Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/64644

Comparte esta pagina

Título : Estimates for the first eigenvalue of the p-Laplacian on Riemannian manifolds
Autor : SOARES, Matheus Nunes
Palabras clave : Closed and compact submanifolds; Minimal submanifolds; First eigenvalue p-Laplacian; 4. Warped products; Bochner's formula
Fecha de publicación : 2025
Editorial : Universidade Federal de Pernambuco
Citación : SOARES, Matheus Nunes. Estimates for the first eigenvalue of the p-Laplacian on Riemannian manifolds. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2025.
Resumen : The following thesis aims to study estimates of the first eigenvalue of the p-Laplacian operator on compact Riemannian manifolds and complete non-compact manifolds. We established a linearized operator for the divergence-type p-Laplacian, which resulted in a Bochner-type formula. From this, we initially obtained lower bounds for the first eigen- value of the p-Laplacian through the norm of the second fundamental form for p ≥ 2, with characterization of equality. Next, we demonstrated a similar result for submanifolds with prescribed scalar curvature and for submanifolds with constant mean curvature. In each case reported above, we presented a generalization for manifolds with non-empty bound- ary through a Reilly-type formula for the linearized operator. Additionally, we presented an analytical version of the previous results for the singular case with 3 2 < p < 2. Finally, we developed a Liouville-type theorem for complete non-compact manifolds, with appli- cations in warped products.
URI : https://repositorio.ufpe.br/handle/123456789/64644
Aparece en las colecciones: Teses de Doutorado - Matemática

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Matheus Nunes Soares.pdf592,59 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons