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ABSTRATO

O problema do MaxCut é um problema fundamental da Otimização Combinatória, com
implicações significativas em diversas áreas, como logística, projeto de redes e física estatística.
O algoritmo proposto representa uma abordagem inovadora que equilibra rigor teórico com
escalabilidade prática. O método introduz um Algoritmo Genético Quântico (QGA) baseado
em um arcabouço evolucionário com Grover e princípios de divisão e conquista. Ao particionar
grafos em subgrafos manejáveis, otimizá-los de forma independente e aplicar contração de
grafos para combinar as soluções, o método explora a simetria binária inerente ao MaxCut
para garantir um desempenho mais eficiente e robusto em termos de aproximação. A análise
teórica estabelece a base para um desempenho superior do algoritmo, enquanto as avaliações
empíricas fornecem evidências quantitativas de sua eficácia. Em grafos completos, o método
proposto alcança consistentemente os valores ótimos verdadeiros do MaxCut, superando a
abordagem por Programação Semidefinida (SDP), que fornece até 99,7% da solução ótima em
grafos maiores. Em grafos aleatórios de Erdős–Rényi, o QGA apresenta desempenho competi-
tivo, atingindo soluções medianas dentro de 92–96% dos resultados da SDP. Esses resultados
destacam o potencial do arcabouço QGA para fornecer soluções competitivas, mesmo sob
restrições heurísticas, ao mesmo tempo em que demonstram sua promessa de escalabilidade
conforme o hardware quântico evolui.

Palavras-chaves: MaxCut. Computação Quântica. Algorítmo Genético Quânticdo. COtimi-
zação Combinatória. Grover. Grafos.



ABSTRACT

The MaxCut problem is a fundamental problem in Combinatorial Optimization, with sig-
nificant implications across diverse domains such as logistics, network design, and statistical
physics. The algorithm represents innovative approaches that balance theoretical rigor with
practical scalability. The proposed method introduces a Quantum Genetic Algorithm (QGA)
using a Grover-based evolutionary framework and divide-and-conquer principles. By partition-
ing graphs into manageable subgraphs, optimizing each independently, and applying graph
contraction to merge the solutions, the method exploits the inherent binary symmetry of Max-
Cut to ensure a more efficient and robust approximation performance. Theoretical analysis
establishes a foundation for a better performance of the algorithm, while empirical evalua-
tions provide quantitative evidence of its effectiveness. On complete graphs, the proposed
method consistently achieves the true optimal MaxCut values, outperforming the Semidefi-
nite Programming (SDP) approach, which provides up to 99.7% of the optimal solution for
larger graphs. On Erdős-Rényi random graphs, the QGA demonstrates competitive perfor-
mance, achieving median solutions within 92-96% of the SDP results. These results showcase
the potential of the QGA framework to deliver competitive solutions, even under heuristic
constraints, while demonstrating its promise for scalability as quantum hardware evolves.

Keywords: MaxCut. Quantum Computing. Quantum Genetic Algorithm. Combinatorial Op-
timization. Grover. Graphs.
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1 INTRODUCTION

When David Hilbert proposed the Entscheidungsproblem (decision problem) in 1928, he
sought an algorithm to determine whether a given statement in first-order logic could be
proven. This foundational question aimed to formalize mathematics under a complete and
decidable system.

However, in 1936, Alan Turing published a paper introducing the concept of the famous
Turing Machine. He proved that no such general algorithm exists, thereby showing that the
Entscheidungsproblem has no solution. Since then, all algorithms, from Euclidean to modern
ones, share the same underlying mathematical abstraction: they are computable by a Turing
Machine.(TURING, 1936)

Alan Turing was well-versed in the emerging fields of his time, particularly quantum physics.
Nevertheless, as we now know, Turing did not attempt to formalize a "quantum version"of his
machine, despite being aware of the quantum revolution occurring in physics.

Since the publication of Turing’s paper, Computability Theory has evolved through the
independent work of researchers such as Turing, Church, Kleene, and Post. This led to the
Church-Turing Thesis: any function computable by a discrete, finite system is computable by
a Turing Machine. (CHURCH, 1936) To this day, the Church-Turing Thesis remains universally
accepted. (SIPSER, 2012) However, its polynomial extension—that every efficiently computable
function is equivalently efficiently computable by a Turing Machine—is being tested by the de-
velopment of quantum computers. Notably, Shor’s quantum algorithm for integer factorization
was a groundbreaking step.

Definability is an important property in classical computation, as computer processes can
often be formalized as Boolean functions. However, definability is distinct from computability,
as there exist many non-computable numbers. (SIPSER, 2012) Quantum computers promise to
impact our notion of definability rather than computability. Quantum computers do not expand
computability in the classical sense,anything a quantum computer can compute is still Turing-
computable. However, they do expand what is efficiently definable or tractably distinguishable.
For instance, problems in the class BQP (Bounded-Error Quantum Polynomial Time) might
be intractable classically, but efficiently solvable on a quantum computer. Thus, quantum
computation influences what structures, patterns, or relationships can be practically expressed
or accessed, even if the underlying functions remain classically computable. (NIELSEN; CHUANG,
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2012)
As quantum computers become more viable, we may witness significant advancements

in how we process classical data—not by solving previously uncomputable problems, but by
accessing structures and regularities that are hard to define or detect classically. Moreover,
with quantum data encoded as quantum states, quantum computation may allow us to define
and manipulate complex information that lies beyond classical descriptive tools. In this way,
the power of quantum computation is not in redefining what is computable, but in expanding
the boundaries of what is efficiently definable, expressible, and observable in both classical and
quantum domains.

This brings us to the domain of combinatorial optimization, a branch of mathematics and
computer science focused on finding the best solution from a finite set of possibilities, often
subject to constraints. One central problem in this field is the MaxCut problem, which seeks
to partition the vertices of a graph into two subsets such that the number of edges between
the subsets is maximized. Formally, for a graph 𝐺 = (𝑉,𝐸), the goal is to maximize:

Cut(𝑆) =
∑︁

(𝑢,𝑣)∈𝐸

𝛿(𝑢 ∈ 𝑆, 𝑣 /∈ 𝑆),

where 𝑆 is a subset of 𝑉 and 𝛿 is an indicator function. MaxCut is computationally challenging,
classified as NP-hard, which motivates the exploration of novel computational techniques.

Quantum computing offers new avenues for addressing combinatorial optimization pro-
blems like MaxCut. By leveraging the principles of superposition and entanglement, quantum
algorithms can evaluate multiple solutions simultaneously. For MaxCut, quantum approaches
often encode the problem as a Quadratic Unconstrained Binary Optimization (QUBO) pro-
blem. This encoding allows quantum systems, such as those employing Grover’s search or
adiabatic quantum optimization, to explore the solution space efficiently. These techniques
exploit the symmetry of the MaxCut problem, represented mathematically by the Z2 group,
to ensure efficient exploration and solution identification.

Genetic algorithms (GAs) are bio-inspired optimization methods that mimic the process
of natural evolution. They maintain a population of candidate solutions, iteratively improving
them through selection, crossover, and mutation. Fitness functions guide the evolution by
quantifying how close a candidate is to the optimal solution. While effective for many problems,
classical GAs often struggle with scalability and convergence, especially in high-dimensional
solution spaces.
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Quantum Genetic Algorithms (QGAs) combine the principles of quantum computing with
the evolutionary mechanisms of GAs. Instead of explicitly maintaining a population, QGAs use
quantum superposition to encode all possible solutions within a single quantum state. Quantum
gates replace classical genetic operators, and Grover’s algorithm is often employed to enhance
the selection process by amplifying high-fitness solutions. This quantum parallelism allows
QGAs to explore solution spaces more efficiently than their classical counterparts. (UDRESCU;

PRODAN; VLăDUțIU, 2006)
The Reduced Quantum Genetic Algorithm (RQGA) framework refines the QGA framework

by eliminating unnecessary genetic operators such as cross-over and mutation. Instead, RQGA
focuses on Grover’s search to identify high-fitness solutions directly. The algorithm begins by
encoding the entire solution space into a quantum superposition. A quantum oracle marks
the states corresponding to high fitness, and Grover iterations amplify these states. This
process significantly reduces computational overhead while maintaining robust optimization
performance. (ARDELEAN; UDRESCU, 2022)

The RQGA variation presented here is a particularly tailored version for the MaxCut pro-
blem. Although there are QGAs that aim to solve the MaxCut problem, they do not offer
competitive results; on the other hand, the original RQGA framework was not designed for
problems with the nature of the MaxCut problem. Also, with the addition of a divide-and-
conquer approach, the ability to exploit the problem’s binary symmetry is expanded for higher
graphs. By partitioning the graph into smaller subgraphs, the algorithm optimizes each inde-
pendently and merges the solutions through graph contraction techniques. This ensures that
the global solution respects the structural properties of the original graph. Empirical studies
suggest that the variation here presented consistently achieves the true value for a cut for
small graphs and graphs that preserve symmetry when partitioned, highlighting its potential
to redefine the computational boundaries of combinatorial optimization.

1.1 RELATED WORKS

The study of MaxCut algorithms begins with classical approaches such as the Goemans-
Williamson (GW) algorithm, which uses SemiDefinite Programming (SDP) techniques to achi-
eve a guaranteed approximation ratio of 0.878. Although computationally intensive, the GW
algorithm laid the foundation for advancements in approximation methods. Spectral algorithms
later emerged as a faster alternative to SDP with slightly lower approximation guarantees, of-
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fering practical trade-offs between speed and accuracy.
Building on these classical methods, quantum optimization techniques have introduced

significant innovations. The Quantum Approximate Optimization Algorithm (QAOA) applies
quantum variational principles to map the MaxCut problem onto a quantum Hamiltonian.
QAOA represents an important step toward harnessing Noisy Intermediate-Scale Quantum
(NISQ) devices for combinatorial optimization. Despite its promise, QAOA is limited by scala-
bility issues, as the number of required qubits grows linearly with the graph size. The QAOA-in-
QAOA (QAOA2) method addressed this limitation by employing a divide-and-conquer strategy,
partitioning large graphs into subgraphs solvable on smaller quantum devices. By leveraging
Z2 symmetry, QAOA2 efficiently merges local solutions into a global one.

Quantum Genetic Algorithms (QGAs) build on the principles of quantum optimization by
combining evolutionary strategies with quantum computing. Unlike QAOA, QGAs integrate
selection mechanisms inspired by natural selection with quantum superposition and Grover’s
search. This hybrid approach enables efficient exploration of high-dimensional solution spaces.

The Reduced Quantum Genetic Algorithm (RQGA) refines the QGA framework by remo-
ving traditional genetic operators such as crossover and mutation. Instead, RQGA relies on
Grover’s search to amplify high-fitness solutions within a quantum superposition. This simpli-
fication enhances computational efficiency while preserving the algorithm’s robustness.

1.2 OBJECTIVES

The objectives of this research is to develop and explore the advantages and limitations of
a Quantum Genetic Algorithm adapted for the specific Combinatorial Optimization problem
of the MaxCut. More specifically:

• To establish and explore theoretical foundations for the use of quantum evolutionary
techniques in combinatorial optimization problems, showing approximation guarantees
and the potential of its applicability for lange-scale graphs.

• To develop a Grover-based framework of the Quantum Genetic Algorithm for the MaxCut
problem and analyze its advantages and limitations.

• To extend its analysis and applicability using graph contraction has a divide-and-conquer
heuristic.
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1.2.1 Other Works

During period of his studies, the student worked full-time for Accenture Brasil, producing
a patented work called "Dual-Unit Quantum Genetic Algorithm," under the registration 23-

387/04810-PR-US, which is a Hybrid Quantum Genetic Algorithm. He also participated in
the Liga Acadêmica de Computação e Informação Quântica (LACIQ) as the director of the
Quantum Cryptography sector. Meanwhile, the student was invited to participate at the World

Youth Festival 2024 (WYF 2024) in Sochi, Russia. With all costs paid. Subsequently, he was
invited to vist the Russian Quantum Center (RQC) in Moscow, Russia.

1.2.2 Work Overview

The body of this document is organized into chapters. Chapter 2 gives an overview of
Quantum Computing in general, introducing Quantum Gates, Grover’s Algorithm and their
related concepts. Also it develops the general framework for the Genetic Algorithm and its
limitations, following as a presentation of the MaxCut problem and its historical development,
as well as some necessary theoretical results and classical algorithms. The general framework
of a Quantum Genetic Algorithm is also introduced. Chapter 3 provides the Grover-based
framework and the MaxCut QGA developed using it, also it explains the divide-and-conquer
heuristic utilizing graph contraction. Finally it gives the overview of the body of the work.
Chapter 4 explains the results, challenges and conclusion of this work.
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2 LITERATURE REVIEW

2.1 QUANTUM COMPUTING

Basic Concepts of Quantum Computing

Differently from Classical Computers, Quantum computers process information using quan-
tum bits, or qubits, which can represent by quantum physical states |0⟩, |1⟩ using the Dirac
notation. More generally, any single-qubit quantum computational state can be represented as
a unit vector in a two-dimensional complex Hilbert space: (NIELSEN; CHUANG, 2012)

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩

where |0⟩ =

⎛⎜⎜⎝1

0

⎞⎟⎟⎠ and |1⟩ =

⎛⎜⎜⎝0

1

⎞⎟⎟⎠ are the computational basis states, and 𝛼, 𝛽 ∈ C are

complex amplitudes satisfying the normalization condition |𝛼|2 + |𝛽|2 = 1.

2. Multi-Qubit Systems and Entanglement

For a system of 𝑛 qubits, the state space is the tensor product of individual qubit spaces,
resulting in a 2𝑛-dimensional complex vector space. A general state of an 𝑛-qubit system is:

|𝜓⟩ =
2𝑛−1∑︁
𝑖=0

𝑐𝑖|𝑖⟩

where |𝑖⟩ denotes the computational basis states ranging from |00 . . . 0⟩ to |11 . . . 1⟩, and
𝑐𝑖 ∈ C are complex coefficients satisfying ∑︀2𝑛−1

𝑖=0 |𝑐𝑖|2 = 1.
A notable feature of multi-qubit systems is entanglement, a phenomenon where qubits

become correlated such that one qubit state cannot be independent of the system. For example,
the Bell state:

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩)

is an entangled state of two qubits.
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Quantum gates are applied to qubits via unitary operators. A quantum circuit comprises a
sequence of such gates, analogous to logical gates in classical computation. Some commonly
used quantum gates include:

• Hadamard Gate (H): Creates superposition. 𝐻|0⟩ = 1√
2(|0⟩ + |1⟩).

• Pauli Gates (X, Y, Z): Perform bit flips and phase shifts.

• Controlled-NOT (CNOT): Flips the target qubit conditioned on the control qubit if
they are not in a ground state.

Quantum Projective Measurement

The process of measurement collapses the general quantum state of a qubit into one
of its basis states, |0⟩ or |1⟩, with probabilities determined by the state’s amplitudes. The
measurement operation is the only one which is not continuos, after measurement, the qubit
instantaneously collapses to the observed state, irreversibly losing superposition.

Classical Gates

In classical circuits, gates like 𝐴𝑁𝐷, 𝑂𝑅, and 𝑁𝑂𝑇 are used. A gate set is universal if
one can implement any Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} using the gate set. An example
of universal sets, like {𝑂𝑅,𝑁𝑂𝑇}, {𝑁𝐴𝑁𝐷}, {𝐴𝑁𝐷,𝑁𝑂𝑇}, etc...

Definitions of Classical Gates

• 𝑁𝑂𝑇 Gate: Takes one input 𝑥1 ∈ {0, 1} and returns the negation of 𝑥1.

• 𝐴𝑁𝐷 Gate: Takes two inputs 𝑥1, 𝑥2 ∈ {0, 1} and returns 1 if and only if both 𝑥1 and
𝑥2 are equal to 1.

• 𝑂𝑅 Gate: Takes two inputs 𝑥1, 𝑥2 ∈ {0, 1} and returns 1 if 𝑥1 = 1 and/or 𝑥2 = 1.
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Reversible Computing

By examining the outputs of 𝐴𝑁𝐷 and 𝑂𝑅 gates, it is evident that the input cannot be
uniquely deduced from the output. This loss of information is called irreversibility. Irreversible
computation dissipates heat into the environment.

In contrast, the 𝑁𝑂𝑇 gate is reversible since the input can always be uniquely recons-
tructed from the output. A computation consisting entirely of reversible operations is called
reversible computation.

Universal Reversible Gates

A set of gates is universal if it can be used to implement any other gate. Universal
reversible gate sets include:

• {𝐴𝑁𝐷,𝑁𝑂𝑇}: Can implement any classical operation reversibly.

• Toffoli Gate (𝐶𝐶𝑁𝑂𝑇 ): A three-input gate that flips the third bit if and only if the first
two bits are 1. This gate alone is universal for classical reversible computation.

Quantum vs. Classical Logic Gates

Classical computation is built on irreversible and reversible gates, such as AND, OR, NOT,
and NAND. While classical gates manipulate binary values (0 or 1), quantum logic gates
manipulate qubits, which can exist in a superposition state described by |𝜓⟩ = 𝑐0 |0⟩ + 𝑐1 |1⟩,
where |𝑐0|2 + |𝑐1|2 = 1. Measurement collapses the qubit to |0⟩ or |1⟩, a feature absent in
classical systems.

Quantum gates are reversible and represented by unitary matrices. For instance, the quan-

tum NOT gate, defined by the matrix 𝑈NOT =

⎡⎢⎢⎣0 1

1 0

⎤⎥⎥⎦, flips the state of a qubit. Importantly,

quantum gates can create entanglement, a phenomenon where the state of one qubit depends
on another, enabling the execution of quantum algorithms.
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Quantum Gates

NOT Gate (X Gate)

The Pauli-X gate flips the state of a qubit. Its matrix representation is:

𝑋 =

⎡⎢⎢⎣0 1

1 0

⎤⎥⎥⎦
• Transforms the basis states:

𝑋 |0⟩ = |1⟩ , 𝑋 |1⟩ = |0⟩ .

• For a general qubit state |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, the X gate swaps the amplitudes:

𝑋 |𝜓⟩ = 𝛼 |1⟩ + 𝛽 |0⟩ .

The X gate performs a bit-flip operation, analogous to the classical NOT gate, interchan-
ging the probabilities of the qubit being in the |0⟩ and |1⟩ states.

Hadamard Gate (H Gate)

The Hadamard gate creates superposition states. Its matrix representation is:

𝐻 = 1√
2

⎡⎢⎢⎣1 1

1 −1

⎤⎥⎥⎦
• Transforms the basis states:

𝐻 |0⟩ = |0⟩ + |1⟩√
2

, 𝐻 |1⟩ = |0⟩ − |1⟩√
2

.

• For a general qubit state |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩:

𝐻 |𝜓⟩ = 1√
2

[(𝛼 + 𝛽) |0⟩ + (𝛼− 𝛽) |1⟩].

The H gate maps the computational basis states |0⟩ and |1⟩ to equal superpositions,
effectively placing the qubit into a state where measurement outcomes are probabilistically
equal.



21

Z Gate

The Pauli-Z gate flips the phase of the |1⟩ state. Its matrix representation is:

𝑍 =

⎡⎢⎢⎣1 0

0 −1

⎤⎥⎥⎦
• Transforms the basis states:

𝑍 |0⟩ = |0⟩ , 𝑍 |1⟩ = − |1⟩ .

• For a general qubit state |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩:

𝑍 |𝜓⟩ = 𝛼 |0⟩ − 𝛽 |1⟩ .

The Z gate leaves the |0⟩ state unchanged while inverting the phase of the |1⟩ state. It is
crucial in quantum algorithms that rely on phase kickbacks.

Controlled-NOT Gate (CNOT or CX Gate)

The CNOT gate flips the state of the target qubit if the control qubit is in the |1⟩ state.
Its matrix representation is:

CNOT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
• On the computational basis states:

CNOT |00⟩ = |00⟩ , CNOT |01⟩ = |01⟩ ,

CNOT |10⟩ = |11⟩ , CNOT |11⟩ = |10⟩ .

• For a general two-qubit state |𝜓⟩ = 𝛼 |00⟩ + 𝛽 |01⟩ + 𝛾 |10⟩ + 𝛿 |11⟩:

CNOT |𝜓⟩ = 𝛼 |00⟩ + 𝛽 |01⟩ + 𝛾 |11⟩ + 𝛿 |10⟩ .

The CNOT gate flips the computation state of qubits, associating information from one
qubit to the other, and making it possible to encode classical boolean functions into quantum
circuits.
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Toffoli Gate (CCX Gate)

The Toffoli gate, or CCX gate, is a three-qubit gate that flips the state of the target qubit
if both control qubits are in the |1⟩ state.

The CCX gate acts as follows:

𝐶𝐶𝑋 |𝑎𝑏𝑐⟩ =

⎧⎪⎪⎨⎪⎪⎩
|𝑎𝑏 𝑐⟩ if 𝑎 = 1 and 𝑏 = 1,

|𝑎𝑏𝑐⟩ otherwise.

• It extends the logic of the CNOT gate to three qubits, where two qubits serve as controls.

• When both control qubits are |1⟩, the target qubit is flipped.

The Toffoli gate is universal for reversible classical computation. It is used in building
quantum circuits that simulate classical logic gates, such as AND and OR. While for quantum
computation, the Toffoli, together with the single-qubit Hadamard gate, form a Universal set
of gates.

Universal Quantum Gates

A set of quantum gates is universal if it can construct any unitary operation on a quantum
system. Two major milestones define universality in quantum gates:

• Three-Qubit Gates: Deutsch introduced a universal three-qubit gate capable of si-
mulating arbitrary unitary transformations. An example is the Toffoli gate (Controlled-
Controlled-NOT), which applies a NOT operation to the target qubit if both control
qubits are in state |1⟩.

• Two-Qubit Gates: Later developments showed that two-qubit gates, such as the
Controlled-NOT (CNOT) gate, combined with single-qubit operations, suffice for uni-
versality. The CNOT gate is represented by:

𝑈CNOT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It flips the target qubit conditioned on the control qubit being |1⟩.

Quantum logic gates form the bread-and-butter of quantum computation, enabling tasks
that are apparently infeasible on classical systems.

Implementing Boolean Functions with Quantum Circuits

Using reversible gates, any Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} can be implemented on
a quantum computer. The quantum operator 𝑈𝑓 for such a function is defined as:

𝑈𝑓 : |𝑥⟩ |𝑦⟩ ↦→ |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩ ,

where ⊕ denotes bitwise addition modulo 2 (XOR). This mapping is reversible, regardless if
𝑓 is itself invertible or not.

Phase Kickback

A vector 𝑣 is an eigenvector of a matrix 𝐴 with eigenvalue 𝜆 if 𝐴𝑣 = 𝜆𝑣. Consider the
quantum state |−⟩ = 1√

2 |0⟩ − 1√
2 |1⟩. Applying the 𝑁𝑂𝑇 operator to |−⟩:

|−⟩ 𝑁𝑂𝑇−−−→ 1√
2

|1⟩ − 1√
2

|0⟩ = −
(︃

1√
2

|0⟩ − 1√
2

|1⟩
)︃

= − |−⟩ .

Thus, |−⟩ is an eigenstate of the 𝑁𝑂𝑇 operator with eigenvalue −1.
When the first qubit is |0⟩, the 𝐶𝑁𝑂𝑇 operator has no effect:

|0⟩ |−⟩ 𝐶𝑁𝑂𝑇−−−−→ |0⟩ |−⟩ .

When the first qubit is |1⟩:
|1⟩ |−⟩ 𝐶𝑁𝑂𝑇−−−−→ − |1⟩ |−⟩ .

For a two qubit system, with the first qubit 𝛼 |0⟩ + 𝛽 |1⟩ and the second qubit in |−⟩:

𝛼 |0⟩ |−⟩ + 𝛽 |1⟩ |−⟩ 𝐶𝑁𝑂𝑇−−−−→ 𝛼 |0⟩ |−⟩ − 𝛽 |1⟩ |−⟩ = (𝛼 |0⟩ − 𝛽 |1⟩) |−⟩ .

The sign of the |1⟩ amplitude of the first qubit flips after 𝐶𝑁𝑂𝑇 . This phenomenon is called
phase kickback, where the eigenvalue is "kicked back"to the control register.
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Analysis of 𝐶𝑁𝑂𝑇 Behavior

Initial State

The system starts in state |01⟩. The states of the qubits before applying 𝐶𝑁𝑂𝑇 are:

First qubit: |0⟩ 𝐻−→ 1√
2

|0⟩ + 1√
2

|1⟩ ,

Second qubit: |1⟩ 𝐻−→ 1√
2

|0⟩ − 1√
2

|1⟩ .

The composite state is:(︃
1√
2

|0⟩ + 1√
2

|1⟩
)︃

⊗
(︃

1√
2

|0⟩ − 1√
2

|1⟩
)︃
.

Effect of 𝐶𝑁𝑂𝑇

The 𝐶𝑁𝑂𝑇 operator flips the state of the second qubit when the first qubit is |1⟩. After
applying 𝐶𝑁𝑂𝑇 :

1√
2

|0⟩
(︃

1√
2

|0⟩ − 1√
2

|1⟩
)︃

+ 1√
2

|1⟩
(︃

1√
2

|1⟩ − 1√
2

|0⟩
)︃
.

The resulting state can be rewritten as:(︃
1√
2

|0⟩ − 1√
2

|1⟩
)︃

⊗
(︃

1√
2

|0⟩ − 1√
2

|1⟩
)︃
.

Grover’s Algorithm

Grover’s algorithm is a quantum algorithm designed to solve the problem of searching for a
marked element in an unstructured database or solving a black-box function inversion problem.
It provides a quadratic speedup over classical counterparts, reducing the search complexity from
𝑂(𝑁) to 𝑂(

√
𝑁), where 𝑁 is the size of the search space. (GROVER, 1996)

Let 𝑓 : {0, 1}𝑛 → {0, 1} be a Boolean function such that:

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑥 = 𝑥*,

0, otherwise.

Here, 𝑥* represents the single "marked"element. The goal is to find 𝑥* with as few evaluati-
ons of 𝑓 as possible. Grover’s algorithm uses quantum parallelism and amplitude amplification
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to locate 𝑥*. It involves the following steps: State Initialization, Oracle Query, Ampli-

tude Amplification and Iterative Search. Below are the detailed each one step of Grover’s
Algorithm.

State Initialization

The quantum system is initialized to an equal superposition of all the basis states.

1. Prepare the 𝑛-qubit system in the initial state:

|𝜓0⟩ = |0⟩⊗𝑛 .

2. Apply the Hadamard transform H⊗𝑛 to generate the uniform superposition:

|𝜓1⟩ = 1√
𝑁

𝑁−1∑︁
𝑥=0

|𝑥⟩ , where 𝑁 = 2𝑛.

Oracle Query

The oracle O is a quantum operator that flips the sign of the amplitude of the marked
state |𝑥*⟩. Mathematically, it is defined as:

O |𝑥⟩ =

⎧⎪⎪⎨⎪⎪⎩
− |𝑥⟩ , if 𝑥 = 𝑥*,

|𝑥⟩ , otherwise.

After applying the oracle, the quantum state becomes:

|𝜓2⟩ = 1√
𝑁

⎛⎝∑︁
𝑥 ̸=𝑥*

|𝑥⟩ − |𝑥*⟩

⎞⎠ .
Amplitude Amplification (Grover Diffusion Operator)

Grover’s diffuser operator, often called the inversion about the mean, is a key component of
Grover’s search algorithm. It amplifies the amplitudes of marked states (those satisfying the
Oracle’s condition) while reducing the amplitudes of unmarked states, effectively focusing the
search on desired solutions. This section details the definition, implementation, and significance
of Grover’s diffuser operator.

The diffuser operator, denoted as 𝐷, performs the transformation:

𝐷 = 2|𝑠⟩⟨𝑠| − 𝐼,

where:

• |𝑠⟩ = 1√
𝑁

∑︀𝑁−1
𝑥=0 |𝑥⟩: The equal superposition state.
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• 𝐼: The identity operator.

• 𝑁 : The total number of states in the search space.

This operation reflects the quantum state about the average amplitude of all states, enhan-
cing the probability of measuring marked states.

The diffuser operator is implemented using the following steps:

1. Initialization to Superposition: Apply a Hadamard gate to each qubit to create the
equal superposition state |𝑠⟩ if not already prepared.

2. Phase Inversion:

The diffuser reflects the amplitudes of all states about their average, indirectly amplifying
the marked states (those identified by the Oracle) through iterative applications. This
is represented by the operator −𝐼.

3. Reflection About Mean: Reflect all states about the mean amplitude. This is achieved
using:

𝐷 = 𝐻⊗𝑛(2|0⟩⟨0| − 𝐼)𝐻⊗𝑛,

where 𝐻⊗𝑛 is the Hadamard gate applied to 𝑛 qubits.

Generally, the diffuser can be broken down into the following steps:

1. Compute the mean amplitude of all states.

2. Invert the amplitude of each state about this mean.

The next step increases the amplitude of the marked state using the Grover diffusion operator
D, which reflects the amplitudes about their average value. The operator is defined as:

D = 2 |𝜓⟩ ⟨𝜓| − I.

After applying the diffusion operator, the new state is given by:

|𝜓3⟩ = D(O |𝜓1⟩).

Iterative Search
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The combination of the oracle O and the Grover diffusion operator D is applied repeatedly.
This combined operation is often called the Grover operator G, defined as:

G = DO.

The state evolves iteratively as:

|𝜓𝑘+1⟩ = G |𝜓𝑘⟩ , 𝑘 = 0, 1, . . . , 𝑟 − 1.

The number of iterations 𝑟 required to maximize the probability of measuring the marked
state is approximately:

𝑟 =
⌊︂
𝜋

4
√
𝑁
⌋︂
.

Measurement

After 𝑟 iterations, the quantum state is dominated by the marked state |𝑥*⟩. A measurement
in the computational basis yields 𝑥* with high probability.

2.2 GENETIC ALGORITHM

Genetic Algorithm (GA) (EIBEN; SMITH, 2015) are a class of evolutionary algorithms ins-
pired by the principles of natural selection and genetics. They are widely used to solve op-
timization problems across various domains, including engineering, economics, and artificial
intelligence. GAs operate on a population of potential solutions, evolving them over generati-
ons to approximate optimal solutions.

Chromosome Representation

In GAs, each potential solution is encoded as a chromosome, which can be represented in
various forms such as binary strings, real-valued vectors, or permutations depending on the pro-
blem domain. The choice of representation significantly impacts the algorithm’s performance
and its ability to effectively explore the solution space.

Population Initialization

The algorithm begins with an initial population of chromosomes, typically generated ran-
domly to ensure diversity. This diversity is crucial„ as it provides a broad search space and
reduces the likelihood of the algorithm converging prematurely to suboptimal solutions.
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Fitness Evaluation

Each chromosome is evaluated using a fitness function, which quantifies how well it solves
the problem at hand. The fitness function is problem-specific and guides the selection process
by assigning higher fitness values to better solutions.

Genetic Operators

Selection

Selection mechanisms determine which chromosomes are chosen to reproduce and form
the next generation. Common selection methods include:

• Roulette Selection: Chromosomes are selected probabilistically based on their fitness
values, with higher fitness individuals having a greater chance of selection.

• Tournament Selection: A subset of chromosomes is chosen randomly, and the one
with the highest fitness in this subset is selected.

Crossover

Crossover combines genetic information from two parent chromosomes to produce offs-
pring. It promotes the exchange of beneficial traits and enhances exploration of the solution
space. Common crossover techniques include:

• One-Point Crossover: A single crossover point is selected, and the segments after this
point are swapped between two parents.

• Two-Point Crossover: Two crossover points are selected, and the segment between
them is exchanged between parents.

• Uniform Crossover: Each gene is independently chosen from one of the parents with
equal probability.
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Mutation

Mutation introduces random alterations to individual genes in a chromosome, maintaining
genetic diversity within the population and preventing premature convergence. Mutation rates
are typically low to preserve the integrity of high-fitness solutions. For binary representations,
mutation may involve flipping bits, while for real-valued representations, it could involve adding
a small random value.

Advantages and Limitations

GAs are robust and flexible, capable of handling complex, multimodal, and non-differentiable
functions. They do not require gradient information and can escape local optima due to their
stochastic nature. However, GAs may require significant computational resources and careful
parameter tuning to achieve optimal performance. Limitations such as slow convergence, diffi-
culty in parameter tuning, poor scalability with complex problems, reliance on random search
and challenges in properly representing solutions within the algorithm.

2.3 THE MAXIMUM CUT

Introduction

The Maximum Cut (MaxCut) problem is a foundational optimization problem in graph
theory with wide-ranging theoretical and practical implications. Formally, given an undirected
graph 𝐺 = (𝑉,𝐸) with edge weights 𝑤𝑖𝑗 ∈ R+ for (𝑖, 𝑗) ∈ 𝐸, the objective is to partition the
vertex set 𝑉 into two subsets (𝑆, 𝑇 ) such that the sum of the weights of edges between 𝑆

and 𝑇 is maximized. This is mathematically expressed as:

Maximize
∑︁

(𝑖,𝑗)∈𝐸

𝑤𝑖𝑗(1 − 𝑧𝑖𝑧𝑗)/2,

where 𝑧𝑖 ∈ {−1, 1} represents the partition assignment of vertex 𝑖.
The Max Cut problem is NP-hard and was one of the original NP-complete problems

identified by Karp. It finds applications in various domains, including statistical physics, network
clustering, and circuit design. (KARP, 1972)
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Lower Bound

A natural lower bound for the Max Cut problem can be derived by considering a random
partition of the vertices into two subsets. For any graph 𝐺, this approach ensures that each
edge has an equal probability of being cut or not cut. Mathematically, the expected weight of
a random cut is:

E[Weight of Random Cut] = 1
2

∑︁
(𝑖,𝑗)∈𝐸

𝑤𝑖𝑗.

This provides a baseline for evaluating approximation algorithms. Since a valid cut must have
a weight at least equal to this expectation, the Max Cut problem satisfies the inequality:

Max Cut(𝐺) ≥ 1
2

∑︁
(𝑖,𝑗)∈𝐸

𝑤𝑖𝑗.

This lower bound highlights that even the simplest random partition provides a meaningful
starting point, achieving an approximation ratio of 1/2 relative to the total edge weight. (??)

Analytical Solution for Complete Graphs

For a complete graph 𝐾𝑛, every vertex is connected to every other vertex. If all edges have
uniform weight 𝑤, the Max Cut value can be determined analytically as (EDWARDS, 1973):

Max Cut(𝐾𝑛) = ⌊𝑛
2𝑤

4 ⌋,

where the partition divides the vertices as evenly as possible into two subsets. This solution
arises because each edge contributes to the cut if and only if it spans the two subsets.

Semidefinite Programming Approach

The seminal algorithm proposed by Goemans and Williamson utilizes semidefinite program-
ming (SDP) to approximate the Max Cut problem with a performance guarantee of appro-
ximately 0.878. The approach relaxes the combinatorial problem by representing the binary
variables 𝑧𝑖 ∈ {−1, 1} as vectors 𝑣𝑖 on the unit sphere in R𝑛. The relaxed problem is:

Maximize
∑︁

(𝑖,𝑗)∈𝐸

𝑤𝑖𝑗

2 (1 − 𝑣𝑖 · 𝑣𝑗),

subject to ‖𝑣𝑖‖ = 1 for all 𝑖 ∈ 𝑉 .
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The SDP relaxation is solved efficiently using standard optimization techniques. A rando-
mized rounding procedure is then applied: vectors 𝑣𝑖 are projected onto a random hyperplane,
and the resulting binary partition is derived from the sign of the projections. This method
ensures the approximation ratio 𝛼 = 0.878, which is optimal assuming the Unique Games
Conjecture. (??)

Rounding Procedure Details

The randomized rounding begins by selecting a random hyperplane passing through the
origin in R𝑛. Each vector 𝑣𝑖 is assigned a partition based on the sign of its dot product with
the hyperplane’s normal vector. This guarantees that the expected weight of the cut matches
the optimal value of the relaxed problem, up to the approximation factor 𝛼.

2.4 THE QUANTUM GENETIC ALGORITHM

Introduction

The idea of a Quantum Evolutionary Algorithm (QEA) represents an integration of quan-
tum computing with Evolutionary Algorithms. Unlike classical evolutionary algorithms, like the
GA, a QEA incorporates the evolution of a quantum system to enhance population diversity,
global search capabilities, and convergence speed. The particular instance of the Quantum
Genetic Algorithm (QGA) is a effective candidate framework for optimization problems due
to its ability to use the unique properties of quantum mechanics, such as superposition and
parallelism.

General Description

The QGA employs quantum bits to encode individuals in the population. A qubit can
represent a superposition of states, enabling richer population diversity compared to classical
approaches. The population size can remain small because each quantum chromosome can
maintain significant diversity. This feature makes QGA more suitable for parallel processing
and large-scale optimization problems.
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Each individual in the population is encoded as follows:

𝑞
(𝑡)
𝑗 =

⎡⎢⎢⎣𝛼
(𝑡)
𝑗1 𝛼

(𝑡)
𝑗2 · · · 𝛼

(𝑡)
𝑗𝑚

𝛽
(𝑡)
𝑗1 𝛽

(𝑡)
𝑗2 · · · 𝛽

(𝑡)
𝑗𝑚

⎤⎥⎥⎦ ,
where 𝑚 is the chromosome length, 𝛼 and 𝛽 are probability amplitudes satisfying 𝛼2 +𝛽2 = 1.
This quantum representation enables a chromosome to encode 2𝑚 probability amplitudes,
significantly increasing the algorithm’s information capacity.

Steps of QGA

The process of QGA is outlined below:

1. Initialization: Initialize the population 𝑄(𝑡) with 𝛼 = 𝛽 = 1√
2 for each qubit.

2. Measurement: Measure each quantum chromosome to obtain a classical solution 𝑥(𝑡)
𝑗 .

This involves generating a random number 𝑟 for each qubit and setting the bit to 1 if
𝑟 > 𝛼2, otherwise 0.

3. Evaluation: Evaluate the fitness of each solution using a predefined fitness function 𝑓 .
Update the best solution if a better one is found.

4. Operators: Crossover and mutation are employed in order to prepare a new population

5. Quantum Gate Update: Update the population using a quantum rotation gate:

𝑈(Δ𝜃) =

⎡⎢⎢⎣cos(Δ𝜃) − sin(Δ𝜃)

sin(Δ𝜃) cos(Δ𝜃)

⎤⎥⎥⎦ ,
where Δ𝜃 is determined based on the problem a priori to improve the population’s
fitness.

6. Termination: Repeat the process until a stopping criterion (e.g., maximum iterations
or satisfactory fitness) is met.

Challenges

• Crossover Operator: The implementation of a crossover operator on quantum fra-
mework is not clear, not well-defined
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• Fitness Function: Classical genetic operators are replaced by Grover’s search mecha-
nism, simplifying the algorithm.

• Invalid States: Handling invalid individuals (e.g., infeasible solutions) requires fitness
functions that map them to distinct regions of the fitness register.

While the potential of quantum computation in this context is significant, some aspects
of the approach have not yet fully harnessed this power.

Integration with Other Algorithms

The QGA has been successfully combined with other optimization methods, such as particle
swarm optimization and differential evolution, to balance global and local search capabilities
effectively, while a hybrid approach is always welcome, a pure quantum circuit approach is to
be well-defined.
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3 QGA FRAMEWORK FOR THE MAXCUT PROBLEM

3.1 OVERVIEW OF THE FRAMEWORK

The QGA usual framework has inherent flaws that are hard to deal with direcly, however
the work done by (UDRESCU; PRODAN; VLăDUțIU, 2006) showcases a novel approach into the
implementation of a QGA, this framework is dubbed as the RQGA.This approach deals with
the fitness values in parallel with its corresponding individual of the population, meaning
that both the individual and its fitness value are in superposition simutaneously, making the
QGA’s need of measurements to compute fitness values unnecessary. Moreover the frameworks
gives a base to develop any new potential QGA based on a specific problem, one which
was implemented by one of the authors (ARDELEAN; UDRESCU, 2022). Here the algorithm is
distinctvely implemented for the MaxCut algorithm, with the addition of a divide-and-conquer
heuristic in form of graph contraction, inspired by (ZHOU et al., 2023)). Firstly, the QGA for
the MaxCut will be explained and afterwards the graph contraction heuristic.

3.1.1 Standard QGA Framework

The standard QGA operates as forcing the classical genetic algorithm components into a
quantum framework. Its steps typically include:

1. Population Initialization: Representing a population of individuals as quantum states.
The population is encoded as a superposition of all possible solutions:

|𝜓pop⟩ = 1√
2𝑁

2𝑁 −1∑︁
𝑖=0

|𝑢𝑖⟩,

where 𝑁 is the number of qubits used to encode an individual.

2. Quantum Operators: Applying quantum equivalents of classical genetic operators:

• Quantum Mutation: In standard QGA implementations, mutation is conceptualized
as a quantum operation that perturbs the qubit amplitudes similar to classical bit-
flipping.

This is usually done by applying quantum rotation gates, such as Pauli-X, Pauli-Y,
or Pauli-Z, to individual qubits in a chromosome register.
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These gates rotate the qubit state vector on the Bloch sphere, slightly changing
the probability amplitudes of the basis states and thus exploring nearby states in
the search space.

• Quantum Crossover: Quantum crossover is not directly implementable due to quan-
tum constraints such as no-cloning and the unitarity requirement.

So, crossovers are approximated by relabeling qubits across entangled registers or
applying controlled-swap operations between qubits of "parent"quantum chromo-
somes. Basically, features from multiple quantum states combine to create new
solutions.

3. Fitness Evaluation: Measuring the fitness of each individual in the population by
collapsing the superposition. Which is in-itself problematic due to the collapse of the
wavefunction.

4. Selection: Using quantum principles, such as amplitude amplification, to prioritize fitter
individuals.

5. Iteration: Repeating the process for a fixed number of generations or until convergence.

3.1.2 Enhanced Approach

The algorithm presented for the MaxCut begins by recursively partitioning (ZHOU et al.,
2023) the graph using the METIS library until each subgraph reaches a number of vertices
less than or equal to a set limit determined by the number of qubits available. For each
subgraph, the individual register for each vertex and the fitness register, which is limited by
the number of edges in the graph, are created, and then, all of them are set in superposition,
using quantum parallelism to represent the solution space of all possible results simultaneously.
In this approach, all possible candidate solutions are represented simultaneously in a quantum
superposition, with each individual entangled, therefore, directly associated to its corresponding
fitness value. Instead of using classical genetic operations like crossover and mutation to explore
the search space iteratively, a custom oracle can be used to mark the individuals with the
highest fitness. To do so, the fitness function written as an unitary operator for the MaxCut
is applied to compute the fitness of each individual, encoding these values into the fitness
register. Subsequently, an oracle is applied to mark valid individuals whose values were set by
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the fitness operator, and Grover’s diffusion operator is used to amplify the amplitudes of these
marked solutions. The system is then measured, collapsing the quantum state to one of the
high-fitness individuals. This cycle of fitness computation, marking, amplitude amplification,
and measurement is repeated until the threshold, theoretically limited by Grover’s search and
the nature of the MaxCut problem, ceases to improve, signaling convergence. (NETO, 2025)
Finally, the algorithm outputs the chromosome corresponding to the highest observed fitness
value as the solution. The diagram of the process can be view on figure 1.

3.1.2.1 Superposition and Fitness Register

Instead of relying on mutation and crossover, the enhanced approach encodes the entire
population into a single quantum superposition, combining individual and fitness registers:

|𝜓⟩ = 1√
2𝑁

2𝑁 −1∑︁
𝑖=0

|𝑢𝑖⟩ ⊗ |0⟩.

An unitary operator 𝑈𝑓 based on a boolean function 𝑓 is applied to compute the fitness values:

𝑈𝑓 : |𝑢⟩ ⊗ |0⟩ → |𝑢⟩ ⊗ |𝑓(𝑢)⟩.

This ensures the fitness values are calculated without requiring explicit genetic operators,
reducing computational complexity. (UDRESCU; PRODAN; VLăDUțIU, 2006)
This makes mutation and crossover no longer needed because the entire solution space is
encoded into a single quantum superposition. This allows the algorithm to evaluate all possible
individuals simultaneously by entangling each with its corresponding fitness value. Instead of
evolving a population through iterative genetic variation, the algorithm uses Grover’s search
to amplify the amplitude of optimal individuals, making them more likely to be observed upon
measurement. As a result, the traditional mechanisms of mutation and crossover become
redundant. While the algorithm retains the idea of fitness-based selection, it no longer follows
the classical model of evolutionary computation, making it more accurately described as a
quantum optimization strategy inspired by genetic algorithms rather than a true evolutionary
algorithm.
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3.1.2.2 Optimization with Grover’s Algorithm

The enhanced framework reduces the fitness evaluation to a quantum maximum-finding
problem using Grover’s algorithm. (GROVER, 1996) That means that the traditional process
of computing and comparing fitness values for each individual into a single quantum search
procedure. Instead of evaluating fitness sequentially and storing results for a population, the
enhanced framework encodes all individuals and their corresponding fitness values into a quan-
tum superposition using a unitary fitness operator. Grover’s algorithm is then used to search
directly for the individual with the highest fitness, effectively identifying the best solution
without explicitly comparing each one.
By defining a specific oracle and employing amplitude amplification, it identifies the indivi-
dual with the highest fitness value in 𝑂(

√
𝑁) iterations, significantly outperforming classical

exhaustive search methods.
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Figura 1 – Diagram of the proposed framework. The fitness operator, oracle and the graph partitioning/con-
traction are original contributions specific to the MaxCut problem, where the remaning blocks
follow the general framework.

3.1.3 Key Differences

While traditional QGAs rely heavily on adaptations of classical genetic operators to quan-
tum computers, the proposed model keeps the quantum state in superposition throughout the
computation, avoiding intermediate measurements and classical steps. Making the algorithm
to remain entirely quantum from initialization to solution, differently from earlier approaches
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Algorithm GA QGA This Work
Population Explicit Partial superposition Full superposition
Variation Operators Yes Partial (e.g. Ry gates) None
Fitness Evaluation Individually Measured Unitary Gate 𝑈𝑓

Selection Fitness-based Measured + updated Grover Diffusion
Invalid Solutions Penalized Filtered Encoded exclusion
Method Evolution Hybrid loop Grover search

Tabela 1 – Key differences between GA, QGA, and the proposed RQGA model

that alternated between quantum and classical operations. With the integration of the fitness
values directly besides their respective individual using quantum parallelism and using Grover’s
algorithm to amplify the best solutions, the proposed model overcomes several limitations of
conventional QGAs for the MaxCut, like the dependency of computing angles and repetitive
measurements.

• Population Representation: In standard QGAs, the population is represented solely as
a superposition of individual states. Each state encodes a potential solution, but there
is no direct association with fitness values within the quantum state. Conversely, the
enhanced approach integrates the fitness information directly into the quantum state by
combining individual and fitness registers. This integration allows simultaneous proces-
sing of both solution candidates and their fitness evaluations.

• Genetic Operators: The standard algorithms heavily rely on quantum analogues of
classical genetic operators, such as mutation and crossover, to explore the solution
space. These operations require iterative application to generate diverse solutions. The
enhanced approach eliminates the need for these operators, since the solution is already
established by the superposition, it utilizes Grover’s algorithm to efficiently amplify the
best solution’s amplitude without requiring constantly reading the population to adjust
circuit parameters.

• Fitness Evaluation: Fitness is typically evaluated by collapsing the quantum state and
measuring each candidate solution, a process that requires repeated measurements to
identify optimal solutions. The enhanced framework replaces this approach with a uni-
tary operator that computes fitness values directly within the quantum superposition,
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avoiding the need for repeated state collapses.

• Excluding Undesired Solutions: By default, there’s no explicit mechanism for dis-
tinguishing individuals within the population. This can lead to inefficiencies if undesired
solutions are prioritized. The enhanced approach bi-partitions the fitness space into subs-
paces according to theoretical Lower Bound of the MaxCut value, guaranteeing that a
bad solution do not interfere with the optimization process. (NETO, 2025)

• Optimization Methodology: Standard QGAs rely on iterative selection and modifi-
cation processes, which can be computationally intensive. The enhanced approach em-
ploys a single-step optimization methodology using Diffusion operator of the Grover’s
algorithm to identify the best solution with quadratic speed-up compared to classical
exhaustive search.

• Computational Complexity: The computational cost of standard QGAs depends on
the number of iterations and the size of the population, often scaling poorly for large
problems. In contrast, the enhanced framework achieves a complexity of 𝑂(

√
𝑁), inhe-

riting the quantum speed-up of the Grover’s algorithm.

3.1.4 Circuit Initialization

The MaxCut problem requires the encoding of a |𝑉 |-vertices Graph cut solutions into a
quantum register, where each binary combination represents a partition. The chromosome is
represented as an (𝑛× |𝑉 |)-qubit quantum register, where |𝑉 | is the number of vertices and
𝑛 is the number of qubits used to represent the solution value. This number is determined a

priori by knowing that the maximum value of the cut is the number of Edges of the graph.
Giving us that, for any graph with |𝐸| edges, 𝑛 = ⌈log2 |𝐸|⌉.
Similarly, due to the theoretical knowledge of the MaxCut problem we can ignore all those
solutions which have a cut less than 1

2 of the total sum of the edges. So all those solutions
are explicitly encoded in a subset which will be ignored, ensuring clear separation between the
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Algorithm 1 Enhanced Quantum Genetic Algorithm
1: Initialize quantum registers: |𝑢⟩ (individuals) and |𝑓⟩ (fitness values)
2: Prepare a uniform superposition of all possible individuals:

|𝜓⟩ = 1√
2𝑁

2𝑁 −1∑︁
𝑖=0

|𝑢𝑖⟩ ⊗ |0⟩

3: Apply the fitness function 𝑈𝑓 to compute fitness values:

𝑈𝑓 : |𝑢⟩ ⊗ |0⟩ → |𝑢⟩ ⊗ |𝑓(𝑢)⟩

4: Define the oracle subcircuit 𝑂 to mark states with the highest fitness values:

𝑂 : |𝑢⟩ ⊗ |𝑓⟩ → (−1)𝑔(𝑓)|𝑢⟩ ⊗ |𝑓⟩

5: Apply Grover’s iterations:
1. Apply the oracle 𝑂 to mark the highest fitness states.
2. Perform the diffusion operator to amplify the marked states.

6: Since Grover’s algorithms requires 𝑂(
√
𝑁)) queries to the oracle, where 𝑁 is the size of

the search space. For a 𝑀 -qubit fitness register, we have a search space of size 2𝑀 , and
by knowing that for every graph we have 2 exact solutions for the problem, we would know
that 𝑁 = 2𝑀

2 = 2𝑀−1. Giving us ≈ 𝑂(
√

2𝑀−1)) necessary queries.
7: Measure the quantum state to obtain the individual with the highest fitness value.

desired potential cut values and unneeded solutions.

3.1.5 Fitness Subcircuit

Let G be the set of chromossome-registers and K the set of their respective fitness valule.
The fitness function 𝑓 : {𝐺,𝐾} → N is defined as follows:

• Returns 0, if the individual is undesired, i.e., has its 𝑀𝑎𝑥𝐶𝑢𝑡 ≤ 1
2 |𝐸|.

• Returns 𝑥 ∈ N , where 𝑥 is the number of edges with adjacent vertices belonging to
different partitions (cut).

The operator 𝑈fit is defined by the function 𝑓 , performing the transformation:

𝑈fit : |𝑢⟩ ⊗ |0⟩ → |𝑢⟩ ⊗ |𝑓(𝑢)⟩,

where:

• |𝑢⟩: Quantum state representing an individual.
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• |0⟩: Initial state of the fitness register.

• |𝑓(𝑢)⟩: State encoding the fitness value of 𝑢, determined by the fitness function 𝑓 .

The 𝑈fit operator is implemented using Controlled-NOT (CNOT) and Toffoli gates. It uses
𝑛-qubit register to represent the individual solution |𝑢⟩ and 𝑚-qubit fitness register initialized
to |0⟩. Auxiliary qubits are used to encode the fitness function in the 𝑚-qubit. To achieve this,
counting the number of cut edges in a MaxCut is first translated into a network of logic gates.
This circuit is then decomposed into quantum primitives. Since classical Boolean functions
are generally not reversible, ancilla (auxiliary) qubits are introduced to preserve reversibility
and avoid information loss. The Toffoli gate (a universal reversible gate) is used to implement
AND-like logic, while CNOT and NOT gates handle XOR and bit-flip operations. (BARENCO

et al., 1995)
Furthermore, to maintain unitarity, all intermediate computation must be uncomputed (i.e.,

reversed) after the result has been written into the fitness register.

3.1.6 Oracle Subcircuit

The Oracle circuit is implemented to perform the transformation:

𝑂 : |𝑢⟩ ⊗ |𝑓(𝑢)⟩ → (−1)𝑔(𝑓(𝑢),𝑇 )|𝑢⟩ ⊗ |𝑓(𝑢)⟩,

where:

• |𝑢⟩: Represents the quantum state encoding an individual.

• |𝑓(𝑢)⟩: Represents the quantum state encoding the fitness value of the individual.

• 𝑇 : A predefined threshold value, which for the MaxCut is the |𝐸|

• 𝑔(𝑓(𝑢), 𝑇 ): A Boolean function that evaluates to 1 if 𝑓(𝑢) > 𝑇 and 0 otherwise.

This transformation marks the states with fitness values greater than the threshold 𝑇 by
applying a phase flip. The maximum possible fitness corresponds to the scenario where all
edges are cut (a bipartite graph), making the fitness value equal to the total number of edges
in the graph. By setting the threshold to the number of edges, the algorithm ensures that
the search is confined to valid configurations, where each edge contributes to the fitness.
(ARDELEAN; UDRESCU, 2022) (NETO, 2025)



42

3.1.6.1 The Quantum Adder

To evaluate whether 𝑓(𝑢) > 𝑇 , a quantum ripple-carry adder is utilized. The quantum
adder operates reversibly and proceeds through a sequence of controlled operations as follows:

|𝑎⟩ ⊗ |𝑏⟩ ⊗ |𝑐0⟩ → |𝑎⟩ ⊗ |𝑆⟩ ⊗ |𝑐𝑛⟩,

where |𝑎⟩ represents the fitness value 𝑓(𝑢), |𝑏⟩ represents the threshold value 𝑇 , and |𝑐0⟩

is an ancillary qubit. (DRAPER, 2000) The adder computes the sum 𝑆 = 𝑓(𝑢) + 𝑇 modulo
2𝑛, storing the result in |𝑏⟩, while the carry bit 𝑐𝑛 is stored in the ancillary qubit |𝑐𝑛⟩. The
operation is performed using a sequence of MAJ (majority) gates to compute carry bits and
UMA (UnMajority and Add) gates to compute the sum and reverse intermediate changes.
(CUCCARO et al., 2004)

The adder evaluates whether 𝑓(𝑢) > 𝑇 by checking the carry qubit or the most significant
bit (MSB) of the result, which indicates whether an overflow occurred during addition. This
method ensures a reversible computation, adhering to the principles of quantum mechanics.

The Oracle circuit, incorporating this quantum ripple-carry adder guides the QGA optimi-
zation process. By comparing 𝑓(𝑢) and 𝑇 and marking individuals with high fitness, the Oracle
ensures that genetic operations focus on promising solutions, accelerating convergence to the
optimal result. The combination of the ripple-carry adder and reversible logic is particularly
effective for solving the MaxCut, as it efficiently evaluates and identifies optimal solutions.

3.1.7 Grover Diffuser

Grover’s diffuser operator, often called the inversion about the mean, is a key component
of Grover’s search algorithm. It amplifies the amplitudes of marked states (those satisfying
the Oracle’s condition) while reducing the amplitudes of unmarked states, effectively focusing
the search on desired solutions. This document details the definition, implementation, and
significance of Grover’s diffuser operator.

The diffuser operator, denoted as 𝐷, performs the transformation:

𝐷 = 2|𝑠⟩⟨𝑠| − 𝐼,

where:

• |𝑠⟩ = 1√
𝑁

∑︀𝑁−1
𝑥=0 |𝑥⟩: The equal superposition state.
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• 𝐼: The identity operator.

• 𝑁 : The total number of states in the search space.

This operation reflects the quantum state about the average amplitude of all states, enhan-
cing the probability of measuring marked states.

The diffuser operator is implemented using the following steps:

1. Initialization to Superposition: Apply a Hadamard gate to each qubit to create the
equal superposition state |𝑠⟩ if not already prepared.

2. Phase Inversion:

Apply a conditional phase flip to invert the amplitudes of the marked states. This is
represented by the operator −𝐼.

3. Reflection About Mean: Reflect all states about the mean amplitude. This is achieved
using:

𝐷 = 𝐻⊗𝑛(2|0⟩⟨0| − 𝐼)𝐻⊗𝑛,

where 𝐻⊗𝑛 is the Hadamard gate applied to 𝑛 qubits.

Generally, the diffuser can be broken down into the following steps:

1. Compute the mean amplitude of all states.

2. Invert the amplitude of each state about this mean.

This is equivalent to the operation:

𝐷|𝑥⟩ = 2⟨𝑠|𝑥⟩|𝑠⟩ − |𝑥⟩.

3.2 DIVIDE-AND-CONQUER HEURISTIC FOR QGA

Here it is outlined the implementation of a divide-and-conquer heuristic for the Quantum
Genetic Algorithm (QGA), inspired by its application in Quantum Approximate Optimization
Algorithms (QAOA) (ZHOU et al., 2023). The heuristic uses graph partitioning, local optimi-
zation, and solution merging to solve large-scale problems, specifically the MaxCut problem,
efficiently within the constraints of NISQ quantum hardware.
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Graph Retraction

1. Partition the Graph: The goal is to divide the input graph 𝐺(𝑉,𝐸) into smaller
subgraphs {𝐺𝑖(𝑉𝑖, 𝐸𝑖)}, where each subgraph 𝐺𝑖 has the number of vertices |𝑉𝑖| ≤ 𝑛.
The parameter 𝑛 represents the maximum number of vertices that can fit in the quantum
register used in the Quantum Genetic Algorithm (QGA).

• Graph Representation: The input graph 𝐺 is represented by its set of vertices 𝑉
and edges 𝐸. For large graphs, directly encoding all vertices in the quantum register
is infeasible for NISQ devices, necessitating a partitioning process.

• Initial Division: Divide 𝐺 into subgraphs {𝐺𝑖} such that each 𝐺𝑖 has fewer than
or equal to 𝑛 vertices. These subgraphs are created to balance size and structure,
ensuring they are manageable within the constraints of the quantum hardware.

• Recursive Partitioning: After the initial partitioning, some subgraphs may still ex-
ceed the quantum register’s size limit 𝑛. Recursive partitioning ensures that all
subgraphs eventually satisfy the size constraint.

• Condition Check: For each subgraph 𝐺𝑖, check if |𝑉𝑖| > 𝑛. If so, apply the partiti-
oning process again to 𝐺𝑖.

• Divide Further: Break the oversized subgraph into smaller subgraphs using iterative
techniques to ensure size constraints are met.

• Repeat Until Completion: The process continues recursively until all subgraphs 𝐺𝑖

satisfy |𝑉𝑖| ≤ 𝑛.

Practical Limitations

• Boundary Edges: During partitioning, edges connecting vertices in different subgraphs
are known as boundary edges. These edges require careful handling, especially when
applying algorithms like MaxCut, as their inclusion/exclusion affects the overall optimi-
zation.

• Subgraph Characteristics: The partitioning process often seeks to create subgraphs
that are not only small enough to fit within the quantum register but also retain mea-
ningful structures.
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• Recursive Depth: The depth of recursion is determined by the initial graph size and
the register limit 𝑛. For very large graphs, this could result in multiple levels of nested
subgraphs.

The graph 𝐺 is represented as a set of disjoint or overlapping subgraphs {𝐺𝑖(𝑉𝑖, 𝐸𝑖)},
each of which satisfies the condition |𝑉𝑖| ≤ 𝑛. These smaller subgraphs can then be processed
independently within the constraints of the quantum register, enabling for the optimization of
the MaxCut problem.

Local Optimization with QGA

1. Encode Subgraphs:

• Represent individuals as quantum states in a superposition.

• Use fitness evaluation circuits tailored to the MaxCut problem to calculate cuts for
each subgraph.

2. Apply QGA:

• Perform selection, crossover, and mutation operations on the quantum register.

• Compute fitness values without intermediate measurements by leveraging super-
position.

• Terminate when the stopping criterion (e.g., iteration count or convergence) is
met.

3. Store Subgraph Solutions: Save the optimized solutions {𝑥𝑖} for each subgraph.

Solution Merging

1. Reformulate the Problem:

• Treat each subgraph as a node in a new meta-graph 𝐺′(𝑉 ′, 𝐸 ′).

• Assign weights to edges in 𝐺′ based on connectivity and edge weights between
subgraphs in the original graph 𝐺.
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• Handle symmetry (e.g., Z2) by considering both 𝑥𝑖 and its complement 𝑥𝑖 as valid
solutions for each subgraph.

2. Solve the Meta-Graph:

• Use QGA to find the optimal cut for 𝐺′.

• Interpret the meta-graph solution to determine the global cut for 𝐺.

Recursive Refinement

If the meta-graph 𝐺′ exceeds the size limit 𝑛:

1. Recursive Application:

• Partition 𝐺′ into smaller subgraphs.

• Optimize the subgraph solutions using QGA.

• Repeat until the size of the final meta-graph is manageable within the quantum
register’s capacity.

3.2.1 Complexity Analysis

The complexity analysis of the Algorithm for the MaxCut problem accounts for the inherent
challenges of simulating quantum algorithms on classical computers.) the simulation of quan-
tum circuits requires exponential runtime with respect to the circuit size. The total number
of qubits required for QGA in the MaxCut problem is determined by the function (UDRESCU;

PRODAN; VLăDUțIU, 2006):

𝑓(|𝑉 |, 𝑛,𝑀,𝑚) = |𝑉 | · 𝑛+ 2 · (𝑀 +𝑚) + 3,

where:

• |𝑉 |: The number of vertices in the graph.

• 𝑛: The number of qubits required to encode vertex states or partitions.

• 𝑀 : The number of qubits needed to represent the fitness value in two’s complement,
typically ⌈log2(𝐸)⌉, where 𝐸 is the number of edges in the graph.
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• 𝑚: The number of Grover iterations, calculated as 𝑚 = 𝑂(
√

2𝑀).

• Additional qubits: 3 qubits are used for carry-in, oracle workspace, and a validity flag,
while Grover’s adders require 2 qubits for carry-out during each iteration.

Remembering that a complete graph is a upper-bound of the number of edges for any
graph witn 𝑛 vertices, we can derivate a function,

𝑔(𝑛) = 𝑛2 + 2
𝑛(𝑛−1)

4 +1 + 3,

Which bounds the 𝑓 and give us the minimum amount of qubits necessary to run a graph
with 𝑛 vertices. Due to the exponential growth of required resources with |𝑉 |, 𝑀 , and 𝑚, the
scalability of the algorithm in simulation is limited. These constraints underscore the necessity
of access to actual quantum hardware to fully exploit the potential of the application for large
graph instance without the downside of a divide-and-conquer heuristic. Despite these simula-
tion challenges, the theoretical framework of QGA retains its quantum advantage, offering an
efficient approach to solve combinatorial optimization problems like MaxCut.
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4 RESULTS AND CONCLUSION

The QGA for the MaxCut has been evaluated experimentally on various classes of graphs,
including complete graphs and Erdős-Rényi random graphs, to demonstrate its effectiveness
in solving the MaxCut problem. It is presented a comparison of the QGA with the Semidefi-
nite Programming (SDP) approach and highlights its performance on specific graph types. All
experiments were conducted under similar conditions to ensure the validity of comparisons.
The measurements were conducted by implementing the algorithm using Qiskit, with simula-
tions performed on the IBM quantum platform. The 𝑖𝑏𝑚𝑞_𝑞𝑎𝑠𝑚_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟 backend (Qiskit

Development Team, 2023), provided by the 𝑖𝑏𝑚 − 𝑞 provider, was utilized. This simulator is a
versatile, context-aware tool capable of simulating quantum circuits under ideal conditions or
with noise modeling, supporting circuits with up to 29 qubits. The code can be found here:
https://github.com/pauloaviana/maxcut-qga

4.1 EXPERIMENTAL SETUP

The experiments were conducted on two types of graphs on a Qiskit Simulator:

• Complete Graphs: Graphs where every pair of vertices is connected by an edge.

• Erdős-Rényi Random Graphs: Graphs generated with a fixed probability for edge
inclusion, denoted as 𝐺(𝑛, 𝑝).

For each graph type, the performance of QGA and SDP was compared based on the cut
values achieved. Results were averaged over multiple runs to account for randomness inherent
in both algorithms.

4.2 RESULTS FOR SMALL GRAPHS

For graphs small enough to run the QGA directly, those without a divide-and-conquer
heuristic (which by itself loses boundary edges), are limited up to |𝑉 | = 8 vertices. Both the
the SDP and the QGA got the optimal result for graphs (complete or Randomly generated)
up to such size.

https://github.com/pauloaviana/maxcut-qga
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4.3 RESULTS FOR COMPLETE GRAPHS

The experiments on complete graphs showed that the QGA consistently found the true
optimal MaxCut values, which are determined by

⌊︁
𝑛2

4

⌋︁
, while the SDP approach achieved

approximate results withing the theoretical limit 0.878, Table 2 summarizes these results.

Tabela 2 – Comparison of QGA and SDP on Complete Graphs.

Number of Vertices QGA (Optimal Value) SDP Value QGA Ratio SDP Ratio

3 2 2 1.0 1.0
5 6 6 1.0 1.0
8 16 15 1.0 0.9375
12 36 35 1.0 0.9722
23 132 130 1.0 0.9848
31 240 237 1.0 0.9875
56 784 780 1.0 0.9949
80 1600 1593 1.0 0.9969
128 4096 4085 1.0 0.9973

The table shows that QGA proposted got the true value for the MaxCut for all the tested
instances, while the SDP slowly gets worst results as the number of vertices grows, as

expected.

4.4 RESULTS FOR ERDŐS-RÉNYI RANDOM GRAPHS

For Erdős-Rényi random graphs, the performance of QGA varied depending on the specific
instance, but it consistently demonstrated competitive or superior results compared to SDP.
Two separate tables, Tables 3 and 4 respectivelly show the results for the median value found
during the runs and for the best result found for the QGA. A comparison of the performance
of QGA runs and SDP values is made, including the ratio of RQGA results to SDP values.
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Tabela 3 – Comparison of QGA Run 1 and SDP on Erdős-Rényi Random Graphs.

Graph Instance QGA Med. SDP Value QGA/SDP Ratio

𝐺(50, 0.1) 91 92 0.9891
𝐺(50, 0.25) 194 210 0.9238
𝐺(50, 0.5) 346 360 0.9611
𝐺(50, 0.75) 478 524 0.9122
𝐺(100, 0.1) 232 329 0.7052
𝐺(100, 0.25) 674 786 0.8576
𝐺(100, 0.5) 1297 1361 0.9529
𝐺(100, 0.75) 1894 2016 0.9394
𝐺(200, 0.1) 1017 1211 0.8401
𝐺(200, 0.25) 2550 2778 0.9180
𝐺(200, 0.5) 5095 5326 0.9566
𝐺(200, 0.75) 7494 7815 0.9589
𝐺(350, 0.1) 3120 3611 0.8640
𝐺(350, 0.25) 7771 8236 0.9436
𝐺(350, 0.5) 15443 16030 0.9634
𝐺(350, 0.75) 22941 23530 0.9749
𝐺(500, 0.1) 6335 7097 0.8926
𝐺(500, 0.25) 15684 16520 0.9493
𝐺(500, 0.5) 31316 33110 0.9456
𝐺(500, 0.75) 46875 48130 0.9740

This table takes one average run of the QGA and compares the result with the SDP, The
results are competitive to the SDP and since there are lost boundary edges using the graph
contraction approach, the results obtained are inferior to an expected application with more

qubits.
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Tabela 4 – Comparison of QGA Best runs and SDP on Erdős-Rényi Random Graphs.

Graph Instance QGA Best SDP Value QGA/SDP Ratio

𝐺(50, 0.1) 96 92 1.0435
𝐺(50, 0.25) 240 210 1.1429
𝐺(50, 0.5) 320 360 0.8889
𝐺(50, 0.75) 512 524 0.9771
𝐺(100, 0.1) 343 329 1.0426
𝐺(100, 0.25) 783 786 0.9962
𝐺(100, 0.5) 1375 1361 1.0103
𝐺(100, 0.75) 2024 2016 1.0040
𝐺(200, 0.1) 1250 1211 1.0322
𝐺(200, 0.25) 2861 2778 1.0299
𝐺(200, 0.5) 5423 5326 1.0182
𝐺(200, 0.75) 7875 7815 1.0077
𝐺(350, 0.1) 3639 3611 1.0078
𝐺(350, 0.25) 8583 8236 1.0421
𝐺(350, 0.5) 16030 16030 1.0000
𝐺(350, 0.75) 23740 23530 1.0089
𝐺(500, 0.1) 7034 7097 0.9911
𝐺(500, 0.25) 17140 16520 1.0375
𝐺(500, 0.5) 33140 33110 1.0009
𝐺(500, 0.75) 48200 48130 1.0015

The results shown are the best picks after multiple runs, it’s possible to see slightly better
results even with the disadvantage of the graph contraction heuristic. Such results are not
conclusive but they show a potential advantage of the QGA over the SDP even with a low

number of qubits available.
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4.5 ANALYSIS AND DISCUSSION

4.5.1 Complete Graphs

The QGA consistently achieved the true MaxCut values for all tested complete graphs.
This comes from the fact that for complete graphs you do not lose edges when partitioning
it with the implemented heuristic due to its symmetry. This shows that the QGA can consis-
tently optimize for the subgraphs and their weighted version when recursively partitioned. In
contrast, the SDP approach occasionally underperformed as the number of vertices go up, as
it’s expected from it.

4.5.2 Erdős-Rényi Random Graphs

The Erdős-Rényi random graph is a fundamental model in graph theory that generates
random graphs through a probabilistic process. 𝐺(𝑛, 𝑝): In this model, a graph with 𝑛 vertices
is constructed by adding each possible edge between any two vertices independently with
probability 𝑝. This means the presence of each edge is determined randomly, leading to graphs
with varying numbers of edges, though the expected number of edges is

(︁
𝑛
2

)︁
𝑝.

The Erdős-Rényi model exhibits specific statistical properties. In the 𝐺(𝑛, 𝑝) model, the
degree of each vertex (the number of edges connected to it) follows a binomial distribution,
which approximates a Poisson distribution for large 𝑛 and small 𝑝. The model also displays sharp
transitions or threshold phenomena, where certain properties of the graph, such as connectivity
or the emergence of a giant connected component, appear suddenly as 𝑝 changes.

The clustering coefficient, which measures how likely neighbours of a vertex are to be
connected, is equal to 𝑝 in this model. For sufficiently large 𝑛 and moderate 𝑝, the diameter
of the graph (the longest shortest path between two vertices) tends to grow logarithmically
with 𝑛, indicating that the graph remains relatively small in terms of overall distance between
vertices.

The Erdős-Rényi model is a well-known method in the literature for understanding random
graph behavior, and generating random graphs.

The QGA displayed variability in results across multiple runs, likely due to probabilistic
measurement. However, it frequently outperformed SDP when selected for the best result run.
Moreover, even when taken on average, the QGA yields a good performance in comparison
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with the SDP.

4.6 CONCLUSION

This thesis proposed a fully quantum algorithm for solving the MaxCut problem using a
Reduced Quantum Genetic Algorithm (RQGA) framework built on Grover’s maximum-finding
algorithm. While it it departs from the original concept of a Evolutionary Algorithm, its roots
and idealization came from it. By eliminating classical genetic operations such as crossover
and mutation, and encoding the entire solution space into a single quantum superposition, the
proposed model streamlines the search for optimal solutions through amplitude amplification
alone. The architecture integrates the fitness evaluation and selection processes into a purely
unitary sequence, preserving quantum coherence and minimizing classical control overhead.
This model addresses major limitations of standard Quantum Genetic Algorithms (QGAs),
which often rely on classical post-processing, intermediate measurements, and hybrid genetic
operators, leading to resource inefficiency and decoherence.

The uniqueness of the proposed algorithm lies in its adaptation and expansion of the RQGA
framework for the MaxCut problem. While the original RQGA article introduced the concep-
tual structure of a quantum genetic algorithm reduced to Grover’s search, it remained largely
abstract and focused on foundational components such as the oracle and fitness entanglement
scheme. In contrast, this thesis delivers a complete, application-oriented implementation tailo-
red for the MaxCut problem: it designs a quantum fitness function for MaxCut, encodes valid
bipartitions with a binary validity mechanism, constructs a Grover-compatible oracle specific
to the problem, and introduces a novel divide-and-conquer heuristic to overcome hardware
limitations. Moreover, the model is quantitatively analized using Qiskit simulations.

Experimental validation demonstrates the algorithm’s correctness and practical viability in
solving instances of MaxCut across various types of graphs. For small and complete graphs,
the RQGA consistently found the true maximum cut, often in fewer iterations than expected,
demonstrating both efficiency and reliability. In the case of Erdős–Rényi random graphs, where
problem structure is less regular, the proposed model still achieved competitive or superior
results. This outcome is particularly notable considering that the divide-and-conquer heuristic,
used to scale the algorithm to larger graphs, discards boundary edges by design—yet the
algorithm maintained strong performance despite this inherent loss.

The resource estimates reported in Table 3; covering qubit count, circuit depth, and simula-
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tion fidelity—suggest that the algorithm is implementable on current or near-future quantum
hardware, particularly as Noisy Intermediate-Scale Quantum (NISQ) technology progresses.
Due to current simulator limitations, the thesis focused on graphs ranging from 5 to 10 ver-
tices, with the divide-and-conquer heuristic proposed as a scalability solution. This heuristic
partitions the input graph into smaller, manageable subgraphs, solves each independently with
the RQGA, and then applies a final MaxCut procedure to a meta-graph representing the par-
titioned solution. Though boundary edges are lost in the partitioning process, the method
remains efficient and generalizable, and can be adjusted as more qubits become available in
hardware.

A direct comparison with standard QGAs was not performed due to the absence of publicly
available, problem-specific QGA implementations for MaxCut, and because the fully quantum
and coherence-preserving nature of the proposed model diverges methodologically from hybrid
quantum-classical approaches. However, this remains an important direction for future work,
and the thesis acknowledges the value of even conceptual or small-scale empirical comparisons.

For future work, several promising avenues emerge. A hardware implementation using
available NISQ systems would allow for empirical evaluation under real noise models and
connectivity constraints. Further optimization of subcircuits, particularly the fitness function,
oracle, and Grover diffuser could reduce the algorithm’s qubit footprint and circuit depth. In
parallel, hybrid strategies that combine Grover-based RQGA with variational quantum circuits
(VQCs) may offer more flexible optimization by replacing discrete search with gradient-based
parameter updates. (PERUZZO et al., 2014)

Such a variational approach could leverage cost functions encoding problem constraints
and compare favorably in terms of convergence speed, scalability, and quantum resource con-
sumption.

Beyond MaxCut, the RQGA framework could be adapted to solve other NP-hard graph
problems such as graph coloring, vertex cover, or the Traveling Salesman Problem (TSP),
particularly as support for weighted constraints and larger solution spaces becomes feasible.
Integration with real-world applications in areas such as VLSI circuit design, statistical physics,
logistics, and scheduling would further demonstrate the framework’s practical potential. More-
over, improvements in the divide-and-conquer strategy, including smarter partitioning methods
or quantum-aware boundary edge handling, could significantly increase solution quality while
preserving scalability.

In conclusion, this work lays the foundation for a fully quantum approach to heuristic
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optimization that is both coherent and modular. It demonstrates the viability of solving com-
binatorial problems like MaxCut entirely within a quantum circuit model using structured
superposition, quantum fitness evaluation, and amplitude amplification while also offering a
roadmap for extending and deploying such models in real-world and large-scale contexts as
quantum hardware matures.
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