Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/64777

Compartilhe esta página

Título: A Quantum Genetic Algorithm Framework For The MaxCut Problem
Autor(es): ARAÚJO, Paulo André Viana de
Palavras-chave: Computação quântica; Otimização combinatória; Graph Theory
Data do documento: 30-Jan-2025
Editor: Universidade Federal de Pernambuco
Citação: ARAÚJO, Paulo André Viana de. A Quantum Genetic Algorithm Framework For The MaxCut Problem. 2025. Dissertação (Mestrado em Ciências da Computação) – Universidade Federal de Pernambuco, Recife, 2025.
Abstract: The MaxCut problem is a fundamental problem in Combinatorial Optimization, with sig- nificant implications across diverse domains such as logistics, network design, and statistical physics. The algorithm represents innovative approaches that balance theoretical rigor with practical scalability. The proposed method introduces a Quantum Genetic Algorithm (QGA) using a Grover-based evolutionary framework and divide-and-conquer principles. By partition- ing graphs into manageable subgraphs, optimizing each independently, and applying graph contraction to merge the solutions, the method exploits the inherent binary symmetry of Max- Cut to ensure a more efficient and robust approximation performance. Theoretical analysis establishes a foundation for a better performance of the algorithm, while empirical evalua- tions provide quantitative evidence of its effectiveness. On complete graphs, the proposed method consistently achieves the true optimal MaxCut values, outperforming the Semidefi- nite Programming (SDP) approach, which provides up to 99.7% of the optimal solution for larger graphs. On Erdős-Rényi random graphs, the QGA demonstrates competitive perfor- mance, achieving median solutions within 92-96% of the SDP results. These results showcase the potential of the QGA framework to deliver competitive solutions, even under heuristic constraints, while demonstrating its promise for scalability as quantum hardware evolves.
URI: https://repositorio.ufpe.br/handle/123456789/64777
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Paulo André Viana de Araujo.pdf684,49 kBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons