
Universidade Federal de Pernambuco

Centro de Ciências Exatas e da Natureza
Programa de Pós-graduação em Matemática

Matheus Nunes Soares

Estimates for the first eigenvalue of the p-Laplacian on
Riemannian manifolds

Recife
2025

http://lattes.cnpq.br/3706962639781669


Matheus Nunes Soares

Estimates for the first eigenvalue of the p-Laplacian on
Riemannian manifolds

Thesis submitted to the Post-graduate Program in
Mathematics of the Universidade Federal de Pernam-
buco, as a a as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

Concentration area: Geometry and Topology

Advisor: Prof. Dr. Fábio Reis dos Santos

Recife
2025



Soares, Matheus Nunes.
   Estimates for the first eigenvalue of the p-Laplacian on
Riemannian manifolds / Matheus Nunes Soares. - Recife, 2025.
   80f.: il.

   Tese (Doutorado) - Universidade Federal de Pernambuco, Centro
de Ciências Exatas e da Natureza, Programa de Pós-graduação em
Matemática, 2025.
   Orientação: Fábio Reis dos Santos.
   Inclui referências e apêndices.

   1. Closed and compact submanifolds; 2. Minimal submanifolds;
3. First eigenvalue p-Laplacian; 4. Warped products; 5.
Bochner's formula. I. Santos, Fábio Reis dos. II. Título.

UFPE-Biblioteca Central

.Catalogação de Publicação na Fonte. UFPE - Biblioteca Central



MATHEUS NUNES SOARES

ESTIMATES FOR THE FIRST EIGENVALUE OF
p-LAPLACIAN ON RIEMANNIAN MANIFOLDS

Aprovado em:

Tese apresentada ao Programa de Pós-
Graduação Departamento de Matemática da
Universidade Federal de Pernambuco, como
requisito parcial para a obtenção do título de
Doutor em Matemática.

Banca Examinadora

Prof. Dr. Fábio Reis dos Santos (Orientador)
Universidade Federal de Pernambuco

Prof. Dr. Jorge Herbert Soares de Lira (Examinador Externo)
Universidade Federal de Ceará

Prof. Dr. Lucas Coelho Ambrozio (Examinador Externo)
Instituto de Matemática Pura de Aplicada

Prof. Dr. Luis Jose Alías Linares (Examinador Externo)
Universidad de Murcia

Prof. Dr. Marcos Petrucio de Almeida Cavalcante (Examinador Externo)
Universidade Federal de Alagoas



AGRADECIMENTOS

Chegado o momento de conclusão deste trabalho, torna-se necessário olhar para o

percurso trilhado e reconhecer as muitas mãos que, de diferentes formas, contribuíram

para que esta etapa fosse possível, e assim fazer os devidos agradecimentos.

Não foi um percurso linear, tampouco confortável. Pelo contrário: atravessamos anos

de pandemia, governos desastrosos, crises políticas e econômicas, mais perdas do que pode-

mos contar. Em meio a tudo isso, esse trabalho nasce como um reflexo de amadurecimento

pessoal e profissional, mas sobretudo como uma contribuição acadêmica significativa para

o campo da matemática pura e dos estudos em análise geométrica.

Sendo assim, é justo iniciar reconhecendo o empenho pessoal que me trouxe até aqui,

e registrar, sem constrangimento, que me orgulho da persistência com que enfrentei essa

jornada. Aproveito para demarcar a gratidão por esses esforços, como um lembrete de

manter a gentileza e reconhecimento para com meus próprios feitos.

Nenhuma jornada dessa magnitude é feita sozinho. Ainda que a produção e escrita

seja individual, muitos estiveram presentes — oferecendo apoio, orientação ou até mesmo

catarse. Assim, aos que caminharam comigo de alguma forma, quero registrar alguns

agradecimentos.

Agradeço primeiramente à minha esposa Gleyce Leão pelo companheirismo, carinho,

paciência e amor ao longo de todos esses anos. Meu crescimento pessoal e profissional não

seria possível sem você, e espero continuar vivendo os nossos sonhos junto ao seu lado.

À minha família por ser o alicerce da minha vida. Reservo um agradecimento especial

à minha mãe Marta Maria por todo amor proporcionado e por ser a base e fundamento

de tudo que sou.

Agradeço ainda ao meu pai, Ivanildo Farias, pela eterna competição saudável — que,

aliás, agora tem um novo campeão: este que vos fala, oficialmente doutor. À minha irmã

Júlia, minha gratidão e admiração por manter a veia artística da família.

Toda gratidão possível aos meus amigos Adelson Monteiro, Arthur César, Caio Hen-

rique, Gabriel Arcasa, Gabriel Ribeiro, Kailon Guerra, Lucas Arcasa, Luis Henrique e

Petrus Uzoukwu. Agradeço pelas jogatinas catárticas e sobretudo pelo compartilhamento

de alegrias e dissabores. Agradeço por vocês simplesmente serem vocês.



5

Agradeço imensamente ao meu treinador, Pedro Fortius, por me orientar com dedi-

cação no processo de desbravar um novo ofício. Sua presença foi fundamental não apenas

no aprimoramento físico, mas principalmente emocional, uma vez que integrar a equipe

de atletismo da UFPE teve um papel decisivo na preservação da minha saúde mental ao

longo deste percurso.

Aproveito ainda para saudar meus colegas de equipe, em especial Ademar Ribeiro,

Brisa Sales, Clara Gomes, Elionaldo da Silva, Jenifer Martins, José Cristovão e Thainon

Miranda.

Agradeço ao Departamento de Matemática, por ser um lar acolhedor ao longo de tantos

anos. Aos colegas do departamento pela convivência profissional e pelas trocas ao longo

dessa trajetória. Em especial, aos amigos que fiz nesse ínterim: Jonatas Teodomiro, Lenin

Bezerra, Rafael Cavalcanti, Nelson Leal, Jandeilson Santos, Matheus Oliveira, Michele

Gonzaga, Estevan da Silva, Marcia Ferreira, João Gondim.

Por fim, mas não menos importante, ao meu orientador, Fábio Reis dos Santos,

agradeço pela paciência constante, pela escuta atenta e pela generosidade com que acom-

panhou cada etapa deste trabalho. Sua disponibilidade, tanto intelectual quanto humana,

foi fundamental para que esta pesquisa chegasse ao fim com a devida consistência.

Nessa mesma perspectiva, agradeço ao professor Jorge Lira por sua disponibilidade

em me receber na UFC durante o período sanduíche do doutorado. Os ensinamentos que

obtive do senhor nesses poucos meses foram extremamente enriquecedores.

Agradeço ainda aos demais membros da banca examinadora, Lucas Ambrozio, Luis

Alías e Marco Petrucio pelas leituras atentas, pelas críticas construtivas e pelas con-

tribuições valiosas que foram fundamentais para o aprimoramento desta pesquisa e para

meu crescimento como pesquisador.

Registro meu agradecimento à CAPES e ao CNPq pelo apoio financeiro que viabilizou

o desenvolvimento desta pesquisa. O fomento recebido foi essencial para a continuidade

dos estudos e para a concretização deste trabalho.



RESUMO

A seguinte tese teve por objetivo estudar estimativas do primeiro autovalor do oper-

ador p-Laplaciano em variedades Riemannianas compactas e completas não compactas.

Estabelecemos um operador linearizado para o p-Laplaciano do tipo divergente, o que

resultou em uma fórmula do tipo Bochner. A partir disso, obtivemos inicialmente esti-

mativas inferiores do primeiro autovalor do p-Laplaciano através da norma da segunda

forma fundamental para p ≥ 2, com caracterização da igualdade. Em seguida, demon-

stramos um resultado similar para subvariedades com curvatura escalar prescrita e para

subvariedades com curvatura média constante. Em cada caso anteriormente citado, apre-

sentamos uma generalização para variedades com bordo não vazio através de uma fórmula

do tipo Reilly para o operador linearizado. Além disso, apresentamos uma versão analítica

dos resultados anteriores para o caso singular com 3
2
< p < 2. Por fim, desenvolvemos um

teorema do tipo Liouville para variedades completas não compactas, com aplicações em

produtos warped.

Palavras-Chave: Subvariedades compactas e fechadas; Subvariedades mínimas; Cur-

vatura escalar prescrita; Formula de Bochner; Primeiro autovalor do p-Laplaciano; Pro-

dutos torcidos.



ABSTRACT

The following thesis aims to study estimates of the first eigenvalue of the p-Laplacian

operator on compact Riemannian manifolds and complete non-compact manifolds. We

established a linearized operator for the divergence-type p-Laplacian, which resulted in a

Bochner-type formula. From this, we initially obtained lower bounds for the first eigen-

value of the p-Laplacian through the norm of the second fundamental form for p ≥ 2, with

characterization of equality. Next, we demonstrated a similar result for submanifolds with

prescribed scalar curvature and for submanifolds with constant mean curvature. In each

case reported above, we presented a generalization for manifolds with non-empty bound-

ary through a Reilly-type formula for the linearized operator. Additionally, we presented

an analytical version of the previous results for the singular case with 3
2
< p < 2. Finally,

we developed a Liouville-type theorem for complete non-compact manifolds, with appli-

cations in warped products.

Keywords: Closed and compact submanifolds; Minimal submanifolds; Prescribed scalar

curvature; Bochner formula; First eigenvalue p-Laplacian; Warped products.
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1 INTRODUCTION

The importance of elliptic operators in mathematics is widely acknowledged within the

academic community. Over the past few decades, the study of the first nonzero eigenvalue

of elliptic operators has garnered significant attention due to its profound implications in

both physical and mathematical contexts. From a physical perspective, this eigenvalue

plays a crucial role in determining the convergence rate of numerical schemes in numeri-

cal analysis, characterizing the ground-state energy of a particle in quantum mechanics,

and describing the decay rate of heat flows in thermodynamics. Mathematically, this

eigenvalue exhibits deep connections with various geometric objects and structures. For

instance, the results of (LEUNG, 1983, 1992) study the first eigenvalue of the Laplacian in

closed manifolds immersed in the Euclidean sphere. Specifically, (LEUNG, 1983) showed

that if given Mn a closed (i.e., compact and without boundary) submanifold minimally

immersed in the unit sphere Sm with a constant squared length of the second fundamental

form S = |A|2, then the quantity n− λ1(M) provides a lower bound for S. Here, λ1(M)

denotes the first eigenvalue of the Laplace-Beltrami operator on Mn, which can also be

interpreted as an upper bound for λ1(M).

Years later, (BARROS, 2002) refined Leung’s result for minimal closed hypersurfaces

in Sn+1, proving that

S ≥ c(n, k)(n− 1)(n− λ1(M)),

where c(n, k) = n−k
n(n−k−1)

and k is a constant depends on the dimension of the kernel of A.

Subsequently, (BARBOSA; BARROS, 2003) further improved this estimate by showing

that there exists a rational number k ∈ [n/(n − 1), n], depending either on A or on the

first eigenfunction associated with λ1(M), such that

S ≥ k
(n− 1)

n
(n− λ1(M)).

A natural extension of the Laplacian operator is the p-Laplacian operator ∆p, defined

for 1 < p < ∞ as

∆pu = −div(|∇u|p−2∇u).
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This operator arise naturally from the variational problem associated with the p-energy

functional

Ep(u) =

∫
M

|∇u|pdM, (1.1)

with u ∈ W 1,p
0 (M), where W 1,p

0 (M) is the completion of the subspace of the functions of

C∞(M) that has compact support on Mn under the Sobolev norm

∥u∥1,p =
(∫

M

|u|pdM +

∫
M

|∇u|pdM
)1/p

,

where dM denotes the Riemannian volume element of Mn.

The p-Laplacian is of significant interest not only in mathematics but also in the the-

ory of non-Newtonian fluids, including: dilatant fluids, for p ≥ 2; pseudoplastic fluids, for

1 < p < 2 (ASTARITA; MARRUCCI, 1974). Additionally, for p ≥ 2, the p-Laplacian also

holds geometric interest, with some aspects explored in (UHLENBECK, 1977). Due to

its physical and mathematical relevance, numerous bounds have been established for the

Dirichlet first eigenvalue of the Laplacian, and many of these results have been extended

to the nonlinear p-Laplacian over the last two decades. In this context, (MATEI, 2000)

extended Cheng’s first Dirichlet eigenvalue comparison for balls to the p-Laplacian on com-

plete manifolds with Ricci curvature bounded below by (n − 1)k. For closed manifolds,

Matei also provided lower bounds for the first nonzero eigenvalue of the p-Laplacian in the

case k > 0. When k = 0, a sharp estimate was later achieved by (VALTORTA, 2012). For

a general real k, further advancements were made by (NABER; VALTORTA, 2014) (see

also (CAVALLETTI; MONDINO, 2017)). More recently, (WANG; LI, 2016) developed

p-Bochner and p-Reilly formulas for the weighted p-Laplacian. As an application, they

derived lower bounds for the first nonzero eigenvalue of the Dirichlet and Neumann prob-

lems for the weighted p-Laplacian on compact smooth metric measure spaces, both with

and without boundaries. Additionally, (SETO; WEI, 2017) provided several estimates

for the first eigenvalue of the p-Laplacian on closed Riemannian manifolds under integral

curvature conditions. From the perspective of isometric immersions, upper bounds for

the first nonzero eigenvalue of the p-Laplacian have also been extensively studied. In

particular, Reilly-type inequalities for closed submanifolds in Riemannian space forms,

involving the mean curvature vector and higher-order mean curvatures of the immersion,
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were obtained by (DU; MAO, 2015; CHEN; WEI, 2019).

For 3
2
< p < 2, several noteworthy applications emerge, highlighting the practical rel-

evance of this range. For instance, in the specific case of p = 3
2
, a significant application

is found in the study of unsaturated flow, as discussed by (DIAZ; DE THELIN, 1994).

Similarly, for p ∈ (1, 4
3
], this interval is closely linked to problems in glaciology, underscor-

ing the diverse real-world scenarios where these mathematical frameworks are applied.

Within the range 3
2
< p < 2, it is particularly worth mentioning Leibenson’s work on

the turbulent filtration of gas in porous media. This study offers valuable insights into

fluid dynamics in complex systems, providing a compelling connection between theoretical

models and physical phenomena (LEIBENSON, 1945). For those seeking a more compre-

hensive understanding of this area, Benedikt’s work (BENEDIKT et al., 2018) serves as a

rich resource, offering an in-depth exploration of the subject and its broader implications.

We begin our work by revisiting some classical definitions related to isometric immer-

sions and differential operators to ensure the completeness of the discussion (Chapter 2).

Following this, in Chapter 3, we introduce a new linearization of the p-Laplacian operator

and establish several properties associated with it. Additionally, we present Bochner and

Reilly-type formulas for our operator (cf. Propositions 3.3 and 3.4). Subsequently, we

focus on minimal submanifolds isometrically immersed in the unit sphere. As an applica-

tion of the Bochner-type formula, our first result extends the classical integral inequality

of (LEUNG, 1983), which involves the first eigenvalue of the 2-Laplacian, the squared

norm of the second fundamental form, and the dimension of the minimal submanifold in

the Euclidean sphere. Specifically, we prove, for p ≥ 2, that:

Theorem 1.1. Let Mn be a closed minimal submanifold in Sm and let u be an eigenfunc-

tion of the p-Laplacian of Mn associated to λ. Then

∫
M

(S + αn,pλ
2/p − n)|∇u|2p−2dM ≥ 0,

where

αn,p =
n(p− 1)2 − 1

(n− 1)(p− 1)2/p
. (1.2)

Moreover, if equality holds, then p = 2 and
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(a) either Mn is totally geodesic and λ is the first nonzero eigenvalue of the 2-Laplacian,

(b) or n = 2, m = 2q, Mn is isometric to S2
(√

q(q + 1)/2
)

and λ is the first nonzero

eigenvalue of the 2-Laplacian.

By denoting λ1,p(M) as the first eigenvalue of the p-Laplacian of Mn and assuming

that the squared norm of the second fundamental form S is constant, we have a nice lower

Leung-type estimate

Corollary 1.2. Let Mn be a closed minimal submanifold in Sm with S = const., then

S ≥ n− αn,pλ1,p(M)2/p,

for p ∈ [2,∞).

Following this, the natural question arises: Can the hypothesis of an empty boundary

be removed? To address this, we will apply the Reilly-type formula obtained in Chapter 3.

Given that our submanifolds now include an additional structure (the boundary), it is

natural to impose specific boundary conditions. To proceed, we focus on two types of

eigenvalue problems for the p-Laplacian: the Dirichlet and Neumann problems. Under

these conditions, we obtain our second result:

Theorem 1.3. Let Mn be a compact minimal submanifold in Sm and let u be an eigen-

function of the Neumann problem of the p-Laplacian of Mn associated to λ. Assume in

addition that the second fundamental form of the boundary is negative semi-definite. Then

∫
M

(
S − n+ αn,pλ

2/p
)
|∇u|2p−2dM ≥ 0,

where p ∈ [2,∞), where αn,p is defined in (1.2). Moreover, if equality holds, then p = 2

and Mn is isometric to the hemisphere Sn
+(1) and λ = λN

1,2(Sn
+), where λN

1,2 stands for the

first eigenvalue of the 2-Laplacian related to the Neumann problem.

On the other hand, it is well known that submanifolds isometrically immersed in the

unit sphere satisfy an equation that relates the length of the second fundamental form to

their mean curvature H and scalar curvature R. Consequently, it is natural to replace the
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minimality hypothesis with a prescribed scalar curvature condition, specifically R = 1.

With this perspective, (WEI, 2011) extended Leung’s result by assuming that the scalar

curvature of such a closed manifold immersed in the unit sphere satisfies R = 1, which is

the same of the ambient. In this framework, our next result generalizes Wei’s result to

the context of the p-Laplacian. Specifically, we prove:

Theorem 1.4. Let Mn be a compact submanifold of Sm with constant scalar curvature

R = 1 and possibly with convex boundary. Let u be an eigenfunction of p-Laplacian (with

the Neumann boundary condition if ∂M ̸= ∅) of Mn associated to λ. Then

∫
M

(
n− 2(n− 2)

n
S − αn,pλ

2/p

)
|∇u|2p−2dM ≤ 0,

where αn,p is defined in (1.2). In particular, if the equality holds, then p = 2 and Mn is

isometric to:

(a) The sphere Sn(1), if ∂M = ∅;

(b) The closed hemisphere Sn
+(1), otherwise.

Finally, in terms of umbilicity tensor, we prove an similar integral inequality for arbi-

trary compact submanifolds immersed in the unit sphere without any additional assump-

tions in the geometry of the object. Explicitally,

Theorem 1.5. Let Mn be a compact submanifold of Sm with possibly convex boundary.

Let u be an eigenfunction of the p-Laplacian (with the Neumann boundary condition if

∂M ̸= ∅) of Mn associated to λ. Then

∫
M

(
n− n2

4(n− 1)
|ϕ|2 − αn,pλ

2/p

)
|∇u|2p−2dM ≤ 0,

where αn,p is a positive constant depending only given by n and p. In particular, if the

equality holds, then p = 2 and Mn is isometric to

(a) The sphere Sn(1), if ∂M = ∅;

(b) The closed hemisphere Sn
+(1), otherwise.
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It is important to note that all the results presented above hold exclusively for p ≥ 2.

The techniques employed are not sufficient for 1 < p < 2, as they rely on Hölder’s

inequality and, at certain steps, explicitly use the condition p − 2 ≥ 0. To address this

limitation, we make appropriate modifications to the arguments, enabling us to establish

the following lower bound for the first eigenvalue of the p-Laplacian in the case 1 < p < 2.

Theorem 1.6. Let Mn be a compact Riemannian manifold with mean convex boundary

and consider Mn as a minimal submanifold of Sn+q with S = const. Then

λ1,p(M) ≥
√
(n− S)C,

3

2
< p < 2,

where C is a positive constant depending only n, p and Mn.

Unlike other inequalities derived for p ≥ 2, the inequality in this result is never attained

(cf. Remark 3.29).

In the final chapter (Chapter 4), we focus on complete and non-compact Riemannian

manifolds. We begin by presenting some fundamental facts about the eigenvalue problem

of the p-Laplacian operator on these manifolds. Following this, we establish a Palmer-type

lower bound (see (PALMER, 1990)) for the first eigenvalue of the p-Laplacian, valid for

p ≥ 2. Specifically, we prove:

Lemma 1.7. Let D be a relatively compact smoothly bounded domain on a Riemannian

manifold Mn. Let λ1(D) denote the first eigenvalue of the problem

∆pu+ λ|u|p−2u = 0 in D,

u = 0 on ∂D.

Suppose there exists a smooth function f on D that satisfies ∆pf ≥ 1 in D. Then

λ1,p(D) ≥ 1

(β − α)p−1
,

where α, β are any lower and upper bounds respectively of f on D.

On the other hand, strongly p-subharmonic functions play an important role in the

study of Riemannian manifolds. Let us recall that a smooth function u : Mn → R is said
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to be strongly p-subharmonic if u satisfies the following differential inequality:

∆pu ≥ k > 0,

for some constant k. Concerning strongly p-subharmonic functions, we quote some well-

known results as, for example, the ones due to (TAKEGOSHI, 2001) for relations lying

between the existence of a certain strongly p-subharmonic function and the volume growth

property of the case p ≥ 2. Also, for p = 2, (COGHLAN L. ITOKAWA; KOSECKI, 1992)

proved a Liouville-type result which said that every 2-subharmonic function on a complete

non-compact Riemannian manifold must be unbounded provided that its sectional cur-

vature is bounded. A few years later, (LEUNG, 1997) demonstrated that the same result

holds when replacing the boundedness of the sectional curvature with the nullity of first

eigenvalue of the 2-Laplacian. As an application, Leung obtained an estimate for the size

of the image set of some types of maps between Riemannian manifolds. Proceeding with

this picture, as an application of our Palmer-type lower estimate, we obtain the following

extension of Leung’s result for the context of the p-Laplacian, for all p ≥ 2.

Theorem 1.8. If Mn is a complete non-compact Riemannian manifold with λ1,p(M) = 0,

then every strongly p-subharmonic function on Mn is unbounded.

As an application of our result, we study hypersurfaces immersed in a suitable warped

product I ×f P n, where f stands for the warped function, I ⊂ R is the real line and

P n the Riemannian fiber. In this setting, our first application addresses the following

nonexistence result.

Theorem 1.9. There exists no complete non-compact immersed hypersurface Mn con-

tained in a slab of I ×f P
n having λ1,2(M) = 0 and mean curvature satisfying

sup
M

|H| < min
[t1,t2]

H(t),

where H(t) denotes the mean curvature function of the slices of I ×f P
n.

We point out that (ALÍAS; DAJCZER, 2006) investigated complete surfaces properly

immersed in a slab of I ×f P
2 under suitable geometric assumptions on the Riemannian

fiber P 2. Our result generalizes this one without any assumption on P n.
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In the next result, again in the context of warped product metric, we will deal with

helix-type hypersurfaces or, those that have constant angle. In this setting, by considering

that the warped product manifold I ×f M
n satisfies H(t) ≥ 1 for all t ∈ I, we obtain.

Theorem 1.10. Let Mn be a complete non-compact helix-type hypersurface contained

in a slab of I ×f P n with λ1,p(M) = 0, p > 2. If the mean curvature (not necessarily

constant) satisfies H2 ≤ 1, then Mn is a slice.

As a consequence, we end this with the following extension of (ALÍAS; DAJCZER,

2006, Theorem 4) and (AQUINO; LIMA, 2014, Theorem 3.3).

Corollary 1.11. Let Mn be a complete non-compact helix-type hypersurface contained in

a slab of pseudo-hyperbolic manifold R ×et P
n with λ1,p(M) = 0. If the mean curvature

(not necessarily constant) satisfies H2 ≤ 1, then Mn is a slice.
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2 PRELIMINARIES

In this text, all arguments are presented in connected manifolds. We highlight that this

does not imply the non-validity of arguments; rather, we repeat them in each connected

component.

Let Mm be a Riemannian manifold endowed to the Riemannian metric ⟨ , ⟩, and Mn a

submanifold isometrically immersed on M
m. Eventually, we omit the dimension exponent

of the manifolds when there is no reason for confusion. We denote by ∇ and ∇ the Levi-

Civita connection of Mn and M
m respectively. Moreover, ∇⊥ denotes the Normal

Connection of Mn in M
m.

For each x ∈ Mn, we denote by TxM the Tangent Space of Mn in x. We denote by

A the Second Fundamental Form of Mn in M
m and for each η in the normal space

TxM
⊥ we define the symmetric endomorphism Aη : TxM → TxM known as Weiengarten

Operator. We recall the following formula:

⟨A(X, Y ), η⟩ = ⟨AηX, Y ⟩,

for all X, Y ∈ TxM . Since is possible to split ∇XY in tangent and normal components,

we recall the Gauss formula given by

∇XY = ∇XY + A(X, Y ),

for all X, Y . From a similar idea we recall the Weingarten formula which relate the

ambient connection of a tangent and a normal vector fields with the same in object.

Explicitly,

∇Xη = −AηX +∇⊥
Xη, (2.1)

where ∇⊥ denote the Normal connection of ∇. In particular, for Hypersurfaces, i.e.

submanifolds with codimension 1, the Weingarten formula presents in a more simple way.

Note that, if Mn is a hypersurface, then TxM
⊥ = span{η} for some unitary vector η.
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Hence,

0 = X(1) = X(|η|2) = 2⟨∇Xη, η⟩.

We conclude that ∇⊥
Xη = 0 and finally, for hypersurfaces, ∇Xη = −AηX.

Another important intrinsic quantity of Mn is the Mean curvature vector field

and the Mean curvature function defined, respectively, as follow

h =
1

n
tr A and H = |h|.

In particular, if H = 0, we say that Mn is a Minimal submanifold of Mm. Besides

this, we say that Mn has Parallel mean curvature if the mean curvature vector field

h is parallel as a section of the normal bundle, that is, ∇⊥h = 0.

We define the Curvature tensor of a manifold Mn as

R(X, Y )Z = −∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z

where [, ] denote the Lie bracket. Relating the Mm and Mn we have the Gauss equation

⟨R(X, Y )Z,W ⟩ = ⟨R(X, Y )Z,W ⟩+ ⟨A(X,Z), A(Y,W )⟩ − ⟨A(Y, Z), A(X,W )⟩ (2.2)

for all X, Y, Z,W ∈ TxM . Taking the trace of the curvature, we have the known Ricci

tensor, which is presented as

Ric(X,Z) =
n∑

i=1

⟨R(X, ei)Z, ei⟩ (2.3)

Hence, by (2.3) and (2.2),

Ric(X,X) = tr(RX) + ⟨A(X,X), A(ei, ei)⟩

− ⟨A(ei, X), A(X, ei)⟩

= tr(RX) + n⟨A(X,X), h⟩ −
n∑

i=1

|A(X, ei)|2,

(2.4)

where tr(RX) =
∑

i⟨R(X, ei)X, ei⟩ for every X ∈ X(M). Taking the trace of Ric, we
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obtain the formula of the Normalized scalar curvature R, which is give by

n(n− 1)R =
n∑

j=1

n∑
i=1

⟨R(ej, ei)ej, ei⟩+
n∑

j=1

n⟨A(ej, ej), h⟩ −
n∑

j=1

n∑
i=1

|A(ej, ei)|2

=
n∑

j=1

n∑
i=1

⟨R(ej, ei)ej, ei⟩+ n2H2 −
n∑

j=1

n∑
i=1

|A(ej, ei)|2,
(2.5)

the last term is precisely the Frobenius norm of A, the square length of the second

fundamental form S. In particular, Scal(M) = n(n − 1)R will stand for the Scalar

curvature.

Fix a point x ∈ Mn and take a local orthonormal frame {e1, . . . , em} of Mm around

of x such that {e1, . . . , en} are tangent fields and {en+1, . . . , em} are normal fields on Mn.

For each α, we will define a linear maps ϕα : TxM → TxM by

⟨ϕα(X), Y ⟩ = ⟨Aα(X), Y ⟩ − ⟨h, eα⟩⟨X, Y ⟩, (2.6)

and a bilinear map ϕ : TxM × TxM → (TxM)⊥ by

ϕ(X, Y ) =
∑
α

⟨ϕα(X), Y ⟩eα, (2.7)

where X, Y are tangent fields on Mn. It is easy to check that each map ϕα a is traceless

and that

|ϕ|2 = S − nH2. (2.8)

Using this notation, we get a version of a theorem from Leung (1992, Main Theorem)

in terms of (2.8) and the ambient curvature tensor.

Proposition 2.1. Let Mn be a submanifold of the Riemannian manifold M
m. Then

Ric(X,X) ≥ tr(RX)−
n− 1

n

(
|ϕ|2 + n(n− 2)√

n(n− 1)
H|ϕ| − nH2

)
,

for all X ∈ X(M).
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Proof. Firstly, we observe that in terms of (2.7), (2.4) can be rewritten

Ric(X,X) =
∑
i

⟨R(X, ei)X, ei⟩+ (n− 2)⟨ϕh(X), X⟩

+ (n− 1)H2|X|2 −
∑
α

|ϕα(X)|2.

Since ϕ is traceless, from Cauchy-Schwarz inequality, we have

⟨ϕh(X), X⟩ ≥ −|⟨ϕh(X), X⟩| ≥ −
√

n− 1

n
|ϕh||X|2

and ∑
α

⟨ϕ2
α(X), X⟩ ≤ n− 1

n

∑
α

|ϕα|2|X|2 = n− 1

n
|ϕ|2|X|2.

Besides this, we observe that

ϕh =
∑
α

⟨h, eα⟩ϕα.

From Cauchy Schwarz’s inequality and Hilbert-Schmidt’s norm definition, we have

|ϕh|2 =
∑
α,i

⟨h, eα⟩2⟨ϕα(ei), ϕα(ei)⟩

≤
∑
α,i

|h|2|eα|2⟨ϕα(ei), ϕα(ei)⟩

≤ H2|ϕ|2.

Hence

⟨ϕh(X), X⟩ ≥ −
√

n− 1

n
H|ϕ||X|2,

and consequently,

Ric(X,X) ≥
∑
i

⟨R(X, ei)X, ei⟩ −
(n− 1)(n− 2)√

n(n− 1)
H|ϕ||X|2

+ (n− 1)H2|X|2 − n− 1

n
|ϕ|2|X|2,

for all X is a tangent vector field. ■

When the ambient space has constant sectional curvature κ, the Gauss equation (2.2)
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becomes in the form:

⟨R(X, Y )Z,W ⟩ = κ (⟨X,Z⟩⟨Y,W ⟩ − ⟨Y, Z⟩⟨X,W ⟩) + ⟨A(X,Z), A(Y,W )⟩

− ⟨A(Y, Z), A(X,W )⟩,

for all X, Y, Z,W ∈ TxM . So, when M
m has constant sectional curvature, we obtain the

following Leung result (LEUNG, 1992)

Corollary 2.2. Let Mm
(κ) be a constant sectional curvature manifold and let Mn be a

submanifold of Mm. Let Ric denote the function that assigns the minimum Ricci curvature

to each point of Mn. Then

Ric(X,X) ≥ −n− 1

n

(
|ϕ|2 + n(n− 2)√

n(n− 1)
H|ϕ| − n(κ+H2)

)
|X|2, (2.9)

for all X ∈ X(M).

Given a C2 funcion u defined on the Riemannian manifold Mn, the Laplace-Beltrami

operator is a linear elliptical operator given by

∆u = −div(∇u), (2.10)

where div(∇u) := tr(Z 7→ ∇Z∇u).

A natural extension of this operator is the quasilinear elliptical operator p-Laplacian,

that we will denote by ∆p, where p is a real number satisfying 1 < p < +∞, which is

defined by

∆pu = −div(|∇u|p−2∇u).

The p-Laplacian operator appears naturally from the variational problem associated to

the p-energy functional

Ep(u) =

∫
M

|∇u|pdM,

where W 1,p
0 (M) is the completion of the subspace of smooth functions C∞(M) that has

compact support on Mn under the Sobolev norm

||u||1,p =
(∫

M

|u|pdM +

∫
M

|∇u|pdM
) 1

p

,
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where dM denotes the Riemannian volume element of Mn. We also define the Eigenvalue

problem, for closed manifolds, which consist to find real numbers λ such that

∆pu = λ|u|p−2u. (2.11)

It is natural to include additional information about the function’s behavior on the bound-

ary for compact manifolds with non-empty boundaries. Let ∂M denote the boundary of

Mn, seen as an orientable hypersurface of Mn equipped with a normal vector field η.

Throughout this work, we analyze three eigenvalue problems:

∆pu = λ|u|p−2u, in M

Dirichlet Problem u = 0, on ∂M

Neumann Problem ∂u
∂η

= 0, on ∂M,

(2.12)

where
∂u

∂η
= ⟨∇u, η⟩ = dη(u)

stands for the normal derivative. When the boundary is empty we will call Closed Case.

The real number λ is then called an eigenvalue of ∆p on Mn. The first nonzero eigenvalue

of ∆p, which we will denote by λ1,p(M), has a Rayleigh type variational characterization

(cf.(VERON, 1991)):

λ1,p(M) = inf

{∫
M
|∇u|pdM∫

M
|u|pdM

;u ∈ W 1,p(M)\{0} and
∫
M

|u|p−2udM = 0

}
. (2.13)

which has the same characterization as the Neumann problem. For the Dirichlet problem,

according to Lindqvist (LINDQVIST, 1990), the first eigenvalue is simple, positive, and

has the following characterization:

µ1,p(M) = inf

{∫
M
|∇u|pdM∫

M
|u|pdM

;u ∈ W 1,p
0 (M)\{0}

}
.

An example of the first eigenvalue in Dirichlet problem is µ1,p(Hn(−κ2)) = (n−1)pκp

pp
, where

Hn(−κ2) denotes the usual hyperbolic space with constant sectional curvature −κ2. On

the other hand, for other domains as the upper hemisphere (see (2.16)), the explicit
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expression is not known, this show the importance of obtain estimates.

Is important to highlight that the positivity of the first eigenvalue in the Neumann

problem and the closed case does not occur. In fact, the first eigenvalue for compact

manifolds in both cases is zero. Indeed, by Stokes theorem∫
M

∆pudM =

∫
M

λ|u|p−2udM

−
∫
M

div(|∇u|p−2∇u)dM = λ

∫
M

|u|p−2udM

0 = λ

∫
M

|u|p−2udM,

where dσ is the volume element of ∂M . Since the eigenfunctions associated to the first

eigenvalue in both cases do not change sign (cf. (LÊ, 2006)), hence
∫
M
|u|p−2udM > 0.

It is follows that λ = 0. In other words, the first nonzero Neumann (and closed case)

eigenvalue of the p-Laplacian is, in fact, the second eigenvalue. This argument also justifies

the integral equal to zero in (2.13).

A direct calculation by (2.11), allows us to write the p-Laplacian in terms of the

classical 2-Laplacian, that is, if U is a domain of Mn where ∇u ̸= 0,

∆pu = −div(|∇u|p−2∇u)

= |∇u|p−2∆u−∇u
(
|∇u|p−2

)
= |∇u|p−2∆u−∇u

(
|∇u|p−2

)
= |∇u|p−2∆u− (p− 2)|∇u|p−4⟨Hessu(∇u),∇u⟩.

(2.14)

Here, Hessu stands the symmetric (0, 2)-tensor called the hessian of u and defined by

Hessu(X, Y ) = (∇X∇u)(Y ) = XY (u)− (∇XY )u for any vector fields X and Y . We also

define the ∞−Laplacian operator as

∆∞u := lim
p→+∞

∆pu

(p− 2)|∇u|p−2
= −⟨Hessu(∇u),∇u⟩

|∇u|2
, (2.15)

when singularities occur, it is typical in the literature to write the operator without

denominator |∇u|2. This operator is a particular case of the functional Au : C2(M) → R
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(cf. (NABER; VALTORTA, 2014; VALTORTA, 2012)) defined as follow:

Au(f) =
⟨Hessf(∇u),∇u⟩

|∇u|2
.

In particular, the p-Laplacian definition can be written in this way

∆pu = |∇u|p−2(∆u− (p− 2)Au(u)).

We conclude this section by presenting three essential characterization theorems that

serve as the foundation for our results. The first is attributed to Obata (OBATA, 1962):

Lemma 2.3. Let c > 0. For a C∞ complete Riemannian manifold (Mn, g) of dimension

n ≥ 2, there is a C∞ nontrivial function u on Mn satisfying,

Hessu+ cug = 0

if and only if (Mn, g) is isometric to the Euclidean n-sphere (Sn(
√
c), g0) of radius 1/

√
c,

where g0 denotes the canonical metric on the sphere

Sn(
√
c) = {x = (x1, . . . , xn+1) ∈ Rn+1 ; |x| = 1/

√
c},

with constant curvature 1/
√
c.

The next two results regard the characterization of manifolds with non-empty bound-

aries. The first is a version of the Lichnerowicz-Obata theorem, presented in (REILLY,

1980). To establish the notation, we recall that the boundary ∂M is said to be convex

if the second fundamental form of ∂M in Mn is negative semi-definite concerning the

outward-pointing unit normal vector η. In particular, ∂M is considered mean convex if

its mean curvature function is non-positive (cf. (REILLY, 1980)).

Lemma 2.4. Let Mn he a compact manifold with nonempty mean convex boundary ∂M .

Assume that there is a constant c2 > 0 such that on Ric ≥ (n − 1)c2g (where g is the

metric on Mn). Then the first eigenvalue µ1,2(M) of Dirichlet case satisfies the inequality

µ1,2(M) ≥ nc2. Moreover, µ1,2(M) = nc2 if and only if Mn is isometric to a closed
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hemisphere

Sn
+

(√
c
)
= {x = (x1, . . . , xn+1) ∈ Rn+1 ; |x| = 1/

√
c and xn+1 ≥ 0}. (2.16)

of the Euclidean sphere Sn(
√
c) of radius 1/

√
c.

The second result concerning manifolds with boundary is due to (ESCOBAR, 1990).

Lemma 2.5. Let Mn be a compact Riemannian manifold with boundary. Assume that

there exists a nonconstant function u such that

Hessu = −cuI and
∂u

∂η
= 0

for some c > 0. Then Mn is isometric to Sn
+ (

√
c) the upper hemisphere of radius 1/

√
c.
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3 ESTIMATES ON COMPACT RIEMANNIAN MANIFOLDS

In the previous chapter, we introduced the notion of eigenvalues and provided a charac-

terization. As already noted, the exact formula for the first eigenvalue of the p-Laplacian is

not known — not even for simple domains such as the upper hemisphere, the unit sphere,

or the square. At first, it seems natural to expect a straightforward extension from ∆2

(the classical Laplacian) to ∆p, given that the structure of the p-Laplacian appears to

be a simple modification of the classical case. However, this expectation turns out to

be misleading. The difficulties arise from the fact that the p-Laplacian lacks fundamen-

tal properties such as linearity and self-adjointness, which are crucial for many classical

techniques, including spectral theory and superposition principles.

Moreover, the generalized operator may exhibit singular behavior at points where

|∇u| = 0, particularly when p < 2, further complicating the analysis. As a result, explicit

formulas for the eigenvalues of the p-Laplacian are generally unavailable, and one must

instead rely on variational characterizations, estimates, or numerical approximations. In

this chapter, we deal with estimates for compact submanifolds in the unit sphere.

3.1 A LINEARIZED OPERATOR

The nonlinear nature of the p-Laplacian operator necessitates linearized version to

facilitate its analysis. In this setting, a remarkable work of (KAWAI; NAKAUCHI, 2003)

introduces a linear operator that provides an effective framework for examining the prop-

erties and behavior of the p-Laplacian in a more manageable way. For every function

u ∈ C1(M), they defined the linearized operator Pu as follows: for a function f ∈ C2(M),

let

Pu(f) = |∇u|p−2∆f − (p− 2)|∇u|p−4⟨Hessf(∇u),∇u⟩.
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By applying a direct computation

Pu(f) = |∇u|p−2∆f − (p− 2)|∇u|p−4⟨Hessu(∇u),∇f⟩

+ (p− 2)|∇u|p−4⟨Hessu(∇u),∇f⟩

− (p− 2)|∇u|p−4⟨Hessf(∇u),∇u⟩

= −div(|∇u|p−2∇f) + (p− 2)|∇u|p−2 (⟨∇log|∇u|,∇f⟩ − Au(f)) .

That is, the operator Pu can be split as follows:

Pu(f) = Lu(f) + (p− 2)|∇u|p−2Ru(f).

where Ru(f) = ⟨∇log|∇u|,∇f⟩−Au(f). For our interest, we take only the divergent part

of the operator Pu to define the new linearized p-Laplacian Lu as follows:

Lu(f) = −div(|∇u|p−2∇f), (3.1)

where u ∈ C2(M). Furthermore, we should note that Lu(u) = ∆pu.

It should be noted that, in the compact case, the operator Lu (and Pu as well) must

have singular points due to Weierstrass theorem’s. To address this problem, we use an

ε-approximation argument, which is presented in detail in Appendix 4.2.

Concerning to the Lu operator, we have the following properties:

Proposition 3.1. For any u ∈ C2, the operator Lu satisfies the following proprieties

a) Lu is a linear operator.

b) Lu is an elliptic operator

c) For any f1, f2 ∈ C2,

Lu(f1f2) = f1Lu(f2) + f2Lu(f1) + 2|∇u|p−2⟨∇f2,∇f1⟩

Proof. The items a) and b) are trivial by the definition of the operator. Moreover,
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from (2.10)

Lu(f1f2) = div(|∇u|p−2∇(f1f2))

= |∇u|p−2∆(f1f2)− (p− 2)|∇u|p−4⟨Hessu(∇u),∇(f1f2)⟩

Now, by using the Hessian properties,

Lu(f1f2) = |∇u|p−2 (f1∆f2 + f2∆f1 + 2⟨∇f2,∇f1⟩)

− (p− 2)|∇u|p−4⟨Hessu(∇u), f1∇(f2) + f2∇(f1)⟩

= |∇u|p−2f1∆f2 + |∇u|p−2f2∆f1 + 2|∇u|p−2⟨∇f2,∇f1⟩

− (p− 2)|∇u|p−4f2⟨Hessu(∇u),∇(f1)⟩

− (p− 2)|∇u|p−4f1⟨Hessu(∇u),∇(f2)⟩.

Hence,

Lu(f1f2) = f1Lu(f2) + f2Lu(f1) + 2|∇u|p−2⟨∇f2,∇f1⟩.

■

To establish a connection between geometric quantities and the eigenvalues of the p-

Laplacian, we begin by presenting a generalization of the well-known Bochner formula.

We include the formal statement and detailed proof below for completeness.

Lemma 3.2 (Bochner’s Formula). Let Mn be a Riemannian manifold. If u ∈ C2(M),

then

1

2
∆|∇u|2 = ⟨∇u,∇∆u⟩ − |Hessu|2 − Ric(∇u,∇u).

Proof. Let {e1, . . . , en} be an orthonormal frame on X(M) and write

∇|∇u|2 =
∑
i

ei(|∇u|2)ei.
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Then,

1

2
div
(
∇|∇u|2

)
=

1

2

∑
i

ei
(
ei(|∇u|2)

)
+ ei(|∇u|2)div(ei)

=
∑
i

ei (⟨∇ei∇u,∇u⟩) + ⟨∇ei∇u,∇u⟩div(ei)

=
∑
i

⟨∇ei∇∇u∇u, ei⟩+ ⟨∇ei∇u,∇ei∇u⟩ − 2⟨∇∇u∇u,∇eiei⟩.

On the other hand, direct computation gives

⟨∇u,∇∆u⟩ = −
∑
i

∇u (⟨∇ei∇u, ei⟩)

= −
∑
i

⟨∇∇u∇ei∇u, ei⟩ − ⟨∇ei∇u,∇∇uei⟩

and

Ric(∇u,∇u) =
∑
i

(⟨∇∇u∇ei∇u, ei⟩ − ⟨∇ei∇∇u∇u, ei⟩ − ⟨∇ei∇u,∇ei∇u⟩)

+
∑
i

⟨∇ei∇u,∇∇uei⟩.

To end this proof, we will show that
∑

i⟨∇ei∇u,∇∇uei⟩ = 0. In fact, since ⟨ei, ej⟩ = δij,

we have

⟨∇ejei, ej⟩ = −⟨ei,∇ejej⟩ and ⟨∇∇uei, ej⟩ = −⟨ei,∇∇uej⟩.

Hence,

∑
i

⟨∇ei∇u,∇∇uei⟩ =
∑
i

⟨∇∇∇uei∇u, ei⟩ =
∑
i,j

⟨∇∇uei, ej⟩⟨∇ej∇u, ei⟩

=
∑
i,j

⟨∇∇uei, ej⟩⟨∇ej∇u, ei⟩ = −
∑
i,j

⟨∇∇uej, ei⟩⟨∇ej∇u, ei⟩

= −
∑
j

⟨∇∇uej,∇ej∇u⟩ = −
∑
i

⟨∇ei∇u,∇∇uei⟩,

as desired. ■

We point out that the reason for using the following formula, rather than others in the
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literature, is that our operator is of divergence type. This property enables the application

of the Divergence Theorem in computations involving integrals.

Proposition 3.3. Let Mn be a Riemannian manifold. If u ∈ C3(M) and |∇u| ≠ 0, then

1

p
Lu (|∇u|p) =|∇u|p−2

(
⟨∇u,∇∆pu⟩ − (p− 2)

(
∆∞u∆pu+ 2|∇u|p−4|Hessu(∇u)|2

))
+ |∇u|2p−4

(
(p− 2) ⟨∇u,∇∆∞u⟩ − |Hessu|2 − Ric(∇u,∇u)

)
(3.2)

for every p ∈ (1,∞).

Proof. By using (3.1), a direct computation shows

−Lu(|∇u|p) = div(|∇u|p−2∇|∇u|p)

=
p

2
div(|∇u|2p−4∇|∇u|2)

=
p

2
|∇u|2p−4div(∇|∇u|2) + p∇|∇u|2

(
|∇u|2p−4

)
.

Since,

∇|∇u|2
(
|∇u|2p−4

)
= 2

(p− 2)

2
|∇u|2p−6⟨∇|∇u|2,∇|∇u|2⟩,

and

⟨∇|∇u|2, X⟩ = X(|∇u|2) = 2⟨∇X∇u,∇u⟩ = 2⟨Hessu(∇u), X⟩

for all X ∈ X(M). We have that

1

p
Lu(|∇u|p) = 1

2
|∇u|2p−4∆|∇u|2 − 2(p− 2)|∇u|2p−6|Hessu (∇u)|2.

By Proposition 3.2, we have

1

p
Lu(|∇u|p) = |∇u|2p−4

(
⟨∇u,∇∆u⟩ − |Hessu|2 − Ric(∇u,∇u)

)
− 2(p− 2)|∇u|2p−6|Hessu(∇u)|2.

(3.3)



31

Finally, from (2.14) and (2.15), we see that the first term of (3.3) can be write as follow

⟨∇u,∇∆pu⟩ = ⟨∇u,∇
(
|∇u|p−2∆u− (p− 2)|∇u|p−2∆∞u

)
⟩

= |∇u|p−2⟨∇u,∇∆u⟩+ (p− 2)

2
|∇u|p−4∆u⟨∇u,∇|∇u|2⟩

− (p− 2)|∇u|p−2⟨∇u,∇∆∞u⟩ − (p− 2)

2
∆∞u|∇u|p−4⟨∇u,∇|∇u|2⟩.

Hence,

|∇u|2p−4⟨∇u,∇∆u⟩ = |∇u|p−2⟨∇u,∇∆pu⟩+ (p− 2)|∇u|2p−4⟨∇u,∇∆∞u⟩

− (p− 2)|∇u|p−2∆∞u∆pu.
(3.4)

Therefore, by putting (3.4) in (3.3) we finish this proof. ■

To deal with manifolds that have a boundary, some additional information is needed.

Let Mn be a submanifold of Sm and let ∂M be the boundary of Mn viewed as a smooth

embedded submanifold of Mn. Let A be the second fundamental form of ∂M in the

normal direction η ∈ X⊥(M) which is related with the Weingarten operator Aη of ∂M in

Mn by

∇XY = ∇∂
XY +A(X, Y ), Aη(X) = −∇Xη,

for every X, Y ∈ X(∂M), while the second one derivate immediately from the equation

(2.1) and the fact that ∂M is a hypersurface of Mn. Here, ∇∂ denotes the Levi-Civita

connection of ∂M . The mean curvature function at x ∈ ∂M is defined by

H∂(x) =
1

n− 1
tr(Aη(x)).

As a by-product of the previous digression, denoting ∆∂ the Laplacian on ∂M regard-

ing the induced metric, from Proposition 3.3 we have the following Reilly-type formula:

Proposition 3.4. Let Mn be a compact manifold with boundary ∂M . Then, for any
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function u ∈ C2(M) with ∇u ̸= 0 on Mn, we have∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u) + (p− 2)2(∆∞u)2

)
dM

=

∫
M

(∆pu)
2dM − 2(p− 2)

∫
M

|∇u|2p−6|Hessu(∇u)|2

+

∫
∂M

|∇u|2p−4Q(u)dσ,

(3.5)

where

Q(u) = du(η)
(
∆∂u+ (n− 1)H∂ du(η)

)
+ ⟨Aη(∇∂u),∇∂u⟩+ ⟨∇∂u,∇∂du(η)⟩,

and dσ denotes the Riemannian volume element on ∂M .

Proof. By integrating (3.2) over Mn, we have

−
∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u) + 2(p− 2)|Hessu(∇u)|2|∇u|−2

)
dM

=
1

p

∫
M

Lu(|∇u|p)dM −
∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM

− (p− 2)

∫
M

|∇u|p−2
(
|∇u|p−2⟨∇u,∇∆∞u⟩ −∆∞u∆pu

)
dM.

(3.6)

Integration by parts immediately yields∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM =

∫
M

div(∆pu|∇u|p−2∇u)dM +

∫
M

(∆pu)
2dM

=

∫
∂M

|∇u|p−2du(η)∆pu dσ +

∫
M

(∆pu)
2dM,

(3.7)

and∫
M

|∇u|p−2
(
|∇u|p−2⟨∇u,∇∆∞u⟩ −∆∞u∆pu

)
dM

=

∫
M

div(∆∞u|∇u|2p−4∇u)dM + (p− 2)

∫
M

|∇u|2p−4(∆∞u)2dM

=

∫
∂M

|∇u|2p−4du(η)∆∞u dσ + (p− 2)

∫
M

|∇u|2p−4(∆∞u)2dM.

(3.8)
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On the other hand, the divergence theorem implies

1

p

∫
M

Lu(|∇u|p)dM = −1

p

∫
M

div(|∇u|p−2∇|∇u|p)dM

= −1

p

∫
∂M

|∇u|p−2⟨∇|∇u|p, η⟩dσ.
(3.9)

Hence, by replacing (3.7), (3.8) and (3.9) in (3.6),∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u)

)
dM

= −2(p− 2)

∫
M

|Hessu(∇u)|2|∇u|2p−6dM +

∫
M

(∆pu)
2dM

− (p− 2)2
∫
M

|∇u|2p−4(∆∞u)2 +

∫
∂M

|∇u|p−2Γ(u)dσ,

(3.10)

where,

Γ(u) =
1

p
⟨∇|∇u|p, η⟩+ |∇u|p−2du(η)∆u. (3.11)

Now, in order to get (3.11), let us consider {e1, . . . , en} an orthonormal frame on Mn

adapted to ∂M , that is, e1, . . . , en−1 are tangent to ∂M and en = η. From (2.1),

∆u = −
n−1∑
i=1

⟨∇ei∇u, ei⟩ − ⟨∇η∇u, η⟩

= −
n−1∑
i=1

⟨∇∂
ei
∇∂u, ei⟩+ du(η)

n−1∑
i=1

⟨Aη(ei), ei⟩ − ⟨∇η∇u, η⟩

= ∆∂u+ (n− 1)H∂ du(η)− ⟨∇η∇u, η⟩.

(3.12)

On the other hand, by using one more time (2.1), a direct computation gives

⟨∇|∇u|p, η⟩ = p|∇u|p−2⟨∇η∇u,∇u⟩

= p|∇u|p−2
(
⟨∇∇∂u∇∂u, η⟩+ ⟨∇∂u,∇∂du(η)⟩+ du(η)⟨∇η∇u, η⟩

)
= p|∇u|p−2

(
⟨∇∂u,∇∂du(η)⟩+ ⟨Aη(∇∂u),∇∂u⟩+ du(η)⟨∇η∇u, η⟩

)
.

(3.13)

Thus, from (3.12) and (3.13), (3.11) reads

Γ(u) = |∇u|p−2
(
du(η)

(
∆∂u+ (n− 1)H∂ du(η)

))
+ |∇u|p−2

(
⟨Aη(∇∂u),∇∂u⟩+ ⟨∇∂u,∇∂du(η)⟩

)
.
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Therefore, by inserting this in (3.10), we have∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u) + 2(p− 2)|Hessu(∇u)|2|∇u|−2

)
dM

=

∫
M

(∆pu)
2dM − (p− 2)2

∫
M

|∇u|2p−4(∆∞u)2

+

∫
∂M

|∇u|2p−4Q(u)dσ,

(3.14)

where Q(u) is defined in (3.5). ■

The following inequalities will be useful in the proof of our results.

Lemma 3.5. Let Mn be a Riemannian manifold and u a C2 function such that ∇u ̸= 0.

Then,

(a) (∆pu)
2 ≤ n(p− 1)2|∇u|2p−4|Hessu|2,

(b) (∆∞u)2 ≤ |Hessu(∇u)|2

|∇u|2
,

for all p ≥ 2.

Proof. Let us prove (a). For this, we will consider the following (1, 1)-tensor T : X(M) →

X(M) given by

T (X) = ∇X(|∇u|p−2∇u).

Direct computation allows that

T (X) = (p− 2)|∇u|p−4⟨Hessu(∇u), X⟩∇u+ |∇u|p−2∇X∇u, (3.15)

for all X ∈ X(M). In particular, tr(T ) = −∆pu and

⟨T (X), T (X)⟩ = (p− 2)2|∇u|2p−6⟨Hessu(∇u), X⟩2

+ 2(p− 2)|∇u|2p−6⟨Hessu(∇u), X⟩⟨∇u,∇X∇u⟩

+ |∇u|2p−4⟨∇X∇u,∇X∇u⟩
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If {ei}i is an orthonormal frame of Mn, then

|T |2 = (p− 2)2
∑
i

|∇u|2p−6⟨Hessu(∇u), ei⟩2

+ 2(p− 2)
∑
i

|∇u|2p−6⟨Hessu(∇u), ei⟩⟨∇u,∇ei∇u⟩

+
∑
i

|∇u|2p−4⟨∇ei∇u,∇ei∇u⟩

= p(p− 2)|∇u|2p−6|Hessu(∇u)|2 + |∇u|2p−4|Hessu|2

≤ (p− 1)2|∇u|2p−4|Hessu|2

(3.16)

We use p ≥ 2 and the Cauchy-Schwarz inequality in the last line. Thence, from the

well-known operator inequality n|T |2 ≥ tr(T )2, we have

|∇u|2p−4|Hessu|2 ≥ (∆pu)
2

n(p− 1)2
. (3.17)

The item (b) follows from a suitable application of the Cauchy-Schwarz inequality. ■

3.2 MINIMAL SUBMANIFOLDS

In this section, we will use the machinery developed in the previous section to extend

the integral inequality obtained in (LEUNG, 1983, Theorem 3) for the p-Laplacian in the

case where p ∈ [2,∞).

Theorem 3.6. Let Mn be a closed minimal submanifold in Sm and let u be an eigenfunc-

tion of the p-Laplacian of Mn associated to λ. Then

∫
M

(S + αn,pλ
2/p − n)|∇u|2p−2dM ≥ 0,

where p ∈ [2,∞) and αn,p is defined in (1.2). Moreover, if equality holds, then p = 2 and

(a) either Mn is totally geodesic and λ is the first nonzero eigenvalue of the 2-Laplacian,

(b) or n = 2 and m = 2q and Mn is isometric to S2
(√

q(q + 1)/2
)

and λ is the first

nonzero eigenvalue of the 2-Laplacian.
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Proof. Taking into account the integral in Proposition 3.3, from the divergence theorem,

since the boundary is empty, we have∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u)

)
dM =

∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM

− 2(p− 2)

∫
M

|∇u|2p−6|Hessu(∇u)|2dM

+ (p− 2)

∫
M

|∇u|p−2
(
|∇u|p−2⟨∇u,∇∆∞u⟩ −∆∞u∆pu

)
dM,

(3.18)

By using the divergence theorem again,

0 =

∫
M

div(|∇u|p−2∆∞u|∇u|p−2∇u)dM

= −
∫
M

|∇u|p−2∆∞u∆pudM +

∫
M

|∇u|p−2∇u
(
|∇u|p−2∆∞u

)
dM

= −
∫
M

|∇u|p−2∆∞u∆pudM +

∫
M

|∇u|p−2∆∞u∇u
(
|∇u|p−2

)
dM

+

∫
M

|∇u|2p−4⟨∇u,∇∆∞u⟩dM

= −
∫
M

|∇u|p−2∆∞u∆pudM + (p− 2)

∫
M

|∇u|2p−4(∆∞u)2dM

+

∫
M

|∇u|2p−4⟨∇u,∇∆∞u⟩dM.

So, by replacing this in (3.18), we get∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u)

)
dM

=

∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM − (p− 2)2
∫
M

|∇u|2p−4(∆∞u)2dM

− 2(p− 2)

∫
M

|∇u|2p−6|Hessu(∇u)|2dM.

(3.19)

Applying Lemma 3.5, (3.19) reads∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u)

)
dM ≤

∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM

− p(p− 2)

∫
M

|∇u|2p−4(∆∞u)2dM.

(3.20)
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Since p ≥ 2, we get

∫
M

|∇u|2p−4
(
|Hessu|2 +Ric(∇u,∇u)

)
dM ≤

∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM, (3.21)

with equality occurring if and only if either u is ∞-harmonic or p = 2.

Inserting (3.17) in (3.21), we obtain∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤
∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM

− 1

n(p− 1)2

∫
M

(∆pu)
2dM.

By using the divergence theorem,

0 =

∫
M

div(∆pu|∇u|p−2∇u)dM = −
∫
M

(∆pu)
2dM +

∫
M

|∇u|p−2⟨∇u,∇∆pu⟩dM. (3.22)

Thence, ∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤
(
n(p− 1)2 − 1

n(p− 1)2

)∫
M

(∆pu)
2dM.

Since u be an eigenfunction of the p-Laplacian of Mn associated to λ, from (2.11)

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2

(
n(p− 1)2 − 1

n(p− 1)2

)∫
M

|u|2p−2dM. (3.23)

On the one hand, a direct computation in (3.22) gives,

div(|u|p−2u|∇u|p−2∇u) = −|u|p−2u∆pu+ |∇u|p−2⟨∇u,∇(|u|p−2u)⟩

= −λ|u|2p−2 + (p− 1)|∇u|p|u|p−2
(3.24)

and so,

λ

∫
M

|u|2p−2dM = (p− 1)

∫
M

|∇u|p|u|p−2dM. (3.25)

Since p > 2,
p

2p− 2
+

p− 2

2p− 2
= 1.

Note that
2p− 2

p
= 2− 2

p
> 1

2p− 2

p− 2
=

p

p− 2
+ 1 > 1.
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By using Hölder’s inequality, for any p > 2, we have

∫
M

|∇u|p|u|p−2dM ≤
(∫

M

(|∇u|p)
2p−2

p dM

) p
2p−2

(∫
M

(|u|p−2)
2p−2
p−2 dM

) p−2
2p−2

=

(∫
M

|∇u|2p−2dM

) p
2p−2

(∫
M

|u|2p−2dM

) p−2
2p−2

.

(3.26)

Hence, from (3.25) and (3.26),

∫
M

|u|2p−2dM ≤
(

λ

p− 1

) 2−2p
p
∫
M

|∇u|2p−2dM. (3.27)

Therefore, by replacing this inequality in (3.23),

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2/p

(
n(p− 1)2 − 1

n(p− 1)2/p

)∫
M

|∇u|2p−2dM. (3.28)

Now, let us suppose that Mn is a minimal submanifold in Sm. By Corollary 2.2, we have

that,

Ric(∇u,∇u) ≥ −n− 1

n

(
|ϕ|2 + n(n− 2)√

n(n− 1)
H|ϕ| − n(κ+H2)

)
|∇u|2

=
n− 1

n
(n− S) |∇u|2

By inserting this in (3.28),

∫
M

(n− S) |∇u|2p−2dM ≤ αn,pλ
2/p

∫
M

|∇u|2p−2dM,

where αn,p is a positive constant given by

αn,p =
n(p− 1)2 − 1

(n− 1)(p− 1)2/p
.

Therefore, ∫
M

(
n− S − αn,pλ

2/p
)
|∇u|2p−2dM ≤ 0, (3.29)

which concludes the first part of the result.

If the equality holds in (3.29), all the inequalities along the proof become equal. In



39

the next steps, we analyze each of them.

The first inequality is the one provided by Lemma 3.5, which is an equality case of

Cauchy-Schwarz or p = 2.1 Hence, ∇u = γHess(∇u) for some constant γ. From now

on, we assume that p ̸= 2. The next inequality2 is (3.21). When the equality happens,

0 = γ⟨Hessu(∇u),∇u⟩ = γ|∇u|2. Hence, ∇u = 0, and consequently, the eigenvalue

associated with u is zero, which contradicts the initial assumptions. Therefore, if equality

in (3.29) holds, we must have p = 2. Hence, from Lemma 3.5,

λ

n
uI(X) = −Hessu(X)

for all X ∈ X(M). Thus, Lemma 2.3 assures that Mn must be isometric to Sn
(√

n/λ
)
.

Consequently, Mn has a second fundamental form of constant length. Moreover, by (3.29),

n− S − λ = 0. (3.30)

Therefore, by (2.5)

n(n− 1)
λ

n
= n(n− 1)− (n− λ).

By direct computation, (n−λ)(n−2) = 0. So, if n ≥ 3, n = λ and then by (3.30) we have

that S = 0. For n = 2, we have, by (CHERN, 1970), that m = 2q and Mn is isometric to

S2
(√

q(q + 1)/2
)
. ■

It is important to highlight that the existence of a minimal immersion of S2
(√

q(q + 1)/2
)

into S2q(1) is guaranteed by (WALLACH; CARMO, 1971, Theorem 1.2).

Remark 3.7. Another way to see the conclusion of the equality, if p ̸= 2, is through the

equality (3.21). In this case, we have Hessu(∇u) = 0. On the other hand, the inequality in

(3.16) turn into an equality, hence |Hess(∇u)| = γ|Hessu| = 0. Besides this, from (3.17),

∇(|∇u|p−2∇u) = −(1/n)∆puI, where I is the identity in the algebra of smooth vector

1The second case happens because using Cauchy-Schwarz inequality is unnecessary if p = 2. The
terms that are compared will be zero.

2The inequality (3.20) is not analyzed because is a direct computation of (3.19) and Lemma 3.5.



40

fields on Mn. From this and (3.15),

0 = (p− 2)|∇u|p−4⟨Hessu(∇u), ·⟩∇u+ |∇u|p−2Hessu(·) = − 1

n
∆puI,

that is,

0 =
λ

n
|u|p−2uI.

Thus, λ = 0, which is a contraction.

As an immediate consequence of Theorem 3.6, we have the following Leung’s type

estimate for the length of the second fundamental form in terms of the first eigenvalue of

the p-Laplacian (cf. (LEUNG, 1983, Corollary 2)).

Corollary 3.8. Let Mn be a closed minimal submanifold in Sm with S = const., then

S ≥ n− αn,pλ1,p(M)2/p,

for p ∈ [2,∞).

By using the identity (2.5), it is easy to see that any minimal submanifolds with

constant scalar curvature immersed in Sm must have constant squared norm of the second

fundamental form. In other words, we have the following result:

Corollary 3.9. Let Mn be a closed minimal submanifold in Sm with constant scalar

curvature. We have

ScalM ≤ n(n− 2) + αn,pλ1,p(M)2/p,

for p ∈ [2,∞).

Proof. By equation (2.5),

n(n− 1)R = n(n− 1)− S ≤ n(n− 1)− n+αn,pλ1,p(M)2/p

≤ n(n− 2)+αn,pλ1,p(M)2/p.

■

Now we will focus our attention on studying compact manifolds Mn (with nonempty

boundary ∂M and n ≥ 3) to obtain estimates similar to those obtained in Theorem 3.6.
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For the study of the first eigenvalue of compact manifolds with boundary, it is more

appropriate to work with certain eigenvalue equations. The first eigenvalue equation that

we will consider is the Neumann eigenvalue problem:

∆pu = λ|u|p−2u, in Mn

du(η) = 0, on ∂M,
(3.31)

where η denotes the outward-pointing normal unit vector field to ∂M . Let us denote

by λN
1,p(M) the infimum of the set of nonzero eigenvalues for this problem. According

to (VERON, 1991), a similar argument to the closed case, assures that λN
1,p(M) is itself a

positive eigenvalue with the variational characterization

λN
1,p(M) = inf

{∫
M
|∇u|pdM∫

M
|u|pdM

; u ∈ W 1,p(M)\{0} and
∫
M

|u|p−2udM = 0

}
.

As an application of Proposition 3.4, we present our first version of Theorem 3.6

concerning the Neumann eigenvalue problem. It is important to highlight that, in the

next two theorems (and their generalizations for non-minimal submanifolds), the case

p = 2 was not known in the literature (unlike the closed case).

Theorem 3.10. Let Mn be a compact minimal submanifold in Sm and let u be an eigen-

function of the Neumann problem of the p-Laplacian of Mn associated to λ. Assume in

addition that the boundary ∂M is convex. Then

∫
M

(
S − n+ αn,pλ

2/p
)
|∇u|2p−2dM ≥ 0,

where p ∈ [2,∞) and αn,p is defined in (1.2). Moreover, if equality holds, then p = 2 and

Mn is isometric to the hemisphere Sn
+(1) and λ = λN

1,2(Sn
+)

Proof. By using Lemma 3.5, we can estimate (3.5) as follows

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤
(
n(p− 1)2 − 1

n(p− 1)2/p

)∫
M

(∆pu)
2dM

+

∫
∂M

|∇u|2p−4Q(u)dσ,

(3.32)

with equality if and only if Hessu(∇u) = 0 or p = 2.
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From the Neumann boundary conditions (3.31), and by using the assumption on the

boundary ∂M , we have Q(u) ≤ 0. Hence, (3.32) becomes

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2

(
n(p− 1)2 − 1

n(p− 1)2/p

)∫
M

|u|2p−2dM.

By applying the divergence theorem in (3.24),

−λ

∫
M

|u|2p−2dM + (p− 1)

∫
M

|∇u|p|u|p−2dM =

∫
M

div(|u|p−2u|∇u|p−2∇u)dM

=

∫
∂M

|u|p−2u|∇u|p−2du(η)dσ,

and using one more time (3.31), we have

λ

∫
M

|u|2p−2dM = (p− 1)

∫
M

|∇u|p|u|p−2dM.

Since p ≥ 2, we can use (3.27) in order to obtain,

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2/p

(
n(p− 1)2 − 1

n(p− 1)2/p

)∫
M

|∇u|2p−2dM.

As Mn is minimal, from Corollary 2.2,

∫
M

(
n− S − αn,pλ

2/p
)
|∇u|2p−2dM ≤ 0,

where αn,p is defined in (1.2).

In the case of equality, we just see that equality (3.32) implies that Hessu(∇u) = 0.

Consequently, we can reason as in the last part of the proof of Theorem 3.6 to conclude

that p = 2. Similar to what happened in the minimal case,

Hessu = −λ

n
uI and du(η) = 0.

From this, we can apply Lemma 2.5 to obtain that Mn is isometric to Sn
+(
√

λ/n), the

upper hemisphere of radius
√

n/λ. Following the last part of the proof of Theorem 3.6,
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we have that S is constant and in fact by (1.2),

S = n(n− 1)− n(n− 1)
λ

n
.

Hence, equality holds

λ+ n(n− 1)− (n− 1)λ− n = 0 =⇒ (n− 2)(n− λ) = 0.

Therefore, λ = n and Mn is isometric to the totally geodesic hemisphere Sn
+(1) and λ is

the first nonzero eigenvalue of the 2-Laplacian. ■

As a consequence,

Corollary 3.11. In the situation of Theorem 3.10, if the square length of the second

fundamental form S is constant, then

S ≥ n− αn,pλ
N
1,p(M)2/p.

The second eigenvalue problem associated with the p-Laplacian that we will consider

is the Dirichlet problem

∆pu = µ|u|p−2u, in Mn

u = 0, on ∂M.
(3.33)

We will denote by µ1,p(M) the infimum of the set of eigenvalues of the problem (3.33).

According to Lindqvist (LINDQVIST, 1990), µ1,p(M) is simple, strictly positive and

characterized by

µ1,p(M) = inf

{∫
M
|∇u|pdM∫

M
|u|pdM

; u ∈ W 1,p
0 (M)\{0}

}
.

In this setting, concerning the Dirichlet eigenvalue problem, we have.

Theorem 3.12. Let Mn be a compact minimal submanifold in Sm and let u be an eigen-

function of the Dirichlet problem of the p-Laplacian of Mn associated to µ. Assume in



44

addition that ∂M is mean convex. Then

∫
M

(
S − n+ αn,pµ

2/p
)
|∇u|2p−2dM ≥ 0,

where p ∈ [2,∞) and αn,p is defined in (1.2). Moreover, if equality holds and S = const.,

then p = 2 and Mn is isometric to a closed hemisphere of the Euclidean sphere Sn(1) and

µ = µ1,2(Sn).

Proof. The inequality part follows as the proof of Theorem 3.10 by changing the convex

boundary hypothesis to a mean convex boundary. Let us consider then the case where

equality holds. By using the equality in Theorem 3.10, we have p = 2 and, as S is

constant, we write

S = n− µ1,2(M).

From Ricci curvature estimate (Corollary 2.2),

Ric(X,X) ≥ n− 1

n
(n− S) |X|2 = (n− 1)c2|X|2, with c2 =

µ1,2(M)

n
,

for every X ∈ X(M). Hence, using Reilly’s result 2.4, we conclude that Mn is isometric

to a closed hemisphere of the Euclidean sphere Sn(c2). At this point, we reason as in the

last part of the proof of Theorem 3.10 to conclude the result. ■

By thinking as in Corollary 3.9, we also have the following result:

Corollary 3.13. Let Mn be a compact minimal submanifold in Sm with constant scalar

curvature. For a real number p ∈ [2,∞), we have

(i) if ∂M is mean convex, then

ScalM ≤ n(n− 2) + αn,pµ1,p(M)2/p;

(ii) if ∂M is convex boundary, then

ScalM ≤ n(n− 2) + αn,pλ
N
1,p(M)2/p.
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3.2.1 Hypersurfaces with constant relative nullity index

Our aim in this subsection is to extend part of the results of (BARBOSA; BARROS,

2003) to the first eigenvalue of the p-Laplacian by using the analytical tools developed in

the previous sections. For this, let us consider Mn a connected isometrically immersed

hypersurface of Sn+1 which we assume to be orientable and oriented by a globally defined

unit normal vector field N . Let A = AN be the Weingarten operator of the immersion

concerning the normal direction N . We define the Relative nullity space for every

x ∈ Mn by the set (cf. (DAJCZER, 1990, Chapter 3))

L(x) = {v ∈ TxM ; v ∈ Ker(Ax)}.

The dimension ν(x) of L(x) is called the Index of relative nullity of Mn at x. In

this setting, we say that Mn has constant index of relative nullity k if ν(x) = k for all

x ∈ Mn. By using this notation, (BARBOSA; BARROS, 2003, Lemma 2) proved the

following result:

Lemma 3.14. Let V be a finite-dimensional vector space of dimension n, and let T :

V → V be a traceless, symmetric, nontrivial linear operator. Consider an orthonormal

basis {e1, . . . , en} such that Tei = µiei for i = 1, . . . , n. If k = dim(kerT ), then for a

nonzero vector v =
∑n

i=1 viei, the following inequality holds:

1

n− k
|T |2|v|2 ≤

n∑
i=1

µ2
i v

2
i .

In our context, to assume that Mn has a constant index of relative nullity k if ν(x) = k

for all x ∈ Mn is equivalent to assuming that k = dim(kerA). So, besides this, if we

consider that Mn is minimal in Sn+1, from Corollary 2.2, we get the following Ricci low

estimate:

Ric(X,X) ≥ 1

n− k
((n− 1)(n− k)− S) |X|2,

for all X ∈ X(M). By this, we present our first result concerning to constant relative

nullity index, which extends (BARBOSA; BARROS, 2003, Theorem 2) to the p-Laplacian

first eigenvalue.
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Theorem 3.15. Let Mn be a closed minimal hypersurface in Sn+1 having constant relative

nullity index k and let u be an eigenfunction of the p-Laplacian of Mn associated to λ,

then ∫
M

(
S − (n− 1)

(
1− k

n

)(
n− αn,pλ2/p

))
|∇u|2p−2dM ≥ 0,

where αn,p is defined in (1.2). Moreover, if the equality holds, then p = 2. In particular,

if S = const., we have

S ≥ (n− k)(n− 1)

n

(
n− αn,pλ1,p(M)2/p

)
.

Proof. The proof follows as the one of Theorem 3.6 until we reach the inequality given

in Corollary (2.2). Now, since we are supposing that Mn is minimal and has a constant

relative nullity index k, hence

Ric(∇u,∇u) ≥ 1

n− k
((n− 1)(n− k)− S) |∇u|2. (3.34)

By inserting (3.34) in (3.23), we get

∫
M

|∇u|2p−2 ((n− 1)(n− k)− S) dM ≤ (n(p− 1)2 − 1)(n− k)

n(p− 1)2/p
λ2/p

∫
M

|∇u|2p−2dM.

From (1.2), we notice that

(n− 1)(n− k)− (n(p− 1)2 − 1)(n− k)

n(p− 1)2/p
λ2/p = (n− 1)(n− k)

(
1− αn,pλ

2/p

n

)
.

Therefore, we obtain

∫
M

|∇u|2p−2

(
(n− 1)(n− k)

(
1− αn,pλ

2/p

n

)
− S

)
dM ≤ 0, (3.35)

which concludes the integral inequality part. As in Theorem 3.6, if the equality in (3.35)

holds, then p = 2. ■

Following the same ideas of the proof of the Theorems 3.10 and 3.12, we have a p-

Laplacian version of (BARBOSA; BARROS, 2003, Theorem 2) for compact manifolds.

Theorem 3.16. Let Mn be a compact minimal hypersurface in Sn+1 having constant



47

relative nullity index k and let u be an eigenfunction of the Dirichlet (resp. Neumann)

problem of the p-Laplacian of Mn associated to λ. Assume in addition that,

i. for the Dirichlet problem the boundary ∂M is mean convex,

ii. for the Neumann problem the boundary ∂M is convex.

Then ∫
M

(
S − (n− 1)(n− k)

(
1− n−1αn,pλ

2/p
))

|∇u|2p−2dM ≥ 0,

where αn,p is defined in (1.2). Moreover, if the equality holds, then p = 2. In particular,

if S = const., then

S ≥ (n− k)(n− 1)

n
·

 n− αn,pµ1,p(M)2/p (Dirichlet)

n− αn,pλ
N
1,p(M)2/p (Neumann).

We finish this subsection with the following version of Corollaries 3.9 and 3.13 for

hypersurfaces with constant relative nullity index:

Corollary 3.17. Let Mn be a compact minimal hypersurface in Sn+1 having constant

relative nullity index k and constant scalar curvature. For a real number p ∈ [2,∞), we

have that

(a) for ∂M = ∅,

ScalM ≤ n− 1

n

(
nk + (n− k)αn,pλ1,p(M)2/p

)
,

(b) for ∂M ̸= ∅,

(i) if ∂M is mean convex, then

ScalM ≤ n− 1

n

(
nk + (n− k)αn,pµ1,p(M)2/p

)
,

(ii) if ∂M is convex, then

ScalM ≤ n− 1

n

(
nk + (n− k)αn,pλ

N
1,p(M)2/p

)
.
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3.3 SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE

In this section, we do not assume that the manifold is minimal. Since in the equality

case we obtained great spheres and these submanifolds in the unit sphere has constant

scalar curvature, hence it is natural to do the opposite direction: if we assume that

Mn ⊂ Sm is a submanifold with prescribed scalar curvature, can we conclude a similar

inequality and again obtain the great spheres (and hemispheres for non-empty boundary)?

The answer to this question is positive and is the main result of this section.

Note that one of the most relevant parts of the proof in the minimal case is the Ricci

estimates. We then enunciate the following rereading of the lower estimate of the Ricci

curvature 2.1 in terms of the normalized scalar curvature and the square norm of the

umbilicity tensor.

Lemma 3.18. Let Mn be a submanifold of the Riemannian manifold Sm. Let Ric denote

the function that assigns the minimum Ricci curvature to each point of Mn. Then

Ric ≥ 1

n

(
−(n− 2)|ϕ|2 − (n− 2)|ϕ|

√
|ϕ|2 + n(n− 1)(R− 1) + n(n− 1)R

)
. (3.36)

Proof. Now we fix the ambient to be the unit Euclidean sphere. By using (2.5) and (2.8),

we write

H2 =
1

n(n− 1)
|ϕ|2 +R− 1,

and as H ≥ 0,

H =
1√

n(n− 1)

√
|ϕ|2 + n(n− 1)(R− 1).

Thus, from (2.9), we obtain

− n(n− 2)√
n(n− 1)

H|ϕ|+ n(1 +H2) = −n− 2

n− 1
|ϕ|
√
|ϕ|2 + n(n− 1)(R− 1)

+
1

n− 1
|ϕ|2 + nR.

(3.37)

Therefore, by inserting (3.37) in (2.9) we conclude the proof. ■

We present now a generalization of Theorem 3.6
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Theorem 3.19. Let Mn be a compact submanifold of Sm with constant scalar curvature

R = 1 and possibly with convex boundary. Let u be an eigenfunction of the p-Laplacian

(with the Neumann boundary condition if ∂M ̸= ∅) of Mn associated to λ. Then

∫
M

(
n− 2(n− 2)

n
S − αn,pλ

2/p

)
|∇u|2p−2dM ≤ 0,

where αn,p is a positive constant depending only n and p.

In particular, if the equality holds, then p = 2 and Mn is isometric to:

(a) The sphere Sn(1), if ∂M = ∅;

(b) The closed hemisphere Sn
+(1), otherwise.

Proof. We start the proof from equation (3.28) since until this part, the minimality of the

manifold is not used. Since R = 1, equation (2.5) give us that n2H2 = S. On the other

hand, the Ricci estimates (3.36) with equation (2.6) can be rewrite as

Ric(∇u,∇u) ≥ n− 1

n

(
n− 2n(n− 2)H2

)
|∇u|2

=
n− 1

n

(
n− 2(n− 2)

n
S

)
|∇u|2

Hence, the result follows. ■

3.4 SUBMANIFOLDS WITH CONSTANT MEAN CURVATURE

In this section, we present a result in a similar argument that was done in the previous

section. A natural and intriguing question emerges in this context: is it possible to relax

or entirely remove the hypothesis that the submanifold in question is minimal, while

simultaneously not imposing any restrictions on its scalar curvature? Addressing this

question requires a careful examination of the underlying geometric properties; moreover,

we can maintain the characterization of equality. The principal objective of this section

is to present a significant result in the form of an integral inequality, specifically for

submanifolds characterized by having constant mean curvature. To achieve this, we set

out to generalize the following well-known theorem for the p-Laplacian operator (cf. (LIU;

ZHANG, 2007)): If Mn is a compact submanifold immersed in the standard Euclidean unit
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sphere SN and u is an eigenfunction of the Laplacian, then we have an integral inequality

involving the square length of the second fundamental form and the first eigenvalue of the

Laplacian. We emphasize that, unlike the estimate obtained by Leung, the theorem above

does not describe which geometric object achieves equality in the integral inequality. In

this section, our main result is the following:

Theorem 3.20. Let Mn be a compact with possibly convex boundary submanifold im-

mersed in Sm. Let u be an eigenfunction of the p-Laplacian of Mn associated to λ given

by equation (2.12). Then

∫
M

(√
n− 1

2
S − (n− 1)(n− αn,pλ

2
p )

n

)
|∇u|2p−2dM ≥ 0,

for p ≥ 2. If the equality happens, then p = 2. In this case, by assuming in addition that

Mn has parallel mean curvature vector field in Sm, then Mn is isometric to

i. the sphere S2(
√

2/q(q + 1)), with λ being the first eigenvalue and m = 2q, for the

closed case if n = 2;

ii. the great sphere Sn(1), with λ being the first eigenvalue, for the closed case if n ≥ 3;

iii. the upper hemisphere Sn
+(1), with λ being the first eigenvalue, corresponding to

Dirichlet and Neumann problems.

From Proposition 2.1, we have that the Ricci curvature of Mn satisfies:

Ric ≥ n− 1 +
n− 1

n

(
nH2 − n− 2√

n− 1

√
nH

√
S − nH2 − (S − nH2)

)
. (3.38)

To estimate (3.38) from below, let us consider the following quadratic form with eigen-

values ± n

2
√
n− 1

:

F (x, y) = x2 − n− 2√
n− 1

xy − y2.

We note that the orthogonal transformation
w = 1

2n

[
(1 +

√
n− 1)x+ (1−

√
n− 1)y

]
v = 1

2n

[
(
√
n− 1− 1)x+ (1 +

√
n− 1)y

]
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is such that x2 + y2 = w2 + v2. Thus, by taking x =
√
nH and y =

√
S − nH2 we have

x2 + y2 = S. Hence,

F (x, y) = x2 − n− 2√
n− 1

xy − y2 =
n

2
√
n− 1

(w2 − v2)

=
n

2
√
n− 1

(w2 − v2 + w2 − w2)

≥ − n

2
√
n− 1

(w2 + v2)

= − n

2
√
n− 1

S,

(3.39)

with equality holding if and only if w = 0. So, by inserting (3.39) in (3.38),

Ric ≥
(
n− 1−

√
n− 1

2
S

)
. (3.40)

Moreover, if the equality

∫
M

(
(n− 1)(n− αn,pλ

2
p )

n
−

√
n− 1

2
S

)
|∇u|2p−2dM = 0. (3.41)

For the same argument done for the minimal submanifold, we must have that p = 2.

Thus, αn,2 = 1 and (3.41) turns in

∫
M

(
(n− 1)(n− λ)

n
−

√
n− 1

2
S

)
|∇u|2dM = 0.

Hence, if ∂M = ∅, by applying Lemma 2.3, it follows that Mn is isometric to the sphere

Sn(λ/n). In the case where the boundary ∂M is nonempty and convex, we can apply

Lemma 2.5 to obtain that Mn is isometric to a hemisphere Sn
+(λ/n). As (3.40) holds

equality, then (3.39) also holds equality, which implies w = 0. Thence,

nH2 =

(√
n− 1− 1√
n− 1 + 1

)2

(S − nH2). (3.42)

First we observe that if n = 2, then H = 0 and Mn is a minimal submanifold of SN .

Hence, by using a similar argument to made in (LEUNG, 1983, Theorem 3) we conclude

that N = 2q and Mn is isometric to S2
(√

2/q(q + 1)
)
.
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From now on, we will assume that n ̸= 2. In this case, (3.42) becomes

S =
2n2

(
√
n− 1− 1)2

H2. (3.43)

Being Mn isometric to Sn (λ/n) (similarly for Sn
+(λ/n)), by putting (3.43) in (2.5), we

have

λ = n+
n2

n− 1

(
1− 2

(
√
n− 1− 1)2

)
H2. (3.44)

Since H is constant, from identity (3.42) we must have that S is constant. So, (3.44) can

be written as follows

λ− n = − n

2
√
n− 1

S. (3.45)

Hence, by inserting (3.43) and (3.45) in (3.44) we get

n2

n− 1

(
1− 2

(
√
n− 1− 1)2

)
H2 = − n

2
√
n− 1

2n2

(
√
n− 1− 1)2

H2.

Thus,

(
1

n− 1

(
(
√
n− 1− 1)2 − 2

)
+

n√
n− 1

)
H2 = (n− 2)(

√
n− 1 + 1)H2 = 0.

Once that n ̸= 2, it follows H = 0 and hence, S = 0, from (3.43). Therefore, by returning

to (3.45), we conclude that n = λ and consequently Mn is isometric to Sn(1) if ∂M = ∅

and isometric to Sn
+(1) otherwise.

To end this proof, we will assume that ∂M is nonempty, convex, and satisfies the

Dirichlet boundary condition. Since w = 0, from (3.38)

Ric ≥ n− 1 +
(n− 1)(λ− n)

n
=

(n− 1)λ

n
> 0.

Being ∂M convex, follows that H∂ is nonpositive. Hence, we can apply the classical

result (REILLY, 1977, Theorem 4) in order to obtain that Mn is isometric to Sn
+(λ/n).

By thinking as before, we conclude that Mn is isometric to Sn
+(1).

Remark 3.21. A natural question arises as to why the integral inequality for minimal

submanifolds was addressed earlier rather than first using the one presented above. In ad-
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dition to the order in which the work is done, it is important to highlight that Theorem 3.6

provides a better estimate than the one presented in 3.20. In fact, by direct computation,

we see that

√
n− 1

2
S − (n− 1)(n− αn,pλ

2
p )

n
=

(
n− 1

n

)(
n

2
√
n− 1

S − n+ αn,pλ
2
p

)

and
n

2
√
n− 1

≥ 1.

3.5 AN INTEGRAL INEQUALITY VIA THE UMBILICITY TENSOR

The next result gives an integral inequality involving the squared norm of the total

umbilicity tensor and the nonzero eigenvalue of the p-Laplacian without assuming that

R = 1 or constant mean curvature.

Theorem 3.22. Let Mn be a compact submanifold of Sm with possibly convex boundary.

Let u be an eigenfunction of the p-Laplacian (with the Neumann boundary condition if

∂M ̸= ∅) of Mn associated to λ. Then

∫
M

(
n− n2

4(n− 1)
|ϕ|2 − αn,pλ

2/p

)
|∇u|2p−2dM ≤ 0,

where αn,p is a positive constant depending only given by n and p. In particular, if the

equality holds, then p = 2 and Mn is isometric to

(a) The sphere Sn(1), if ∂M = ∅;

(b) The closed hemisphere Sn
+(1), otherwise.

Proof. By using ε-Young’s inequality xy ≤ εx2 + ε−1y2 for

x =
√

|ϕ|2 + n(n− 1)(R− 1) and y = |ϕ|

we have

2|ϕ|
√

|ϕ|2 + n(n− 1)(R− 1) ≤ ε(|ϕ|2 + n(n− 1)(R− 1)) + ε−1|ϕ|2. (3.46)
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Consequently, by taking ε = 2
n−2

, (3.46) reads

(n− 2)|ϕ|
√

|ϕ|2 + n(n− 1)(R− 1) ≤ |ϕ|2 + n(n− 1)(R− 1) +
(n− 2)2

4
|ϕ|2.

Hence, inserting this in Lemma 2.2 we reach at the following inequality

Ric(∇u,∇u) ≥ 1

n

(
−(n− 2)|ϕ|2 − |ϕ|2 + n(n− 1)− (n− 2)2

4
|ϕ|2
)
|∇u|2

=
n− 1

n

(
n− n2

4(n− 1)
|ϕ|2
)
|∇u|2.

(3.47)

Therefore, by replacing (3.47) in (3.32), we obtain

∫
M

(
n− n2

4(n− 1)
|ϕ|2
)
|∇u|2p−2dM ≤ λ2/pαn,p

∫
M

|∇u|2p−2dM, (3.48)

where αn,p is defined in (1.2).

Now, we analyze the equality in (3.48) for the closed case. The case not closed will

follow the same ideas. In fact, if the equality holds in (3.48), then we can reason as in

the proof of Theorem 3.19 to conclude that p = 2. Hence, according Lemma 2.3, Mn is

isometric to Sn(
√
λ/n) and therefore |ϕ| is constant. Furthermore, the equality implies

|ϕ|2 = 4(n− λ)(n− 1)

n2
. (3.49)

On the other hand, the equality in ε-Young’s inequality (3.46), reads

|ϕ|2 + n(n− 1)(R− 1) =

(
n− 2

2

)2

|ϕ|2. (3.50)

Since R = λ/n, (3.50) can rewritten as follows

λ =
n(n− 4)

4(n− 1)
|ϕ|2 + n. (3.51)

Hence, (3.49) and (3.51) implies (n − λ)(n − 2) = 0. Provide that n ≥ 3, we get λ = n

and Mn = Sn(1). ■

Remark 3.23. Note that in the case that Mn is minimal, this implies that |ϕ|2 = S.
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3.6 THE CASE 3
2
< p < 2

In order to give completeness to the work, we present a weak version of our theorem

for 3
2
≤ p ≤ 2. Despite the geometry results in the literature for the p-Laplacian being

restricted most of the time to p ≥ 2, for p < 2 the operator still have applications. From

the perspective of Physics, various applications arise, such as those concerning pseudo-

plastic fluids. For instance, one notable application pertains to the study of unsaturated

flow for p = 3/2 (cf. (DIAZ; DE THELIN, 1994)) and glaciology for p ∈ (1, 4/3]. In

particular, within 3/2 < p < 2, Leibenson investigated turbulent gas filtration in porous

media (for further details, see (LEIBENSON, 1945)). Additionally, comprehensive insights

into this subject can be found in the work of Benedikt (cf. (BENEDIKT et al., 2018)).

Lemma 3.24. Let Mn be a compact manifold with mean-convex boundary ∂M . If u is a

solution of the Dirichlet eigenvalue problem and 3/2 < p < 2, then

∫
M

Ric(∇u,∇u)|∇u|2p−4dM < λ2C̃

∫
M

|∇u|2p−2dM,

where C̃ := C̃(n, p, C1) is a positive constant depending only n, p and the Sobolev constant

C1.

Proof. We start the proof from the equation (3.14). Since p < 2, from Cauchy-Schwarz’s

inequality,∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ −(2p− 3)

∫
M

|∇u|2p−4|Hessu|2dM

+

∫
M

(∆pu)
2dM − (p− 2)2

∫
M

|∇u|2p−4(∆∞u)2dM

+

∫
∂M

|∇u|2p−4Q(u)dσ.

(3.52)

By using that p > 3/2, we can use again the Cauchy-Schwarz inequality on the operator

T (defined in equation (3.15)) in order to obtain

−(2p− 3)|∇u|2p−4|Hessu|2 ≤ −(2p− 3)

n
(∆pu)

2 (3.53)
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with equality holding if and only if

(p− 2)|∇u|p−4⟨Hessu(∇u), X⟩∇u+ |∇u|p−2Hessu(X) = − 1

n
(∆pu)I(X),

for all X ∈ X(M). Thus, by inserting (3.53) in (3.52), we get∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ n− 2p+ 3

n

∫
M

(∆pu)
2dM

− (p− 2)2
∫
M

|∇u|2p−4(∆∞u)2dM +

∫
∂M

|∇u|2p−4Q(u)dσ

≤ n− 2p+ 3

n

∫
M

(∆pu)
2dM +

∫
∂M

|∇u|2p−4Q(u)dσ

Therefore,

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤
(
n− 2p+ 3

n

)
λ2

∫
M

|u|2p−2dM +

∫
∂M

|∇u|2p−4Q(u)dσ,

with equality if and only if ∆∞u = 0.

On the other hand, since u = 0 on ∂M and the boundary is mean convex, we can

estimate the Q as follows ∫
∂M

|∇u|2p−4Q(u)dσ ≤ 0,

and then

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2

(
n− 2p+ 3

n

)∫
M

|u|2p−2dM. (3.54)

Since p ∈ (3/2, 2), we have 1 < 2p − 2 < p. Consequently, by Sobolev’s embedding

theory, W 1,p
0 (M) ⊂ W 1,2p−2

0 (M). As 2p− 2 < (2p− 2)∗, from Hölder inequality,

∫
M

|u|2p−2dM ≤ vol(M)
2p−2

n

(∫
M

|u|(2p−2)∗dM

) 2p−2
(2p−2)∗

(3.55)

Hence, by using Gagliardo-Nirenberg-Sobolev’s inequality for compact Riemannian man-

ifolds with boundary (AUBIN, 2012) (see also (HEBEY, 2000)), we have

∫
M

|u|2p−2dM ≤ vol(M)
2p−2

n C1

∫
M

|∇u|2p−2dM, (3.56)
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where C1 is a constant positive depending on Mn. By inserting this in (3.54),

∫
M

|∇u|2p−4Ric(∇u,∇u)dM ≤ λ2C̃(n, p, C1)

∫
M

|∇u|2p−2dM, (3.57)

where C̃ is a positive constant depending only n, p and the Sobolev constant C1.

By assuming the equality case, then all inequalities become equalities, in particular

the equality (3.55) implies the equality in Hölder inequality. Hence, |u| = 1 almost

everywhere, and then the p-Laplacian of u is identically zero, which cannot happen since

the first eigenvalue is nonzero. Therefore, the inequality (3.57) is not sharp. ■

As a first application, we get the following lower estimate:

Theorem 3.25. Let Mn be a compact Riemannian manifold with mean-convex boundary

and consider Mn as a minimal submanifold of Sn+q with S = const. Then

λ1,p(M) ≥
√

(n− S)C, p ∈ (3/2, 2),

where C is a positive constant depending only n, p and Mn.

Proof. From Lemma 3.24,

∫
M

Ric(∇u,∇u)|∇u|2p−4dM ≤ C̃

∫
M

|∇u|2p−4dM. (3.58)

On the other hand, since Mn is a minimal submanifold of Sn+q, by taking H = 0 in

Corollary 2.2,

Ric(∇u,∇u) ≥ −n− 1

n
(S − n) |∇u|2.

By replacing this in (3.58),

−n− 1

n
(S − n)

∫
M

|∇u|2p−2dM ≤ λ2C̃

∫
M

|∇u|2p−2dM

where was that S = const.. Hence

0 ≤
(
λ2C̃ +

n− 1

n
(S − n)

)∫
M

|∇u|2p−2dM
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and since
∫
M
|∇u|2p−2dM > 0, we have

λ2 ≥ n

(n− 1)C̃
(n− S) .

In particular,

λ1,p(M)2 ≥ (n− S)C,

and we have the desired result. ■

By assuming that the submanifold has a prescribed constant scalar curvature, we get

Theorem 3.26. Let Mn be a compact Riemannian manifold with constant scalar cur-

vature R = 1 and mean convex boundary. Consider Mn as a submanifold of Sn+q with

S = const.. Then

λ1,p(M) ≥
√
(n2 − 2(n− 2)S)C, p ∈ (3/2, 2),

where C is a positive constant depending only n, p and Mn.

Proof. Again, since R = 1, from (2.5) we have S = n2H2. By Corollary 2.2 and

Lemma 3.24,

0 ≤
(
λ2C̃ +

n− 1

n2

(
2(n− 2)S − n2

))∫
M

|∇u|2p−2dM.

So

λ2 ≥ n− 1

n2C̃
(n2 − 2(n− 2)S),

and therefore,

λ1,p(M) ≥
√

(n2 − 2(n− 2)S)C.

■

We end this section with the following low estimate to λ1,p(M) involving the squared

norm of the total umbilicity tensor and without the necessity of prescribing the scalar

curvature.
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Theorem 3.27. Let Mn be a compact Riemannian manifold having mean-convex bound-

ary and consider Mn as a submanifold of Sn+q with S − nH2 = const.. Then

λ1,p(M) ≥
√

(4(n− 1)− n(S − nH2))C, p ∈ (3/2, 2),

where C is a positive constant depending only n, p and Mn.

Remark 3.28. It should be noted that, by applying a similar argument, the Theorems 3.26

and 3.27 also hold for closed manifolds. In fact, the Hölder inequality used in (3.55) does

not depend on the boundary. Moreover, the Sobolev inequality (3.56) is still true for closed

manifolds (see (HEBEY, 2000, Theorem 4.5)).

Remark 3.29. Another important point to highlight is the veracity of the inequalities

presented before in the case of the p-Laplacian with 1 < p < 3
2
. The tools presented

here are not sufficient to show, but we conjecture that the inequalities do not hold since

2p− 2 < 1, and then the Hölder inequalities and Sobolev Immersions are not true (in the

classical sense).
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4 ESTIMATES ON COMPLETE non-compact RIEMANNIAN MANIFOLDS

In this chapter, we present a Lioville-type result for strongly subharmonic functions

(which in defined in the next steps) in terms of some hypotheses on the first eigenvalue

of the p-Laplacian. We present a generalization of part of the results presented by Leung

(LEUNG, 1997). To give completeness to the work, we enunciate some classical definitions

and results about the p-Laplacian in complete manifolds, similarly to what was done in

chapter 2.

Let us take Mn an n-dimensional complete non-compact manifold and, let {Ωk}k∈N
be an exhaustion of Mn by compact domains, that is, {Ωk}k∈N are compact domains such

that Mn = ∪∞
k=1Ωk and Ωk ⊂ Ωk+1, for all k ∈ N. We will consider the first eigenvalue

µ1,p(Ωk) of the following Dirichlet boundary value problem:

 ∆pu = −λ|u|p−2u, in Ωk

u = 0, on ∂Ωk.
(4.1)

The existence of the eigenvalue problem (4.1) and the variational characterization as

in (1.1) were proved by Veron (VERON, 1991). On the other hand, in (LINDQVIST,

1990), Lindqvist proved that µ1,p(Ωk) is simple for each compact domain Ωk, k ∈ N. By

definition, we see that µ1,p(M) ≤ µ1,p(Ωk) for each compact domain Ωk, k ∈ N. Using the

domain monotonicity of µ1,p(Ωk), we deduce that µ1,p(Ωk) is non-increasing in k ∈ N and

has a limit which is independent of the choice of the exhaustion of Mn. Therefore

µ1,p(M) = lim
k→∞

µ1,p(Ωk).

On the other hand, strongly p-subharmonic functions play an important role in study-

ing Riemannian manifolds. Let us recall that, a smooth function u : Mn → R is said to

be strongly p-subharmonic if u satisfies the following differential inequality

∆pu ≥ k > 0. (4.2)
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Concerning strongly p-subharmonic functions, we quote the results due to (TAKEGOSHI,

2001) for the relations that lie between the existence of a certain strongly p-subharmonic

function and the volume growth property for the case p ≥ 2. Also, for p = 2, Cogh-

lan, Itokawa, and Kosecki (COGHLAN L. ITOKAWA; KOSECKI, 1992) proved a nice

Liouville-type result, which said that every 2-subharmonic function on a complete non-

compact Riemannian manifold must be unbounded provided that its sectional curvature

is bounded. A few years later, Leung (LEUNG, 1997) proved that the same result is valid

by replacing the bounded sections’ curvature with the vanishing first eigenvalue of the

2-Laplacian. As an application, Leung obtained an estimate for the size of the image set

of some types of maps between Riemannian manifolds.

Note that all arguments previously presented in the other chapters are done for a

compact manifold. Here, we are interested in studying the first eigenvalue of the p-

Laplacian of complete non-compact Riemannian manifolds. More precisely, we obtain

a characterization of p-subharmonic functions on a complete non-compact Riemannian

manifold by assuming that the first eigenvalue of the p-Laplacian is zero. Proceeding

with this picture, we obtain the following extension of the main result of (LEUNG, 1997,

Theorem 1) for the context of the p-Laplacian, for all p ≥ 2.

By using this previous machinery, the next result is an extension of (PALMER, 1990,

Lemma 1) due to Palmer to the p-Laplacian for p ≥ 2 (see also (LEUNG, 1992)).

Lemma 4.1. Let D be a relatively compact smoothly bounded domain on a Riemannian

manifold Mn. Suppose that exists a smooth function f on D that satisfies ∆pf ≥ 1 in D.

Then

µ1,p(D) ≥ 1

(β − α)p−1
,

where α, β are any lower and upper bounds respectively of f on D.

Proof. First of all, let us consider u the first eigenfunction associated to µ1,p(D) and

assume, without loss of generality, that u > 0. We consider a any constant such that

β < a. Let us define then the function v = u
a−f

. We observe that v is attains the

maximum at some point x0 ∈ int(D) since v ≡ 0 in ∂D and a − f > 0. Hence in x0, we
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have that ∇v(x0) = 0 and

Lu(v)(x0) = |∇u|p−2∆v + (p− 2)|∇u|p−4⟨Hessu(∇u),∇v⟩

= |∇u|p−2∆v ≤ 0.

A direct computation gives that the gradient of v is

∇v =
1

a− f
∇u+

u

(a− f)2
∇f (4.3)

and that, for all X ∈ X(M), the hessian of v is

∇X∇v =
1

(a− f)2
⟨∇f,X⟩∇u+

1

a− f
∇X∇u+

u

(a− f)2
∇X∇f

+
1

(a− f)3
((a− f)⟨∇u,X⟩+ 2u⟨X,∇f⟩)∇f.

(4.4)

By tracing (4.4), we have

∆v =
1

a− f
∆u+

u

(a− f)2
∆f +

2u

(a− f)3
|∇f |2 + 2

(a− f)2
⟨∇u,∇f⟩.

Moreover, from (4.3),

⟨Hessu(∇u),∇v⟩ = 1

a− f
Au(u) +

u

(a− f)2
⟨Hessu(∇u),∇f⟩. (4.5)

Hence, by inserting (4.3) and (4.5) in the definition of Lu, we get

Lu(v) =
1

a− f
∆pu+

u

(a− f)2
Lu(f) +

2u

(a− f)3
|∇f |2|∇u|p−2

+
2

(a− f)2
⟨∇u,∇f⟩|∇u|p−2.

(4.6)

On the other hand, once ∇v(x0) = 0, (4.3) gives, ∇u = − u

a− f
∇f in x0. Hence, in

x0,

Hessu(∇u) =
u2

(a− f)2
Hess f(∇f),
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and consequently

Lu(f) = |∇u|p−2∆f + (p− 2)|∇u|p−4⟨Hessu(∇u),∇f⟩

=

(
u

a− f

)p−2

|∇f |p−2∆f + (p− 2)

(
u

a− f

)p−2

|∇f |p−2Af (f)

=

(
u

a− f

)p−2

∆pf.

(4.7)

Besides this,

2u

(a− f)3
|∇f |2 + 2

(a− f)2
⟨∇u,∇f⟩ = 0. (4.8)

Therefore, from (4.6), (4.7) and (4.8) we obtain in x0,

0 ≥ Lu(v) =
1

a− f
∆pu+

up−1

(a− f)p
∆pf. (4.9)

Since ∆pu = −µ1,p(D)|u|p−2u, u(x0) > 0, α < f(x0) < a, and ∆pf ≥ 1, (4.9) implies

µ1,p(D) ≥ 1

(a− α)p−1
.

By taking a → β we obtain the desired. ■

4.1 A LIOUVILLE-TYPE RESULT

Before presenting the proof of our main result, we will give some examples and clas-

sical results concerning complete Riemannian manifolds that have vanished the first p-

Laplacian eigenvalue. The first is (cf. (CARMO; ZHOU, 1999))

Example 4.2. Let M2 = (R2, ds2), with ds2 = dr2+g2(r)dθ2, where g(r) is a nonnegative

C2([0,+∞)) function with g(0) = 0, g(r) > 0 for 0 < r ≤ 1 and g(r) = e−r for r > 1.

Note that vol(M) < +∞. Hence, the constant functions are in Lp(M) and, therefore,

µ1,p(M) = 0.

We say that the volume of Mn has polynomial growth if there exist positive numbers a

and c such that vol(Br(q)) ≤ cra. In this setting, the next two results are due to Batista et

al. (BATISTA M. CAVALCANTE; SANTOS, 2014), extending the classical result to do
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Carmo (CARMO; ZHOU, 1999) for all p ≥ 2. The first one assumes that the Riemannian

manifold has infinite volume:

Lemma 4.3. Let Mn be an open manifold with infinite volume and Ω an arbitrary compact

set of Mn. If Mn has polynomial volume growth, then µ1,p(M\Ω) = 0.

The second assumption is that the Riemannian manifold is complete and non-compact

:

Lemma 4.4. Let Mn be a complete non-compact Riemannian manifold with polynomial

volume growth, then µ1,p(M) = 0.

Now, we can prove our main result.

Theorem 4.5. If Mn is a complete non-compact Riemannian manifold with µ1,p(M) = 0,

then every strongly p-subharmonic function on Mn is unbounded.

Proof. Let us suppose that u ∈ C2(M) is bounded. Since u is a strongly p-subharmonic

function, from (4.2)

∆pu ≥ k > 0, (4.10)

for some positive constant k. Now, we consider the function f : Mn → R given by

f =
u

k
1

p−1

. (4.11)

By a direct computation,

∇f =
1

k
1

p−1

∇u

Hence, it follows from (4.10) and the definition of the p-Laplacian operator,

∆pf = |∇f |p−2∆f + (p− 2)|∇u|p−4⟨∇∇f∇f,∇f⟩

=
(
k− p−2

p−1 |∇u|p−2
)(

k− 1
p−1∆u

)
+ (p− 2)

(
k− p−4

p−1 |∇u|p−4
)(

k− 3
p−1

)
⟨∇∇u∇u,∇u⟩

= k−1∆pu ≥ 1.

On the other hand, from (4.11) we see that f is bounded. Thus, there exists positive

constants α and β such that α < f < β. Therefore, by applying Lemma 4.1,

µ1,p(M) ≥ 1

(β − α)p−1
> 0,
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which contradicts the fact that the first eigenvalue is zero. ■

As an immediate application, it follows from Lemma 4.1,

Corollary 4.6. If Mn is a complete non-compact Riemannian manifold with polynomial

volume growth, then every strongly p-subharmonic function on Mn is unbounded.

4.2 HYPERSURFACES IN WARPED PRODUCT MANIFOLDS

Let (P n, ⟨ , ⟩P ) be a connected n-dimensional (n ≥ 2) oriented Riemannian manifold

and f : I ⊂ R → R+ a positive smooth function. In the product differentiable manifold

I × P n. A particular class of Riemannian manifolds is the one obtained by endowing

I × P n with the metric

⟨v, w⟩ = ⟨(πI)∗v, (πI)∗w⟩I + (f ◦ πI)
2⟨(πP )∗v, (πP )∗w⟩P ,

with (t, q) ∈ I × P n and v, w ∈ T(t,q)(I × P ), where πI and πP denote the projections

onto the corresponding factor. This space is called a warped product and f the warped

function, and in what follows, we write I ×f P
n to denote it. In particular the family of

hypersurfaces P n
t = {t}×P n (called here a slices) form a foliation t ∈ I → P n

t of I ×f P
n

by totally umbilical leaves of constant mean curvature

H(t) =
∑
i

⟨−∇ei∂t, ei⟩ =
f ′(t)

f(t)
= (ln f)′(t),

with respect −∂t, where

∂t := (∂/∂t)
∣∣
(p,t)

, (t, q) ∈ I × P n

is a conformal and unitary vector field, that is,

∇X∂t = H(t)(X − ⟨X, ∂t⟩∂t) and ⟨∂t, ∂t⟩ = 1,

for all X ∈ X(P ).

Let x : Mn → I ×f P n be an isometrically immersed connected hypersurface in the
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warped product manifold I ×f Mn with second fundamental A concerning the normal

direction N . We define the Height function h : Mn → R by setting h(q) = ⟨x(q), ∂t⟩.

A direct computation shows that the gradient of h on Mn is

∇h = ∂⊤
t = ∂t − ⟨N, ∂t⟩N,

where ( ·)⊤ denotes the tangential component of a vector field on I ×f P
n along Mn and

⟨N, ∂t⟩ is the Angle function. Thus, we get

|∇h|2 = |∂⊤
t |2 = 1− ⟨N, ∂t⟩2, (4.12)

where | · | denotes the norm of a vector field on Mn.

As a sub-product of the digression above, we have the p-Laplacian version of the result

presented in (ALÍAS L.J. IMPERA; RIGOLI, 2013, Proposition 3).

Lemma 4.7. Let x : Mn → I ×f P n be an isometric immersion into a warped product

manifold. Define

σ(h) =

∫ h(·)

t0

f(u)du,

where h is the height function. If q ∈ Mn is a point contained in a domain U and ∇h ̸= 0

on U , then

∆ph = ⟨N, ∂t⟩
(
nH + (p− 2)|∇h|−2⟨A(∇h),∇h⟩

)
|∇h|p−2

+H(h)
(
n+ p− 2− (p− 1)|∇h|2

)
|∇h|p−2,

(4.13)

and

∆pσ(h) = f(h)p−1⟨N, ∂t⟩
(
nH + (p− 2)|∇h|−2⟨A(∇h),∇h⟩

)
|∇h|p−2

+ (n+ p− 2)H(h)f(h)p−1|∇h|p−2,
(4.14)

for all p ∈ (1,+∞).

Proof. From Gauss and Weingarten formulas, the Hessian of the height function and the
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gradient of the angle function satisfy:

∇X∇h = ∇ (∂t − ⟨N, ∂t⟩N)

= ∇X (∂t − ⟨N, ∂t⟩N)

= H(t)(X − ⟨X, ∂t⟩∂t)− ⟨∇XN, ∂t⟩N − ⟨N,∇X∂t⟩N − ⟨N, ∂t⟩∇XN

= H(t)(X − ⟨X, ∂t⟩∂t) + ⟨A(X), ∂t⟩N − ⟨N,∇X∂t⟩N + ⟨N, ∂t⟩A(X)

= H(t)(X − ⟨X,∇h⟩∇h)−H(t)⟨X,∇h⟩⟨∂t, N⟩N + ⟨A(∇u), X⟩N

− ⟨N,∇X∂t⟩N + ⟨N, ∂t⟩A(X)

Hence, the tangent component must be equal to

∇X∇h = ⟨N, ∂t⟩A(X) +H(h) (X − ⟨X,∇h⟩∇h) ,

and

X⟨N, ∂t⟩ = −⟨A(∇h), X⟩ − H(h)⟨N, ∂t⟩⟨∇h,X⟩, (4.15)

for every X ∈ X(M). Consequently,

∆h = n⟨N, ∂t⟩H +H(h)(n− |∇h|2), (4.16)

and

Ah(h) = |∇h|−2⟨N, ∂t⟩⟨A(∇h),∇h⟩+H(h)
(
1− |∇h|2

)
. (4.17)

Hence, by inserting (4.16) and (4.17) in the equation (2.14), we get

∆ph = ⟨N, ∂t⟩
(
nH + (p− 2)|∇h|−2⟨A(∇h),∇h⟩

)
|∇h|p−2

+H(h)
(
n+ p− 2− (p− 1)|∇h|2

)
|∇h|p−2.

(4.18)

On the other hand, since ∇σ(h) = f(h)∇h, we have

∇X∇σ(h)(X) = f(h)∇X∇h+ f ′(h)⟨X,∇h⟩∇h.
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Consequentially,

Aσ(h)(σ(h)) = |∇σ(h)|−2⟨∇∇σ(h)∇σ(h),∇σ(h)⟩

= |∇h|−2⟨∇∇h∇σ(h),∇h⟩

= f(h)|∇h|−2⟨∇∇h∇h,∇h⟩+ |∇h|−2⟨∇h(f(h))∇h,∇h⟩

= f(h)|∇h|−2⟨∇∇h∇h,∇h⟩+ f ′(h)|∇h|2

= f(h)
(
Ah(h) +H(h)|∇h|2

)
.

and

∆σ(h) = f(h)
(
∆h+H(h)|∇h|2

)
Hence

∆pσ(h) = |∇σ(h)|p−2
(
∆σ(h) + (p− 2)Aσ(h)σ(h)

)
= f(h)p−1|∇h|p−2

(
∆h+H(h)|∇h|2 + (p− 2)

(
Ah(h) +H(h)|∇h|2

))
= f(h)p−1 (∆ph+ (p− 1)H(h)|∇h|p) .

(4.19)

So, by inserting (4.18) in (4.19), we conclude that

∆pσ(h) = f(h)p−1⟨N, ∂t⟩
(
nH + (p− 2)|∇h|−2⟨A(∇h),∇h⟩

)
|∇h|p−2

+ (n+ p− 2)H(h)f(h)p−1|∇h|p−2,

for all p ∈ (1,+∞). ■

From now on, we will deal with hypersurface contained in a slab of I ×f P n which

means that Mn lies between two leaves P n
t1
, P n

t2
with t1 < t2 of the foliation P n

t ; in other

words, Mn is contained in a bounded region of the type

[t1, t2]× P n = {(t, q) ∈ I ×f P
n ; t1 ≤ t ≤ t2 and q ∈ P n}. (4.20)

It is clear that if the Mn is contained in the region (4.20), the height function satisfies:

t1 ≤ h(q) ≤ t2 for all q ∈ Mn. Using this notation, Alías and Dajczer (ALÍAS; DAJCZER,

2006) investigated complete surfaces properly immersed in a slab of I×fP
n under suitable
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geometric assumptions on the Riemannian fiber P n. Our first result generalizes this one

without any assumption on P n.

Theorem 4.8. There exists no complete non-compact immersed hypersurface P n con-

tained in a slab of I ×f P
n having µ1,2(M) = 0 and mean curvature satisfying

sup
M

|H| < min
[t1,t2]

H(t). (4.21)

Proof. Suppose there exists a complete non-compact immersed hypersurface Mn into the

slab of I ×f P
n, such that µ1,2(M) = 0 and that the mean curvature satisfy (4.21). By

taking p = 2 in (4.14),

∆σ(h) = nf(h) (⟨N, ∂t⟩H +H(h)) .

From Cauchy-Schwarz’ inequality and (4.21),

⟨N, ∂t⟩H +H(h) ≥ − sup
M

|H|+ inf
M

H(h) > 0.

Hence

∆σ(h) ≥ n inf
M

f(h)

(
− sup

M
|H|+ inf

M
H(h)

)
> 0.

Thus, σ(h) is a strongly 2-subharmonic function on Mn. Therefore, from Theorem 4.5,

σ(h) must be unbounded, which contradicts the fact that Mn is contained in a slab. ■

As application of Corollary 4.6, we get the following consequence of Theorem 4.8:

Corollary 4.9. There exists no complete non-compact immersed hypersurface Mn con-

tained in a slab of I ×f P
n with polynomial volume growth and mean curvature satisfying

sup
M

|H| < min
[t1,t2]

H(t).

Now, by assuming that the warped product manifold I ×f M
n satisfies H(t) ≥ 1 for

all t ∈ I, we obtain

Theorem 4.10. There exists no complete non-compact immersed hypersurface Mn con-

tained in a slab of I×fP
n having µ1,2(M) = 0 and mean curvature satisfying supM H < 1.
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Proof. Let us suppose, by contradiction, the existence of such a hypersurface. From (4.12)

we can easily see that n− |∇h|2 > 0. Then, (4.16) can be write as follows,

∆h ≥ n⟨N, ∂t⟩H + n− |∇h|2,

provided that H ≥ 1.

By using ε-Young’s inequality 2ab ≤ εa2 + ε−1b2, ε > 0, for

a =
√
n|⟨N, ∂t⟩| and b =

√
n|H|

we have

∆h ≥ −n|⟨N, ∂t⟩||H|+ n− |∇h|2

≥ n

2

(
2− ε+

(
ε− 2

n

)
|∇h|2 − 1

ε
H2

)
.

By considering ε = 1, we get

∆h ≥ n

2

(
1 +

n− 2

n
|∇h|2 −H2

)
≥ n

2

(
1− sup

M
H2

)
> 0. (4.22)

Which means that h is strongly 2-subharmonic. Therefore, we are in a position to apply

Theorem 4.5 to infer that h is unbounded, a contradiction. ■

Corollary 4.11. There exists no complete non-compact immersed hypersurface Mn con-

tained in a slab of I×fP
n having polynomial volume growth and mean curvature satisfying

supM H < 1.

Following (TASHIRO, 1965), when the warped function f is the exponential, the

product warped manifold R ×et P
n belongs to a class of manifolds known as pseudo-

hyperbolic space. This terminology comes from the observation that the hyperbolic space,

Hn+1, can be described as a warped product, R ×et Rn. In this structure, the slices

represent the set of all horospheres that share the same fixed point on the asymptotic

boundary, ∂Hn+1. Together, these horospheres provide a complete foliation of Hn+1 (see

also (ALÍAS; DAJCZER, 2006; MONTIEL, 1999)). In this setting, we have the following

extension of (ALÍAS; DAJCZER, 2006, Corollary 3).



71

Corollary 4.12. There exists no complete non-compact immersed hypersurface Mn con-

tained in a slab of pseudo-hyperbolic manifold R ×et P
n having µ1,2(M) = 0 and mean

curvature satisfying supM H < 1.

For the next result, we will deal with helix-type hypersurfaces or having constant

angle. We say that a hypersurface Mn of I ×f P n is a helix-type hypersurface if the

angle function ⟨N, ∂t⟩ is constant on Mn. In this setting, by considering that the warped

product manifold I ×f P
n satisfies H(t) ≥ 1 for all t ∈ I, we obtain.

Theorem 4.13. Let Mn be a complete non-compact helix-type hypersurface contained

in a slab of I ×f P n with µ1,p(M) = 0, p > 2. If the mean curvature (not necessarily

constant) satisfies H2 ≤ 1, then Mn is a slice.

Proof. We will assume for contradiction, that Mn is not a slice of I ×f P
n Since Mn is

a helix-type hypersurface which is not a slice, we must have ⟨N, ∂t⟩ ≠ ±1, and hence

|∇h| = const. > 0. From (4.12) and (4.15), we have

|∇h|−2⟨N, ∂t⟩⟨A(∇h),∇h⟩ = −H(h)⟨N, ∂t⟩2 = −H(h)(1− |∇h|2).

By replacing this in (4.13),

∆ph =
(
n⟨N, ∂t⟩H +H(h)(n− |∇h|2)

)
|∇h|p−2,

that is,

∆ph = |∇h|p−2∆h.

Hence, from (4.22),

∆ph ≥
(
n− 2

2

)
|∇h|p = const. > 0.

Therefore, h is a strongly p-subharmonic function. Since µ1,p(M) = 0, it follows from

Theorem 4.5 that h is unbounded, a contradiction. ■

Corollary 4.14. Let Mn be a complete non-compact helix-type hypersurface contained in

a slab of I ×f P
n with polynomial volume growth. If the mean curvature (not necessarily

constant) satisfies H2 ≤ 1, then Mn is a slice.



72

In the direction of Corollary 4.11, we close this thesis with the following extension

of (ALÍAS; DAJCZER, 2006, Theorem 4) and (AQUINO; LIMA, 2014, Theorem 3.3).

Corollary 4.15. Let Mn be a complete non-compact helix-type hypersurface contained in

a slab of pseudo-hyperbolic manifold R ×et P
n with µ1,p(M) = 0. If the mean curvature

(not necessarily constant) satisfies H2 ≤ 1, then Mn is a slice.
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APPENDIX A. AN ε-APPROXIMATION APPROACH

To avoid possible issues with points x in Mn such that ∇u = 0 (which exists by the

compactness of Mn in the first part of the thesis), we make a ε-approximation argument

(KOTSCHWAR; NI, 2009). Another problem that this technique fixes is that we calculate

second derivatives along most calculations, and we cannot expect a good regularity of

eigenfunctions of the p-Laplacian due to the singularities. To complete the work, we

recall the following definition:

Definition A. 1. The Hölder space Ck,α(M) is defined for 0 < α < 1 as the set of

u ∈ Ck(M) such that the norm

||u||Ck,α := ||u||Ck + sup
p1,p2

|∇ku(p1)−∇ku(p2)|
dg(p1, p2)α

is finte, where dg is the distance function defined in Mn.

The regularity of the eigenfunctions of the p-Laplacian in general cannot be any better

than C1,α(M) (LÊ, 2006, Theorem 4.5). The main idea to solve this is consider the

perturbation by a positive constant |∇u(·)|2 + ε, repeat the same arguments as used in

the proof of theorem 3.6 (and its generalizations) to the modified function, and, at the

end, take ε → 0+.

Suppose that λ is an eigenvalue of the p-Laplacian operator. Let Wϵ = |∇uε|2 + ε for

ϵ > 0 where uε is the solution of the problem

∆p,ϵuε := −div(W
p−2
2 ∇uε) = λ|uϵ|p−2uε. (23)

Note that, when ϵ → 0, uϵ must coincide with the eigenfunction of the p-Laplacian

associated to λ.

To ensure the regularity, we recall a theorem due to Ural’tseva (1960)

Theorem A.1. Let F be a solution of the following variational problem:

I(u) =

∫
Ω

F (x, u,∇u)dΩ.
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If F has the first derivative bounded (in the Lipschitz sense) and F satisfies

Fuiuj
ξiξj ≥ M |ξ|2,

for some M > 0 and for all ξ ∈ Rn, then u ∈ C2,α(Ω). If we assume that u(x) = φ(x) for

all x ∈ ∂Ω, φ ∈ C2,α(∂Ω) and the boundary is at least C2,α, then u ∈ C2,α(Ω).

The notation Fuiuj
means the derivatives of F with respect to ⟨∇u, ei⟩. In other words,

if we rewrite the variational problem as a second-order quasilinear PDE of the form

aij(x, u,∇u)⟨Hessu(ei), ej⟩+ b(x, u,∇u) = 0,

then Fuiuj
= aij. For the regularized p-Laplacian, we have the following

F (u) = (ε+ |∇u|2)p/2 − λ|u|p.

Hence, by direct computation,

aij = (ε+ |∇u|2)
p−2
2 δij + (p− 2)(ε+ |∇u|2)

p−4
2 ⟨∇u, ei⟩⟨∇u, ej⟩.

Hence, for any ξ,

aij⟨ξ, ei⟩⟨ξ, ej⟩ ≥ (ε+ |∇u|2)
p−2
2 |ξ|2

If p ≥ 2, then aij ≥ ε
p−2
2 |ξ|2. Otherwise,

aij⟨ξ, ei⟩⟨ξ, ej⟩ ≥ (ε+ |∇u|2)
p−2
2 |ξ|2 + (p− 2)(ε+ |∇u|2)

p−4
2 |∇u|2|ξ|2

≥ (1 + (p− 2))(ε+ |∇u|2)
p−2
2 |ξ|2.

Taking the maximum of |∇u| on Ω, we get the desired inequality. The other hypotheses are

guaranteed by the smoothness of our submanifold. For the Neumann boundary condition,

see Ladyzhenskaya and Ural’tseva (1961).

Theorem A.2. Let Mn be a closed minimal submanifold in Sm and let uε be a solution
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of the problem (23). Then

0 ≤ αn,pλ
2/p

∫
M

(
W

p−2
2

ε |∇uε|2
) 2p−2

p

dM −
∫
M

(n− S)W
2p−4

2
ε |∇uε|2dM

where αn,p is defined in (1.2).

Proof. Note that

2

p
∇W

p
2
ε = W

p−2
2

ε ∇Wε =
(
|∇uε|2 + ε

) p−2
2 ∇|∇uε|2.

Hence, if we denote ∆∞,εu = W−1
ε ⟨Hess(uε)(∇uε),∇uε⟩, then

1

p
Lu

(
W

p
2
ε

)
=W

p−2
2

ε

(
⟨∇uϵ,∇∆p,ϵuϵ⟩

− (p− 2)
(
∆∞uϵ∆p,ϵuϵ + 2W

p−4
2

ε |Hess(uϵ)(∇uϵ)|2
))

dM

+W
2p−4

2
ε

(
(p− 2) ⟨∇uϵ,∇∆∞,εuϵ⟩ − |Hess(uϵ)|2 − Ric(∇uϵ,∇uϵ)

)
dM

Repeating the integration part arguments, we have that

i) 0 = −
∫
M

div
(
∆p,εuεW

p−2
2

ε ∇uϵ

)
dM =

∫
M

(∆p,εuε)
2dM −

∫
M

⟨∇uε,∇∆p,εuε⟩dM

ii) 0 = −
∫
M

div
(
W

p−2
2

ε ∆∞,εuεW
p−2
2

ε ∇uϵ

)
dM =

∫
M

W
p−2
2

ε ∆∞,εuε∆p,εuεdM

−
∫
M

W
2p−4

2
ε ⟨∇uε,∇∆∞,εuε⟩dM − (p− 2)

∫
M

W
2p−6

2
ε (∆∞,εuε)

2 dM

Hence, by the Cauchy-Schwarz inequality,

0 ≤
∫
M

λ2|uε|2p−2dM −
∫
M

W
2p−4

2
ε |Hess(uε)|2dM −

∫
M

W
2p−4

2
ε Ric(∇uε,∇uε)dM

We also define the approximation tensor Tε as Tε(X) = ∇X(W
p−2
2

ε ∇uε). Note that ∆p,εuε

for X ∈ X(M). Note that tr(Tε) = −∆p,εuε and

|Tε(X)|2 = W
2p−4

2
ε ⟨∇X∇uε,∇X∇uε⟩+ p(p− 2)W

2p−6
2

ε ⟨∇X∇uε,∇uε⟩⟨X,∇∇uε∇uε⟩
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Hence,

n(p− 1)2W
2p−4

2
ε |Hess(uε)|2 ≥ (∆p,εuε)

2

By direct computation,

0 ≤
(
1− 1

n(p− 1)2

)∫
M

λ2|uε|2p−2dM − n− 1

n

∫
M

(n− S)W
2p−4

2
ε |∇uε|2dM

Moreover, by the divergence theorem,

0 = −
∫
M

div
(
λ|uε|p−2uεW

p−2
2

ε ∇uε

)
dM

=

∫
M

λ|uε|2p−2dM − (p− 1)

∫
M

W
p−2
2

ε |∇uε|2|uε|p−2dM

By Hölder’s inequality,

λ

p− 1

∫
M

|uε|2p−2dM ≤

(∫
M

(
W

p−2
2

ε |∇uε|2
) 2p−2

p

dM

) p
2p−2 (∫

M

|uε|2p−2dM

) p−2
2p−2

Hence,

0 ≤ αn,pλ
2/p

∫
M

(
W

p−2
2

ε |∇uε|2
) 2p−2

p

dM −
∫
M

(n− S)W
2p−4

2
ε |∇uε|2dM

Taking ε → 0 we obtain the desired inequality. ■
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