based on these observations, different types of Ansatz were proposed in order to fit the intensity
dependence of n2,e f f . Among these, the Ansatz that best fits the experimental results is given
by:

n2,e f f (I) =
aI

1+b2I2 , (C.1)

where a = 3.39× 10−32 m4/W2 and b = 5.76× 10−15 m2/W. It is important to note that Eq.
C.1 does not correspond to the model commonly used to describe the saturation phenomena,
which is given by:

n′2,e f f (I) =
a′

1+b′I
. (C.2)
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Figure C.1 (a) The effective NL refractive index of CS2 as a function of the laser intensity in 532 nm
and picosecond regime. Red and black lines correspond to the models corresponding to Eqs.C.2 and
C.1, respectively. The vertical blue bar indicates the intensity range of the effective stability of the self-
trapped vortex beams. (b) Transmittance of CS2 versus the input laser intensity, in the 1-mm-thick cell.
The solid line corresponds to the theoretical fit corresponding to the 3PA effect.

Fig. C.1(a) shows the comparison between Eqs. C.1 (black line) and C.2 (red line), which
represent two models of saturable nonlinearity corresponding to the NL refractive index of CS2
as a function of the laser intensity. To fit the Eq. C.2 to the experimental results reported in [26],
we use the values of a′ = 20× 10−18 m2/W and b′ = 19.3× 10−15 m2/W. Here, it is possible
to note that for high intensities, both models produce similar behavior of n2,e f f . However, for
low intensities the model adopted in Eq. C.2 does not describe the NL behavior observed by
the experimental results. This comparison is extremely important to analyze the results of the
stable propagation of OVSs in CS2, discussed in Chapter 7. The shaded section in Fig. C.1(a)
represents the stability region of the self-trapped vortex beams in CS2.

Moreover, it should be added that for very low intensities the model of [26] is no more
valid (dashed black line). The measurements published in [26] show a value of n2 ∼ 1.4×
10−14 cm2/W for intensities in the range of 1− 2 GW/cm2, where the measurements were
possible. Indeed the signal obtained by using the D4σ method becomes very small at this level
[330]. Therefore the growth of n2,e f f between 1.4× 10−14 cm2/W and ∼ 3× 10−14 cm2/W
at 17 GW/cm2 can be understood as a contribution of the positive fifth-order nonlinearity. Is
worth mentioning that the third-order nonlinearity of CS2 in the picosecond regime is mainly
caused by the molecular reorientation effects. However, for larger intensities, there is plasma
formation characterized by NL absorption and negative NL refraction that become more and
more dominant, contributing to the reduction of the n2,e f f value. This could be understood as
the physical explanation of the overall variation shown in Fig. C.1(a).

As concerns the NL absorption, it was reported in [26] that the values of the 2PA and
3PA coefficients for CS2 at 532 nm, in the picosecond regime, are α2 = 0 and α4 = 9.3×
10−26 m3/W2, respectively. These value were obtained using the standard open-aperture Z-
scan method. The light source was a Nd:YAG laser, operating at wavelength λ = 532 nm and
emitting 12-ps-long linearly polarized pulses with Gaussian temporal and spatial profiles, at
the repetition rate of 10 Hz. However, in our experiments, we use a linearly polarized Nd:YAG
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laser emits 80-ps-long pulses with the Gaussian temporal profile. Nevertheless, the value of
α2 and α4 are expected to remain the same as measured with 12 ps pulses. To check this
expectation, we measured the transmitted intensity through the CS2 sample versus the incident-
beam’s intensity.

The blue circles of Fig. C.1(b) represent the experimental data of the output intensity versus
the input laser intensity for a vortex beam with topological charge m = 1. A quartz cell of
thickness 1 mm, filled by liquid CS2, was used. To analyze the data, we assumed that the
transparent liquid (α0 = 0) exhibits 3PA as reported in [26]. Using the SVEA and considering
the sample as an optically thin one, we describe the evolution of the optical intensity, I, along
the propagation distance, z, by the differential equation:

∂ I
∂ z

=−α4I3. (C.3)

The red line in Fig. C.1(b) corresponds to the solution of Eq. C.3 using the value that was
established in [26].

(b) NL behavior of CS2 at 800 nm and femtosecond regime

In the femtosecond regime, Kong et al. measured the NL behavior of CS2 by using the
Z-scan technique [25]. In the CA scheme, it was identified that CS2 presents focusing third-
and defocusing fifth-order refractive indices for intensities up to hundreds of GW/cm2. Values
of n2 = 2.1× 10−15 cm2/W and n4 = −2.0× 10−27 cm4/W2 were reported by using a 120
fs pulse laser at a wavelength of 800 nm. These values are very close of the NL refractive
indices used to model the stable propagation of two-dimensional spatial solitons in 920 nm
(n2 = 3.1× 10−15 cm2/W and n4 = −5.2× 10−27 cm4/W2) [30]. In both cases, the cubic-
quintic refractive nonlinearity of CS2 has electronic origin.

On the other hand, Kong also concluded, from the OA Z-scan experiments, that NL absorp-
tion of CS2 in 800 nm is attributed only to 3PA, with respective coefficient α4 = 1.37×10−21

cm3/W2 [25]. Here arise some controversies with other works reported in the literature. For
example, Ganeev et al. claims that NL absorption in 795 nm is due to 2PA, with coeffi-
cient α2 = 5× 10−11 cm/W [34], while Yan et al. concluded that the OA Z-scan signal
in 800 nm is not due to 2PA nor 3PA, but rather to NL scattering [339]. Thus, to iden-
tify the value of NL absorption, to feed in our theoretical models and numerical simula-
tions, we performed an optical limiting experiment, measuring the transmittance of the light
beam as a function of the incident intensity. The circles of Fig. C.2(a) show the experi-
mental behavior of the output intensity, Iout , versus the input intensity, Iin, produced by pass
the laser beam (800 nm, 100 fs, 1 KHz) through a cell (thickness: 1 mm) containing liquid
CS2. The green and black lines correspond to fit curves of 2PA

(
α2 = 1×10−11 cm/W

)
and

3PA
(
α4 = 1.37×10−22 cm3/W 2), respectively, while the blue line was drawn considering the

2PA and 3PA processes
(
α2 = 2.8×10−11 cm/W and α4 =−2.6×10−23 cm3/W 2). Here, it is

possible to observe that the models mentioned above do not fit the experimental results, ade-
quately. For this reason, we propose an empirical expression based on the experimental data of
Fig. C.2(a), given by:
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Figure C.2 (a) Transmittance of CS2 versus laser intensity. Cell length: 0.1 cm. The red line corre-
sponds to best fit by using Eqs. C.4 and C.5. (b) Intensity dependence of αNL for CS2 in femtosecond
regime. (c) OA Z-scan curve for CS2 with laser peak intensity of 30 GW/cm2.

αNL (I) = B

(
exp
[ I−C

D

]
− exp

[
−C

D

]
exp
[ I−C

D

]
+1

)
, (C.4)

with B = 5.39 cm-1, C = 186.7 GW/cm2 and D = 27.16 GW/cm2, as shown in Fig. C.2(b).
At low intensities, the loss coefficient, αNL (I), has a linear behavior with the intensity, with
coefficient B [D(1+ exp(C/D))]−1 = 2.05×10−13 cm/W, which is within the range of values
of the 2PA coefficients measured by Falconieri et al.

(
4.5×10−13 cm/W

)
[340] and Gnoli et

al.
(
1.2×10−13 cm/W

)
[341]. A significant increase of αNL is observed for I > 100 GW/cm2,

where the NL intensity losses become important. According to Yan [339], for intensities of
hundreds of GW/cm2, intensity loss processes are increased mainly due to the Stokes stim-
ulated Raman scattering and Stokes stimulated Rayleigh-wing scattering. Finally, for I >
350 GW/cm2, saturation of the loss coefficient is observed. Therefore, several processes con-
tribute to the description of the intensity losses that occurs when a beam passes through a cell
filled with CS2. For our case, the contributions of all these processes were condensed in an em-
pirical expression [Eq. C.4], which gives rise to the red line in Fig. C.2(a) obtained by solving
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the differential equation:
dI
dz

=−αNL (I) I, (C.5)

where αNL [Eq. C.4] is a coefficient which represents all losses of CS2, i.e. linear and NL
absorption, as well as linear and NL scattering.

On the other hand, it can be seen from Fig. C.2(a) that the theoretical fit considering the
2PA and 3PA processes (blue line) is quite close to the experimentally measured values (green
circles). However, Fig. C.2(c), corresponding to a measurement using the OA Z-scan scheme,
shows that for an intensity of 30 GW/cm2, the absorption coefficients measured (α2 and α4)
are extremely large and do not fit the experimental results (blue line), contrary to the αNL
coefficient proposed in Eq. C.4 (red line). Therefore, we can claim that Eq. C.4 describes
adequately the intensity loss processes that occur when a femtosecond pulse propagates inside
a cell containing liquid CS2.
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APPENDIX D: RELATIONSHIP BETWEEN THE
HON POLARIZATIONS AND HON SUSCEPTI-
BILITIES

The NL response of matter to optical fields can be described by expressing the induced polar-
ization by a power series of the field with NL susceptibilities, χ(N), N = 2, 3, . . ., as coefficients
of the series. In systems with inversion symmetry all even-order susceptibilities are null and
the NL polarization can be expressed, in the convention of [58], by [Eq. 2.76]:

P̃(2N+1)
µ (ω2N+2) = ε0 ∑

ς1,ς2,...,ς2N+1

∑
ω

D(ω2N+2;ω1,ω2, . . . ,ω2N+1)

×χ
(2N+1)
µς1,ς2,...,ς2N+1 (ω2N+2;ω1,ω2, . . . ,ω2N+1)

× Ẽς1 (ω1) Ẽς2 (ω2) . . . Ẽς2N+1 (ω2N+1) , (D.1)

where ω2N+2 = ω1 +ω2 + . . .+ω2N+1 and D is a degeneracy factor given by Eq. 2.11.
For the case of cubic nonlinearity, we can obtain an expression for the third-order NL

polarization along the x−axis by considering three input fields E1,x, E2,x and E3,x (parallel and
co-polarized along the x-axis) with frequencies ω1, ω2 and ω3 producing a resultant field with
frequency ω4 via χ

(3)
xxxx (ω4;ω1,ω2,ω3), given by:

P(3)
x (ω4) = ε0D(3)

χ
(3)
xxxx (ω4;ω1,ω2,ω3)E1,xE2,xE3,x. (D.2)

In an isotropic medium the NL polarization should be independent of the orientation of any
axis system used. Thus, in a new axis system (x′,y′) rotated 45° from the original x−axis, the
three fields have the following components along the x′−axis and y′−axis:

E1x′ = 1√
2
E1,x, E1y′ = 1√

2
E1,x,

E2x′ = 1√
2
E2,x, E2y′ = 1√

2
E2,x,

E3x′ = 1√
2
E3,x, E3y′ = 1√

2
E3,x.

 (D.3)

Also, considering the symmetry properties identified in Eq. 2.14, the nonzero elements of
third-order NL susceptibility in the new axis system are given by:

χ
(3)
xxxx (ω4;ω1,ω2,ω3) = χ

(3)
x′x′x′x′ (ω4;ω1,ω2,ω3) ,

χ
(3)
xxyy (ω4;ω1,ω2,ω3) = χ

(3)
x′x′y′y′ (ω4;ω1,ω2,ω3) ,

χ
(3)
xyxy (ω4;ω1,ω2,ω3) = χ

(3)
x′y′x′y′ (ω4;ω1,ω2,ω3) ,

χ
(3)
xyyx (ω4;ω1,ω2,ω3) = χ

(3)
x′y′y′x′ (ω4;ω1,ω2,ω3) .

 (D.4)
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Therefore, the third-order NL polarization induced along the x′−axis takes the form:

P(3)
x′ = ε0D(3)

[
χ
(3)
x′x′x′x′ (ω4;ω1,ω2,ω3)E1x′E2x′E3x′+χ

(3)
x′x′y′y′ (ω4;ω1,ω2,ω3)E1x′E2y′E3y′

+χ
(3)
x′y′x′y′ (ω4;ω1,ω2,ω3)E1y′E2x′E3y′+χ

(3)
x′y′y′x′ (ω4;ω1,ω2,ω3)E1y′E2y′E3x′

]
, (D.5)

and substituting Eqs. D.3 and D.4 in Eq. D.5, we have:

P(3)
x′ =

1
2
√

2
ε0D(3)

[
χ
(3)
xxxx (ω4;ω1,ω2,ω3)+χ

(3)
xxyy (ω4;ω1,ω2,ω3)

+χ
(3)
xyxy (ω4;ω1,ω2,ω3)+χ

(3)
xyyx (ω4;ω1,ω2,ω3)

]
E1,xE2,xE3,x. (D.6)

On the other hand, the third-order NL polarization P(3)
x′ (ω4;ω1,ω2,ω3) in Eq. D.6 can also

be obtained by projecting the NL polarization given by Eq. D.2 onto the x′−axis of the form:

P(3)
x′ =

1√
2

ε0D(3)
χ
(3)
xxxx (ω4;ω1,ω2,ω3)E1,xE2,xE3,x. (D.7)

Then, by comparing Eq. D.6 with Eq. D.7, we have:

χ
(3)
xxxx (ω4;ω1,ω2,ω3) = χ

(3)
xxyy (ω4;ω1,ω2,ω3)+χ

(3)
xyxy (ω4;ω1,ω2,ω3)

+χ
(3)
xyyx (ω4;ω1,ω2,ω3) , (D.8)

where Eq. D.8 can be expressed in a more general and compact form by:

χ
(3)
i jkl (ω4;ω1,ω2,ω3) = χ

(3)
xxyy (ω4;ω1,ω2,ω3)δi jδkl +χ

(3)
xyxy (ω4;ω1,ω2,ω3)δikδ jl

+χ
(3)
xyyx (ω4;ω1,ω2,ω3)δilδ jk. (D.9)

Of special interest is the case that describes the instantaneous Kerr effect, χ
(3)
i jkl (ω;ω,ω,−ω),

mentioned in Table 2.2. Here, by intrinsic permutation symmetry we have that: χ
(3)
xxyy (ω;ω,ω,−ω)=

χ
(3)
xyxy (ω;ω,ω,−ω). Thus, Eq. D.9 is rewritten as:

χ
(3)
µ jkl (ω;ω,ω,−ω) = χ

(3)
xxyy (ω;ω,ω,−ω)

[
δµ jδkl +δµkδ jl

]
+χ

(3)
xyyx (ω;ω,ω,−ω)δµlδ jk.

(D.10)
By last, Eq. D.10 can be used in the general expression of the third-order NL polarization

[Eq. D.1 with N = 1]:

P(3)
µ (ω;ω,ω,−ω) =

3
4

ε0 ∑
jkl

χ
(3)
µ jkl (ω;ω,ω,−ω)E j (ω)Ek (ω)El (−ω) , (D.11)
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where the coefficients D = 3/4 correspond to the degeneracy factors of the third-order process
in the convention of [58], and by using the index notation

(−→
X ·−→Y = ∑ jk δ j,kX jYk

)
, we have

that the third-order NL polarization is given by:

P(3)
µ (ω;ω,ω,−ω) =

3
4

ε0

{
2χ

(3)
xxyy (ω)Eµ (ω)

[−→
E (ω) ·−→E ∗ (ω)

]
+ χ

(3)
xyyx (ω)E∗µ (ω)

[−→
E (ω) ·−→E (ω)

]}
. (D.12)

A similar treatment is developed to quintic nonlinearity, where the fifth-order NL polariza-
tion along the x−axis is given by:

P(5)
x (ω6) = ε0D(5)

χ
(5)
xxxxxx (ω6;ω1,ω2,ω3,ω4,ω5)E1,xE2,xE3,xE4,xE5,x, (D.13)

with ω6 = ω1 + ω2 + ω3 + ω4 + ω5. In the axis system (x′,y′), the fifth-order NL polar-
ization induced along the x′−axis, P(5)

x′ (ω6), mixture terms corresponding to χ
(5)
x′x′x′x′x′x′ (ω6),

χ
(5)
x′x′y′y′x′x′ (ω6) and χ

(5)
x′x′y′y′y′y′ (ω6). The second term has contributions of 5 fields of which 3

are identical in x′ and the 2 others are identical in y′, while in the third term 4 field are identical
in y′ and there is only one field in x′. Thus, considering the number of unique combinations,
we have:

P(5)
x′ (ω6) = ε0D(5)

[
χ
(5)
x′x′x′x′x′x′ (ω6)E1x′E2x′E3x′E4x′E5x′+

5!
3!2!

χ
(5)
x′x′y′y′x′x′ (ω6)E1x′E2y′E3y′E4x′E5x′

+
5!

4!1!
χ
(5)
x′x′y′y′y′y′ (ω6)E1x′E2y′E3y′E4y′E5y′

]
,

=
1

4
√

2
ε0D(5)

[
χ
(5)
xxxxxx (ω6)+

5!
3!2!

χ
(5)
xxyyxx (ω6)+

5!
4!1!

χ
(5)
xxyyyy (ω6)

]
E1,xE2,xE3,xE4,xE5,x.

(D.14)

Analogously, the fifth-order NL polarization in the x′−axis, P(5)
x′ (ω6;ω1,ω2,ω3,ω4,ω5),

can be obtained by projecting the fifth-order NL polarization given by Eq. D.13 onto the
x′−axis:

P(5)
x′ (ω6) =

1√
2

ε0D(5)
χ
(5)
xxxxxx (ω6)E1,xE2,xE3,xE4,xE5,x, (D.15)

and by comparing the Eqs. D.14 and D.15, we obtain the relationship:

χ
(5)
xxxxxx (ω6) =

10
3

χ
(5)
xxyyxx (ω6)+

5
3

χ
(5)
xxyyyy (ω6) . (D.16)

In particular, for χ
(5)
xxxxxx (ω;ω,ω,ω,−ω,−ω), Eq. D.16 can be expressed by:

χ
(5)
µ jklmn (ω) =

10
3

χ
(5)
xxyyxx (ω)δµ jδklδ jmδmn +

5
3

χ
(5)
xxyyyy (ω)δµ jδklδlmδmn, (D.17)
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and by substituting the previous equation in the general expression of the fifth-order NL polar-
ization [Eq. D.1 with N = 2]

P(5)
µ (ω;ω,ω,ω,−ω,−ω) =

5
8

ε0 ∑
jklmn

χ
(5)
µ jklmn (ω;ω,ω,ω,−ω,−ω)

×E j (ω)Ek (ω)El (ω)Em (−ω)En (−ω) , (D.18)

with 5/8 being the degeneracy factors of the fifth-order process in the convention of [58], we
have the fifth-order NL polarization is given by:

P(5)
µ (ω) =

5
8

ε0

{
10
3

χ
(5)
xxyyxx (ω)

∣∣Eµ (ω)
∣∣2 [−→E (ω) ·−→E (ω)

]
E∗µ (ω)

+
5
3

χ
(5)
xxyyyy (ω) ∑

σ=x,y
|Eσ (ω)|4 Eµ (ω)

}
. (D.19)
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APPENDIX E: SPLIT-STEP COMPACT FINITE
DIFFERENCE METHOD

This appendix is dedicated to discuss the algorithm used to develop the numerical simulations
shown in this thesis. An efficient split-step compact finite difference method was used, fol-
lowing the procedure of [235], however adjustments were made to model the NL behavior of
the MDNCs and CS2, in different regimes. We begin expressing the NL equations used in this
work in its most general form:

i
∂A
∂ z

+
1

2k0
∇⊥A+

i
2

α0A+F (|A|)A = 0, (E.1)

where A is the optical field amplitude, ∇⊥ is the transverse Laplacian operator, z is the propa-
gation direction, k0 = n0ω0/c, ω0 is the laser frequency, c is the speed of light in vacuum, n0
and α0 are the linear refractive index and linear absorption coefficient, respectively. F (|A|) is
the function representing the medium nonlinearity, for example:

• For MDNCs: F(|A|) = k0
2n2

0

[
3χ

(3)
e f f |A|

2 +10χ
(5)
e f f |A|

4 +35χ
(7)
e f f |A|

6
]
, where χ

(2N+1)
e f f rep-

resent the complex (2N +1) th-order susceptibility.

• For CS2 in the picosecond regime: F(|A|) = k0aI2

1+b2I2 + iα4I2

2 , where a and b are constants
given by Eq. 5.32, α4 is the 3PA coefficient and the incident intensity is I = 1

2cε0n0 |A|.

• For CS2 in the femtosecond regime: F(|A|)= k0
n0
(n2 +n4I) I+ i

2

[
B
(

exp[ I−C
D ]−exp[−C

D ]
exp[ I−C

D ]+1

)]
,

where n2 and n4 are the third- and fifth-order refractive indices, B, C and D are constants
given Eq. 5.43.

By applying the second-order Strang splitting method [342], we can separate Eq. E.1 into three
subproblems, given by:

i
∂A
∂ z

+
i
4

α0A+
1
2

F (|A|)A = 0, (E.2)

i
∂A
∂ z

+
1

2k0
∇⊥A = 0, (E.3)

i
∂A
∂ z

+
i
4

α0A+
1
2

F (|A|)A = 0, (E.4)

so that the process of solving Eq. E.1 from z to z+4z can be replaced by solving Eqs. E.2-E.4
within [z, z+4z], in sequence.
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For one dimensional (1+1)D simulations, as used in Section 6.1.3, Eq. E.3 is given by:

i
∂A
∂ z

+
1

2k0

∂ 2A
∂x2 = 0. (E.5)

However, for (2+1)D simulation, ∇⊥ =
(
∂ 2/∂x2 +∂ 2/∂y2) and by using the first-order Lie

formula, we can split Eq. E.3 in two (1+1)D equations, as:

i
∂A
∂ z

+
1

2k0

∂ 2A
∂x2 = 0, (E.6)

i
∂A
∂ z

+
1

2k0

∂ 2A
∂y2 = 0. (E.7)

In the sequence of Eqs. E.2-E.4, we begin to solve the NL equation E.2 by using a second-
order Runge-Kutta (RK2) method, as follows:

A1
(
x j,yk,zn+1

)
= A

(
x j,yk,zn

)
+
4z
2

(K1 +K2) , (E.8)

K1 =
1
2

[
−α0

2
+ iF

(∣∣A(x j,yk,zn
)∣∣)]A

(
x j,yk,zn

)
, (E.9)

K2 =
1
2

[
−α0

2
+ iF

(∣∣A(x j,yk,zn
)
+4zK1

∣∣)][A(x j,yk,zn
)
+4zK1

]
. (E.10)

Then, the field amplitude A1
(
x j,yk,zn+1

)
, obtained by the solution of Eq. E.2 at a distance

4z/2, is used as an initial condition for solving Eq. E.3 or their analogous Eq. E.5 for (1+1)D
and Eqs. E.6-E.7 for (2+1)D. Thus, a compact finite difference (CFD) method [343] is uti-
lized to solve the one-dimensional linear equations. For (1+1)D, applying the Crank–Nicolson
scheme for Eq. E.5, one obtains:

i

[
A2
(
x j,zn+1

)
−A1

(
x j,zn+1

)]
4z

+
1

2k0

{
1

2(4x)2

[
δ

2
x A2

(
x j,zn+1

)
+δ

2
x A1

(
x j,zn+1

)]}
= 0,

(E.11)

where
δ

2
x Am

(
x j,zn

)
= Am

(
x j+1,zn

)
−2Am

(
x j,zn

)
+Am

(
x j−1,zn

)
. (E.12)

However, by using the CFD approximation, which have the advantages of the fourth-order
accuracy to approximate the second-order derivatives, we can replace the operator δ 2

x by the
compact one as follows [344]:

δ
2
x →

δ 2
x(

1+ 1
12δ 2

x
) . (E.13)

Therefore, Eq. E.11 is rewritten as:
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[
i+

i
12

δ
2
x +

1
4k0

4z

(4x)2 δ
2
x

]
A2
(
x j,zn+1

)
=

[
i+

i
12

δ
2
x −

1
4k0

4z

(4x)2 δ
2
x

]
A1
(
x j,zn+1

)
, (E.14)

and consequently by using Eq. E.12, we have:[
5i
6
− 1

2k0

4z

(4x)2

]
A2
(
x j,zn+1

)
+

[
i

12
+

1
4k0

4z

(4x)2

][
A2
(
x j+1,zn+1

)
+A2

(
x j−1,zn+1

)]
=

[
5i
6
+

1
2k0

4z

(4x)2

]
A1
(
x j,zn+1

)
+

[
i

12
− 1

4k0

4z

(4x)2

][
A1
(
x j+1,zn+1

)
+A1

(
x j−1,zn+1

)]
.

(E.15)

Similarly, for (2+1)D, solutions of Eqs. E.6 and E.7 are given by:[
5i
6
− 1

2k0

4z

(4x)2

]
A2
(
x j,yk,zn+1

)
+

[
i

12
+

1
4k0

4z

(4x)2

][
A2
(
x j+1,yk,zn+1

)
+A2

(
x j−1,yk,zn+1

)]
=

[
5i
6
+

1
2k0

4z

(4x)2

]
A1
(
x j,yk,zn+1

)
+

[
i

12
− 1

4k0

4z

(4x)2

][
A1
(
x j+1,yk,zn+1

)
+A1

(
x j−1,yk,zn+1

)]
,

(E.16)[
5i
6
− 1

2k0

4z

(4y)2

]
A3
(
x j,yk,zn+1

)
+

[
i

12
+

1
4k0

4z

(4y)2

][
A3
(
x j,yk+1,zn+1

)
+A3

(
x j,yk−1,zn+1

)]
=

[
5i
6
+

1
2k0

4z

(4y)2

]
A2
(
x j,yk,zn+1

)
+

[
i

12
− 1

4k0

4z

(4y)2

][
A2
(
x j,yk+1,zn+1

)
+A2

(
x j,yk−1,zn+1

)]
.

(E.17)

Finally, the field amplitude of a beam after crossing a distance 4z (step-size in the prop-
agation direction), in a medium with nonlinearity given by F (|A|), is obtained by using again
the RK2 method, with:

A
(
x j,yk,zn+1

)
= Am

(
x j,yk,zn+1

)
+
4z
2
(
K′1 +K′2

)
, (E.18)

K′1 =
1
2

[
−α0

2
+ iF

(∣∣Am
(
x j,yk,zn+1

)∣∣)]Am
(
x j,yk,zn+1

)
, (E.19)

K′2 =
1
2

[
−α0

2
+ iF

(∣∣Am
(
x j,yk,zn+1

)
+4zK′1

∣∣)][Am
(
x j,yk,zn+1

)
+4zK′1

]
,

(E.20)
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where m = 2 or 3 with Am given by Eq. E.15 or Eq. E.17 for (1+1)D or (2+1)D propagating
beam, respectively. The field amplitude of Eq. E.18 is used as initial condition to repeat the
sequence of Eqs. E.8 to E.20, a number of times equal to L/4z, where L is the sample optical
length.

The present method is shown to be convergent of second-order in the propagation direction
and fourth-order in transverse directions, which is confirmed numerically. The step-size was
determined by using the convergence criterion. First, a value of4z, which obey the inequality
4z < 2(4x)2 /π [345], was used to propagate an input beam a certain distance L. Then, the
step size was halved (4z′ =4z/2) and the same input beam was propagated the same distance
L, which corresponds to twice the number of steps of4z. If the output field, obtained by using
4z′, converged with the previously obtained by 4z, then the original step size (4z) is used
to perform the numerical simulations. However, if the output field did not converge, a new
step size, less than 4z, was proposed and the convergence process was again verified. This
process was repeated for each of the input beam profiles and input powers to ensure that the
solution was not spurious. On the other hand, in order to minimize the unphysical results in
the simulation, produced when part of the beam going out from the computational window and
re-enters on the opposite side interfering with the beam inside the window, we introduce an
absorber function given by a super-Gaussian of order 50 with a width defined within 90-95%
of the computational window.
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