Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/58485
Compartilhe esta página
Título: | Schrödinger equations and coupled systems with Stein-Weiss convolution parts |
Autor(es): | SANTOS, Jose Luando de Brito |
Palavras-chave: | Não linearidade do tipo Stein-Weiss; Interação não local com peso duplo; Expoente supercrítico; Iteração de Moser; Crescimento exponencial crítico; Desigualdade de Trudinger-Moser |
Data do documento: | 4-Out-2024 |
Editor: | Universidade Federal de Pernambuco |
Citação: | SANTOS, José Luando de Brito. Schrödinger equations and coupled systems with Stein-Weiss convolution parts. 2024. Tese (Doutorado em Matemática) – Universidade Federal de Pernambuco, Recife, 2024. |
Abstract: | In this work, we investigate the existence of positive solutions for certain classes of Schrödinger equations and coupled systems with Stein-Weiss type nonlinearities. In the scalar case, we analyze classes of equations that involve perturbations in the Stein-Weiss term with a potential that may vanish at infinity or remain constant at 1. We consider both the case of a general nonlinearity with subcritical growth that satisfies certain appropriate conditions, and the critical homogeneous case in the sense of the Stein-Weiss inequality. Additionally, we explore two classes of coupled systems. The first class involves a linear system with potentials that may vanish at infinity and general nonlinearities with subcritical growth, also meeting specific conditions. The second class deals with a coupled nonlinear system, where the general nonlinearities exhibit critical exponential growth in the sense of the Trudinger-Moser inequality. We study the existence of positive solutions and the regularity of solutions for this system. To achieve these results, we employ variational methods, utilizing techniques such as minimization over the Nehari manifold, truncations combined with the penalization technique of Del Pino and Felmer, and Moser’s iteration method to obtain L∞−estimates. Furthermore, when dealing with the coupled nonlinear system, we present an alternative to the standard arguments, based on a variant of Palais symmetric criticality principle, instead of the traditional vanishing- nonvanishing and shifted sequences arguments of Lions, which are not applicable, due to the double weight present in the Stein-Weiss type convolution. |
URI: | https://repositorio.ufpe.br/handle/123456789/58485 |
Aparece nas coleções: | Teses de Doutorado - Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE José Luando de Brito Santos.pdf | 1,66 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons