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RESUMO

Neste trabalho, investigamos a existéncia de solucbes positivas para certas classes de
equacdes de Schrodinger e sistemas acoplados com nao linearidades do tipo Stein-Weiss. No
caso escalar, analisamos classes de equacdes que envolvem perturbacdes no termo de Stein-
Weiss com potencial que pode se anular no infinito ou ser constante igual a 1. Consideramos
tanto o caso de uma n3o linearidade geral, com crescimento subcritico que satisfaz certas
condicdes apropriadas, quanto o caso homogéneo critico no sentido da desigualdade de Stein-
Weiss. Além disso, exploramos duas classes de sistemas acoplados. A primeira classe envolve
um sistema linear, com potenciais que podem se anular no infinito e n3o linearidades gerais com
crescimento subcritico, também atendendo a condicdes especificas. A segunda classe trata-
se de um sistema nao linear acoplado, cujas ndo linearidades gerais apresentam crescimento
exponencial critico no sentido da desigualdade de Trudinger-Moser. Estudamos a existéncia de
solucdes positivas e a regularidade das solucGes para este sistema. Para alcancar os resultados,
empregamos métodos variacionais, utilizando técnicas de minimizacdo sobre a variedade de
Nehari, truncamentos combinados com a técnica de penalizacdo de Del Pino e Felmer, e o
método de iteracdo de Moser para obter estimativas L>°. Além disso, ao lidar com o sistema
nao linear acoplado, apresentamos uma alternativa aos argumentos padrao, baseada em uma
variante do principio de criticalidade simétrica de Palais, em vez dos argumentos tradicionais
de vanishing-nonvanishing e shifted sequences de Lions, que ndo s3o aplicaveis, devido o duplo

peso presente na convolucao do tipo Stein-Weiss.

Palavras-chaves: N3o linearidade do tipo Stein-Weiss. Interacdo ndo local com peso duplo.
Expoente supercritico. lteracao de Moser. Crescimento exponencial critico. Desigualdade de

Trudinger-Moser.



ABSTRACT

In this work, we investigate the existence of positive solutions for certain classes of
Schrodinger equations and coupled systems with Stein-Weiss type nonlinearities. In the scalar
case, we analyze classes of equations that involve perturbations in the Stein-Weiss term with
a potential that may vanish at infinity or remain constant at 1. We consider both the case
of a general nonlinearity with subcritical growth that satisfies certain appropriate conditions,
and the critical homogeneous case in the sense of the Stein-Weiss inequality. Additionally, we
explore two classes of coupled systems. The first class involves a linear system with potentials
that may vanish at infinity and general nonlinearities with subcritical growth, also meeting
specific conditions. The second class deals with a coupled nonlinear system, where the general
nonlinearities exhibit critical exponential growth in the sense of the Trudinger-Moser inequality.
We study the existence of positive solutions and the regularity of solutions for this system. To
achieve these results, we employ variational methods, utilizing techniques such as minimization
over the Nehari manifold, truncations combined with the penalization technique of Del Pino
and Felmer, and Moser's iteration method to obtain L°°—estimates. Furthermore, when dealing
with the coupled nonlinear system, we present an alternative to the standard arguments, based
on a variant of Palais symmetric criticality principle, instead of the traditional vanishing-
nonvanishing and shifted sequences arguments of Lions, which are not applicable, due to the

double weight present in the Stein-Weiss type convolution.

Keywords: Stein-Weiss type nonlinearity. Double weighted nonlocal interaction. Supercritical

exponent. Moser iteration. Critical exponential growth. Trudinger-Moser inequality
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1 INTRODUCTION

In 1958, Stein and Weiss proved the so-called weighted Hardy-Littlewood-Sobolev
inequality, which generalizes the classical Hardy-Littlewood-Sobolev inequality in (SOBOLEV,
1938) by inserting two weights ||~ and |y|~. Being more precise, it was proved in (STEIN;

WEISS, [1958)) that there is a sharp constant C'(r, s, N, «, 3, 1) such that

o(0)h(z)
dydx| < C(r,s, N, a, 3, ||| s 1.1
Lo it ey v < gl ] (1)

where g € L"(RY), h € L*(RY) and 7, s, , 3, ju satisfy the following conditions:

l<r,s<+4oo, 0<pu<N, a+p>0, 0<a+p+u<N,

1 1 a+B+p 1 un « 1
-+ -+ —— =2 d 1-——>"—-"<—<1-—-.
r+s+ N an r N N r

In particular, if we consider ¢ = h = |ul?, « =  and r = s, in inequality (1.1)), then
200+ 1 < N and

q
// y)lul) dydz < oo,
RN Rlellx-yVﬂle

2N —2a —p 2N =20 —p .
2y = N Ses T N_—2 =20 (1.2)

provided

where 27, is called the upper critical Sobolev exponent (N > 3) and 2., the lower critical
Sobolev exponent by (DU; GAO; YANG, 2022), in the sense of (LI)). If N =2 then 2} , = oc.
For details, see Remark in Chapter [2) of this thesis.

Given its importance in applications to harmonic analysis and partial differential equations,
the Stein-Weiss inequality has recently attracted considerable attention. In particular, there has
been a surge in research on elliptic problems motivated by this inequality. A notable example is
the work by (DU; GAO; YANG, [2022)), where the authors studied the following equation involving
the upper critical Sobolev exponent

*
251

1 *
—Au = </ M y> Ju|?or =2y, in RY, (1.3)
] \Jen [y|*|e =yl

where the convolutionary nonlinearity with double weight is called the Stein—Weiss type. They

established the existence of nontrivial solutions and investigated qualitative properties of the
solutions of ([1.3)), such as, regularity and symmetry. Moreover, the authors have studied the

existence of nontrivial solutions for the following class of equations

1 p
—Au+u= </ ()] dy) lu[P~?u, in RY
R

x| \Jr~ |y|o|z — y|#

(1.4)
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where N > 3, 0 < p < N, a 20,0 < 20+ p < N and for 2,,, <p<2j;7u.
It is obtained regularity, existence, symmetry of solutions and nonexistence for p > 2 ,
or 2,4, = Dp. They still established a nonlocal version of the concentration-compactness
principle. In (DE ALBUQUERQUE; SANTOS, 2023)), the authors have considered the Schrodinger
problem involving Stein-Weiss type nonlinearity and a potential which may vanishes at infinity.
In (BISWAS; GOYAL; SREENADH, [2023b) it was considered the case when the nonlinearity
has critical exponential growth in Trudinger-Moser inequality sense. For quasilinear critical
Kirchhoff-Schrodinger Stein-Weiss problem, we refer (BISWAS; GOYAL; SREENADH, [2023a)) for
existence of infinitely many nontrivial solutions via concentration-compactness argument. A
fractional Kirchhoff Hardy problem combining weighted Choquard and singular nonlinearity is
discussed in (GOYAL; SHARMA, [2022). We refer to (ZHANG X. TANG, 2021)) for an Anisotropic
Choquard problem. In (YANG; ZHOU| 2021) the existence, nonexistence, regularity, symmetry
and asymptotic behavior of solutions for a coupled Schrodinger system with Stein-Weiss type
convolution part have been explored.

Equation ((1.4) when o = 8 = 0, reduces to the following classic Choquard equation

1
—Au+u= < * \u|p> lu[P~u, in RY, (1.5)

]

1
|

where * denotes the convolution operator. The term can be reinterpreted as the classical
Riesz potential. Consequently, equation is closely related to the Choquard equation,
which arises from the study of Bose-Einstein condensation. This relationship can be utilized
to describe finite-range many-body interactions among particles. Equation has a strong
physical meaning and appears in several physical contexts, for example, in the relevant case
in which p =2, N =3 and = 1, equation boils down to the special case
Autu— (Q ; |u|2> u, in R, (1.6)
Equation is called Choquard-Pekar equation. This equation appeared first in 1954,
(PEKAR, |1954), where Pekar studied the quantum theory of a polaron at rest. Successively,
in 1976, Choquard adopted this equation to characterize an electron trapped in its own hole,
in a certain approximation to the Hartree-Fock theory for the one-component plasma, see
(LIEB, 1976/77). In 1996, Penrose (PENROSE, 1996)), proposed, in a particular case, a model
of self-gravitating matter in a programme in which quantum state reduction is regarded
as a gravitational phenomenon and, in that context, it is referred as Schrédinger-Newton

equation. Finally we observe that if u solves equation ([1.6]), then the function ¥ defined by
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U (t,z) = e'™(x) is a solitary wave of the focusing time-dependent Hartree equation
W+ AV = — <|x1] * |\Il\2> U, inR, xR

Thus, is also known as the stationary nonlinear Hartree equation. In the pioneering
work (LIEB| 1976/77)), proved the existence and uniqueness of positive solutions to (|1.6]).
Later, multiplicity results for (1.6]) were obtained by (LIONS, |1980; [LIONS) [1982)) by variational
methods.

Motivated by the physical relevance, many authors studied the equation in dimension
N > 3 and and nonlinearity with subcritical or critical polynomial growth in the sense of Hardy-
Littlewood-Sobolev inequality. In (ACKERMANN, 2004) has considered Schrédinger equation
with nonlocal superlinear part and shown the existence of infinitely many solutions. In (MOROZ;
SCHAFTINGEN, 2013), the authors have studied the existence of positive ground state solution
as well as they have discussed the regularity and decaying behavior of such solutions. Moreover,
considering a suitable control on the potential term in (MOROZ; SCHAFTINGEN, [2015b)), they
have also studied existence and nonexistence results where the convolution term involves critical
exponent with respect to the Hardy-Littlewood-Sobolev inequality. In (MOROZ; SCHAFTINGEN,
2015a)), it is proved the existence of a ground state solution under assumptions of Berestycki-
Lions type. We also refer the readers to (BUFFONI; JEANJEAN; STUART, [1993; /ALVES; YANG,
2014} [ALVES et al), [2016a]; |ALVES; YANG, [2016} |ALVES; FIGUEIREDO; YANG|, [2016]; [SCHAFTINGEN;
XIA, |2017; |GAO; YANG, 2018; DU; YANG, 2019; |GAO et al., [2020; [CINGOLANI; GALLO; TANAKA|
2022) and references therein, specially (MOROZ; SCHAFTINGEN, |2017)), for a meaningful review
of Choquard equations.

Naturally, the results were extended to coupled systems. For instance, in (XU; MA; XING,
2020) the authors studied the existence and asymptotic behavior of vector solutions for the

following class of linearly coupled Choquard-type systems

—Au+ \u = (./]RN m dy) flu(z)) + M,  in RN,

—Av + Xv = (/RN m dy) g(v(z)) + A, in RY,
where N > 3, A\;, A2, A > 0 and nonlinearities f, g with polynomial growth. For other works
concerned with coupled systems involving Choquard type equations, we refer the readers to
(CHEN; LIU, 2018; DE ALBUQUERQUE et al., 2019; XU; MA; XING| 2020; SUN| 2021)) and references

therein.
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Inspired by the preceding discussion, we decided to study in this thesis certain classes
of Schrédinger equations and coupled systems with Stein-Weiss type nonlinearities. In the
following, we outline the main results that will be explored in the subsequent chapters of this
thesis.

In Chapter [2] inspired by (GAO; YANG, [2017; |AO, 2019} [PAN; LIU; TANG, [2022), we are
going to study the existence of ground states for the following class of perturbations of the

Stein-Weiss convolution

Jul* ul*"*u BN
—Au+u:</ dy + f(x,u), inRY, 1.7
v Tyl — gl ) 0

WhereN>3,O<u<N,oz20,0<20¢+u<N,%::2*%”<3<2;H::%
and under suitable assumptions on different types of nonlinearities f. In (PAN; LIU; TANG, [2022)),

the authors examined a variant of Problem ([1.7)) without the double weight, i.e., when oo = 0.

They further assumed that s = 2

000 J(x,u) = Au|? with 2 < g < 2*, and proved the existence

of a positive radial solution for sufficiently large A. In the case where A = 1, the author in
(A0, |2019)) established the existence of a nontrivial solution. Our objective is to investigate
Problem (|1.7]) involving double weighted nonlocal terms, specifically in the scenario where

a # 0, considering different types of f, namely:

P p—2
(f1) flz,u) = </}R |u‘dy) [l u, o0 <P <25

Nyl =yl ||
(f2) f(z,u) = AW;
(fs) flx,u) = MNuP~2u, 2 < p < 2%;
(fa) [(x,u) = Au|""?u, ¢ > 2%,

where A > 0 is a parameter. When A = 0, Problem becomes ([1.4) without the term f
with s = 2%  and as proved in (DU; GAO; YANG, 2022), there does not exist any nontrivial
solution. Furthermore, we also study the version of Problem (1.7)) with f satisfying (f;) above,
however for the critical case in the sense of the Sobolev inequality, i.e., we consider the following

class of Schrodinger equations

p p—2
—Au+u=|ul* Pu+ A (/ el dy) [u u’ in RY, (1.8)
RN |yl|*lz —y| ]
where 2* = % We emphasize that the key to addressing the critical case of the double

weighted nonlocal interaction, together with the hypotheses about f, was the utilization of
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the minimizing function U(z) of S, (see (2.12) in Chapter [2) as established in (DU; GAO;
YANG, 2022, Theorem 1.3), this function satisfies (1.3)), with

U 22’ " U 227 2N—2a—pup
/ ‘VUP de — / / ’ | ! dy ‘ | s de — 014\77;2—2(1—;1.
RN RV \JRN |y|*|z — y[# [

In addition to this challenge, we draw attention to the case (f4), where dealing with the

supercritical exponent ¢ > 2* requires the application of a truncation argument to define the
associated energy functional properly. For further details, refer to Subsection [2.5.1] of Chapter
. Our approach to solving Problems ({1.7)) and is variational, relying on a minimization
technique over the Nehari manifold. Additionally, to address the case (f4) in Problem ((1.7)),
we combine the truncation argument with L>°—estimates. The results presented in Chapter
are novel and extend the existing solutions found in (AO, [2019; PAN; LIU; TANG, 2022; DU;

GAO; YANG, 2022) in the following ways:

1. If f #0, a =0, then our results complete the picture of (A0, 2019; PAN; LIU; TANG,

2022), for 2.a, < s < 27

2. If f #0, a # 0, then our results complete the picture of (A0, 2019; PAN; LIU; TANG,
2022; DU; GAO; YANG, 2022).

In Chapter , drawing inspiration from (ALVES; SOUTO) [2012; ALVES; FIGUEIREDO; YANG,
2016; |CARDOSO; DOS PRAZERES; SEVERO, [2020; DE ALBUQUERQUE; SANTOS, 2023), we explore
the existence of positive solutions for the following class of Schrodinger equations with Stein-

Weiss type nonlinearity.

—Au+V(x)u = (/R Flu) dy) f) +(z,u), in RY, (1.9)

Nyl le —yl# [
where the potential VV : RN — R decays to zero at infinity and I is the primitive of function
f. Later, we will introduce the assumptions on V' (z), f and . Furthermore, we also study
a special version of Problem ([1.9) with the same 1), however the nonlinearity f assumes
the homogeneous critical case in the sense of the Stein-Weiss inequality . Precisely, we

consider the following class of Schrodinger equations

1 |u(y) > |u(z)[Pon—2u N
—Au+V(x)u = (/ dy +Y(z,u), inRY, 1.10
= g Ve Tyfele =g o Y (119

where 27, | = 2N_20-1 and the potential V(x) is a radial function, i.e., V/(|z[) = V(z), for all

x € RY. In order to find solutions of Problems (1.9)) and ([1.10)), our intention is to study it

considering the following types of hypotheses about :
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(¢1) Y(z,u) = A(x)|u|?"%u, and \(x) a nonnegative function such that A\(z) € L%(RN);

A |u|? |u|? 2y _
wx,u—</ d) , A = 0 is a parameter
<¢2) ( ) q RN |y‘a|l’—y|“ Y

with ¢ > 27, and f(u) is a general nonlinearity with subcritical growth satisfying some
appropriate conditions and with V'(z) that may vanish at infinity, i.e., V(z) — 0 as |z| — oo,
in the sense of (ALVES; SOUTO, 2012), where the authors studied existence of solutions for the

following equation
~Au+V(z)u = g(u), inRY, (1.11)
where V() has the following decay behavior

1 4
— 1 = . .
7 |$‘r;fR\x] V() 2A>0 (1.12)

It is important to mention that (ALVES; SOUTO, [2012)) was extended in several directions, for
instance: (DO O; GLOSS; SANTANA, 2015)) for quasilinear problems, (ALVES; FIGUEIREDO; YANG,
2016) for Choquard-type equation, (DO O; SOUTO; UBILLA), [2020)) for Kirchhoff-type equation,
(DE ALBUQUERQUE; SILVA; SOUSA, [2022)) fractional linearly coupled Choquard-type system, etc.
In these works, the decay was adapted to the respective class of problems. Inspired by
(ALVES; SOUTO, 2012), the existence of solutions is obtained by applying variational methods
jointly with the penalization method in the spirit of (DEL PINO; FELMER, 1996). Our focus is to

study the Problem ((1.9)), assuming that the potential V'(x) satisfies the following hypotheses:

(V1) V(z) is positive and there exists Ry > 1 such that

et ] P2V (2) =0 A > 0;
0 =

We will assume that f : R — R, is a nonzero continuous function and satisfies the

following general hypotheses:

210

m < oo and lim;_, o, —~

() AN —a—1),

=0 f 1
orsomepE(, N _9

(fl) limtﬁ(ﬁ

(f2) there exists 0 € (2, min {2’(‘1#,4}), such that 0 < 0F(t) < 2f(t)t, for all t > 0, where
F(t) = Jo f(r)dr.

To finish the Chapter , we will study the Problem (|1.10f), with the following hypotheses

about the potential V' (z):
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(Va) V(z) radial (i.e., V(|z|) = V(x)), and there exists Ry > 1 such that

w2V (2) = A > 0.

inf |z
|z|>Ro

In order to deal with the nonlocal term and supercritical term in Problems ((1.9)) and (1.10)),

we use the following hypotheses for a;, u:
N +2
N>3 0<u<N, a>0, 0<2a+ﬂ<mm{;,4}.

We encountered some obstacles while investigating Problems and , primarily
due to the presence of the Stein-Weiss term combined with a supercritical term, which
introduced additional difficulties. Firstly, because of the supercritical term, we needed to
apply a truncation argument to properly define the associated energy functional. Unlike in
(CARDOSO; DOS PRAZERES; SEVERO, [2020)), however, we were unable to simultaneously apply
truncation and penalization to both terms. Our approach involved applying truncation to the
supercritical power and penalization to the Stein-Weiss term separately. This strategy, detailed
in Subsection [3.2.1] introduced significant difficulties throughout the chapter.

To overcome these difficulties, we introduced two auxiliary problems to restore some
compactness, while carefully controlling the terms A and A to connect the solution of the
auxiliary problem with the original Problem (1.9). We applied similar arguments to Problem
. In addressing these problems, our approach combined truncation arguments, an adapted
version of the penalization method, and L°°—estimates.

Our main contribution in this chapter lies in our ability to handle three challenging scenarios
simultaneously: the case where ¢ > QZW, potentials V'(z) that may vanish at infinity, and the
double weighted nonlocal terms, where we still consider the critical case. In this context, we
emphasize the following:

2N —

N 2 then our

LIfp=0a=00<p<mn{M24} N>3 ¢>2, =2, =

results complete the picture of (ALVES; FIGUEIREDO; YANG, 2016));

2. If (¢1) holds with A(z) =\, a=0,0< u < % g > 2%, then our results extend and

complement the previous item;

3. =0a#£0,q> 2

oo then our results complement (DE ALBUQUERQUE; SANTOS,
2023);

4. The case ¥ # 0 extends and complements the previous items.
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In Chapter [d motivated by the work in (DE ALBUQUERQUE; SILVA; SOUSA, 2022; DE
ALBUQUERQUE; SANTOS, [2023)), we investigate the existence of solution for the following
class of linear coupled systems involving Stein-Weiss type nonlinearities

Fy(u1) dy) )
N lylole —yln

Fyuz) > fo(uz)

Nyl — ylr

—Auy + Vi(x)uy = (/}R + A(z)ug, in RY

(1.13)

+ AM2)ug, in RY,

—Auy + Vy(x)uy = < /]R

where N > 30 < pu < N,a>0,0<2a+pu < min{%,él} and F; is the primitive of

function f;. We consider continuous functions V;(x), V,(x) that may decay to zero at infinity

and are related with the coupling function by
1
0 < Az) < dmin{Vi(x),Va(x)}, d€ (0, 2) , VreRY,

where V; and f; satisfy hypotheses similar to (V41), (f1) — (f2) of Problem (1.9), i.e., for

1= 1,2, we have:
(Vi1) Vi(z) is positive and there exists Ry > 1 such that

(qz-—2)(N—2)Vi<x> =:A; > 0;

1 f ’
— v 5y 11 s
R(()qz'*Q)(N*Q) |z|>Ro

thilt)

14

(fin) limy_o+ < 00 and limy_,

tf:(t
fp(’> = 0 for some p; € <1,

2(N]\;i12— u)>;

(fi2) there exists 0; € (2,4), such that 0 < 6;F;(t) < 2f;(t)t, for all t > 0, where
Fy(t) = [y fi(r)dr.

This class of systems imposes some difficulties. The first one is the presence of the Stein-
Weiss terms which are nonlocal. Moreover, this class of systems is also characterized by its lack
of compactness inherent to problems defined on unbounded domains. In order to overcome
such difficulties, we use the Del Pino and Felmer penalization method, in which we introduce
an auxiliary problem where we are able to recover some compactness and obtain a solution.
After that, we prove an L*>°—estimate which jointly with regularity theory, we obtain a positive
vector solution for System . In this way, in solving the system we will take an approach
based on variational method combined with with penalization technique and L® —estimates.
Our main contribution in this chapter is to complete the study done by the authors in (DE

ALBUQUERQUE; SANTOS, [2023; |ALVES; FIGUEIREDO; YANG, [2016), in the following aspects:
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1. IfA=0, fi = fo and u; = uy, then System ([1.13) boils down to the class of scalar
equations in ([1.9) when ¢ = 0;

2N — i

2. fa=0,0<p<min{M24} N>3 ¢>2,:=2 = N 2

, then our results

complete the picture of (ALVES; FIGUEIREDO; YANG, 2016);

3. fa#0, g >2; , then our results complement (DE ALBUQUERQUE; SANTOS, 2023);

4. To the best of our knowledge, this is the first work to consider coupled Schrodinger
systems with Stein-Weiss type nonlinearities involving potentials that decay to zero at

infinity.

Finally, in Chapter , inspired by the work of (ALVES; SHEN, 2023; BISWAS; GOYAL;
SREENADH, 2023b)), our focus is to study the following class of coupled system involving

doubly weighted nonlocal interaction.

= ([ B a) S o, o,

N ylfle — yle ||
_ G(v(y)) g(v(z)) - :
Aol = </]RN y|Pla —yl» dy || + Agluf?lol*Pv, in RY,
(1.14)

whereN22,0<p<N,)\>0,620,0<25+M<N,p>%,q>%,p+q>N,
Anu = div(|Vu|¥=2Vu) is the N-Laplacian operator, f(s), g(s) have critical growth of
Trudinger-Moser type, F'(s), G(s) are the primitives of f(s), g(s) respectively.

From a mathematical point of view, the cases involving N—Laplacian (for N > 3) or
Laplacian (for N = 2) are particularly very interesting as the corresponding Sobolev embedding
yields WEY(RN) c LY(RY) for all ¢ > N, but WHY(RY) ¢ L°(RY). In these cases, the
Pohozaev-Trudinger-Moser inequality (CAO, 1992)) (see (MOSER, (1971; POHOZAEV, [1965) for
the bounded domain case) serves as an alternative to the Sobolev inequality, allowing us to

establish the sharp maximal growth for functions in W1HY (R¥Y) as follows.

Proposition 1.0.1. (Pohozaev-Trudinger-Moser inequality, (CAO, 1992)) If o > 0,
N > 2 and u € WHN(RY), then

| (explalul ) = Sy p(a,u)) de < o,
RN

where
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1
Moreover, if [|[Vul|¥ <1, [Jul|y < M < 0o anda < ay = Nwy_}, wherewy_1 is the surface

area of (N — 1)—dimensional unit sphere, then there exists a constant C' = C'(a, M, N) > 0
such that
/N(exp(am\%) — Sy_s(a,u))dz < C.
R

In the sense of the Pohozaev-Trudinger-Moser inequality, we say that a function h: R — R
has ay— critical exponential growth at +o0, if there exists oy > 0 such that
h(s) 0, if o> oo,

lim — = (1.15)
S7H exp(ar|u| 1) —=Sy_a(a, u) +o00, if o< .

This definition of criticality was introduced by Adimurthi and Yadava (ADIMURTHI; YADAVA,
1990)), see also (FIGUEIREDO; MIYAGAKI OLIMPIO; RUF, (1995). There are a few works considering
Stein-Weiss term and a nonlinearity with critical exponential growth, see for example (ALVES;
SHEN, 2023)) and (YUAN et al., 2023). For works considering Choquard type equations and
nonlinearities with critical exponential growth, we refer the readers to (ALVES et al., 2016b;
YANG, [2018; ]ALBUQUERQUE; FERREIRA; SEVERO, [2021; QIN; TANG| 2021} |SHEN; RADULESCU;
YANG) 2022) and references therein.

With this in mind, in the same spirit as ((1.15]), we suppose that the nonlinearities f and

g have ap— critical exponential growth at +o00 and the following hypotheses:

(a) f and g are continuous, f(s) = g(s) =0if s <0and f(s) > 0,g(s) > 0if s > 0. Also

lim sl — — lim )
s=0t g7 1 s=0t g7 1
F
(b) liminf LIZ = lim inf G(Sg = fo > 0;
|s|—o0 eoos N—T |s|—00 eoos VT

(c) there exist sg, My > 0 and mg € (0, 1] such that

0<s™FE(s) < Myf(s), Vs> sp;

(d) the functions s+ f(s)/s¥ ! and s+ g(s)/s¥ ! are increasing for s > 0;

(e) there exists 0§ € (N,p + q} such that 0 < 0F(s) < f(s)s and 0 < 0G(s) < g(s)s, for

all s > 0.
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In order to deal with the coupling terms in System ([1.14]), we use the following hypotheses for
p,q and N:
N
N > 2, p,q>§ and p+qg> N.

Beyond the challenges posed by the nonlocal and critical growth behavior of the
nonlinearity, we encountered several technical difficulties while studying Systems ([1.14]). These

include:

(7) The nonlocal term is not periodic for 8 # 0. For this reason, the standard approach

based on Lions' vanishing-nonvanishing argument is not applicable anymore;

(i7) Showing the solution of System (|1.14) to be vectorial is not obvious and requires a

careful treatment;

(#4i) For N > 2, due to the lack of Hilbert space structure, a variant of Palais principle of

symmetric criticality is needed, see Appendix |A| for details;

(iv) For the critical exponential growth in the general case N > 2, even some obvious results
require some careful analysis throughout the chapter. Needless to mention Lemma(5.2.11

as an example.
The main contributions of this chapter are as follows:

1. The results presented here complete the framework established in (DE ALBUQUERQUE
et al, 2019) in any dimension N > 2. We complement and extend some works which
consider Choquard type problems with critical exponential growth, such as (CHEN; TANG,
2022);

2. In case of dimension N = 2, the existence result obtained in (ALVES; SHEN, [2023)) can be
achieved from the study of asymptotic behavior of solutions of as A\, 0, described
in Section 4.2 of (DE ALBUQUERQUE et al., [2024) in details;

3. Even for scalar case (when A = 0) the results of this chapter are new and complement

(ALVES; SHEN, 2023) for dimensions N > 2;

4. This chapter offers an alternative to the standard arguments based on Lions' vanishing-
nonvanishing and shifted sequences, which are not applicable for 3 # 0 Instead, we

utilize a variant of Palais principle of symmetric criticality.
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Given its motivational significance and frequent application in this thesis, we will precisely
state the weighted Hardy-Littlewood-Sobolev inequality, commonly referred to as the Stein-

Weiss inequality.

Proposition 1.0.2. (Weighted Hardy-Littlewood-Sobolev inequality, (STEIN; WEISS,
1958)) Let 1 <r,s <400, 0<u<N,a+8>0,0<a+B+u<N,ge L' (RY) and
h € L*(RY). Then, there exists a sharp constant C(r,s, N, «, 3, 1) such that

/RN/RN |y|a7;y1h;ﬁ)|x|ﬁ dydz| < C(r,s, N, o, 8, p)lgll |7 ]ls, (1.16)
where
L pesgn
and
1 1
1—;—%<%<1—;.

In addition, for all h € L*(RY), we have

/R h(y) dy

N yle|e — y|#|x)P

S O(ta S, N704>57H)Hh”87

where t verifies

=—-+——F+—— and

1 <-<
+5N N t N

1 1 a+f+up a 1 a+p
t

Note that if « = § = 0, then reduces to the classical Hardy-Littlewood-Sobolev
inequality, see (SOBOLEV, 1938; |LIEB; LOSS, 2001). For other references involving the Stein-
Weiss inequality, see (HAN; LU; ZHU, 2012; NGO, 2021)) and references therein.

To conclude the thesis, in Appendix [A] we present, for N > 2, due to the lack of Hilbert
space structure, a variant of Palais principle of symmetric criticality, which was essential for

obtaining the main result of Chapter [5]
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2 EXISTENCE OF POSITIVE SOLUTIONS FOR PERTURBATIONS OF THE
DOUBLE WEIGHTED NONLOCAL INTERACTION PART WITH CRITICAL
OR SUBCRITICAL EXPONENTS

In this chapter, our main goal is to study the following class of Schrodinger equations

involving double weighted nonlocal

s s—2
—Autu= (/ [l dy> ML ), inRY, (2.1)
R

N Jylole —ylv ]

where 2,,, <s<2,,, N2>23 0<pu<N,a=>0 2a+p < N. The lower bound 2.,

au
is called lower critical exponent and the upper bound 27, is called upper critical exponent
in the sense of the weighted Hardy-Littlewood-Sobolev inequality, see (1.2)). Here f in (2.1
is a nonlinearity satisfying certain assumptions. Later, we will specify the assumptions on f.
Furthermore, we also study the version of the Problem for the critical case in the sense
of the Sobolev inequality. Precisely, we consider the following class of Schrodinger equations

—Au+u = [ul? "Hu+ A (/ el dy> -~ (2.2)

RN [y|*fz —y|#

where 2 = 22 is the critical exponent for the embedding of D'?(RY) to L* (R") and

2va <D <2,

2.1 ASSUMPTIONS AND MAIN RESULTS

Inspired by (GAO; YANG, 2017; |AO, 2019; PAN; LIU; TANG, 2022), we study the existence of
solutions for Problem ({2.1]), considering different types of f:

() fla,u) = A(/R [uf? d>|u|p2u

Nyl =yl ]

' 2*0&,}14 < p < 227“"

Ly
jzf*

(fs) f@,u) = Au[P~?u, 2 <p < 2%

(fZ) f(x,u) =A

(fa) S, u) = AJulu, ¢ > 27;

where A\ > 0 is a parameter.
Throughout this chapter, let H'(RY) be the usual Sobolev space endowed with the usual

inner product and norm

(u,v) ::/ (VuVo +wv)dz and  |ul| = (u,u)2, Vu,v € H'(RY).
RN
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As the results will be proved by variational methods, the energy functional F : H'(RY) —
R associated to Problem ({2.1)) is given by

1
Flu) =3 /RN (1IVul? + [uf?) da
1 S S
- —/ / [ul dy [u dx—/ F(z,u)dx,
2s Jrv \Jr¥ [y|* |z —y|r 7 ) x| RN

where F(z,u) = [;' f(xz,7)d7 and f is one of the nonlinearities (f1) — (f1). Note that, for any
of the functions (f1) — (/f3), one may deduce that F € C'(H'(R"Y),R) (see Remark [2.1.17

and Lemma [2.1.18| below) with

F(u)v = /RN (VuVv 4+ uwv) dz

’u|3 |u‘572u
_ q d _/ 1
/RN </RN ly|*|z —y|# Y || var = fon f(x, u)ode,

for each v € HY(RY). The case (f4) is studied separately and we will discuss with more details

in Section 2.5]

Definition 2.1.1. We say that a function u € H*(R") is a weak solution of Problem (2.1,
if there holds

/ (VuVodr + uwv) dz
RN
s 5—2
—/ </ [ dy) [4 Yo de —/ flz,u)vdz =0, Vve HY(RY).
RN\ JR RN

N ylefe =yl ]

Thus the weak solutions of are precisely the critical points of F.

At this point, we emphasize that the presence of the Stein-Weiss term jointly with the
conditions on f bring additional difficulties. The main difficulties when dealing with this
problem lie in the fact that Lions’ vanishing argument is not applicable, due to the non-periodic
characteristic of Stein-Weiss term and the lack of compactness due to the unboundedness of
the domain RY. To overcome this hurdle, we restrict the energy functional on radial Sobolev
space

Hl

rad

(RY) = {u € H'RY) : u(x) = u(lz])}

endowed with the norm ||-|| induced by H'(R"). Thus, throughout the chapter we will consider

Problem (2.1)) in H. ;(R") and if u is a point critical of functional F restricted to H. ,(R"),

then using the principle of symmetric criticality due to Palais (WILLEM, 1996, Theorem 1.28),
we conclude that u is a point critical of F (see Remark below).
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Now, we define the Nehari manifold as
N = {ue HL,(RN)\ {0} : F'(u)u =0}

The radially symmetric critical points of the functional F must lie on the Nehari manifold N
Therefore, to establish the existence of a solution for Problem (12.1]), we consider the following
constrained minimization problem:

= ijr\lff F. (2.3)

Definition 2.1.2. We will say that a solution is a nontrivial radial ground state solution (or
positive radial ground state) if its energy is minimal among all the nontrivial radial solutions

(or all the nontrivial radial positive solutions) of Problem ([2.1]).

We shall prove that if the infimum in ([2.3)) is attained by w, then w is a radial ground state
solution of ({2.1)).
Similarly to Problem ({2.1)), we define a weak solution for Problem (2.2). See the next

sections for more details.

Remark 2.1.3. We consider Problems (2.1)) and (2.2) in HL ,(R™). If u is a point critical

of functional F restricted to H*

LJ(RYN), then u is a critical of F. In fact, we consider the

action of group of linear transformations G = O(N) on H'(R"), according to the definition
n (WILLEM, 1996, Definition 1.23), then this action is isometric. Moreover, F is invariant
(F(gu) = F(u)), since that

lgull* = l[ull*, Vg € G

lgu(y)|7gu(x // y)[7Ju(z)]?
dydz, Vg € G, 24, <q <2,
/RN/RN y[° |:c—y|~\xra w v [yl |x—y|urx\ e # S S Zay

where above we use the change of variables theorem, the fact that RY is G-invariant and that
g is an orthogonal liner transformation. It follows from of principle of symmetric criticality
(WILLEM, 1996, Theorem 1.28) that u is a point critical of functional F. See a more general

version in the Appendix [A of the thesis.

The main results of this chapter can be stated as follows.

For Problem (2.1)) in RY, we will first consider the case with subcritical nonlocal term
(f1), then Problem (2.1)) becomes

s s—2 P p—2
—Au+u= (/ [ul dy) [l + A (/ [ dy) [ u’ (2.4)
RN [y|ofz —y|# || RN [y|*fz —y|# |z[*
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and we have the following existence result.

Theorem 2.1.4. Assume that 2,,, < p < 2, , and s = 2;#' Then, Problem (2.4)) has a

S

nontrivial radial ground state solution if either
(i) 20 <P <2, 2a+pu=N,N2=3 A>0anda#0,

(i) 240y < P <p <2, N=34and X >0,

(iii) 2vap < P22t <p <2, N>5and >0,

or

(iv) 240, <p < % <2; ., N =3,4 and \ sufficiently large,

(V) 240, < p < 2220 2%, N =5 and X sufficiently large.

Theorem 2.1.5. Let u € H.,(R") be a nontrivial radial ground state solution of Problem
(2.4) obtained in Theorem and assume that 0 < 2a + 1 < min %,4}. Then,
u € L®(RYN) if either

(i) 2ua, < max{fF2Za—t 2£1M M2y < p < 25, N=234and A >0,

(ii) 2*a,u<max{2* N+?VQ§ p 2N-2-ga- By <p<2,,, N=5and A>0,

or

(iii) 2sa, < 2&% <p< % <2, N=32a+p<2 and \ sufficiently

large.

In addition, v € CLY(RN), for some v € (0,1) and u is positive.

We are also interested in the Problem (2.1)) with Hardy potential term (f5), i.e.,

s s—2
S Y L ST
R

N Jylefz —yl [ |z ]*

in which, we establish the following existence result.

Theorem 2.1.6. Assume that A\ € (0,1), s = 2%  and N > 4. Then, Problem (2.5)) has a

o,

nontrivial radial ground state solution.
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We also study Problem (2.1)) with subcritical local term (f3) with A =1, i.e.,

s 5—2
—Au+u= (/ [ul dy) [l + ufP"2u, in RY. (2.6)
R

N Jylole —ylm ]

For this case, we establish the following existence result.

Theorem 2.1.7. Assume that 2 < p < 2*, s =2  and N > 3. Then, Problem (2.6 has a

a,p

nontrivial radial ground state solution.

Theorem 2.1.8. Let u € H.,(RY) be a nontrivial radial ground state solution of Problem
(2.6) obtained in Theorem|2.1.7 and assume that 0 < 2a+ ju < min{~}2 4}. Then, Problem
(2:6) has a nonnegative radial ground state solution u € L®(RN) N C2(RY) for some

€ (0,1). Moreover, the radial ground state is positive.

Furthermore, we will study Problem (2.1]) with supercritical local term (f4), i.e.,

s 5—2
—Au+u= </ [ dy) ul™"u + Mulu, in RY, (2.7)
R

N y|oa — ylr |z[

where ¢ > 2* and A\ > 0 is a parameter. We precisely have the following result.

Theorem 2.1.9. Assume that ¢ > 2* and s = 2* . Then, there exists Ay > 0 such that if

A € (0, Ao], then Problem (2.7)) has a positive radial ground state solution.

Lastly we will study Problem (2.2)) with subcritical nonlocal term (f1), i.e.,

p p—2
—Au+u = |ul* Pu+ A\ (/ [u dy) [ u, in RY, (2.8)
RV |y|*|z — y|

where we have the following existence result.

Theorem 2.1.10. Assume that 2., < p < 2},,,. Then, Problem (2.8) has a nontrivial radial

ground state solution if either
(i) 240 <P <25, 2a+pu=N,N2=>3 A>0anda#0,

(i) 2uay < 222 < p <28 N =3,4 and A > 0,

Q!

(iii) 2*au<w<p<2au,]\f25and)\>0,

or

(iv) 240, <p < % <2, ., N =3,4 and \ sufficiently large,

(V) 240, < p < 2220 2%, N =5 and X sufficiently large.
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Theorem 2.1.11. Assume that 2.., < s < 2, Then, Problems (2.4), (2.5) (2.6)
and (2.7) has a nontrivial radial ground state solution. Furthermore, if we assume that

0 < 2a + p < min{®2 4}, then Problems ([2.4), (2.6) and ([2.7) has a radial ground
state solution u € L=(RN) N CLY(RYN) for some v € (0,1), which is positive.

loc

Now, we list some remarks.
Remark 2.1.12. The main contributions of this chapter are the following:

1. If f #0, a = 0, then our results complete the picture of (AO, | 2019; |PAN; LIU; TANG,

2022), for 2., < 5 < 2%, ,;

2. If f #£0, o # 0, then our results complete the picture of (A0, 2019; |PAN; LIU; TANG,
2022; DU; GAO; YANG, |2022).

Thus, the results presented of this chapter are new and completes and extends the results of
the existence of solutions in the works of (A0, |2019; \PAN; LIU; TANG, 2022; \DU; GAO; YANG,
2022). The approach is variational and based on minimization technique over the Nehari
manifold. Moreover, we combine this approach, to deal with the local term (f4) in Problem

(2.7)), truncation arguments with L°°—estimates.

Remark 2.1.13. For Problem (2.1)) with s = 2}, , without the term f, as proved in (DU; GAO;
YANG, 2022, Theorem 1.10), there does not exist any nontrivial solution. For this, the authors

established the following Pahozaev identity,

N —2 N 2N — 200 — P 1
/ Vul* dz + */ fuf? de = =2 / . dy u dz,
2 Jew 2 Jrw 2p RV \JRN [y|*|z — y[~ ||

where u € W22(RN) N Lav—2 (R™) is a positive solution of (2.1 for f = 0.

loc

Remark 2.1.14. In the presence of potential V (x) that may decay to zero at infinity, we
show in the Chapter |3 of the thesis the existence of a positive solution to the Problem (2.1)
without the term f. We precisely consider the following class of Schrédinger equations with

Stein-Weiss type nonlinearity

L (1 July))*e Ju@) [Por—2u :
—Au+V(z)u = </ dy +p(z,u), inRY,
=g s el = ETRR

where N > 3,0 < u < N, a>0,0<2a+pu < min{%,él}, the potential V is a

radial function, i.e., V(|z|) = V(x), for all x € RY and 1) is a nonlinearity satisfying certain
assumptions including the case v» = 0. The approach was based on variational methods

combined with penalization techniques and L™ —estimates, see Chapter|3 for more details.
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Remark 2.1.15. In the proof of Theorems|[2.1.5, and[2.1.9, we shall use the Moser's

iteration method in combination with Proposition|[1.0.2 However, due to the presence of the

weights ﬁ and ﬁ the convolutions
1 G
/ (y, u) dy (2.9)
2| Jen [y|o|z — y[»

introduces difficulty in establishing L°°—estimates involving solution of our problems. For this
reason, we require the assumption 0 < 2a + p < min {%, 4} to carry out Moser'’s iteration

method.

Remark 2.1.16. In view of Proposition[1.0.2, ifg=h =F, a = 3, s = r, then we obtain

[ ( [ F(u) dy) ) 40 < O, o) | F@)IP, (2.10)

N ylle =yl ) Jxl®

20+ p . 2N
=2 je,s= ———
N 2N =20 —p

require F(u) € L7 (RY). By considering N > 3 and the pure power F(t) = |t|?, we

. This means we must

2
where s > 1 is defined by — +
s

may use Sobolev embedding when

2Nq

— € [2,27],
2N —2a — [ ]
i.e., when the exponent ¢ satisfies

2N —2a—p 2N — 20— p .
2eap =N Ses T N_2 20

where 27, , is called the upper critical Sobolev exponent and 2., the lower critical Sobolev
exponent by (DU; GAO; YANG, [2022), in the sense of inequality ([1.16]) (Proposition[1.0.2), due

to the following inequalities

1
e\ e 7% ,
d d < C*(N, a, / dz, 2.11
VRNURN el =g ) Ja (N ) o Il (241)
2*&,;4

jufer L\ o :
/ / dy dz < C*(N,a,u)/ |u|” dz.
RN \JRN [y|*]z — yl* ] RN
In view of (2.11]), we define

1
wl?en w|%enn 225,
e I e L
RV \Jry y[*|z — y[# [

which turns out to be a norm on L*" (R™) and use S, ,, to denote the best constant

/ |Vul?dx
Sop 1= inf RT (2.12)

|u

_1
ueDL2(RN)\{0} [/ </ 25 4 dy) |u|2zw da;] 2
=V \JRN y|*]z — y|~ ||
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where S, ,, is related to the nonlocal Euler-Lagrange equation (|1.3).
From ([2.11)), for all u € D**(RY), we know

_1
HuHi,,u < C(oz,,u, N)2a,u HU 5

o

Then

S
Sau = — >0,
C(N, a, p)?an

where S is the best Sobolev constant for the embedding of DV2(RY) into L?" (RY),

s(/ |u|2dx)2*</ Vul? da. (2.13)
RN RN

Remark 2.1.17. In view of (2.10) and Hélder's inequality, for any u,v € H'(RY) and

2*a,u <q< 22#, we obtain

q q—2
/ (/ |ul dy) Jul”?u
RN \JRY Jy|*lz — y|# ||
2Ngq
<OV a0 ( [ 1075 do
RN
2N(g—1) 2N N
X (/ |u’2N 20— ;/,‘/U’2N 20— ,u,d‘r)
RN

<CW.au) ( [ 1075 do)
R

N—2a—p g— 2N —2a—p 1

2N—2a—p g=1 2N—-2a—p 1
([T a) T ([ ) T
RN RN

—C(N, 0, )l 3kl one

N—2a—p

q q—2
(/ |u| dy) K KC
RV \JRN [y|*|z — y|» ||

is well defined if 2+, < q < 2, ,, by Sobolev embedding.

2N —2a—p
2N

i.e., the integral

u
In order to be able to deal with the term f(u) = Tl in equation ([2.5)), we need to recall

the Hardy inequality in (AZORERO; ALONSO, (1998, Lemma 2.1).
Lemma 2.1.18. Assume N > 3. If u € H'(RY), then

(1) 5 € LARY).

(2) (Hardy inequality)
2
/ [u —=dz < C’Ng/ |Vul*da,
R N

N Jalf?

2 2
where the constant Cy o = <N2> is optimal.



30

Remark 2.1.19. We emphasize that we will study the results previous for the critical case

*

o, are naturally

s = 27, ,, having observed that the results involving the case 2,, < s < 2

adaptable.

The remainder of this chapter is organized as follows: In Section [2.2] we introduce the
Nehari manifold associated with Problem , outline its key properties, and derive several
estimates and convergence lemmas, including a nonlocal version of the Brézis-Lieb Lemma.
Using a minimization method on the Nehari manifold, we obtain a nontrivial radial ground
state solution, thereby proving Theorem [2.1.4] To establish Theorem [2.1.5, we apply Moser's
iteration to ensure the regularity of the solution obtained in Theorem [2.1.4} and subsequently
use the Maximum Principle to demonstrate that the solution is positive. Section focuses
on the proof of Theorem [2.1.6, employing a similar approach to that used in proving Theorem
[2.1.4) but under the assumption that the parameter X is small. Theorems 2.1.7] [2.1.8] and
2.1.10] are proven in Sections [2.4] and [2.6], respectively, using a method analogous to that in
Section 2.2} Finally, in Section [2.5] following the ideas developed by (CHABROWSKI; YANG,
1997), we truncate the local term in Problem (2.7) and define an auxiliary problem with
subcritical growth based on this truncation. We then apply the approach from Section
to find a solution to the auxiliary problem. Using Moser's iteration method, we introduce a
suitable L>°—estimate for the solution to the auxiliary problem, ultimately showing that it is

indeed a solution to the original problem, thereby proving Theorem [2.1.9]

2.2 THE NONLOCAL PERTURBATION

The main goal in the present section is to prove Theorems [2.1.4| and [2.1.5] Thus, we will

study the existence of solution for the following equation involving Stein-Weiss type critical

nonlinearity in R with nonlocal term (f;):

22, 28,12 P p—2
—Au+u= (/ Juf» dy) [l + A (/ [l dy) [l u’ (2.14)
RN [y[*|z — yl# || RN [y|*|z — yl|# ||

where 2., <p <2, , and A > 0.

We introduce the energy functional associated with Problem ([2.14)):

1 1 ‘u|22,u ’u|22,u
I(u) == Ju? - / / B el I, d

A P P
- (/ [ul dy) [l 4o
2p JrN \JRN |y|*|z — y|# ||
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where, according to Remark [2.1.17} I, belongs to C'(H!(RY),R), and its derivative is given
by

afhe Y Jul 2
[’uv:/ VuVov + uv dx—/ (/ | dy) vdx
Ao = [ M oo\ Jew ol =y ™) e

P p—2
- )\/ </ [u dy) [u Yy da. (2.15)
RN \JRY [y|oly — x| |

Note that solutions of ([2.14)) correspond to the critical points of the energy functional I,. We

consider I on H!,(RY). If u is a point critical of I when restricted to H! (RY), then u

is a critical of I, see Remark [2.1.3| A necessary condition for u € H!

rad

(R™) to be a critical

point of I, is that /5 (u)u = 0. This condition defines the Nehari manifold:
Ny = {u € H,y(RM)\{0} : T (u)u = 0} .
Notice that if u € Ny, then

20 2a, P P
Jull? = | (/ ™ dy) LS (/ ul dy> v 4o (2.16)
RN \JRY ||z —yl || BN \JRY [y[efz —ylr ") |z]*

Now, we consider the following constrained minimization problem:

C) ‘= IAI/_lf[,\ (217)

We will prove that if the infimum in (2.17)) is attained by w, then w is a radial ground state
solution of (2.14)). It is important to emphasize that the number c, is well defined by proving

that 7, is bounded from below on N, and the set V) is non-empty. Indeed, for u € N, from

(2.16)), we obtain

1 1 e e
Iv(w) == Jul® - / / d d
1 P p
L ()
2p  JrV \JRN [y|@|z — y|» ||
|u

1 ]- 2 ]_ 1 22;1“ |u‘2;7ﬂ
S - _ d dz > 0,
<2 219) el + (219 222,) /RN </RN ly|*|z — yl* y) Er

provided 1 < p < 22,#, i.e., I is bounded from below on N,.

As a consequence of the next lemma, the set Ny # ().

Lemma 2.2.1. For any u € H}

rad

(RM)\ {0}, we have that
(1) there exists a unique ty > 0, depending on u, such that

tou € Ny and max I\(tu) = L(tou);
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(i) there exists a constant 6 > 0 such that ||u|| > ¢, for any u € N,;
bl ‘
(i) c» inf I > 0

Proof. (i) Letu € H}

L (RM)\{0} be fixed and consider the function g : [0, +00) — R defined
by

t2 t22:§"“ U 2:;7“ U 22#
o) = (i) =5t - 20 [ ([ ) Mg
2 22;, , JRN\JRY Jy|*]z —y|# ||

t2p)\ D D
A (/ [ul dy> [l o
2p Jry \JrN [y|*|z — y|# ||

then ¢'(t) = I§(tu)tu. Hence, t, is a positive critical point of g if and only if tou € N,. Since

1 < p < 2% ,, we conclude that g(t) < 0 for ¢t > 0 sufficiently large. On the other hand,

oLt
combining the Remark [2.1.17| and Sobolev embedding, we have
23, 23, .
Lo (L iy ) oo < (2.19)
BV \JRN |y|o]2z — y| ||
P P _

/ (/ . dy) ar < Clluf, (2.20)
RV \JRN [y|*|z — y|~ ||

which imply that

0> 2 H?[l B2 2o
g(@t) = t|ull” |5 — 57— Cllul| """ —
2" 221,

t2p—2

2p

AC|Jul|*2| > 0,

provided ¢ > 0 is sufficiently small. Thus g has maximum points in (0, o). Suppose that there

exists t1,t2 > 0 such that ¢/(t;) = ¢'(t2) = 0. Since every critical point of g satisfies

23, 23,
[Jull? :tzQZ,rz/ / ul™ dy Ll
rY \JRN |y|*|z — y| |z]
p p
+t2p72)\/ / |U‘ dy |’LL| d$,
RN \JRN |y|o|z — y|# ||

we deduce,

. . 2, 25,
0 — (tTQQ,H 2 _ t§2a,# 2)/ </ ’ul " dy> ‘u’ " dx
RN \JRN |y|®|z — y|# |z[
_ _ ul? |ul?
4 (22 2 A/ / |7d 2 g,
(1 ) av e Jylelz — gl Y ) Jafe

Therefore, since both terms in parentheses have the same sign if t; # ¢ and we also have

A > 0, it follows that ¢; = t5 and the proof of (i) is complete.

(it) For any u € N,, together (2.16)) with (2.19) and (2.20)), we obtain

lull® < Cllul 20+ XCul|*.
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Hence, 1 < C/||ul|?*>#~2 4 AC'||u||?**~2, which implies that (ii) holds.

(27i) Combining (2.18)) with (i) we obtain

1 1 1 1 w|2enn w|%on
1 = (5 g5) 1+ (50 = g5 ) Lo ([ e ) M o
2 2 2p 223, ) JRN \JRN Jy|o|x — y| ||

provided 1 < p < 2% . Thus, for the arbitrary of u € N,, we infer

oW
_ S 92
cx = ipf Ii(u) > inf 6% > 0,
which finishes the proof. [

The next lemma is crucial in our arguments, because it establishes an important estimate

involving the level c,.

Lemma 2.2.2. The level ¢, satisfies

N+2—2—p 22w

N+2—2a—p

0<cen< o ;
NS 9@eN —2a— )7

if either

(1) 240y <p<2,,20+pu=N,N2>=3,

Q!
(1) 2uqy < T2 < p<2h,, N =34,

2N—2—2a—u <p< O N > 5,

(i1) 240y < 2222 "

or

N—2 w N =3,4 and X\ sufficiently large,

) o N =5 and X\ sufficiently large.

Proof. We will divide the proof into two cases.
Case 1. In what follows, the proof only includes items (i), (i7) and (iii).

For £ > 0 define

where U(x) is a minimizant of S, , (see (DU; GAO; YANG, 2022, Theorem 1.3)) and satisfies

lu 2.2y,

24, a,
—Au = </ ! dy) fuf=.» . inRY
N [yl —yl* ]
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with

250 23, 2N —2a—p
L IvUPde= [ N</ 0 dy) ot o - s (2:21)
R R R

N Jylefe =yl |

Applying the change of variable theorem, we observe that

/ |VUE|2dx:/ IVU|? d,
RN RN
/ 0|2 dz = 52/ U2 da,
RN RN
2 2%
BN \JRN |||z — y[# ||
2%, 2%, (2.22)
— (/ U] dy) Ul dz,
'Y \JRV [y]*]z — y| ||
U.|P U.|P
/ ( / U] dy> Uel” .
BN \JRN |||z — y[# ||
_ 8(27N);0+2N720ﬁy/ </ \up dy) || de.
mY \JRN [y]o]z — y| ||

Now, arguing as in the proof of Lemma [2.2.1)(¢), implies that there exists t. > 0 such that

t.U. € N and r?;aoxg(t) = g(t.) = I,(t.U.).
Furthermore, ¢, is unique. In view of t.U. € N, and since A > 0, we deduce

2/ |VU5]2dx+/ |U5|2dx>/ |VU€|2dx+/ U2 de
RN RN RN RN

:t2(2;,;4_1) / |U5|2:;”u dy |U5|22’” dx
) RV \JRY |y[|z — y|# =]

p p
R R

N yloa — ylr |z[

2% / LA N U
g Y \JeN [y|o|z —ylr ||

and combining with (2.21))-(2.22)), we obtain

2N —2a—pu

2(2* 71) 2N—2a—pu
9N TRy 2 / U de > £ X (2.24)
R
1
whence we have 0 < t, < 2°®an=Y  for & small enough.
Claim. ¢, —» 1, ase — 0.
In fact, by (2.21))-(2.22), it follows that
. _ Ul2a, Ul%,
/ |VU’2 dq;, _ t?(Qa,u 1) / | | " dy | # dx
RN BV \JRN [y|*z — y|* ||

= e [ 0P ¢ 2oy [ OE ) O,
RV RV RN [y|*fz —ylr 7 ) [z]

— 0, (2.25)
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as € — 0, implying that . — 1 as € — 0, which proves the claim.

Finally, combining once more (2.21))-(2.22)), we see that

Cxn < I?;aox [)\<tU5) = I)\<tsU€)

2

22*
t2 te " B S 2
_(2 o )s + e /RN]U\ dz

2
_ “’6(2—N)p+2N—2a—u)\/ (/ |U|P dy> |U|P &
2 o U el = ) ol

t2 t22* 2N —20—p t2 ) )
< - SN+2 2a—p € / U d
\max<2 22, > T Jp Ul

2
. tpg(Q—N)p-i-QN—Za—u)\/ (/ |U‘p dy) |U’p d.f
2p RV ARY [y|*fz —yl[* 7 ) [z]*

1 1 512252’1 2, 2
(2 m SN + e /RN\U] dz

2
. tpg(2N)p+2N2a,u)\/ / |U|p dy |U|p d‘277
2p BN \JRN |y|@]z — y[~ ||«

2

(Ve g
“s\2 a2, ) 2 Jw o

2p p p
- Lg@*N)p”N*?aﬂ / N( / ] dy) UF 4. (2.26)
R R

2p N ylo]e — ylm ||

But, since A > 0 and (2 — N)p+ 2N — 2ac — p < 2 for every choice of p in (i), (ii) and (i),

we have for € small enough that

2 20
iz 2/ U2 d — £2—N)p+2N—20— u)\/ / \up dy || de < 0.
2 2" RV \JRY [y|*|z — y| ||

This together with ([2.26)), one has

N+2_2a—u51\27122§au,u

202N — 20 — p)

ey <

Therefore, the proof of Case 1 is complete.
Case 2. For this case, we assume \ sufficiently large, and the proof in what follows will include

items (iv) and (v). In fact, for ¢ > 0, we define
o(t) =1 (tU.) 2/ VU ()2 dz + 2/ o) dz
225, |2 |2,
Ry L T N
22 RN RN [ylo|z — gl ||
$2p _|P P
—A—/ (/ Ue| dy) el o (2.27)
2p Jev \Je~ [y[ofz —y|r ") x|
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It is well known that for ¢ > 0 large enough ¢,(t) < 0, for t > 0 small enough g,(¢) > 0. This

implies there exists ¢, > 0 such that

t\U. € N and cy < rgaong(t) = g,\(t)\), (228)
. _ U %o U.|%an
U2 =% (/ | dy) ks
BN \JRN |y|o|z — y|# ||
- UelP |U: P
AP ”/ / el ) 1O 4 2.29
FA o\ Tyl — g V) Jale (229)

and, we deduce

_ U. P U. P
38 ([ ) Tl e
e \Jew Tyl — g ) e

This implies that

1
2(p—1)

LA
p p
ol ) e
RN \JRN [y|*|z — y[~ ||
Follows that limy_,, ¢y = 0. Finally, from (2.27)-(2.29)), we observe that

227, ) )
max g () :ﬁHU I - ty " / / U ()| % | U ()% dady
0 2™ 9 1e 22, JRNJRN 2]y — z|m[y|

t2p €P Ep
—Ai/ (/ B LS dy>|U|dm—>0,
2p JrN \JRN |y|*|z — y|# ||«

as A — oo. This means there exists A\g > 0 such that when A > )\, one can always get

by <

N+2—20—p 22

S N42—-2a—p

202N —2a — p) "
and this proves Case 2. Thus, in both cases, estimate (2.17)) holds true . Finishing the proof

cy <

of lemma. O

In the following, we will explore some convergence lemmas that are crucial for proving that
every (PS).—sequence has a convergent subsequence. Specifically, the following definition will

be employed throughout the thesis:

Definition 2.2.3. A sequence (u,), C X (X is a Banach space) is called Palais-Smale
sequence for I € C'(X,R) at level ¢ € R ((PS).—sequence for short), if there holds
I(up,) — ¢ and ||[I'(u,)|| — 0, as n — oo. We say that I satisfies the Palais-Smale
condition at level ¢ € R ((PS).—condition for short) if any (PS).—sequence has a convergent

subsequence in X.
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Lemma 2.2.4. (WILLEM, 2022, Proposition 5.4.7)) Let N > 3, s € (1,00) and (u,), €
L (RN). If (uy)n is a bounded sequence in L*(RY) such that u, — u a.e. in RY asn — oo,

then u,, — u in L*(RY).

The next Lemma is a nonlocal version of the Brézis-Lieb convergence lemma (see (BREZIS;

LIEB| 1983)).

Lemma 2.2.5. (DU; GAO; YANG, 2022, Lemma 2.2)) Let N > 3, a > 0, 0 < u < N,
2a+p < Nand2, 6 <p<2,If (un)n s @ bounded sequence in L?Niggw (RY) such

that u, — u a.e. in RY asn — oo, then

p p P p
BN \JRN |y|*|z — y| || BN \JRN |y|*|z — y|* ||
P _ P
+/ </ [un = ul dy) [tn = 4l dx + 0,(1).
BN \JRN |y|@]z — y[# ||

Lemma 2.2.6. I/fu, — u in HY(RY), then

p p
/ il dy — / [l dy, in L%(RN),
RN |y|*|z — y|#]z] RY |y|*|z — y|#|x|*
» |y, |P . .
for all 2, L SPp <2 - In addition, the sequence / dy | is bounded in
’ ’ BN |y|o|z —y|tlz|e 7))
L (RY).

Proof. Since u,, — uin H*(R"), we have that u,, — u in L}(RY), for t € (2,2*) and u,, — u
a.e. in RY. Hence, |u,[? — |ulP a.e. in RY. By continuous Sobolev embedding (|u,|?),, is

bounded in L7¥ r—= (RY) and by Lemma , we obtain
funl? = [uf? i L7 (RY).

In light of Proposition [1.0.2, we see that the operator

h

BN [z]*|z — yltly[

L7265 (RY) 5 h —» dy € Lz (RY)

2N 2N
is a linear bounded operator from [2v-—20= (RY) to Lu+2a (RY), which assures us

P P
/ [tn] dy — il dy, in L%(RN).
Y [y|*fe —y[#]z] Y [y|*|e —y[#]z|
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Lemma 2.2.7. Let N >3, « 20,0 < p < N, 2a+ o < N. If (u,), is a sequence in
H_ 4(RY) such that u, — u in H.,4(R"), then for any v € H'(R"Y) and 2, , <p < 2;,

rad rad a,p’

p p—2 P p—2
/ (/ a|un| Mdy> |u'fl| aun'l}dx:/ </ O[|U’| Mdy> |u| au'Ud.T
RN \ /RN [y[*]z — y] ] BN \JRN [y|*]z — y] |z

+ on(1).

Proof. In what follows, we will adapt some ideas from the case a = 0 in (A0, 2019, Theorem

1.1). Since u,, = win H 4

(RY), we have that u,, — u in LY(RY), for t € (2,2*) and u,, — u
a.e. in RY. By continuous Sobolev embedding (|t [Pty )y is bounded in L7727 (R) and

by Lemma [2.2.4}, obtain
|20, — P20 in Lrew (RY),

Now, by Egorov's Theorem, |u,[P~2u, — |u|P"2u a.e. uniformly in K, where K cC RY.
Hence, |u,[P~%u, — |u[P~?u measure on K. Since |u,|[P~*u, — |u[P"?u in measure on K, for

any € > 0, 0 > 0, there exists some ng > 0 such that any n > ng, we have
meas{ reK: ‘|un(x)|p_2un(x) — |u(x)|p_2u(x)’ > 5} <. (2.30)
Setting ¢ € C5°(RY) with supp(¢)) C K and
Ky = {z € K : |[un(2)["?u(x) — [u(2)]?u(z)| > 0},
Claim. It is true that
0= o) vt~ (e ) e
RN \ /RN [y|*]z —y|# |z[* RN \JRN [y — yl* ]

= Qn

Indeed, we observe that
P _ p p—2
/ (/ [unl” — [l dy> [ul “;m;‘
BV \JRN |y|o]2z — y| ||
p p—2 _ p—2
RV \JRN [y|*z — y|~ ||
P _ D p—2
RV \JRN [y|*|z — y|# ||
U |P
—i—/ (/ [un] dy)
K \JRN [y|*]z — yl#
U |P
—i—/ </ 7| | dy)
K\K1 \JRN [y|*|z — y|*

=0l + Q>+ Q7. (2.31)

Qn <

|un’p72un - |u|p72u

||

dx

(&

|un|p72|un - |u|p72u

]

1/)‘ dx
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2N
We will estimate Q1, Q2 and Q3. In fact, since |u|P~2u) € L2v-2a= (RY), it follows from

Lemma that Q% — 0. Moreover, by Lemma[2.2.6] there exists C' > 0 such that

| |P
- - dy < C. (2.32)
RV |y|*|z — ||| ox
pnt2a
This and from Hélder's inequality, it follows that
2N =
+2a
< </ — dy) M
" k| \URY [yl — yle]z]
2N —2a—p

2N

2N
([ flunl? =2 — 27 e
K

2N
< ([ flual=s0 =l =) [ )
K

2N —sN
C (/ 2N—2a—uﬁ d:l’,') N P
K1

ON—2a—pu 1
2Np 2N )
X ( / | T dx) . (2.33)
K

Now, to get an estimate for Qfl, we observe that

N

|un|p_2un - |u|p—2u

| (2) [P 2 () — [uP?u(z) <9, in K\Ki,

which jointly with (2.32)) and Holder inequality implies that

2N —2a—pun 2N —2a—p

2N2ap,d$> géC(/ W(x)mda:) 5N
RN

()

Qi<50</K\K1

Combining with (2.31]) and ([2.33)), we obtain
2N—-2a—p p—1

2N _p_ 2N P
Qu <C ([ [ln(e)P2une) = )l ~2u(e) T )
K
' 2N—2a—p 1 2N—2a—pu

><</K NNdx) . p+6C(/RN’1/)(x)w3V&_“dx) &

By the arbitrariness of ¢ and §, we have Q,, — 0. Which proves the claim.
Since C5°(RY) is dense in H*(RY), we have

P p—2 D p—2
RV \ RN y[*|a — y[# ] RV \JrY y[*|a — y[# | [

+ o0,(1),

()

for any v € H*(RY) and 2., , <p <2} . O

a,pu
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Lemma 2.2.8. Let N >3, a>0,0<pu<N,2a+p < N and2.,, <p<2;,. If(u)n

is a sequence in H! (RY) such that u,, — u in H. ;(RY), then

rad

p p p p
RN \JRN |y|®|z — y|# || BN \JRN |y|®|z — y|# ||

Proof. Combining Proposition [1.0.2] with Holder's inequality, we infer that

/ </ |, [P dy) |un|p72un(un — u) dr
RN \JRN |y|*|z — y|# ||«

N 2N —2a—p 2N —2a—p

2N 2N 2N
<CW,au) ([t dz) " ([l )77 do)

RN RN
<C(N,a u)Hunllp 2Np Huan 2Np Hun_UH e (2.34)
—2a—pup 2N —2a—pu —2a—
Similarly
p p—2 —

/ / i dy " "u(un = ) de < Clluy — u||_2np (2.35)

v \Jaw Tyl — gl e
where C' := C(N, «a, u)\|u||2p ox, - Since u, — u in HL (RY), we have that u,, — u in

N—-2a—pn

LYRYN), for t € (2,2%). Hence, one has that

lwn —u||_2nvp = o0,(1), VpeE (2

2N —2a—p

which together with ([2.34)-(12.35]), we infer

p p p p
Lot el [ (ol dy) Lapp
R \JRY [y|o|e =yl ) |2]® R \JRY [y|o|e —ylr ) [zl

p P p
/ (/ [t ()] dy> e — || / DI G
RV A\JRN |2|*y — 2|ty RN |z |y—x|“|y|“

= Qn + On(1)7

20 );

*a,pr

+ on(1)

where taking v = w in Lemma [2.2.7] we obtain Q,, = 0,(1). Finishing the proof of the

lemma. O

Lemma 2.2.9. If (u,), is a (PS).—sequence of the constrained functional I, |y is also a

(PS).,—sequence of I, namely, if (uy), in N satisfies

Iv(up) = cx+o0n(1) and I} n, (un) = 0,(1),

then I} (u,) = o0,(1).
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Proof. Initially, we will check that (u,), is bounded. In fact, since (u,), C N, and

I(uy) = ¢x + 0,(1), we have

w2 L
= [ ([, e ay) el g,
RN \JRY [yl|*|z —yl ]

p p
+A (/ [ dy> [l (2.36)
RV \JRN [y|@|z — y[# ||

and

1 1 Up, Lo Up, Zau
ex +on(1) == ||lun|* - / / [ dy [tn] dz

2 22,y RN \JRN Jy[ofz — gl [z
1 P P
2p Jrv \JrY |yl |z — y| [

Whence it follows from p < 27  that
1 1 %o |2
e+ o, >f||un|]2——/ / Mdy [un " da

2 2p Jrv \Je~ [yl|*|z — y|» |

2p JrN \JrN [y[|z —y[# [

1 1

~(3- 55 lnl? (2.37)

thus (uy,), is bounded. Now, we prove that Ny is a C'—manifold. Let J) : H}(RY) — R
be the C'—functional defined by J\(u) = I4(u)u. Then Ny = J;*(0). If u,, € N,, then it

follows from (2.36)) that
24, 2%,
Tiomn i =2 223, [ Qn e d)”ﬁu
; RN RN ’y|a|x_y|u |I’a

p p

RN \JRY [y|*z —y|# ]
23, 24,
<ofulp—2p [ ([ el ay) el
RN \JRY [y[*|z —y|* ]

p p
RV \JRN y[*|z — y[# ]

=(2 = 2p)|ul®,

dx

dx

which together with Lemma [2.2.1] (i¢) and since 2 < p implies that
Ji(u)u < (2 —2p)§* < 0. (2.38)

Thus, 0 is a regular value of .Jy and therefore Ny is a C*—manifold. By the Lagrange multiplier

theorem, there exists a sequence (t,), C R such that

on(1) = I;\‘NA (un) = I\ (un) — tnJ) (un), (2.39)
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implying t,,J3 (un)u, = 0,(1). Using once more (2.36)) and since that A(227, , — 2p) > 0, we

see

2 * 2 |un|? |un|?
T4 ()t =22 — 22, [HunH -2/ (/R dy> dz

N yle =yl ) ol

p p
rY \JRN |y|@]z — y| ||«

>(2—22; ) lual.

This and by ([2.38)), it follows that (J§(us)un), is bounded thanks to the boundedness of
(tn)n- Hence, t,, — 0, and from ([2.39)), we achieve that I§(u,) — 0. Finishing the proof of

the lemma. O

In the following lemma, we prove that the functional I, satisfies the (P.S)., —condition
when ¢y meets the estimate provided in Lemma [2.2.2] This condition is crucial for obtaining
a nontrivial solution to Problem ([2.14)). Specifically, we present the following result.

Lemma 2.2.10. /f
N 4220 —p 2z

/’L N42—-2a—pup

22N —2a — p) " ’
then I satisfies the (PS)., —condition.

cy <

Proof. Let (u,), C H}

rad

(RY) be a (PS)., —sequence for Iy. Thus, the sequence (u,), is

bounded in H! ,(R™) and, up to a subsequence, u,, — u in H.,(RY), which implies that
/ Vuand:c—l—/ unvdx:/ Vqudx+/ wv dz + oq(1). (2.40)
RN RN RN RN

Consequently, in light of Lemma [2.2.7, we obtain I} (u,)v = I{(u)v + 0,(1) and since that

I (up)v = 0,(1), we deduce for all v € HL ,(RY),

2 252
/ (VuVo + uwv) de :/ (/ [ul dy) [ul Yo da
RN RV \JRY |y|*[z — y[# ]

p p—2
+ A (/ [u dy) [u % dz, (2.41)
RN \JRN [y[*|z —yl* ]

i.e., u is a solution of the Problem ([2.14)). Taking u = v in (2.41)), implies that

| 5

1 1 231# [y
Ih(u)=1|=— / / dy Ju dz
222, ) Jrv \Urv [y|o]z — y|~ ||

L1 uf? uf?
Y = / / d dz > 0, 2.42
* (2 2p> ( PREET y) 2= 9 (242)

- 1 1 11
since that 5 — e 0 and A(; —5,) > 0.
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Let v,, := u,, — u. Thus,
[unll* = [[on]® + [Ju]l* + 0a(1) (2.43)

and combining Proposition with Sobolev embedding, we see

|Un|p |Un|p 2p o
dy dz < C(N,a, p)||vall™ ane = 0n(1). (2.44)
RN \ JR

N |y‘a|x - y|l¢ |x|a SN —2a—&

Now, by Lemma [2.2.5) it follows that
/ (/ [t [ dy) [un| o -/ (/ [uf e dy) [uf*
RV \JRY [y|*|z — y[# [ RV A\JRN [y[*|z — y|# [

23, 23,
+ (/ mwdy> R
RV \JRN |y|*|z — y|# ||

(2.45)

and

|t ) |t ( Juf? |uf?
dy dx :/ / dy dz + o0,(1), (2.46
/]RN </RN ly|@]z — y[# || RV \JRY |y|*fz —y[r 7 ) [z ), (240)

which together with the fact that o, (1) = I} (u,)u,, we deduce

0n(1) =1 (tn)un = [[on]* + [|ull®

|u|2:;,u ) |u|2;’“ ( |Un|2;’“ |Un|2;’“
— dy dx —/ / dy dx
RN </RN ly| ™|z — y|» || rY \JRN Jy|*|z — y|» ||
p p
—)\/ (/ 7a|u|_ Mdy>|u|adx+on(1)
rV \JRN [y|*|z — y] ||
/ 2 |Un|22’” |Un|22’”
=Lyt ol = [ (] dy Az + 0, (1)
R

BN [yl -yl ]

ol = [ ([, ) e g0, 1), (2.47)
RV \JRY |y|*|z — y[# [

Suppose that ||v,]|> — b, then

2, 2,
/ (/ Y dy> [l 4
RN \JRN |y|¥|z — y|» 7|

By the definition of the best constant S, ,, in (2.12)

1
2, 2, za
Sa“/ / o[ dy [Vn " da </ |V, |* d,
TR RN [yl =yl [ RN
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which yields bza #Sap <

(2.42)-(2.46]), we observe

< b. This implies that either b =0 or b >

2N —2a—pu

> Sai?7?* > 0. Now, using

ex + 0, (1) =1\ (uy)
1 1 mn 22’ n 22’
e [ ([ ey ) e g
2 22, Jev \Jrv [y[* |z — yl| ||
2p  Jrv \Jry |y|°”|:r—y|“ ]
! ufhe Y fufthe
= lloall? + Sl — o, / [ornt—dy ) S d
2 225 e i Tyl = o ) 1
1 n 2a’ n 2;’
_ / / o5 ay ) e g,
22;, 0 RN \JRN |y|*]z —y|# ]
1 p P
- —)\/ (/ i dy) [u dz + 0,(1)
2p  JrN \JmN [y|*fe —ylr ) Jal
1 1 [0 |25 [ |
—L) + el = oo [ (L o dy ) P de 0,1
4ol = o [ =g ) i 0 )
1 1
=1 - b+ o,
)+ (5= g )b ontt)
S (L FARPES (2.48)
= \5 On 9 '
2 22
2N —2a—p
e, cy = (; — 221 )b. Therefore, if b > Sa,.> > 7", then
o,p
N2-da-podhon (1 L \opeme (1 1),
22N — 2a — p) 2 2, 2 2,
N 2_2 _ 2N —2a—p
which contradicts with the fact that ¢, < i a MSCin 7% Thus, b= 0 and
2(2N —2a — )
|, — ul| — 0,

as n — 00, this completes the proof.

[]

Proof of Theorem[2.1.4 Since I, bounded from below on N,, we have by Ekeland’s

variational principle, (WILLEM, 1996, Theorem 2.4), there exists a sequence (uy), in N,

satisfying

I(un) = ex + 0,(1)

and  I§|n, (un) = 0,(1).

By Lemma2.2.9] I} (u,) = 0,(1). In light of Lemma [2.2.10, we infer that u,, — u strongly in

Hl

rad

state solution of (2.4). T

his ends the proof of theorem.

(RN). Thus, Ii(u) = 0 e I,(u) = ¢y > 0. We conclude that, u # 0 is a radial ground

O
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Proof of Theorem[2.1.5 In the following we will show that each u obtained in Theorem
belongs to L°°(R™). For this, we shall use the Moser’s iteration method and according
to the Theorem [2.1.5] let us recall the following hypotheses for o, ;v and p: 0 < p < N,

a=>0, N >3,

+2

N 4 N+2—-2a-—
0 < 20["’/,(/ < mln{274} and 2*04,/1, + a M

<
2:, N-2

<p<2i,. (249)

It is important to mention that, in order to handle the double weight in the Stein-Weiss term

and apply the iteration process, we use (2.49) in combination with Proposition [1.0.2]

Lemma 2.2.11. Let u be the solution of (2.4) obtained in Theorem [2.1.4. Assume that
(2.49) is satisfied. Then, u € L=(RN) N CLY(RYN), for some v € (0, 1).

loc

-1) (B-1)

Proof. For L > 0, we define ¢, = uus” " and wy, = uu , where u;, = min {u, L}. By

2(8-1)

taking ¢ = uuj as test function in (2.15]), where 3 > 1 will be chosen later, we have

2(B-1) 2,,2(8-1)
o VuV(uuy” ) de + /RN |u|uy,” " dx
2

23, 20,u—
. < [l dy> ety
v e fyfefe — g ) Jafe

p p—2
'V \JRN |y|*|z -yl ||

which implies

/ Ui(ﬁ‘l)IVuP dz =—2(8 — 1)/ 2PV uVuy de
RN RN

2

2z, 26—
+ (/ o dy) U i da
RN \JRN [y|*|z — yl* |

p p—2
o [ ([ o) e e,
RV \JRN [y|*]z — y[# ]

- /]RN ]u\zui(ﬁfl) dz. (2.50)

Since

205-1) |

RN

it follows from ([2.50) that

2, 2%,
/ W20V T dr < / || e dy |ul " 20D gy
RN 'Y \JRN [y|o|a — y| |[

|ul? ulP 25-1)
+ A (/ dy u dx. 2.52
RN \ JRN |y|a|x_y|u |$|a L ( )

ui(ﬁfl)fluVuVuL dr =2(8 — 1)/{ }ui(ﬁfl)\Vu\z dz > 0, (2.51)
u<L

X
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By (2.13)), note that

([, fwef do)’

2
>F

< ST / \VwLIQda;—S/ uuL dz,

Thus,

([, fwe do)’

2
5%

<57 [ VP dr+ 5B =17 [ el Vu de

R

<s—1/32/N W20y dz + 5—1/32/N W2V )2 da
R R

=25"143° /N ui(ﬁfl)]Vu\de, (2.53)
R

where we have used Vu, = 0 in {u > L}, w = uy in {u < L} and § > 1. According to

(2.52) and (2.53), we obtain

2

(/ |wL|2*dx>2* <25‘162/ / ol '“'2“”1&(5 D dg (2.54)
RV RV \JRY [y||z — y|» ||

1o |uf? |ul”  25-1)
+ 25780 [ (/RN |y|a|$_y|udy> BP DAz (2.55)

_ . : 2 .
Next, we estimate the right-hand side of (2.54))-(2.55). By (2.37)), we get ||u||? < Lov=M
and from (2.13), [|ul|3. < S~'M. Combining this with Proposition [1.0.2] we deduce

2N —2a—p

2a, 22, - . =t
L ) O e < G ([ (upread )] T
'Y RN [y|o|z —yl ] RN

where Cy := C(N, o, j1)(S~ M) “_ Similarly, we deduce

p P ~ 2N —2a—pup
/ / |U’ dy |u| uLﬁfl) dzr < Cy </ (’u‘pui(ﬁl))szé\iy—ud.%) IN ’
RN \JRN [y|*|z —y|t ") z[* RN

where Cj = C(N,a,,u)éng and we are denoting by C' the constant of the embedding
HL (RY) < L5(RYN), for all s € [2,2*]. Using these last two estimates in (2.54)-(2.55) and

rad
denoting by C' = 25~ ' max{C5, C5}, we estimate that

2
2 bl 2 28 2=\ 52—,
([, el de)™ <os ([ Qupsrul)5ma)
2 P, 28—\ s 2e—s 2w
v cp A(/RN(M (2P d:v)

=CB*(I; + \I). (2.56)

In the sequence, we estimate Iy and [5. Recalling that

(a+b)Pr <aP* +b, Va,b>0,p €(0,1),
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for any K > 0, we have

2N—2a-p 2N 20—y
(luffor2PDyetemds ) " < (Juf 502y 220Dy o2 A
RN B {lul<K} L
2N —2a—p
2N
i </{|u|>K}(|u|QZ’W%(B_U>wzg&udx)
=1 + I7. (2.57)
Note that
2N—2a—p
2N
B ([ () (2.58)
{lul<K}
and using Holder's inequality with exponents 2*2‘*’{2 and 222’“ one deduce
L
25,12 )
. z . 2%
I? < / lu|* dz (/ lw|? dx) . (2.59)
{lul>K} RN
This and estimates (2.57))-(2.58]), imply that
2N—2a—p

hsa </{|u<K}(|U|2Ui(B_1))2N2Z““dx>

*
2%, 12

+ (/ |u|2*dx> (/ |wL|2*dx>2 . (2.60)
(lu|>K} RN

Now we will estimate /5. Analogously, from Hélder's inequality and ([2.49), we obtain

2N—2a—pu

2N
Lo ([ (uPde ) Ea)
{lul<K}

gy P
+</ IUI(p 2)237u2dx> (/ lwr,
{|u|>K} RN

Combining (2.56)), (2.60) and (2.61)), we derive

Q*dx) o (2.61)

2 2N—2a—p

* 2% _ 2N 2N
(ol ) ™ <05 ([ ) setira)

2% 9 2% -2

e oy 2h 4
+ OB </ \UI2*d5€> +A (/ ul” 2)23’#‘2dx>
{lu|>K} {|u|>K}
()
RN

2*dg;) o (2.62)
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Taking into account (2.49)) and since u € L*(RY), for all s € [2,2*], we may fix K > 0 such
that

2% -2 (263)

(p—2) g2 y 1
za-2d < — .
</{|u>K} [ ' x) AC 32\

Combining (2.63)) with (2.62)) implies that

2 2N—2a—pnp

* 2% _ 2N 2N
( /]R P dm) <208 ( /R (Pl 1))2N—2a—udx) . (2.64)

Claim. u € L2 #(RY), for § = 22z

In fact, since u;, < |u| and recalling wy, = uu'’™ ", it follows from (2.64)) that

(/ Uum;%>?dx) <208 ([ |l
RN RN

By taking the limit as L — oo we conclude that

f
RN

2N —2a—pup

2*dx) T < (2.65)

*227H
¥ dr < o0,

which proves the claim.

Now, using that u; < |u| and passing to the limit as L — oo in ([2.64]), we obtain

23%%
2%~ o2 2
|W%<W%@wwwm) = CB°|ull3? s (2.66)
or equivalently,
1.1 1
[ullosp < [C2]7 87 ||ullqs 6, (2.67)

22*
2*

[y}

where ¢, , :=
The next step is using inequality (2.67)) to obtain u € L*®°(RY), through an iterative

process. For this purpose, we follow three steps.

First step. If 3 = v, := -2, then ([2.67)) becomes
9o,

1

1.1 =
20y < [C2]9 [Ju

[[u

P — quc*w, (2.68)

that is, u € L%wx(RN).
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Second step. If 3 = v, := 77, then ¢, 72 = ¢, 77 = 2"y and (2.67)) becomes
1

1,1
2%z < [02] )

lu

1,1
2ors < [CF]7 (1) |l

[ 275

which jointly with ([2.68)) yields that

+,%(

2 (1)1 () (2.69)

=

2y < [C2]

[
Since 2%y, = 297 = 2*y171 = ¢, 71, it follows that it e Le%au(RN).
Third step. If 3 = 3 := 7}, then ¢, 73 = ¢}, 77 = 272 and (2.67)) becomes

1
1
3y < [CH595° [ullgg s

[

1.1
2y < [C2]7s (73)7 [Ju

HU 2%7y25

which jointly with ([2.69)) yields that

1

1,1, 1 1 1
gy < [CR]7T 732795 (1) 71 (72) 72 (73) 72

[

Since 2°y3 = 2*7§ = (2*v171)n = ;71 it follows that ut e Le%a(RN).
Inductively, if we consider 3 = v, := 77", then ¢ ,Yms1 = 2*V, and (2.67)) becomes

1 L+L+...+L % % ’}%m
[ull2e,, < [CZ]T72 T am At yg® | (2.70)
and we deduce that un”" € L%« (RN) for all m € N. Recalling that 7; = 2~ > 1, then
[eH7)
mh_r)n 2"y = 27 lim 7{”:2*%11}%0@”:00
=1 =1 ’Yl n-1
iizii_ggi
=% = (-2
1 1 1 1 22 % Zjil LJ (71“1)2
MW =t et <
By taking the limit as m — oo in (2.70)), leads to
[ulloo < M (2.71)

1 71
where M, = C’2m—1)71<”1‘”2_ Thus, using regularity theory (see for instance (TOLKSDORF,

1984, Theorem 1)), we obtain u € C\.7(RY), for some € (0, 1). O
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Finally, since |u| € Ny and I\(Ju|) = I\(u), we have that |u| is a nonnegative solution
of Problem ({2.4). We denote u; = |u|. Therefore, in light of Strong Maximum Principle, we

conclude that wu; is positive. This finishes the proof of the Theorem [2.1.5] O

2.3 THE HARDY POTENTIAL PERTURBATION

In this section, we aim to prove Theorem [2.1.6] Thus, we will study the existence of

solutions for the following equation involving Stein-Weiss convolutions and Hardy potential

term (f):

22;7# 22‘““7
—Autu= (/ [l dy> ul>"u o inRY, (2.72)
RNV [y|*fz —y[# ] Ed

The energy functional associated with (2.72)) is given by

1 1 ule Y fufe
In(u) == |[ul|? — / / B d

Ly [ P

— 27 Jey 2
and, in view of Lemma|2.1.18/ and Remark [2.1.17| I, is well defined on Hl(RN), belongs to
C*(HY(RY),R), and its derivative given by

o julie Y e
I (u)v _/RN (VuVo +uwv) doe — /RN (/RN - y’udy> PR vdx
uv
—A/ Y 4.
Ry 22

Thus, weak solutions of (2.72) are precisely the critical points of I,.
As a consequence of Lemma [2.1.18, we have the following result.

dx

Lemma 2.3.1. Assume that (f2) holds. Then, for all N > 3, there exists Cx 2 > 0 such
that
Jull = [ S0 de > Crpallul?, Vu € H'(RY), (273)

where Cyoy =1 —ANCno >0, if€ X € (0,1) forall N > 4 or if \ =1, Cya21 > 0, for
N =34

Proof. According to Lemma [2.1.18], we have

ull* — /RN fla,u)da = (1= ACnp) [Jull*. (2.74)
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For N >4 and X € (0,1), let us note that (1 — Cy2) > 0. Now, for N = 3,4, we suppose
A =1 and we see that (1 — AC2) > 0. Therefore, in both cases, it follows that (2.73]) holds

true. ]
Now, we consider the Nehari set associated our Problem ([2.72)) as follows
N = {u € HLy(RM)\{0} : I{(w)u =0} .
For any u € V,, implies that
2 2%, 2%,
bl A [ o= [ (L e ) e
N |z| RV [y|*z —y|# ||
which jointly with Lemma [2.73] we infer from C 2 > 0 and % — 221 > 0 that
2 [ul® 4 1 2 Jul”
A/ - 2o Mg
O YN e (G N
> (o L) 1= ool = 0 (2.75)
= \5 - u = '
2 22, 2
Hence, we may we consider the following constrained minimizing problem:
(2.76)

¢y = 1nf I,.
5\ i A

We shall prove that if the infimum in (2.76)) is attained by u, then w is a radial ground state

solution of Problem ([2.72]).

Similar to Lemma [2.2.1], we infer the following result.

Lemma 2.3.2. For each u € H. ;(RY)\ {0}, we have that

(1) there exists a unique ty > 0, depending on u, such that

tou € N and max I\(tu) = I)(tou);

(i1) there exists a constant 6 > 0 such that ||u|| > ¢, for any u € N,;

(ZZZ) C\ = inf'/\/’)\ I, > 0.

Proof. Using the same arguments explored in proof of Lemma [2.2.1) if g)(¢) := I\(tu), then
we may see that g,(t) < 0 for ¢ > 0 sufficiently large and, combining (2.19) with Lemma

2.3.1, implies that
225, ,—2

1
t) > t3||ul]® [=C -

o,

Cllul[x=2| >0,
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provided ¢ > 0 is sufficiently small. Thus g, has a unique ¢, maximum point in (0, c0) if and
only if tou € N,. The proof of (i) is complete.
(it) For any u € N, together (2.19) with Lemma [2.73] we obtain

Caallull® < Cllul[*?e.

Hence, Civ oy < Cllul|*2«#72, which implies that (i7) holds.
(i77) In view of (2.75)) and (i7), it follows that

1 1 1 1
Lw>[-—]1- 2> (- —)@1- 2> 0.
() (2 222’“)( ACa) Jul (2 222#)( ACy2)3? > 0

Therefore, for the arbitrary of u € N, we infer ¢y = infy, Iy(u) > infy, 6* > 0, which

finishes the proof. [

The next lemma, as well as Lemma [2.2.2] establishes a key estimate involving the level
¢, Which is essential for confirming that the solution to the Problem ([2.72) is nontrivial. The

result will be derived for sufficiently small \.

Lemma 2.3.3. Let N >4 and X € (0,1). Then, the level c, satisfies

N+2—2a —p iz

0<cy < Sa g, 2.77
NS 50N —2a — )7 (277)

for A\ > 0 small enough.

Proof. Arguing as in the proof Lemma [2.2.1} it follows that replacing

/ </ ’U5|p dy) |U5|p dr = 8(2—N)p+2N—20¢—p,/ </ ‘U’P dy) |U|p dz
BN \JBN [y|*fe —ylr ") z]® BN \JRN [y|ole —ylr ") falo

by

[ g e,

|| ||

in (2.22) and (2.23)), we obtain similar estimates,
/ VU2 dz = / IVU? dz,
RN RN
/ ]U5|2dx:£2/ |U|? da,
]RN RN
2, 2%, 2%, 2%,
RN \JRN |y|*|z — y| || RN \JRN |y|*|z — y|# ||«

/ Uef dx:/ Mdaz
RN |z[? RN [z]?

(2.78)
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and

2N—-2a—pu 2N—-2a—pnp
25«()}{\{;2—%—# +€2/ ’U’2 dl‘ 2 au SN+2 2a— ”o
RN

1
Thus, we achieved 0 < ¢, < 22Zaw)~' for £ small enough.
We will consider that £ < A.

Claim. ¢, — 1, as ¢ — 0, once that A\ — 0.

In fact, from Lemma [2.1.18 and (2.21]),
2N—2a—p

U 2
)\/ udl’ < )\CNQ/ |VU|2dZE /\CNQSN+2 zaw = )\CN,(X,;M (279)
R

N faf?

where Cl ., does not depend on A. Similar to (2.25), by (2.21)), (2.78]) and (2.79)), it follows

that

_— Ul?a, Ul2a,
[ VU - % / R gy U g
RV \JRY [y|*]z —y|# ]

- / U dz +>\/ da:—>0

as € — 0, once that A — 0 implying that ¢, — 1. Which proves the claim.

Finally, combining once more (2.21]) and ([2.78)), we see that

ey < max L\(tU.) = I\(t.U.)

t2 t220‘ 2N—2a—pu t2 U2
< max D) s “+—€€2/ U dw — )\/ U 42
2 2 RN

t>0 22* |5E|2

1 1 2N —2a—pu t2 t2 |U(ZL‘)|2
<= - N+2 2a—p e 2/ 2 dr — =)\ daz. 2.
Cx <2 22 ) Sap + e o |U(z)|* dx 2 fox T2 x (2.80)

But, since we are assuming € < A\, we have for A\ small enough that

t2 2 2 t2 ‘U(g;)‘Q
Ze _ = d
< /RN|U(J;)| do 2>\/RN P

This together with ([2.80) implies that

2N —2a—p

N+2_2a—HSN+2 20—p
202N —2a0 — ) '

cy <

Therefore, the proof is complete. O

Similar to the proof of Lemma|2.2.9]and Lemma[2.2.10| we have the following conclusions.
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Lemma 2.3.4. If (u,), is a (PS)., —sequence of the constrained functional 1|y, is also a

(PS).,—sequence of I, namely, if (uy), in N satisfies
I(uy) =c+o0,(1) and I|n, (un) = 0,(1),
then I} (u,) = o0,(1).

Lemma 2.3.5. If
N+2_2a—/’651\27§22;xuu
202N — 2a — p) ’

then, I, satisfies the (PS)., —condition.

cy <

Proof. Let (uy,), C H.

rad

Lemma [2.2.9} the sequence (u,,), is bounded in H}

rad
weakly in H.,(R"™). Hence, we have, from Lemma [2.1.18

Un 0 L2RY),

x| J|

(RY) be a (PS),, —sequence for I,. Then, according to the proof of

(RY) and, up to a subsequence, u,, — u

/ U Ve o [ LV dr, v e LARY),
RV |z] |z RV |z] |z] ||

which leads us to infer

N
/RN |x]2 d$—>/ 22 dz, Yve H,RY).

Now, arguing as in the proof of Lemma [2.2.7, we obtain I5(u)v = 0 and I,(u) > 0. Let
2

Vp = U, —u and ||w||% = / || B dz. Then, by Brézis-Lieb Lemma (BREZIS; LIEB, (1983))
RN
and Lemma 225

lunll* = flvall® + flull* + on(1),

7 = llonllZ + [ullf + on(1),
J (/ [on [ dy> a4
RN \JRY [y|*|z —y|* |
()

RY \JRY [y]*|z —y|* |

‘Un‘%’“ ‘Un‘zg’“
+/ / dy dx + 0,(1).
RN< RN [y|*]e — yl ]

Furthermore, similarly to the estimate ([2.47|), we have

on(1) = [/I\(un>un :H'UnHQ - )‘anl‘%{

2a, 2a,
RN \JRN [y|*|z —yl ||
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Suppose that ||v,||> — Al|va||% — b, then

25, 25,
BV \JRN [y||z — y|# [

Similarly to the estimate ([2.48)), we obtain

1
ex+on(l) =L(u) + 5 (l[oal® = AlloallZ)

1 n 22’ n 22’
_ / / [0n o dy |0 " 4z + on(1)
22z, JRN \ RN |y|*|z — y|# x|

1 1 1 1
—I - > (=- (1),
A(u) + <2 22Z,u>b+0n( ) (2 222’”)6—1—0 (1)

Thus, we finish the proof of the lemma by arguing as in the final part of the proof of Lemma

2.2.10 [l

Proof of Theorem[2.1.6. Using Lemmas [2.3.4] and [2.3.5] the proof of Theorem is
similar to that of Theorem [2.1.4] Thus, we finish the proof of the theorem. O

2.4 THE LOCAL PERTURBATION

In this section we will study the existence of solutions for the following equation involving

Stein-Weiss type critical nonlinearity with local perturbation (f3):

2

25, 26—
—Au+u= </ fule dy> = "u + |u[P~?u, in RY, (2.81)
RN [y|*]e — yl ||

where 2 < p < 2%,
To avoid repetition, we focus only on the results that differ from the case involving the

nonlocal term. We begin by noting that the energy functional 7 : H*(RY) — R, defined by

1 1 2, 2, 1
I(u) :7”“”2 - = / </ |u’ I dy) ‘U| H do — 7/ |u|p dz,
2 225, JrN \JRV ly|*|x — y|* || p JRN

is differentiable, and its critical points correspond to the solutions of Problem ([2.81]). In other
words, the solutions of ([2.81]) satisfy

e ) o2

[(u)v:/RN(VqujLuv) d:v—/RN</RN ]y\a]x—y]“d

-/ lulP~?uv dx = 0. (2.82)
R

We introduce the Nehari manifold associated our Problem ([2.81]), which is defined as follows

N ={u € HLy(RV)\{0} : I'(u)u = 0}
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and the level
c:= i}\lff I. (2.83)

We shall prove that if the infimum in (2.83) is attained by u, then w is a radial ground state

solution of ([2.81]).

For the manifold N\ defined above, we have the following result.
Lemma 2.4.1. For eachu € HL ;(RY)\ {0}, we have that

(i) there exists a unique to > 0, depending on u, such that
tou € N and miax I(tu) = I(tou);
(1) there exists a constant 6 > 0 such that ||ul| = 0, for all u € N,
(iii) ¢ =infy T > 0.

Proof. Exploring similar arguments in the proof of (i) — (ii) in Lemma[2.2.1], we will omit the

proof of (i) — (ii) and we will only prove the item (7ii). In fact, for each u € N, we see

1 1 R R 1
1) =l = oo [ (] d de—— [ Julrd
() =5 |l 22, RN<RN ylelz — y) e 47 p Je I
—(Z _ = Z - d d 2.84
(2 p) Jal +(p 22)/(/ e y) Tra e
11 , (1 1 ,
_(L_ b _ - dz. 2.85
(2 %) Jul +(22:w p) [ uids (2.5)

Combining with (77), if % - 2221;’” > 0, then we have that (2.84]) implies

1 1 1 1
> (= — - 2> (= — =42
f<u>/(2 p)nuu /(2 p)51>o

and, on the other hand, if 55— — ;1) > 0, then ([2.85]) implies
a,p

1 1 1 1
I(u)>|=— x| ——— ]8>0
) (2 222,) > (2 222‘W> '

Take 69 = min{(é — %) , (; — 221 >} then for the arbitrary of u € N, we infer

"
a,u

c= i/I\l/f I(u) > ijI\l/f 007 > 0,

which finishes the proof. n

We also need the following result similar to Lemma [2.2.10}
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Lemma 2.4.2. The level c satisfies

< N+ 2 — 2« _MSjgﬁ;;f”.
22N —,2a — p)

Proof. The proof follows the lines of Case 1 in Lemma [2.2.10} replacing

/ (/ U [P dy) |Ue|? de — 6(2—N)p+2N—2a—u/ </ \up dy) | da
RV \JRN [y|*|2 — y|» || RV AJRN [y|z —ylr ) [x]
by

2N —p(N—-2)

/ |UPde =2 / |U|P dz
RN RN

in (2.22). 0

With natural adaptations to the proof of Lemmas [2.2.9| and [2.2.10} the following results
hold.

Lemma 2.4.3. If (u,), is a (PS).—sequence of the constrained functional I|y is also a

(PS).—sequence of 1, namely, if (uy,), in N satisfies
I(un) = c+o,(1) and I, (un) = on(1),
then I'(u,) = o,(1).

Lemma 2.4.4. If

N +2—2a—p 22
c< lusé\ilt272a7u’

22N —2a — p)
then, I satisfies the (PS).—condition.

Proof of Theorem[2.1.7. Using Lemmas [2.4.3] and [2.4.4], the proof of Theorem is
similar to that of Theorem [2.1.4] Thus, we finish the proof of the theorem. ]

Proof of Theorem[2.1.8 Thus, as in the previous section, the next lemma is crucial to

complete the proof of this theorem.

Lemma 2.4.5. Let u be the solution of (2.6)) obtained in Theorem [2.1.4 Then, u &
L=®(RN) N CLY(RYN), for some~ € (0,1).

loc

Proof. According to the arguments presented in the proof of Lemma [2.2.11, and using
oL = uui(ﬁfl), where u;, = min {u, L}, as a test function in (2.82)), we derive the following

estimate

z 2 )
(/ N|wL|2*dx>2 St N</ Y dy) [l up " du - (2.86)
R JR

Y [y|ole — ylt|z]®

1257142 / a2 o (2.87)
R
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Next, we estimate the right-hand side of ([2.86)-(12.87)). Since w is a solution of Problem ({2.6)),
we have that ([2.82)) holds. Hence, (2.84)) and ([2.85]) hold, whence it follows

1 1 1 1
|ul|* < 6gtc=: M where & = min { (2 - p) ; (2 - 222,“) } : (2.88)
Combining this with (2.13)), we have ||ul]o- < S~'M. Further, by applying Proposition [1.0.2]

we deduce

Juf*er 2% . 2(8—1) = ( 9% 2(f—1)\ o2V . e
d wlfenqy dz < C / wlFeryy, IN-2a—& d:L‘) 7
/RN</RN ylele — gl juf S O Jou (ulmre™

where Cy := C(N, o, j1)(S~ M) , which jointly with (2.86]) yields that

2 2N —2a—pu
¥ —sN

(/N |wL|2* dx>2 <C,25713? (/ (|u|2wu (8- 1))72N 20 udx) o
R
+ (525713 /RN \u]p’Qlu\Qui(Bfl) dz

=20, 331, + I). (2.89)

Next, we estimate I; and I5. Following a similar approach to the estimates in (2.57)-(2.59),
we obtain that

2N —2a—pup
2N

Lo ([ (Pt
{Jul<K}

2% =2

+(/ |u]2*dx> (/ wa|2*dx) . (2.90)
(lu[>K} RN

Now we will estimate I5. By ([2.88) and Hoélder's inequality, it follows that

2N —2a—p

2N
I, gHUHQJZ(i (/RN(|u]2ui(B 1))2N—2a_udx)
’ 2N —2a—pup

M= Or2 (/N(|u|2ui(6_l))”2§““da7) o (2.91)
R

where C' denotes the constant of the embedding H.,(RN) — L5(RY), for all s € [2,2%].

rad
Combining (2.89)), (2.90) and (2.91)), we derive

2 2N—2a—p
(/ lwg |* dx) ’ <O+ M= “Cr ?) (/ (|u]2ui(6_1))2N—2§a—udx) -
RN RN

2% -2

2 2" - 2*
Cp (/{|u|>K}\u| da:) </ |wp | dx)

Note that we may obtain estimates similar to (2.63))-(2.65) and thus we reach

2
oF

22%

<[C3(1+M*T Cr2)2]7 6% |u G = 5o

(2.92)

g:.,.8, Where
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In the next step, by applying inequality (2.92)) and following a similar approach as in steps
1, 2, and 3 of Lemma[2.2.11]in (2.68))-(2.70]), we obtain the following estimate

2%,

lulloo < (14 M2 CP=2)T00 M, ||u

1

where M| = C2<wi—1)ﬂyl(”1’”2 . Hence, by regularity theory (see for instance (TOLKSDORF), 1984,
Theorem 1)), we have that u € C,.7(RY), for some v € (0, 1). O

C

Finally, since |u| € N, and I\(Ju|) = I\(u), we have that |u| is a nonnegative solution
of Problem ([2.6)). We denote u; = |u| Therefore, in light of Strong Maximum Principle, we

conclude that w; is positive. This finishes the proof of the Theorem [2.1.8| O]

2.5 THE SUPERCRITICAL PERTURBATION

In this subsection, we focus on studying the existence of positive solution for Problem ([2.1])
with supercritical term. Precisely, we consider

2hu—2y,

2:;,;1.
—Au+u= (/ id dy) Ju + Au|"%u, in RY, (2.93)
BN |y|ofe =yl ||

where ¢ > 2* and )\ is positive parameter.

One of the main challenges in studying the problem above is the potential loss of
compactness, given that we are working in the whole space RY. Additionally, variational
methods cannot be directly applied to the problem under consideration, as the energy functional

associated with Problem ([2.93)) is given by

1 1 [ R
F :7/ Vul? ) do — / / d d
1) =3 o (190 5 fuf?) o 22;,, Jev \Jew Jylefe =yl ) Tl ™

_)‘/ |u? dz,
q JRN

is not well defined for ¢ > 2*. It is not hard to check that F, is well defined in H'(RY), if

and only, ¢ = 2*.
Associated with Problem ([2.93)), let us consider the following constrained minimizing
problem:

cri=inf Fy where N = {u e HL (RY)\{0} : F{(u)u =0} (2.94)

For the reasons discussed earlier, (2.94)) is well defined only for ¢ = 2*.
As pointed out, we are not able to work variationally directly on the energy functional

associated to (2.93) when 2* < q. For this reason, we will make an appropriate truncation,
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similar to the one used in the papers (RABINOWITZ, 1973 /74; CHABROWSKI; YANG, 1997) and,
thus introduce an auxiliary problem where we have a well defined variational structure and

we recover some compactness, see next sections for more details. Throughout the text we

will consider Problem (2.93)) in H.,(RY) and, if u is a weak solution of the Problem (2.93)

T,

restricted to HL ,(R™), then u is a weak solution of the Problem [2.93| see Remark [2.1.3|

rad

2.5.1 The auxiliary Problem

As already noted above, in order to apply minimax methods to obtain a solutions for (2.93)),
we consider an auxiliary problem. We start by introducing the truncation in the supercritical

local term. Given by x € N, we define the function g, : R — R by

0, if t+<0,

gs(t) = 1 if 0<t <k, (2.95)

where

+2. (2.96)
It is not hard to check that g, admits the following inequalities:

|9a(1)] < KTPETH VEZ 0. (91)
Moreover, denoting G..(t) = Ji g.(7) d7, there holds

0, if ¢+<0,

t e
Gr(t) = /0 gu(T)dT = , if 0<t<r, (2.97)

1 1 1 .
—RIPP | ——— | kY, if 2>k
p qg P

By simple computations, GG, admits the following inequalities:
1 .-
|GL(t)| < —kT7PtP, Vit >0. (G1)
p

Now, related to g,, we shall consider the auxiliary problem

-2

Juf*+ Ju*>n 20 I
Au—i—u:</ dy + Agi(u), inR™. A
& Tyl — ” ()
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Thus, we say that a function v € H'(RY) is a weak solution of auxiliary Problem (4, ]) if
and only if
2

2(’;7“ 2;#_
/ (VuVe + ud) dx—/ (/ [ul dy> [l
RN BV \JRN [y|*z — y|» ||

- A/RN geu)pdz =0, Vo e H'(RV). (2.98)

Remark 2.5.1. According to (2.95)), it is important to note that if u is a weak solution of the
Problem (A, ]) and satisfies |u(x)| < k for all z € RY, then u is a weak solution of Problem
[.93).

The energy functional Z, ,, : H*(R") — R associated with Problem (4, .)) is given by

1 1 [ 26 |2
Do =2 [ (v sy [ ([ B :
() =5 [ (V0P 4Py de = oo [ g ) e

- )\/RN Gy(u)dx

and, in view of the assumptions on G, above and Proposition (1.0.2)), Z, , is well defined.
We consider (A,,)) in HL(RY). If u is a point critical of functional Z, , restricted to

H! (RN), then w is a point critical of Z, ,;, see Remark , for more details.

rad

Next, we shall discuss some properties on the Nehari manifold associated auxiliary Problem

(Ax..l), which is defined as follows
Now = {u € HyRV\{0} : T3, (u)u = 0} .
Notice that if u € N, ., then

Hu||2—/ / uf*r '“'22’”@;“/ (w)ude (2.99)
e ey [yl =y ) Tale v ST |

Now we define the following constrained minimizing problem:

Cap 1= ﬁ/rif Ty - (2.100)

The number ¢, is well defined by proving that Z, , is bounded from below on N, ., and the

set N, . is non-empty. Refer to Lemmas [2.5.3] and [2.5.4] below. We shall prove that if the
infimum in (2.100)) is attained by u, then w is a radial ground state solution of (A4, ).

Remark 2.5.2. We emphasize that if the infimum in (2.100)) is attained by u := u,,, i.e.,

Tyr(u) = can, satisfying |u(z)| < &, for all z € RY and for k, X\ which we will choose
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appropriately later, then, according to ([2.97))

1 1 || 2o |26
=5 [ Vel de— —— [ ([ d d
rn = fou (Vi) = o [ ol ) e
. )\/RN G (u) dz
1 1 2o 2
:7/ (|Vul* + |ul?) do — / / id dy i dz
2 JrN 223, JRY RN [y|*[z — y[# ||
A
- — |ul? dz
q Jry
:FA(U).

Furthermore, thanks to Remark with appropriately chosen r and X, from ([2.94]), we

obtain

N ={u € HLg®V\{0} : T (w)u = 0} = {u € H,y(RV)\{0} : F}(u)u =0
=N,

and cy, = infp, Iy, = infy, Fn =: cx. This leads us to infer that u is a radial ground

state solution of (2.93), which motivates us to study the auxiliary Problem (A, ).

Lemma 2.5.3. The functional Z, ,, is bounded from below on N, ..

Proof. In view of (2.95)), (2.96) and ({2.97)), there exists 6 € (2, p) such that

0, if ¢t<0,
q—10 .
ge(D)t — 0G,.(t) = t (q) , if 0<t<r,
o (1= o (L2 1) s
p P q
>0. (2.101)

For u € N, ,, from (2.101]), we obtain

1 1 2:;47/»" 22,#
Tyn(w) == |ul? - / / [u ay ) 1 g )\/ G (1) da
’ 2 22z, Jrv \ U Jy|@z — y|» || RN

1 1 2, 2,
= -— / / fufe» dy fufe dz
222 ) RV \URN Jy|*|z —y|# ||

+ ;\/]RN (gu(w)u — 2G,(u)) dx > 0, (2.102)

provided 1 < 27 , which finishes the proof. O
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Throughout this section, we assume that
N +2
N>3 0<u<N, a>0, 0<2a+u<min{+,4}. (2.103)

This and by (2.96]), we get

200+ p
N =2

p < +2< 22, . (2.104)

As a consequence of the next lemma, the set NV, ,, # 0.

Lemma 2.5.4. For any u € HL ;(RY)\ {0}, we have that

rad

(1) there exists a unique to > 0, depending on u, such that

tou € Ny, and r£1>ag<I,\7,§(tu) =T x(tou);

(ii) there exists a constant 6 > 0 such that ||u|| = 9§, for any u € N, . In particular

22, 28,1
/ (/ Jufer dy) [ul= dz > 6%
=Y \JRN [y[*|2 — yl* ]

(ZZZ) Crp = J{/I;f; 1—)\7,§ > 0.

(T
Proof. (i) First, we note that (2.95) ensures gt( )
t t
w(t15)s _ gu(tas)s
1 to

is increasing for ¢ > 0. Hence, for all

t1,ta,s € (0, 400), if t1 < ta, then

, implying that the function

1
n /N gx(tu)udz is increasing for ¢ > 0. (2.105)
R

Let u € HL,(RV)\{0} be fixed and consider the function ¢, , : [0, +0cc) — R defined by

t22*

e e
/ / dy dr — )\/ Gy (tu) dz,
22, JRY \JRN [y|*|z -y | RN

then ¢ (1) = T} . (tu)tu. Thus, ¢\ . (t) = 0 if only if Z} , (tu)tu = 0, implying that

”“”2 :t22z"‘_2/ / |u‘2g’# dy ‘UPZ’M dJZ+ )\/ g (tu)udx (2 106)
RN \JRV |y|*|z — y|# || t Jry 7" ' :

t2
Prn(t) = Duw(tu) =5 [Jull” =

Hence, t, is a positive critical point of ¢, if and only if tou € N, .. Moreover, from ([2.105]),
we may infer that the right-hand side of (2.106]) is an increasing function on ¢ > 0. Recalling
the definition of G, in (2.97)) and since p < 22} ,, we obtain

!

tim &2 _ (2.107)

t—o00 t223,u
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which leads us to deduce that ¢, .(t) < 0 for ¢ > 0 sufficiently large. On the other hand,
combining the Proposition and Sobolev embedding, we have

2%, 2, )
Lol L e ) M s < o (2108
RV \JRN [y|*|z — y|* ||
and by (G4))
[ Gultwydr < Largulr < Ll ulp (2.100)
RN K p p p )

which implies that

waw>#mw{*—ﬁhQCMW%f%fwﬁmwOMW*
2 223# P

> 0,

provided ¢t > 0 is sufficiently small. Thus ¢, , has maximum points in (0, 00). Suppose that
there exists ¢, > 0 such that ¢} (t1) = ¢ .(t2) = 0. Since every critical point of ©y .

satisfies (2.106]), we see

. _ . 2, 2,
0 — (t?‘“‘ 2 _ % 2)/ / (Lul "y |l au de
RY \JRV |y[*]e —yl i

) (gﬁ(tlu)u B g,{(tgu)u) .
RN t1 iy

Therefore, since both terms in parentheses have the same sign if t; # t5, it follows that t; = ¢

and the proof of (i) is complete.

(i¢) For any u € N, ,, together (2.99) with (2.108) and by (g1,
[, gelwyuds < s Pully < w1 Cllul,
RN

it follows that ||u/|? < C|u||*?5x + Ax4PC||u|[?. Hence, we have that 0 < 1 < C/||ul|?%a»—2 +
2k77PC||ul|P~2, which implies that (ii) holds.

(i7i) Combining (2.102)) with (i7) we obtain

1 1 2, %, 1 1
Ton(u) == — L/ ™ g e gy s (L 52> 0,
’ 2 22 ) JRV\JRN ly|*|x — y|# || 2 22,

provided 2 < 222#. Thus, for the arbitrary of u € ./\/',\7,{, we achieved

1 1
— 9 > P 2
O = Donlu) 2 (2 22;7) >0

finishing the proof of the lemma. [

Similar to the Lemma [2.2.2 we establish an important estimate involving the level ¢y ..
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Lemma 2.5.5. For any X and &, the level ¢, ,, satisfies

N+2-2a—p g

22N — 2a — p)

5¥U(§), where U(z) is a minimizant of S, ,, (see

Crp <

Proof. Again, for ¢ > 0 define U.(z) =

(DU; GAO; YANG, [2022, Theorem 1.3)) and satisfies

2

23, 25—
—Au = </ fuf dy> [uf u’ in RY
RN [y[@]z — yl ||

with

2%, 2% 2N—2a—p_
/N VU2 dx = /N</ U dy> U 4y = gt (2.110)
R R R

N Jylofe =yl |

Applying the change of variable theorem, we observe that

/RN VU |2 do :/RN VU da,

/ |U5|2dx:52/ \U|? dz,
RN RN

2%, 2%, 2 2%,
/ (/ U] dy) I o | </ Ul dy> TP e
RN \JRN [y[*|z —yl* [ RN \ /RN |y|*[z —y|# ||
/ Gi(U.)dx = eN/ Gﬁ(es%U) dz,
RN RN

p(N

/N|Us\pdx:52N72 72)/N|U\pdx, 2 >
R R

2N — p(N — 2)
2

> 0.

(2.111)

Now, arguing as in the proof of Lemma m(z) it follows that there exists ¢, > 0 such that
t-Us € Ny and max g(t) = g(te) = L(tUe).
Furthermore, ¢. is unique. Since t.U. € N, , and A > 0, we deduce
2/RN |VU6|2dx+/RN U2 da >/N |VU6|2dm+/RN U2 da

—t2(2:; u_l) / |U5|22’H dy |U5|2:‘”u de‘
) Y \JrY [ylo|z —y|v | [

gn(t U, )

RN te

. U.|% U, |2
2 )/ (/ |Ue o dy>| o 1
=V \JRY [y|*]z — y|# |z]®
and combining with (2.110])-(2.111]), we obtain
2N—-2a—p

2N —2a—pup .
250 4 e [ UPde > e ST, (2.113)
R

+a [ Iy g (2.112)
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1
whence we have 0 < ¢, < 2°Cax=  for & small enough.

Claim. ¢, —» 1, as e — 0.

In fact, first, from (lg1)) and (2.111)), we have that
K t€U€
|—52/ |U\2d:c+)\/ g()Ude|
RN RN [
<e? / U2 da + Akd—Pr=2 / 0.7 de
RN RN

2 2 g—pyp—2 N-pN-2) »
<e N|U\ dr + ARTPEE 2™ 2 N!U| dr -0, a e¢—0,
R R

which jointly with (2.110]), (2.111)) and since t.U. € N, , it follows that
UFEs ) W

/ \VU|2dx—t§(2z’“_1)/ /
RN BN \JRN y|o|z — y|#

:—52/ |U|2dx—l—)\/ MUsdm—)O,
RN RN t.

as € — 0, implying that . — 1 as € — 0. Which proves the claim

dx

]

Finally, using (2.110) and (2.111)), we see that

Crn SMaAX I\(tU.) = 1\(t.U.)
t2 ts a,u 2N—2a—p t2
=5 g ST e 2 [ WPz =aeN [ G
R
2 t22 2N —2a—p t2
s 2 [ URdr - [ Gl
2 Jrw RN

tgeyU) dz

<
SE\2 T 2,

1 1 2N 2oy t2 2-N
:<2—222H> Sagi’ “+25 2/N|U|2dx—)\€N/ G.(te™2 U)dz,

Gu(te  U)de.  (2.114)

L1 1352 = = 2 N
ex < Sap “—i——é‘/ |U|*dz — Xe /
2 JrN RN
On the other hand, using the definition in (2.97)), for § large enough, we may infer

1 1 1
Gk(§) = —g17PgP + (q - p) k9.

b
Let §:= —N—3 1 then
g 2
NG, ( ]\;9 ) _ 5 P 2>ll€q “Pgp 4 N <1 —1> k1, Vs>0,
€T p q P
whence it follows that
lim VG <]f2> —0, Vs>0.
e—07t e 2
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2N—p(N—-2)
2

12 —p(v—=2) 1 1 1
—552/ \U]*dx — )\/ <52N gy 4 N < - ) /-zq) dz < 0.
2 RN RN (2 q p

This together with (2.114)), one has

N+2 =20 = powisty
202N — 200 — pu) =" '

Hence and since A > 0, 2 > > 0, we have for £ small enough that

Crr <
Therefore, the proof is complete. O
We also have the following result similar to Lemma [2.2.9]

Lemma 2.5.6. /f (u,), is a (PS)., , —sequence of the constrained functional I, x|, . is also

a (PS)., ,—sequence of T, .., namely, if (u,), in Ny, satisfies
Daw(tun) = crxe+o0n(1) and I |, (un) = 0n(1), (2.115)
then I} , (un) = 0n(1).

Proof. Initially, we will check that (u,), is bounded. In fact, from (2.101)), (2.115]) and since
0 € (2,p) where p < 227, it follows that

1
C\ k + On(1> :I/\,fi(un) - gz.;\ﬁ(un)un

1 1 1 1 Uy | 2o Uy |2
wou) JRY \JR yl*le —y x

AL (W")“" - Gﬁ(un)> da

11
> (== 2 |2, 2.11

thus (u,,), is bounded. Now, we prove that NV, , is a C'—manifold. Let J, ., : H'(RY) — R
be the C'—functional defined by Jy.(u) = Z} . (u)u. Then Ny, = J; .(0). From (2.95)), we

deduce

gDt =g =S [1—(¢—D]te, if 0<t<r,

<0. (2.117)
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For any fixed u € N, , it follows from (2.117)) that

.
20,

2%,
J; =2full® ~22;,, [ | [ S B
/\,n(u)u HUH L RN |y|a|x_y|# Yy |I’a T

— )\/RN (g;(u)UQ +g,$(u)u) dz

—2-22,,) [ (/ = dy) e g,
o) Jaos v Tyl — g %)

+ A/RN (g,i(u)u — g;(u)u2> dx

: e
<(2— 22" )/ / dy dz, (2.118)
SR \ RN Jy|ofz — y|# |z

which together with (iz) in Lemma and since 1 < 2, , implies that

Sy (w)u < (2 —22; )0 < 0. (2.119)

Thus, 0 is a regular value of Jy, and therefore N, , is a C'—manifold. By the Lagrange

multiplier theorem, there exists a sequence (¢,),, C R such that
on(1) = I;\,H|N/\,n (un) = I&,n(un) - tn‘]j\,n(un% (2.120)

implying
tnd) o (Un)tn = 0p(1). (2.121)

We claim that there exists d; > 0 such that
| Ty (Un)tn| > 8o, Vn €N, (2.122)
In fact, by (2.118)), it follows that

T () un > (22° 2)/ / funfor (Y fal2e o
— U, ) U, — x )
7w = Jon \Jex Jylele — g YY) e 77

thus, assuming by contradiction that J3 , (u,)u, — 0, we get

23, 23,
/ (/ W“dy> [
RN \JRN |y|¥|z — y|# x|

but this is an absurd, from (ii) in Lemma [2.5.4, By (2.121)) and (2.122)), ¢, — 0, and from
(2.120), we achieve that 7 , (u,) — 0. Finishing the proof of the lemma. O

Let (u,)n be a (PS).,, —sequence for Z,,. It follows from Lemma W that (u,),

is bounded in H! (RY). Hence we may assume, passing to a subsequence if necessary, as

T
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n — 0o
Uy — U, weakly in H! ,(RY),
Uy — U, strongly in L*(RY), 2 < s < 2%,
(2.123)
un(z) — u(x), a.e. in RY,
|t ()], |u(x)| < h(z), for some h € L*(RY),
and
20
l|n|]* < 7 2(0,\75 +1), Vn=n.
Lemma 2.5.7. Ifu, — u in H. ;(RY), then

(1) gu(tn)v — go(u)v in LYRY), for all v € HY(RY);

(i) gx(tp — u)(u, —u) — 0 in L*(RYN). In addition
/RN G (Up ) uy, dz — /]RN Gr(Uy — u)(u, —u)de = /RN gr(u)udx + 0,(1).

Proof. Let us define f,, .(z) = gx(un)v — gu(w)v. In view of (2.95)) and (2.123)), f,, x(x) — 0

a.e. in RY, as n — oo and from Hélder's inequality, there exists h, € L'(RY) such that
| frs(z)] < hy(z). Hence, applying Lebesgue Dominated Convergence Theorem, (i) holds

true. Let v, := w, — u. Then, (i7) is true by arguments similar to the proof of (7). O
In order to obtain a nontrivial solution, the next result, similar to Lemma|[2.2.10} is crucial.

Lemma 2.5.8. If

N +2-20—p i
22N —2a — p) =" ’

then, I, . satisfies the (PS)., . —condition for all A > 0 and x > 0.

Crr <

Proof. Let (uy,), C H}

rad

(RY) be a (PS)c, . —sequence for Z, .. Then, the sequence (u,), is

bounded in H! ,(R™) and, up to a subsequence, u,, — u in H.,(R"), which implies that

/ Vuandx+/ unvdx:/ Vqudx—i—/ uv dz + o, (1).
RN RN RN RN

In light of Lemmas [2.2.7| and [2.5.7} we obtain Z}  (u,)v = I} , (u)v + 0,(1) and since that
(RY),

13 . (un)v = 0,(1), we deduce for all v € H]

rad

2 2% 2
/ (VuVo + uv) de :/ (/ [ul dy) [ul Yo dr
RV RN \JRY [y|*|z —y|# [

—i—)\/ gr(u)vde, (2.124)
RN
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i.e., u is solution of the Problem ([2.93)). Taking v = v in (2.124]), we obtain from (2.102) that

Ty (u) = 0. Now, let v, := u,, — u. Then,
[un]l* = llvall* + lull* + 0n(1) (2.125)

and using Lemmas [2.2.5[and [2.5.7| we see

on(1) :I;\,n(un)un = anHQ + HUH2
_/ </ ‘UPE,# d’y) ’u‘zz’u d[[’-/ (/ ‘vn‘zz’u dy) ‘vn‘zz’“ dr
RN \JRN [y[*|z —y|* || RN \JRY [y|*]z — y|# ]
—)\/ e (u)udz + 0n(1)
RN
bl e
=7\ (uw)u+ vnQ—/ / [vn d " dz + o0,(1
)\,I{( ) || || RN RN |y|a‘x_y‘“ Y |ZE|O‘ ( )
23, 23,
il = (] e ay) el e o),
RN \Jey [y[*|a — y[# Ed
Suppose that ||v,]|? — b, then
23, 23,
/ (/ T dy> ol 4 o,
RV \JRY [y|*]z — y[# ||
By the definition of the best constant S, in (2.12)

1
23, 23, 2% .1
S | [ [ o) 0 < o, e,
TR AR Jylofe =yl kg RV

2N —2a—pu

which yields b%.» S, , < b. This implies that either b = 0 or b > Sa;°>** > 0. From

(2.125)), Lemmas [2.2.7| and since 7, . (u) = 0, we may infer

Ch k + On(1> :I)\,n(un>

1 1 n 2?;’ n 23’
ol e ([ ey e e 3 [ G de
2 22z, Jrv \ U [y|o|z — y|~ || RN
1 1 1 e o[ 260
=l 4 Sl = oo [ ]t dy ) L d
2 2 22, /R \JRY |y|*|z — y|# ||
1 ”Unlzg,llf ”Un|2(§,,u,
_ d dx—)\/ G..(u)dz + o, (1
227 /RN (/RN ly|e]z — y|» y) 2] . (u) (1)
1 1 [0 |2 [0 %2
=1 W) + = ||Up 2 — / / d dx + Op, 1
A, ( ) 2” || 22:;7u RN RN |y|a|$_y|u Yy |ZL'|a ( )

=Ty x(u) + (1 - ) b+ 0,(1)

2 22,

11
2 -~ n17
(2 22;#)“0 (1)
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2N —2a—p
e, Crg = <é 22* )b Therefore, if b > Sa/ 4> >, then
N+2—-2a—p 2w (1 1 ) 2N —2a—p (1 1 )
Sclg\j+2 2a—p — - SN+2 20— < - b< C)\R7
22N — 200 — ) =" 2 22 S\2o22,) T
N 2 _ 2 _ 2N —2a—pn
which contradicts with the fact that ¢, . < i a MSJf” **=# Thus, b= 10 and
212N = 2a0— )
l|tn — ul|| — 0,
as n — 00, this completes the proof. O

Lemma 2.5.9. The functional I, has a nonnegative critical point u € H_ ,(R™) such that

rad

Tyrx(u) = cap, i€, u is a nonnegative radial ground state solution for auxiliary Problem

(Ars)-

Proof. In view of (2.116)), Z, . is coercive. Hence, Z,, bounded from below on N, .. B
Ekeland’s variational principle, (WILLEM, 1996, Theorem 2.4), there exists a sequence (uy,)n

in NV, ; satisfying
Iy s(un) = crp+o0,(1) and I;,,.;|NA(Un) = 0,(1).

By Lemma2.5.6 7}, (un) = 0,(1). In light of Lemma [2.5.8] we infer that u, — u strongly
in HY,q(RY) as n — oo. Thus, Z}  (u) = 0 e T, x(u) = cx, > 0. We conclude that, u # 0 is

rad

a radial ground solution of (|4, ,)). By using ©~ := max{—wu, 0} as test function in (2.98)), we
deduce from (2.95]) that

2%, 2 —
0 :/ (VuVu™ +uu™)de — / / P dy |u]7uu_ dz
RN =N \JRN [y[*|z —yl ||

- /RN gr(u)u™ dx
25, 25, —2
:/ (IVu™ > + [u™|?) dm—/ </ [ul dy) [ Yo dz
RV fu>0) \JEN [y[*]z —y|* x|

2, 25 ,—2
- (/ id dy) [ Y dz — / gr(u)u™ dx
{u<oy \J&N [y|*|z —y|» || {u<0}

— L(w)u” d
oy ? (u)

)+ [ (/ e dy> 2 g
{u<0} \JRY |y|*|z — y| ||

i.e., the nontrivial weak solution u is nonnegative. O
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2.5.1.1 L*°—estimates

By virtue of Lemma [2.5.9 the auxiliary Problem (A, ) admits a solution u := u,,, for all
A > 0 and & > 0. In what follows, we derive a uniform estimate for the norm of the solution

uy . of Problem (A,.]). To achieve this, we introduce the functional Z, : H} ,(RY) — R

rad

given by

1 ! i Jufe
sz/V2 2) dz — //7d d
o) = oo (94 1) do = g5 e oo T =3 %) o

Moreover, we denote by ¢y the level of the Mountain Pass associated with the functional Z,

ie.,

0 < cy:= inf 7 t
¢ := Inf max o(7(1)),

where
Ty = {7 € C([0,1), HL,(RV) : 4(0) = 0 and To(v(1)) < o}.

Here, it is important to emphasize that ¢y is independent of the choice of A and k. In addition,

i < Cp.

Lemma 2.5.10. Let u,, be the critical point of I, , obtained in Lemma[2.5.9. Then, there
exists a constant M (which depends only on N, 0, 1, ., p and independent of A\ and k) such

that

[\
D

- M.

luasll® < 5500 =
5. < STIM.

In particular, by (2.12)) we have that |ju, ,

Proof. In view of estimate (2.116)) and recalling that ¢, < co, we have that

1 0—2
co = Ch\k = I)\,H(“)\,K) - 51.;\75(15/\75)“)\,& = W

[Caw
and the proof is finished. n

The next lemma plays a crucial role in our arguments, since it establishes an important
estimate involving the L°°—norm of the solution of the auxiliary Problem . For this
purpose, we shall use Moser’s iteration method. However, as mentioned in Remark [2.1.15]
the Stein-Weiss type convolutions, present in the problems of this thesis, does not admit
boundedness in the entire space R™. In this direction, to deal with double weight in the Stein-

Weis term, and apply the iteration process, we use ([2.103) combined with the Proposition

1.0.21
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Lemma 2.5.11. Let u,; be the solution of obtained in Lemma[2.5.9 Then, there
exist C; > 0 and M; > 0 (which depends only on N, 0, i, «, p and independent of A and k)
such that

[urslloo < (1 4+ AWTP)M,

Proof. Building on the arguments presented in the proof of Lemma [2.2.11] we derive the

following estimate, using the ¢, = uui(ﬂ_l) as test function in ([2.98]):

2
*

ZZN
2 q )2 <2571 2/ / Jul™ d Zn 2PV 4y (2,126
(/]RN lw, |~ dx B v \ Jan |y|“|:L‘—y|N|a:|a y | |ul uug r )

+25° 1ﬁ2/\/ gr(u uuL Ydz. (2.127)

Next, we estimate the right-hand side of (2.126)). By combining Proposition and Holder's
inequality with Lemma [2.5.10] we deduce

* 2N —2a—pu
/ / |u|2a’ﬂ d |u]23#u2(ﬁ UdiL‘ C« / (’u‘%a#uﬂﬁil))ﬁdl’ N
v e fyfele — glfele™ SR |
(2.128)
where Cy := C(N, 0, o, 1) (S~ M) , which jointly with (2.126]) yields that
2 2N —2a—p
* 2% ~
([, Jwel dw)™ <Co2s7182 ([ (uforui®™) o ras
+ OQ2S’1B2>\/N g,{(u)uui(’gfl) dz
R
=20, B3I, + \IL). (2.129)

In the sequence, we estimate I; and I5. Similarly to estimates (2.57)-(2.59), we obtain the

following estimate for I,

-2
s

+ </ |u 2*da:> </ lwg,|* dx) : (2.130)
{lul>K}

By (1)), it follows from Hélder's inequality and Lemma [2.5.10] that

2N—-2a—p
2N

I gkqu/N ’u|p72u2ui(ﬁfl) dx
R

2N—-2a—pu

1) 2N
<kI™ PHUHM (/RN(|u|2ui(ﬁ 1))21\,_2&_de>

2a+p
2N —2a—p
2N

RIPM T O </N(|u|2 23-1)y st udx) , (2.131)
R
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where C' denotes the constant of the embedding HL ,(RY) < L5(RN), for all s € [2,2*].

Denote C' := 25C, in ([2.129). In view of (2.130)) and (2.131)) we derive
2 2N—-2a—p
* oF p—2 A _ 2N IN
([ fwef o)™ <opu awrrar = er) ([ (Juul®)wido)
R R

*
2a,

-2

Cp? </ |u|2*d:v> (/ wr, Q*dx)? . (2.132)
{jul>K} RN
Since u € L* (RY), we may fix K > 0 such that
/ ) de A (2.133)
{ul>K} S 20p? '

Note that we can obtain estimates analogous to ([2.63)-(2.67)), and thus we arrive at

227

25 < [C3(L+ ARTP)2]7 8% fu >
o,

[u

(2.134)

* Pyp—
a5 B where Qo =

The next step is using inequality ([2.134]) to obtain the desired L>°—estimate, through an

iterative process. For this purpose, following a similar approach as in steps 1, 2, and 3 of

Lemma [2.2.11]in (2.68)-(2.70]), we obtain the following estimate

lurslloo < (14 )\/iqu)clMﬂ\%\,k

. (2.135)

71

where C 1= 2(7%_1) and M; := C’2<711—1>fyl(“71>2. This finishes the proof. O

Remark 2.5.12. Let u € HL (R"™) be the nonnegative solution obtained in Lemma|[2.5.9
In view of Lemma|2.5.11| and regularity theory (see for instance (TOLKSDORF, 1984, Theorem

1)), we have that u € C\.J(RY), for some € (0,1). Therefore, in light of Strong Maximum

loc

Principle, we conclude that u is positive.

Proof of Theorem[2.1.9. At this point, in view of (2.135]), we are able to find suitable

values of A\ and « such that the following inequality holds true
[tialloo < (14 AIP) M (SM)? < k.
In fact, we shall verify that (1 + )\/@q_p)clMl(SM)% < K, or equivalently,

1
1
e (Lt Y
M,(SM)z

Consider x > 0 such that

1

K [
() 10
M1<SM)§
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and fix \§ > 0 satisfying

. K c1 1
AN || ——— —1 .
M,(SM)z RI7P
Thus, taking k¢ > Ml(SM)%, we obtain A§ > 0, such that
[[uakolloo < Ko, (2.136)
for all A € (0, \§]. Therefore, by (2.136)), it follows from definition of g,, that
A
Gro (Unmo) = AMUnro|T 2Unme  and Gy (tUn ) = 5|UA,H0|q, YA € (0, 7] (2.137)
Consequently, by (2.95)), (2.137) and since u, 4, is a critical point of Z, ,,,, we reach
0 =T}, (tnno) = /R Vi, Vo + /R tagdda
2

’uk,n ‘22’“ ’u)\,ﬂ |22’”7 U
= Jow </R 0 dy 9 qﬁdx—)\/RNg,m(uA,Ho)aﬁdx

N yloe — ylm |z]*

= [, VurnVode+ [ ude

|U)\ ) |2:"” |U)\ KO |2:"”_2U 1
- ’ dy | = ey =14 dz.
(i) o0 = [ fonersas

for all ¢ € HL  (RY). Therefore, from Remarks [2.5.1] and [2.5.2] we conclude that uy ,, is a

positive radial ground state solution of Problem ([2.93|), which finishes the proof of Theorem

2.1.91 [l

2.6 THE CRITICAL SOBOLEV CASE WITH NONLOCAL PERTURBATION

In this section, we follow ideas from the previous sections and prove Theorem [2.1.10] Thus,

our main goal is to study the existence result for problem

. p p—2
“Autu = [uf? 2\ (/ i dy) L (2.138)
RN |y|*lz —yl#

where 2., <p < 2 2" = ]\2%12 and A > 0.

Associated with equation ([2.138]), we define the energy functional Iy : H'(RY) — R by

1 1 . A P p
I\(u) = —/ (|Vu|2 + |u|2> dz — —/ lu|* do — —/ / i dy [u dz.
2 Jry 2% Jry 2p Jrv \Jr¥ |y|*|z — y|# ||
In other words, the solutions of ([2.138)) satisfy

I (u)v :/ (VuVo 4+ uv) do —/ lul* "?uv dz
RN RN

D p—2
_ /\/ (/ [l dy) P e o,
RV \JRN [y — y|# ||
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This leads us to define the Nehari manifold associated with Problem ([2.138)) as follows
Ny = {u e HL RV)\{0} : I{(w)u =0}

For any u € Ny,

p p
ull? = [ Jul® dz + A (/ i dy) o g
RY BV \JRY [ylofz —ylr ") |z[®

which implies that

| | . Jul? Juf?
Ih(u) == 2_7/ 7d ——/ / d d
M) =gl =50 fo 1 2= fea \ oo Tyle =g ) T
11 ) 11 .
_(r_ L Y / 2" q 21
(53 ) 10+ (5~ 5 ) [, 1 a (2.130)
1 1 ) 11 |ul? |ul?
_(i_ 1 Y / / d dr.  (2.14
(2 2*)”“” " (2* 210) RN< RV [y|@fz — y| y) e (2.140)

If % — QL > 0, then (2.139)) implies I (u) > 0; if % — & <0, then (2.140) implies Iy (u) = 0.
1
2

2*
Consequently, we take dg := min{(% — %) ,( — i)} then for any u € N,, we infer
L) = &yllul? > 0.

We consider the following constrained minimizing problem:
ey = 1/{/15 I. (2.141)

We shall prove that if the infimum in (2.141)) is attained by u, then w is a radial ground state
solution of ([2.138]). Using the same arguments explored in proof of Lemma [2.2.1} we can show

that N, satisfies:

Lemma 2.6.1. For each u € H!

rad

(RM)\ {0}, we have that

(1) Nx#0;

(it) there exists a constant 6 > 0 such that ||u|| > ¢, for all u € N,;
(7i1) ¢\ = infp, I\ > 0.

As Lemma [2.2.2] the next lemma establishes an important estimate involving the level
cx. In this way we introduce the function, for ¢ > 0, U.(z) := 5¥U(f), where U(x) is a
minimizant of S and satisfies

—Au=u>"2, inRY

/RN\VUFdx:/RNyU

with
Y dr =97 (2.142)
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Notice that
/ |VUa|2dx:/ VU da,
RN RN
/ IU.[? dz 252/ U2 da,
RN RN
[ = [
RN RN

p p
RV \JRY |y|*|z — y[# |z

_ 8(27N)10+2N720ﬁy/ (/ \up dy) | de.
RV \JRY [y|*|z — y|~ ||

Therefore, we have the following estimates involving level ¢, namely:

> dx, (2.143)

1
Lemma 2.6.2. 0 < ¢y, < NS%, if either

(1) 24ap <P <25, 20+pu=N,N2>3;

(1) 2uap < % <p<2,,N=34

(i80) 2uqp < 2222 < p <2, N > 5;

or

N_2 o N =3,4 and X sufficiently large;

(V) 24 <p < % <2,,.,N=>5 and X sufficiently large.

Proof. We will use similar arguments as in the proof of Lemma [2.2.2] Accordingly, we will
divide the proof into two cases.
Case 1. In what follows, the proof only includes items (i), (i) and (ii).
Initially, observe that arguing as in the proof of Lemma[2.6.1)(¢), implies that there exists
t. > 0 such that
t:U. € N and max g(t) = g(t-) = Iy(tUe).

Since that t.U. € N,, we deduce

.
Y dx

2/ |VU5(x)|2d:p+/ U (2)[2 de >t§*—2/ U (2)
RN RN RN

and combining with (2.142))-(2.143)), we obtain 0 < t. < 2772 for £ small enough.

Claim. ¢, —» 1, as e — 0.
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For (2.142)-(2.143)), we have

/ \VU]Qda:—tz*’Q/ U2 de
RN RN

el M R e DY N O gy) I g,
R v e Tyl — ol ) el

— 0, ase — 0,

implying that ¢t. — 1 as € — 0, which proves the claim.

Finally, combining once more ([2.142)-([2.143]), we see that

1 1 y ot 2
& < max (1) = L(tU2) < (2 - 2) st e [ UPd

_ t?)g(Q—N)p+2N—2a—u)\/ / |Ua|p dy |Ua|p dr.
2p RN \JRY [y[*|z —y|* ||

Since (2 — N)p+ 2N — 2a — pu < 2, we have for € small enough that

2

t t2p U.|P U.|P
£€2/ |U|2 dr — 75(2—N)P+2N—2Oé—lt)\/ (/ ‘ ’ dy) | | dr < 0.
2" Jry 2p RV \JRN [y|*|z — y[~ ||

Therefore, ¢y, < %S%, the proof is complete for this case.

Case 2. Now, for A sufficiently large the proof of items (iv) and (v) follows the same arguments

explored in Case 2 of Lemma [2.2.2] With this the proof of the lemma is complete. m

We also have the following results similar to Lemma [2.2.9| and [2.2.10]

Lemma 2.6.3. If (u,), is a (PS)., —sequence of the constrained functional I, |y, is also a

(PS)., —sequence of Iy, namely, if (u,), in Ny satisfies
Iv(up) =cx+o0,(1)  and  I§|n, (un) = 0,(1)
then I} (u,) = o0,(1).
For the sake of completeness of the thesis, we will prove the following lemma.
Lemma 2.6.4. The functional I, satisfies the (PS)., —condition with c) < %S%.

Proof. Let (u,), C HL,
bounded in H!

rad

(RY) be a (PS).,—sequence for Iy. Then, the sequence (u,), is

(RY) and, up to a subsequence, u,, — u weakly in H. ;(R"). Hence, we have

rad

/ Vuandm+/ unvdx:/ Vqudx+/ uvdz + 0,(1).
RN RN RN RN
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Since u, — w in HL,(RY), we have that u, — u a.e. in RY. Since (u,), is bounded in
L¥ (RY), (Jun]? ~2u,), is bounded in L%(RN) and thus by Lemma [2.2.4}

,
u[* 2w in L7=1(RY) | ie.,

2*—2

Unp

Uy —

/ | |* " 2upv da = / lu|* 2uvdz + 0,(1), Yo e L* (RY),
RN RN
in particular,

(RY).

rad

/N lun|* 2upvde = /N lul* uvde +o,(1), Vve H}:
R R

In light of Lemma [2.2.7] we obtain I} (u,)v = I}(u)v +0,(1), for all v € HL ;(RY) and since

that I} (u,)v = 0,(1), for all v € HL ;(RY), we deduce for all v € H! ;(RY) that
/ (VuVv 4+ uv) dz :/ lul* "?uv dw
RN RN

p p—2
+ A (/ i dy) i % dz, (2.144)
RN \JRY |y|*]z —y|# ||

i.e., uis solution of the Problem ([2.138]). Taking u = v in ([2.144)), we may infer that I, (u) > 0.

Let v, := u,, — u. Then, by Brézis-Lieb Lemma in (BREZIS; LIEB| 1983), we have

lunll* = Jlvall* + [lull* + 0n(1),
) ) . (2.145)
/ |, |2 dx:/ |0, |2 d:c+/ lul*" dz + 0,(1).
RN RN RN
Combining Proposition with Sobolev embedding, we see
|vn|P |vn|P 2
d dz < C(N,a, ol ave = 0n(1). 2.146
Lo gt an) Bl ae < covamlin s =00 2149

By using ([2.145))-(2.146]) and Lemma [2.2.5 we deduce

on(1) = I3t = o+l — [l o~ [ o,

ul? ul?
— )\/ (/ dy dz + o0,(1
o \Jnx Tylelz =g ) Jafo M)

:anHQ - \vn\Q* dz + 0,(1).
RN

¥ dx

2 % . . 2 .
Suppose that ||v,||* — b, then /RN |vn]® dx — b. By ([2.13), which yields b27S < b. This

implies that either b = 0 or b > S2 > 0. Now, using /,(u) > 0 and (2.145)-(2.146), the
result follows through similar arguments as in the proof of Lemma |2.2.10| [

Proof of Theorem [2.1.10. Using Lemmas [2.6.3] and [2.6.4] the proof of Theorem 2.1.10] is
similar to that of Theorem [2.1.4] Thus, we finish the proof of the theorem. O
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3 SUPERCRITICAL SCHRODINGER EQUATIONS
WITH VANISHING POTENTIAL AND DOUBLE WEIGHTED NONLOCAL
INTERACTION PART

This chapter focuses on the study of the existence of positive solutions for the following

class Schrédinger equations involving double weighted nonlocal interaction

—Au+V(z)u = (/R Flw) dy) J(w) + (2, u), inRY, (P)

N yle =yl )zl
where N > 3,0 < p < N, o >00<20+pu < mn{®24}, V:RY - Risa
continuous and positive potential and F' is the primitive of function f. Later, we will introduce
the assumptions on V' (x), f and . Furthermore, we also study the version of the Problem
(P) with the same 1), however the nonlinearity f assumes the homogeneous critical case in the
sense of the weighted Hardy-Littlewood-Sobolev inequality. Precisely, we consider the following

class of Schrodinger equations

1 2%, 2%, ,—2
At V(= o) ( [, o dy) wl T ), nRY, (@)
R

a, i N |y|a|x_y|,u |x|o¢
where 27 | = 2N_29-1 and the potential V(z) is a radial function, i.e., V(|z|) = V/(z), for all

x € RN,

3.1 ASSUMPTIONS AND MAIN RESULTS

Inspired by the works of (ALVES; SOUTO, |2012; ALVES; FIGUEIREDO; YANG), 2016; |CARDOSO;
DOS PRAZERES; SEVERO, 2020), we study Problem under the assumption that V(x) a
positive continuous function. We adopt the following notation: m = max|,<; V (), and we
introduce the function A : (1, 00) — [0, 00) defined by

1
inf |z|@" PNV (1), (V1)

R@=2)(N=2) z|>R

A(R) =

Moreover, we assume that f : R — R is a continuous function satisfying

tf(t)

tl—i>lgl+ t4 < 00 (h)
forq}?*:%and
L)
tl—glo tp - Oa (f?)
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for p € (1, 28— By considering that 0 < 20+ < min{~>2 4}, one may conclude that

N—2
the interval (1, W) is nonempty. In view of and the fact that 2(1\;\7_7? <2, <2,
there hold
tf(t tf(t
im0 o and 1m0 g, (3.1)

t—0 tQE,u t—0 P

In this chapter, we will also consider the case in which 22# < qin , i.e.,

- tf(t) ; /
tlg(% “ <oo, for2; <gq (f1)

Using assumptions ([f]), and (3.1)), there exists ¢y > 0 such that
LF()] < coltor,  [EFE)] < coltl?, [EF(H)] < colt?, VEER. (32)

We also assume that f satisfies the Ambrosetti-Rabinowitz condition, i.e., there exists

0 € (2, min {2* 4}) such that

Q,
0<0F(t) = Q/Otf(T)dT <2f()t, Vvt >0. (f3)

Since we are going to look for positive solutions, we will assume that f(¢) =0, for all ¢ < 0.

On the other hand, in order to study Problem (), we will assume that the potential
V(z) is a radial function, i.e., V(|z|) = V(z), for all z € RY and we introduce the function
W :(1,00) — [0,00) defined by

W(R) = inf |z|@a2CT)V (7). (Va)

|z|>R
Throughout the chapter, we are going to study the existence of solutions for Problems

and (@), under the following assumptions regarding :

(1) (z,u) = Maz)|ul"?u, ¢ > 2}, A(z) is a nonnegative function such that \(z) €

Laets (RN);
A |u|9 |u|? 2y _
We) Y(x,u :</ dy) ,q =2, and A > 0 is a parameter.
o) 0 = e el = ) e #

Furthermore, we assume the following assumptions for o and p:
N +2
N>3, 0<u<N, a>0 O<2oz—|—,u<min{;_,4}. (3.3)

To present the main results of this chapter, we now introduce the normed space suitable
for solving Problem . In fact, due to the presence of V() in Problem ((P)), we defined the
subspace of DM2(RY)

E = {u € DY (RY) - /RN V(z)|uf? do < oo}7
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which is a Hilbert space when endowed with the inner product and its correspondent norm
(u,v) = /N(vuw FV(@)uw)de and ul = (u,u)?.
R

Since V(x) is positive, the embedding E — L?"(RY) is continuous.
As in Chapter [2, we denote by S as the best Sobolev constant for the embedding of
DLE(RY) into L2 (RY), i.e.,

(o

With this in mind, we have the following definition.

2
5%

dx) \/ |Vul?dz. (3.4)
RN

Definition 3.1.1. We say that a function u € E is a weak solution of Problem , if there
holds

oo viomas = [, ([ g ps) e

—/ Y(z,u)pder =0, Vo¢eE. (3.5)

Now, by noting that due to the presence of V'(|x|) in Problem (), we replace the space
DL2(RN) by DLA(RN) and consider

rad

Frog = { e DL2(RV) /RN V(@) do < oo}.

Similarly to (3.5)), we define a weak solution for Problem (((J]), see Section [3.4] for more details.

Regarding Problem (|P)), we have the following results:

Theorem 3.1.2. Suppose the case (1) and that f satisfies — (f3). There are g9, Ay > 0

such that if H)\|| 2N < gp and A > Ay, then Problem has a positive solution.

Corollary 3.1.3. Suppose the case (11) with A(x) = X, a = 0 and that f satisfies (f1]) — (f3).
There are X}, Ay > 0 such that if X € [0, ;) and A > Ao, then Problem has a positive

solution.

Theorem 3.1.4. Suppose the case (1,) and that f satisfies —(f3). There are Ao, Ay >0
such that if A\ € [0, \g) and A > Ao, then Problem has a positive solution.

With respect to Problem (@))), we find the following result:

Theorem 3.1.5. Suppose that (11) (or (13)) holds. There are &y,Aq > 0 such that if
AN 2x . < & (orif A € [0, o)) and A > Ay, then Problem (@Q) has a radial positive solution.
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One of the challenges in studying the problems above is the lack of compactness, as we are
working in the entire space R". Moreover, as noted in Section of Chapter , variational
methods cannot be directly applied to these problems. For example, the energy functional

associated with Problem ((P)), given by

Fluy =y [ (Yl + V(@) dr
! </ F(u) dy> UG /RN W(z, u) dz, (3.6)

2wy \Jry Jylofa —yle ) o

where U(z,u) = [ (xz,7)d7 and 1 is one of the nonlinearities (1) — (¢2), is not well
defined for ¢ > 2’(‘1#. For more details, see Remark below and the following sections of
this chapter. A similar difficulty arises in Problem (Q).

Now we list some remarks on this chapter.

Remark 3.1.6. The main contributions of this chapter are the following:

2N —
M, then our

1LIfYp=0,0=00<p<mn{¥24} N>3 ¢>2, =2 = 5

results complete the picture of (ALVES; FIGUEIREDO; YANG, 2016);

2. If¢p £ 0, (¢1) holds with A\(z) = X\, a =0, 0 < p < # g > 2*, then our results

extends and complements the previous item ;

3 Ifpy=0,a#0,qg> 2;#, then our results complement (DE ALBUQUERQUE; SANTOS,
2023);

4. The case 1) # 0 extends and complements the previous items.

The approach is based on variational methods combined with penalization techniques and

L —estimates.

Remark 3.1.7. In view of (3.2) and ([f3)), we have

Ry

Ft) < =

R (3.7)

and noticing that 5 N_QJZ\; - 22’# = 2% we conclude that for each u € E, ensures that
2 2N
__aN Co\ 2N—2a-— .
[ 1) 75 < (0) "z < oo, (3.8)
RN 0 RN

2N

SR— N-2a—x 2
/RN |f(u)u|2v=2a=r dz < ¢ g /RN lul* dx < oo, (3.9)
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which implies that
fuw)u, F(u) € L7 RY), YuekE.

In light of the Proposition (2.10), (3.7), (3.8)), (3.9) and Sobolev embedding, there hold

F(u(y))F(u(z)) 99
dydx < Cllu|[*“en, Yu € FE, 3.10
Jor e Tyl — gl e < Clal (3.10)
/ / F(U(y))f(U(SU))U(l') dydzr < OHUHQ%’“, Vu € E. (3_11)
RN JRN |yl |w — y|# |z

According to (3.10)), the energy functional F : E — R given in (3.6) associated with (P)), is
well defined in E, if and only, ¢ = 2}, , in (11) and (). In order to study Problem when
27, . < q, we cannot directly apply variational methods to the functional F. To deal with this
technical ditficulty, we introduce an appropriate truncation technique, similar to the approach

used in (RABINOWITZ, |1973/74; CHABROWSKI; YANG, |1997)). This method was also employed
in Chapter|[3, Section 2.5

Remark 3.1.8. An example of potential V (x) that satisfies our assumptions is given by

01, if |x| < o1+ 092,

V(r) = |z| — 02, if 01+ 02 < |z| <R,

(g—2)(N-2) .
@flzm(l’t— 02), if |z| > R,
where 1, 02 > 0 and 0 < o1 + 0o < R. A function f that satisfies ([f])-(f3) is given by

0, if t<0,

f@) =19 |t]ot, if 0<t<1,

[t[P=t, if > 1.

The next sections of the chapter are organized as follows: Section is devoted to the
proof of Theorem [3.1.2] We establish the variational structure, the penalized problems related
to , we apply Mountain Pass Theorem to obtain the existence of nonnegative solution for
the auxiliary problem, we introduce a suitable L°>°—estimate for the solution of the auxiliary

problem to conclude that the solution of the auxiliary problem is positive and, in fact, a solution

for (P)). We conclude Section with the proof of Corollary [3.1.3] The proofs of Theorems
3.1.4 and [3.1.5] are performed in Sections and [3.4] respectively.
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3.2 THE SUPERCRITICAL LOCAL PERTURBATION

In this section, we explore the existence of positive solutions for Problem involving the

supercritical term (/7). Precisely, we consider

[

A Vo= </RN |y|al|is(li) o dy) T A@fa e, nRY,  (312)

2N
where ¢ > 27, ,, A(z) is a nonnegative function such that A(z) € L2+ (R"). As pointed
out in Remark [3.1.7] we are not able to work variationally directly on the energy functional
associated to ([3.12)). For this reason, we introduce auxiliary problems where we have a well

defined variational structure and we recover some compactness.

3.2.1 The auxiliary Problems and

In order to apply minimax methods to obtain a solutions for with supercritical local term
(11), we consider two auxiliary problems. Initially, we will introduce a truncation in the function

given in (¢1). In fact, given a natural number «, we define the function h, : RY x R — R by

0, if ¢<0,
hi(z,t) = Azt !, if 0<t<k, (3.13)
Na)kI Zont?on=tif t > k.
Observe that h, admits the following inequalities:
b (2, 1) < Mz)RI720nt? ™ and b2, )| < M(z)R?2ent?en™ VT > 0. (hy)
Moreover, denoting H,(x,t) = [5 h,.(x,7)dr, there holds
0, if ¢t<0,
Az) _
H,(z,t) = . te, if 0<?<k, (3.14)
A . o 1 1
ix>ﬁq_2aut2w + A(z) < — = > k1, if > k.
204,# q 2a,u
Thus, H, admits the following inequalities:
)\ * * )\ * *
|H,(2,t)] < ﬁmq—%ﬂuﬁ and |H.(z,t)] < ﬂnq_%’“t%w, Vt>0. (Hy)

2% 2*

a,
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By using (3.13), (3.14) and the fact that ¢ > 2}, , > ¢, one may check that

0, if +<0,
ho(,t)t — OH (2, 1) = Mzt (22, if 0<t<r,
—2n o g2n (1 _ 6 1 1)
Az)RT 2ent (1 227) + QA(x)/iq(%M q), if t>k,
>0, (3.15)

which ensures the following Ambrosetti-Rabinowitz type condition
he(z,t)t —0H,(x,t) >0, ViteR, (3.16)
leading us to infer in the existence of constants d;, ds > 0, such that for all t > 0,
H(z,t) > dit? — dy. (3.17)

Now, related to x, we shall consider the auxiliary problem

—Au+V(x)u = (/R F(u) dy) J(w) + he(z,u), inRY. (Ay)

Nyl =yl ) fal

Thus, we say that a function u € E is a weak solution of auxiliary Problem ((A,)), if

'/RN(VUW TVl de /RN </RN !ylajlzf(u—) yl# dy) Zlizz(l? v

_/]RN H.(z,u)pdz =0, V¢ € E.

It is important to note that if u is a weak solution of the auxiliary Problem (A,]) and
satisfies |u(z)| < & for all z € RY, then u is a weak solution of Problem ([P)). This motivates
us to study the auxiliary Problem (A,]).

The energy functional Z,. : E — R associated with Problem is given by

T,.(u) :é /RN(WUP + V(@) |uf?) de — ;/RN (/RN ‘y|F(u>dy> P o,

o -yl ||
— /]RN H(z,u)dz

and in view of the assumptions above regarding the function x and since \ € L%(RN), Z.
is well defined.

However, there are at least two difficulties in dealing with the auxiliary Problem (A,]).
The first is the lack of compactness, i.e., is to assure that the energy functional Z, satisfies

the Palais-Smale condition. The second one is to prove uniform estimates (independent of
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H)\Hinw and k) for the solutions of ((A,]). In order to overcome such difficulty, we introduce a
atp

new auxiliary problem where we can restore some compactness. For this purpose, we use the

penalization method introduced in (DEL PINO; FELMER, 1996) and adapted in (ALVES; SOUTO,

2012 ALVES; FIGUEIREDO; YANG, 2016). For £ > 1 and R > 1 to be determined later, we

define the function f : RY x R, — R by

f@), if £f(t) < V(a)t,

V()
0

f(x,t) =0, for all z € RN if t <0 and

f(.iE,t) =

t, i CF(E) > V(a)t,

f@), if g <R
g(l’,t) -
f(z,t), if |z| > R.

Observe that for all ¢t € R, the following inequalities hold:

gz, t) < f(t), VzeRY,

G(z,t) < F(t), VzeRY,

oty < 0 i o) > R
Glx,t) < V;?#, if || > R,

G(z.t) = F(t), if |z <R

Hence, it follows from ([f3)), (3.2)), (3.20) and (3.21) that for all ¢t € R

200 2 Co

Glz,t) < 7 lt", Glz,1) <

Moreover, combining and ([3.24) we obtain

1 1
gg(x,t)t — §G(x,t) >0, VY]z|<R and Vt>0

and joining ([3.20) and |D with 1) and ([3.11)), one have

/ / ) qudz < Clluf[2ee, Vu e B,
RN JRN |y| |$—y|“| |

/ / WU e < Cllul|Pn, V€ E.
RN JRN |y| Iw—y|"\ B

Using the previous notations, we introduce the following auxiliary problem

—Au+V(z)u = (/R Gy, u) dy) gle,u) + he(z,u), in RN

N Jylofe =yl |

|t|ZM and g(z,t)t < |tf**+», Vo eRY.

(3.18)

(3.19)

(3.20)
(3.21)
(3.22)

(3.23)
(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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where G(z,t) = [i g(z,7)dr.
We say that a function u € E is a weak solution of the auxiliary Problem ([B,)), if satisfies
Gy, u) g(x, u)
Vuve +V ar— [ (] dy) L5 6q
fomuworvienaa - [ ([, ot fEte
—/ (o, u)¢dz =0, Yo e E. (3.29)

The energy functional associated with Problem (B.)) is given by
1
jﬁ(u) 7HUH2 (/ G(ya?l) dy> G(l’,u) do — /N Hn(x,u) dz.
R R

2 N ylo|e =yl ||
In light of our assumptions one may conclude that 7, is well defined, belongs to C’l(E,]R),

and its derivative given by

T (u)v :/N(Vqu + V(z)uv)dx — /RN (/RN |y|§|(;/’_“;|u dy) gizif)vdx

—/ <z, u)vde.

Thus, weak solutions of (B,]) are precisely the critical points of 7.

It is also worth mentioning that the auxiliary Problem is strongly related to Problem
(AJ). In fact, if u is a solution of which verifies ¢f(u(z)) < V(x)u(z) for all |z| > R
then g(z,u) = f(u) and w is also a solution for Problem ([4,]), which motivates us to study
the auxiliary Problem (B,]). The crucial role here is that working on Problem ([B,]) we are able

to restore some compactness.

3.2.2 Existence of solutions for the auxiliary Problem (B,))

In this subsection, we examine the existence of nonnegative solutions for the auxiliary
Problem (|B,]). Next, we shall prove that 7, verifies the mountain pass geometry stated in the

following lemma:

Lemma 3.2.1. The functional J, satisfies the following conditions:
(i) there exist 6, p > 0 such that J.(v) = ¢ if |[v]| = p;
(i7) there exists e € E such that ||e|| > p and J.(e) < 0.

Proof. In view of (H,]) and the fact that \ € L%(RN), using Holder's inequality and (3.4)),

we reach

*
—2% * 2a,u

/RNHAr,u)dxgi IA ] ex (57175 (/RN(\Vu\2—|—V(x)]u\2)dx> S (3.30)

2a+p
a,
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which together with ([3.27)), leads us to

1 * *
Telw) > Sull* = Clluls — CyJuls,

where (' := nqz_;i’“ ||)\H%SQQT” Therefore, from (3.3), we have that 27, > 2. Hence, we
choose p small enough such that J,.(u) > 0 > 0 for all u € E with |[ul| = p, i.e., () holds.
To prove part (i), we fix ¢ € C°(RV)\ {0}, ¢ = 0 in RY, supp(¢) C B;(0) and we set

A(t) = <||t$|> > 0, fort >0,

where

U(u) = ; - </R f(y,u) dy) G|(;c|,au) d.

N Jylefe =yl
Since G(-,¢) = F(¢) in supp(¢) C Bg(0), it follows from ([3.26)) that

i~ Clugg) o\ olmid) ¢

A“)—/RN(/RMyww—ywdy el Toll
01 Gy )\ G (o)
>tzsupp<>(/w e - ) el

:¥A(t), vt > 0. (3.31)

By integrating (3.31)) on [1, s||¢]|] with s > ”715“ we obtain

Alsllgl)
In (-'4(1)> > In (HéﬁHeS@) :
which infers that A(s||¢]|) = A(1)]|¢||?s?. Thus,
Gz, 59) ) Gly, s9) o) NCWw) e
d dzx > d dx
s </RN o= ) Tl e (/RN ele— gl ) Tl 1T
By (3.17)), it follows that

- / (z,50)dr < —dys° /Supp(¢) ¢? dx + dy|supp(¢)). (3.32)

Consequently,

¢ b
J(50) <§||¢||2s2—;u¢||030 L. (/R Ga(l”’ ) dy) ¢ 151) g,

N Jylole —ylm ||

—dys° / ¢ dz + dy|supp(¢)|
supp(¢)

=:C1 5% — 5% (Cy + C3) + dy|supp(¢)|, for s > ||¢||

which implies that J,(s¢) — —o0, as s — o0, since § > 2. Finally, assertion (i) follows for

e = s¢ with s large enough. O
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According to Definition [2.2.3] by applying a version of Mountain Pass Theorem that does
not require the (PS) condition, as in (WILLEM, [1996)), we obtain a Palais-Smale sequence
(tn)n C E such that

Jo(uy) = ¢, and T (u,) — 0, (3.33)

where ¢, is the mountain pass level characterized by

0 < ¢, := inf max J,.(v(t)) (3.34)

~eT te[0,1]
where
T, = {7 € C([0,1],E) : 1(0) = 0 and Ju((1)) < o}.
Now, we introduce the functional Z, : H}(B;(0)) — R given by

1 1 1 F(u F(u
IO(U)ZQ/B(mlqudeFZ B(O)m|U|2dx_§ B(o)</B - dy) ( )dx’

0 [yl*lz =yl ) fz]®
where m = max, <1 V (x). Moreover, we denote by d the level of the mountain pass value

associated with the functional Z, i.e.,

0<d:= inf tem[%fo(v(t)),

where
o= {7 € C(0. 1), HY(B1(0))) : 1(0) = 0 and To((1)) < 0}.

Here, it is important to emphasize that d is independent of the choice of ¢, R, A(z) and

k. Moreover, ¢, < d.

Lemma 3.2.2. Assume that conditions and ([3.15)) hold. Then,

1 (/ Gy, u) dy) glz,w) o1 (/ Gy, u) dy) Glau) o
0 Jry \JrN |y|*|z — y|# || 2 Jrv \JrN |y|o|z — y|# ||

=A -A, 20 (3.35)
and by (319
/]RN <;h,§(x,u)u - ;Hﬁ(x,u)> dz > 0. (3.36)

Proof. Initially, note that

_ Gy, u) [bg(x,w)u — 3G, u)|
A _/{x|>R} (/]R dy) da

N y|ofe — ylm ||

Gy, u) (L f(uyu — 3 (u)]
" /{iwl<R} </RN |y|alfcy—y|“ dy) ST o
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whence follows from (fs]) and G(-,¢) > 0 for all t € R that

Gly, u) ) [3g(z, u)u — $G(x, u)]
Ay — Ay > d dz.
S /{|z>R} </RN ylele — gl 7 ER
On the other hand, defining Qy () := {¢f(u(z)) < V(z)u(z)}, we use (3.26), (3.22)-(3.23)
/ (/ ) 39z, u)u — $G(x, )]
dy dx
{lal>R} VRV [yl va yl“ ||
Lo(z,u)u — LG (z,u
_ </ G(y,u) dy) 9w — 5G]
{lof>R}n0s, VRN [y[*|z — y[# ||
Lo(z,u)u — 1G(z,u
+/ (/‘ G(y7u) dy) [99( ) 2 ( )} dz
{lal>R}nQy oy VBN [y]*|2 — yl ||
Lo(z,u)u — LG (z,u
>/ (/ G(y,u) dy> [99( ) 5G( )} Qo
{le[>R}n0g ) VRN [y|*|z — y|# ||

1 1/1 1
> (/ Gly, ) dy> < - > V(z)u? dz
{le[>R}n0g ) VRN [y|*|z — y|# AN

20,

to deduce

where we are using the fact that (% — i) > 0. Thus, we conclude that ([3.35]) holds true. The
estimate in ((3.36)) follows directly from ({3.16]), and the proof is done. O

Lemma 3.2.3. Let (u,), be a (PS)., —sequence for J.. Then, (u,), is bounded in E and

there exists ny € N such that

20
l|lun|]? < 7 (d—|— 1), Vn=noe.
Proof. By using ([3.35)) and ([3.36)), we deduce
1, 11 , 0-— )

Tultn) = 5T un)n > (5 = 3 ) Tunll? = el (337)

Note that
1 1
_*\7 (un)un < ’9 (un)un| < *Hj () [ l|etn]]- (3.38)
Since (uy,), is a (PS),., —sequence for J,, we see
0—2
Cr + [[unll = a1,

20
for n sufficiently large. Thus, (uy,), is bounded in E. For n € N sufficiently large, which jointly

with (3.37)) implies that

20 260

lunl® <

and the lemma is proved. O]
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Let (u,), be a (PS)., —sequence for J. It follows from Lemma|3.2.3|that (u,),, is bounded

in £/. Hence we may assume, passing to a subsequence if necessary, as n — co

Uy — U, weakly in F,
Uy, — U, strongly in LY (RY), 1 < p < 2%,
(3.39)
U (z) = u(z), a.e. in RY,
lu, ()|, |u(z)| < h(z), for some h € L} (RYN),
and
, 20 7
|lunl]” < ﬁ(d—i— 1)=C, VYn=no. (3.40)
As a consequence,
/ Vu)? d, / V(@) |un2de < [Junl? < O, Y= no. (3.41)
RN RN
Combining this with (3.4]), we get the estimate
</N |un|* dx)z* < SHVu, |2 < S7IC =:C,, VYn>=ng (3.42)
R

Moreover, by ((3.27)) and (3.41)), for all n > ng, we have that

/ (/ G(y,un) dy) G(‘T7un) dx < 06’23,;14' (343)
RN \JR “

N Jylele —ylv |z]

3.2.2.1 Compactness results

In this subsection, we will establish some results that are very significant in this chapter,
in order to verify that the functional 7, satisfies the (PS). —condition. It is important to

mention that in the case v = 0, see for instance (ALVES; FIGUEIREDO; YANG, [2016)), the

/ G@m)®’
RN 2 — y|¥

2
B .= {uEE: |ul|? < 9_92(d+1)},

plays a very crucial role in the arguments. However, as pointed out in Remark [2.1.15|of Chapter

boundedness of the nonlocal term

over the set

[2, the Stein-Weiss type convolution does not admit such boundedness. Thus, we adapt the
argument by studying the boundedness of the term

Kl = [ | o

* lylle — o (344)
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Lemma 3.2.4. For all u € B, we have that

K@) = [ O

2 7 dy € L=(RN). 3.45
T Er—r (&) (3:45)

In addition, there exists ¢y > 0, which is independent of R, such that

suPyep [|K(w) ()]l _ 1
4 2

Proof. To prove ({3.45)), we follow some ideas from (DU; GAO; YANG, 2022, Theorem 2.7) and

(DE ALBUQUERQUE; SANTOS, 2023, Lemma 3.3). For u € B and r > 0, we write
Gy, u) Gy, u)
K(u)(z é/ 7dy+/ ————dy. 3.46
X)) B:(0) |y|*|z — y[* B:(0) |y|*|z — y[* (3:49)
On the one hand, for z € BS, (0) and (3.25]), we have |z — y| > |y| and

[ el b,
B

0 [ylole —ylr 7 T 0 Jeao) [ylrte

Choosing k := %, it follows from Holder's inequality and Sobolev embedding that
- )flv po\Er ) F
dy / ( ) dy
B:(0) \ [y|++e

2 P 2
2 g, <20 / "
0 JB.(0) |ylrte 0 \/B.(0)
k—1

<C|lull” </T |7;|N717(a+u)ﬁ df) i
0

—1

< (/ |7Vt s df) L= < oo,
0

where we have used that N — 1 — (o + p) 5 > —1. For z € B,(0), using the arguments as

above, we observe

G G G
/ |G(y,u)| dy</ | (y;u)\dw/ \ (y,u)+! dy
B(0) |y|*|z — y[~ B.(0) |y|te By () |T — y|rte

k—1

3r %
<Cy + Cs (/0 Rl df) < 0.

Hence, for each € RY, we get

G
/ Gyl dy < oc. (3.47)
B(0) |y|*|x — y[~
On the other hand, we write
G G G(y,
[ Gl Sy, [ SIS0 P
Be(0) |y|*|z — y|» BS(0O)NB(z) |y|*|x — y|» Bg(0)nBs(x) |y|*|x — y|»

Arguing as in the preceding estimates, we deduce from ([3.25)) that

p
7 < 1 |G (y,u)l dy < 2001/ |ul
B (z) |7 — y|*

— < — dy < oo.
r® JB, () |x —yl* 0 ro Y
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Now, choosing ¢q; = ﬁ,qz =2 g3 = % satisfying qil + q% + q% < 1, it follows from
Holder's inequality that
2N —2a—p oY 1
([ o= a) L ay)” L)
:Z’—Q g / y’u 2N —2a—p y / y / — y
£(0) B:(0) [y[*N fa) [ —y[PY

2N —2a—p oY
A N Ve
< U Y / Y / —o a4y < 00.
= Use(o) <o) [y[>N Bg(a) [ — y|*N

Thus, we obtain

/ Gy, wl dy < oo. (3.48)
Bg(0) [y[*|z — y[»

Hence, (5.40)), , (5.42)) imply that K(u) € L>=(R"). Hence, there exists Cy > 0 such that
sup I (w) ()]0 < Co. (3.49)
ue

Since ([3.49)) holds, there exists £, > 0 such that

suPyes [|K(w) (7)o
lo

Sl 2
and this completes the proof. ]

Throughout this chapter, we assume ¢ > £, > 0 in the auxiliary Problem (B,)).

Remark 3.2.5. It is important to note that the Lemma remains true for a bounded

sequence (u,), C E.

We emphasize here that the next result does not require the assumption that (u,), is a

(PS).—sequence.

Lemma 3.2.6. /fu, — u in E/, as n — oo, then, passing to a subsequence if necessary, we

have
G(y, un , Un
lim (/ y, un) dy) 9@, u )(un —u)dz =0, (3.50)
=20 B (o) \JRY [y|*|z — yl* ]
lim hio (2, up) (uy, — w) dz = 0, (3.51)
n—oo BR(O)
for any R > 0.
Proof. Firstly, we claim that exists C' > 0 such that
G(y, un
Lim G,um) <C, VneN, (3.52)
N [y|ofz — y|#|z] »

pt2a
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In fact, we observe that (G(y,u,)), is bounded in L2 (RM), up(z) — u(z) ae. in RY

and G is continuous, thus we infer that
Gy, un) = Gly,u), in L7527 (RV).

In light of Proposition [1.0.2, we see that the operator

h

2N
dy € Lz (RY)
RV [y|ofz — y[#|z|®

L7265 (RY) 5 h —»

2N 2N
is a linear bounded operator from [2v-20= (RY) to Lu+2a (RY), which assures us

R

N lylole =yl RN |y|*fe — yl#fzle

Thus, there exists C' > 0 such that (3.52)) holds.

2N 2N
[+2a and 5550

For any fixed R > 0, using Holder's inequality with exponents

from (3.52) that

G(?Ja“ﬂ) )
d T, Uy ) (U, —u)dx
/BR<0></RN glofe — ylefale 4 ) 910 vn)lin =)

/ G(z,uy)

Nyl — y|#|x|

, it follows
o

2N —2a—p
N

o </BR(0) ’g(m,u)(un —u)| dx)

pt2a

dy

\‘
2N —-2a—pu

2N 2N 5
ANmRamy dm) =: Ly,. (3.53)

<c ( [l -0

According to the growth condition in (3.25)), we have g(x,u,) = f(u,) < colun|?*+» 2|u,| in

Bj(0), which combined with Hoélder's inequality, we reach

7 . T - _oN Mt
L, <Cc </ (‘%‘20"“72) ey (’unHun — u\) AN —zamm dx)
Bz(0)
2;7#72 )
* e 2% PR
<Cc </ |, |? dg;) (/ (Jtn| [t — u]) = d;,;)
Bx(0) By(0)
: 2
2ap=? 2% o
<C. 2 Co (/ (lunllun - u|) 2 dx) — 0, asn — oo, (3.54)
Bg(0)

where we are using (3.39), (3.42), the fact that 1 < 2~ < 2* and applying Lebesgue Dominated
Convergence Theorem. It follows from ([3.53)) and ([3.54) that (3.50)) holds true.

In order to prove (3.5I), we combine the growth condition in (), the fact that
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A€ L%(RN) and Holder's inequality to obtain the following estimate

/ h@ﬂmW%—Uﬁh<ﬁq%*/ @) [t | %2t [t — ] A
B, ( B,.(O)

2N —2a—p
N

S DY TS

2a+u

2% 2 2N72évcx7,u, %
R i (T T
B,n (0)

*
2%, -2

Zo,p © 2
2% o* o
Fac] [ Gl =)
Br(0)

2

2 -2

"
a.p
2

sl [
C

S DY

s 17
/ (]unHun—u\) :1:] — 0, asn — oo,
B-(0)

where we have used (3.39), 1 < 2 < 2* and applied Lebesgue Dominated Convergence
Theorem. Thus, we see that ([3.51)) holds. The proof of Lemma is done. O

Now, let 1, € C>=(R") be defined as

0, in B,(0),
() =
1, in B§.(0),
? (3.55)
0<n(z) <1, in RV,
V()] < T in RV,
for some C' > 0 independent of r with » > R and we also need the following lemma:
Lemma 3.2.7. Let (u,), be a (PS).,—sequence for 7. Then,
1
C C 2
[T 4 vilwPias < 2w S ([ unpa) (3.56)
2re T {r<|az|<2r}

2H2

AN g O ([ (Ve V@i de+ [ a2V da)
R R
where C, was defined in (3.42)) and 7, was introduced in (3.55)). In addition for each xk > 0,

consider €} := e(k) > 0 such that if H)\H 2y < g, then

2(17#
4||)\||%mq_23#0* TS5 (3.57)

Consequently, (3.56)) becomes

1 e 3

3 / 2 P2 D de <2t 422 / 24

slimsup |0 ([Vua|” + V(@)jua) do <5 2 + einieany ul” d
Cs

|u|? dz
{r<lz(<2r}

:;& + O (R(T))% + C?,R(T), (3.58)

r2 r2
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where Cy, Cy and C5 are positive constants. Therefore, for each ¢ > 0, there exists

r =r(e) > R verifying

lim sup (|Vun|? + V(2)|u,|*) dz < &, (3.59)
n—oo JBS (0

lim sup (/ Gy, un) dy) 9(z. un)un dr < Cie, (3.60)
n—oo” JBs,(0) \JRN [yl|*|2 — y|» ]

lim sup (/ Gly, un) dy) 9l un)udx < Cae, (3.61)
n—oo” /s, (0) \JEN [yl|*|2 — y|» ]

lim sup/ hio (2, up )uy, do < C e, (3.62)
n—00 $.-(0)

lim sup hio (2, up)ude < Cy e, (3.63)

n—oo JBS (0)

whenever (3.57)) holds true.

Proof. In view of (3.39), we may assume, passing to a subsequence if necessary, u, — u
weakly in £ and the sequence (u,,), satisfies (3.40)), (3.41), (3.42) and (3.43). By ([3.55)) the

sequence (u,17;), is bounded in E. Hence, JJ ,(un)unn; = 0,(1), whence it follows that
G(y, un) g(@,un) 4
2 (|Vun|* + V(2)|u,]?) dz < /( dy) U, M. do
o T+ V@l o TPl — o ) TP
2
+ /RN huo (2, wp ) unns + 0,(1)

=091(n,r) + Qa(n,r) + Qs 4(n, 1) + 0, (1). (3.64)

+ ’—2/ Un Vu,Vn, dx
RN

To estimate Q;(n, ), we consider the following two cases:

= If a # 0, then from ((3.22)), (3.41)), (3.55)) and using Lemma [3.2.4} it follows that

i) <r1a /{|x|>r} </RN IyIG‘”(é’ﬁny)l’” dy) Vf(: i) o
L[l Oy g,
1
<ﬁ L V@)l do
<ﬁc

= If a =0, then from (3.22)), (3.41)), (3.55)) and using Lemma again, one has
G(yaun) 2
Qi(n,r <C/ </ dy)gﬂc,ununrdx
1) SE o\ Jov T — g @9 ) 960 tment

K n o0
of el KOy, e,
{lz|>r} to

1
< [Vl + V(@) da
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Hence, in both cases, (3.64) becomes, respectively

[ V0l + V)Y dr < 50+ Qolm,r) + Qualnr) +0u(1), (365)
1
- /RN (I Vtnl + V(@)tnl?) dz < Qa(n, 1) + Qsx(n, ) + 0n(1). (3.66)

Next, we will do the proof only for estimate ([3.65]), because the proof for estimate (3.66)) is
similar.
Using once more ([3.41)) and ([3.55)), thanks to Holder's inequality, we get the following

estimate for Qs(n, ),
1

1
C 2 : 2 :
Qy(n, 1) <2— / |un|* dz / |Vu,|”dz
r {r<|z|<2r} {r<|z|<2r}

SQC_’%Q (/ |, |2 d:p) . (3.67)
T {r<|z|<2r}

Thus, since u, — u in L*({r < |z| < 2r}), we have

, e : R(r)\ 2
< 2 — 2 =
lim sup Qs (n, r) <2C . (/{T<|x<2r} u dx) : Oy ( 5 ) : (3.68)

n— 00 T

N|—=

By assumption ([1]), thanks to Hélder's inequality, from (3.4) and ([3.42)), we get the following

2N—_2a—p
Q) <R N ([ (25~ ) 77557 o)
R
2;,};2 5
7*

| DY | </ o dx) </ |unny|* da:)
200+ RN RN
2

* 2
Coge a2 ot o Pl
S e Y/ (/ w22 dx)
RN

—2

<K auC’ oy Al 2x S71 ]mVun—kunVnTFdw

200+
2

2 fap?
gf‘f/qi a,,u,C* 2

A 7122 / TV ual? + V(@) lual?) da

—2

PR o = DY 122/ W2 |V |2 da, (3.69)

which together with ([3.65)) and ([3.67)) implies that (3.56]) holds.

In order to prove ((3.58)), for each xk > 0, let ¢f = £j(k) > 0 be such that if H)\H% < &g,
atp

then ([3.57)) holds. According to ([3.57)) and ([3.69) we see that

1 1
Quuln1) <5 [ (I Vual + V@)l dw+ 5 [ w292 de
2 RN 2 RN

1
=i [ (Tl + V(@) ?) d + Q7). (3.70)
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Noticing that RY = B,(0) U {r < |z| < 2r} U BS.(0) and using that Vi, = 0 in BS,

<
IV, (z)| < € and since u, — uw in L*({r < |z| < 2r}), thanks to (3:39)), we have that

. % 2 R(r)
hglﬁsoli.p Q4<TL,T) S ﬁ /{r<|z<2r} ’U‘ do =Gy rz -’ (3.71)
Putting together (3.65)), (3.70) and ([3.71)), then ([3.58)) holds true.
From (3.71)), applying Sobolev embedding
2
02 * 2 2
CR(N < o5 | [ [ dz ) [{r < Jo| < 20}/F (3.72)
212 \J{r<|z|<2r}

and since |{r < |z| < 2r}| < |Ba,| = wn2VrY, where wy is the volume of the unitary ball in

RY it follows that

LA R(M)
lim Cs > = 0. (3.73)
Recalling ((3.68)), from ([3.73), we reach
. R(r)\?
lim Cy ( = ) = 0. (3.74)
By ([3.55), we have n, = 1 in BS,.(0), implying that
[ VP + V@l de < [ (Yl + V@l e, (375)
Bs,.(0) RN

This together with (3.58)) and (3.73))-(3.75]), it follows that for any fixed € > 0, we can choose

r(e) > R > 0 such that

lim sup (|Vun > + V(2)|u,[*) do < ¢,

n—oo JB§ (0)

whenever (3.57)) holds true. Therefore, ([3.59)) follows.
Henceforth, we assume that (3.57) holds. From (3.25) and noticing that g(-,t)t €

L2N*2$L*u, thanks to (3.52) and applying Hélder's inequality combined with ([3.4)) there holds

/ ( / Gy, un) dy)g(x,un>un dr <
Bs, (0) \/RN |y|*[z —y|* ||

2N
X </ lg(x, wy ) uy, | 2N —2a=k dx)
Bs,.(0)

2N—-2a—pu
. 2N
<C (/ |, |2 da:)
Bs,.(0)

2% 2N—2a—pu

<CS7T 2w (/ |Vu,|? + V(2)|u,|? dsc)
B3,.(0)

/ G(y, un)

N ylefe = yl#lzl®

2N
pt2a
2N —2a—p
2N

2% 2N—2a—p
2 2N
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Putting this together with ([3.59)), we infer that for given ¢ > 0, there exists r(¢) > 0 such

that

lim sup (/ Gy, un) dy) g(l’,un)un dr < Cie.
Bs,.(0) \/R @

n—y00 N Jylole =yl |z

By a similar arguments, we obtain

Bs,(0) \JRN |y|*|x — y|# ||

X(/
Bg,(0)

2r

<c(f QP uyse ao)
B35,.(0)
On the other hand, applying Hoélder's inequality combined with (3.4]), we obtain

/ G(y, uy) d
RN |yl — y|#|z|

2N—2a—pnp
2N

2N
pt2a

ool 775 d

2N —2a—pup

2N —2a—p 2:;,;171
2N R 2
</ (R T dx) <C (/ Vu,)? + V(2)|u,|? d:r;) :
Bg, (0) Bg, (0)
A 2a,u—1 .
where C' := ||u|2-(S™") "2 . These last two estimates take us
25 01

Gy, un .
/ (/ (y, tun) dy) g(z,up)ude < C (/ |Vun|? + V(2)|u,|? dx)
B, (0) \JRY |y|*|2 — y|#|z|* Bg, (0)

Thus, (3.60) and ({3.61) hold.
To prove ([3.62)), we will use (3.59). In fact, from (1)), Hélder's inequality and the light of

(3.4)), there holds

/ hn(l’, un)un dz gﬁqixy’“ / A(x)|un|23’u dz
B3,.(0) 5,.(0)

c
2r

.
20,1

y
2%, 2

2 ||)\H 2N (/ |Vun|2—|—V(x)|un|2dx> s
B3,.(0)

<KIZan (ST

2a+n

(3.76)

which jointly with ([3.59)) we conclude that for given ¢ > 0, there exists 7(¢) > 0 such that

lim sup hi (2, up)uy, doe < C ke,
n—oo JBE(0)

2*
where C . := || A||_an_ k97200 (S71) 75"
2a+p

Similarly, by and applying Holder's inequality together with ([3.4), we see that

/ hie(@, up )u da g"'iq?zz’u/ M) |up | ?n ™ u da
5-(0) Bs.(0)

"
2% -1

<Oy (/ (Vu,|? + V(z)|u,|? dx) , (3.77)
B5,.(0)

2r
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2*(5_1)%. Consequently, it follows that (3.63]) holds.

where Cy = ,:1‘1—23,”||/\||%||u

This completes the proof of the lemma. O

In what follows, we emphasize an important remark that we will use in Subsection
of this chapter during our study of Problem . To verify this remark, we will make use

of a result due to Berestycki and Lions, which provides a characterization for the functions

belonging to DL (RY).

Lemma 3.2.8. (BERESTYCKI; LIONS, 1983, Radial Lemma A.lll) Let N > 3. Every function u
in DY%(RN) is almost everywhere equal to a function U (), continuous for = # 0. Furthermore,

there is a constant C' := C'y such that for all u € D}%(RYN), we obtain

[Vulla

vz |t > L
]2

U(z)| < C

Remark 3.2.9. If we replace the space D*(RYN) by D3(RY), then in view of the Cauchy-

Schwarz inequality, see (LIEB; LOSS, 2001, Theorem 9.8), we can estimate Q1(n,r) as follows
[ ( 9(y, w) dy) 9(, ) dxF
RV \JRN [y|*|z — gyl ||
3
o e Tyfefe = gl @) Jale
{lzl>r} \{ll>r} [y]*] — y|* | |

1 1= " 227 V %
<ot V </ n ()2 dy> ($>|un|2dx] . (3.78)
2 (1=t \Hlylzr) |y]*]z — y|* by

where we use (3.22) and (3.43). On the other hand, we observe that

Ql (n7 T) <

N

2 2a,
/ |t (1) |7 dy:/ un(y)| dy
{yl=r} [y|¥z — y|# {lyl=rin{lz—yl>1} |y|*|z — y|#

*
25.u

|un ()
——=2——dy =: Pi(n,r) + Pa(n,r).
/{|y>r}m{|xy<1} y|*|x — y|»

It follows from Hélder's inequality and (3.42)) that

N 1 w 1 w
Pn,ré(/ d) (/ d) (/ d)
10 7) < { o Y wisr yPN Y fo-yl>1} o — g2V Y
=2 (WN_1 N WN-1 I
SO (NT’N) ( N )
1
=Clwy-1,, 1, N) ==,

«@
2

r
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where wx _1 is the surface area of (N —1)—dimensional unit sphere. Now, to estimate P(n,r),

we will use the Radial Lemma|3.2.8, as follows

* ].
Pa(n,1) <(CIVunlla) [ =
{lyl=ryn{le—yI<1} |y| 72 |y|¥|z — y|*
C Vun 2 Zau 1
<( I MH ) / _dy
pote {lyl>rinfle—yl<1} |2 — Y]
C%n 5 1
<N;72/ dy
rrEre a—yl<1y |z — y|#
1
<C(WN—1,OJ,M7N)TQ+,
roz

where we used (3.41)) and the fact that N > u. By apllying these estimates in (3.78|) and
using (3.41), we see that

Q*
M=

2a,p

_ 1 1 1
C2 C(wn-1, o, 11, N) (a + N—2> R [/ V()| un|? dz
rz  pota ) by [J{zzr}
1 1
<C< 5o T N—2> )
ra  roz to

*
2a.p

2 C(wn_1,a,pu, N). In this way, we observe that we obtain the same

N |=

Q1<n7 T) < O

<
m\SE‘ =

where C' := C2C
result as in Lemma however, without using Lemma|[3.2.4 The argument for Qy(n,r)

and Qs .(n,r) remain the same.

Lemma 3.2.10. Let (u,), be a (PS).,—sequence for [J,.. Then, we have

lim o (/R Gly, un) dy) 9@, un) (tup —u)dx =0, (3.79)

B fo e ke = o ) e
Jim. x hie (2, up) (uy, — w) dz = 0. (3.80)

Proof. In view of Lemma [3.2.7] it is enough to prove that
Gy, un  Un
lim (/ _Gly,um) dy> 9z, u )(un —wu)dz =0, (3.81)
7320 S, 0) \JRY [y — yl» ||

lim hie (2, up) (uy, — w) dz = 0. (3.82)

n—oo BQT(O)

The proof of (3.81)) and (3.82)) follows from Lemma Mtaking R > 2 O

Henceforth, we assume that H)\||% and « satisfy (3.57]) for the auxiliary problem (B,)).

Lemma 3.2.11. The functional J, satisfies the (PS).,—condition.
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Proof. Let (u,), C E be a (PS). —sequence for J.. In view of Lemma [3.2.3] the
sequence (uy,), is bounded in E and, up to a subsequence, u, — u weakly in E. Since

T (up)un = T (un)u = 0,(1), it follows that

Gy, uy) g(x,uy)
—_— 2 f— _ —_—
an =l /RN </RN ly|@|z — y|# dy) x| (tn = u) da

+ /RN hi(x, wy) (U, — u) do + 0, (1),

which jointly with Lemma [3.2.10| implies that 7, satisfies the (PS)., —condition. O

Lemma 3.2.12. The functional [J,. has a nonnegative critical point uw € FE such that

J.(u) = ¢, i.e., u is a nonnegative mountain pass solution for Problem (B,)).

Proof. In view of Lemmas [3.2.1| and [3.2.11} Problem (|B,]) admits a nontrivial solution of

mountain pass type. By using u~ := max{—u, 0} as test function in (3.29)), we deduce from

(3.13) and (3.19) that
_ - - Gy, u) -
0 —/RN(VUVU + V(z)uu~)dx — /RN (/}R dy> g(x,u)u~ dz

N Jylole =yl |zl

- /RN he(x,u)u~ dx

:/ (IVu™ + V(2)|u"|?) dz — /u>0} (/R Gy, w) dy> g(z,u)u” dx

RN { Nyl — y|r|o|

Gy, u) ) _ _
— d T, U)U d:c—/ he(x,u)u” dz
AKMQ@NWPM—yMMay 9(wu) {u<0} (,u)

- /{ he(x,uw)u™ dx

i.e., the nontrivial weak solution w is nonnegative. [

3.2.3 L[> —estimates

By virtue of (3.57)) in Lemma and thanks to Lemma [3.2.12 the auxiliary Problem

(Bx) admits a solution u := u,, for all A € L%(RN) and £ > 0 with H)\H% < gl =
atp

e5(k). In what follows, we deduce a uniform estimate for the norm of the solution u, , of

Problem (B,]). Precisely, we prove the following result:

Lemma 3.2.13. Let uy, be the critical point of [J, obtained in Lemma|3.2.12 Then, there

exists a constant M (which depends only on N, 0, i, ., p,m and independent of ¢, ||)\||227N
a+p
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k and R) such that

20

Tl =M, Ve L7ats (RY)

luasll® <

with H)\H% < gp. In particular, by (3.4) we have that

2. <STIM < S0, VA€ Lwn(RY)

with ||A|| 2xv < &}
2a+p

Proof. In view of estimate ((3.37)) and recalling that ¢, < d, we have that

0 —
29

1
= Cx = jﬁ(u)\,m) - 5\74(“&,/@)”)\,& >
and the proof is finished. n

The next Lemma plays a crucial role in our arguments, since it establishes an important
estimate involving the L*—norm of the solution of the auxiliary Problem (B,)). For this

purpose, we shall use Moser's iteration method.

Lemma 3.2.14. Let uy, be the solution of (B,)) obtained in Lemma |3.2.12 Then, there
exist C1 > 0 and My > 0 (which depends only on N, 0, i, «, p, m and independent of ¢,
M| 2x , & and R ) such that if \ € L7+ (RN) with AN 2 v <&, then

2a+p

lunalloe < (1 A7 \]_aw ) M,
where £, was established in (3.57]).

Proof. In what follows we will explore the ideas from the proof of Lemma|2.2.11|from Chapter

. For the sake of simplicity, we denote v = u, .. For L > 0, we define ¢, = uui(ﬁ_l) and
wy, = uu(Lﬂfl), where u;, = min{u, L}. By taking ¢, = uui(ﬂfl) as test function in ([3.29)),

where 3 > 1 will be chosen later, we have

VuV (uur V) dx+/ 2)|uu2Y A

Gy, u) ) 2(8—1)
— dy | g(x, u)uu dx
[ T~ T (s

—/ xuuuL dx—()

RN
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which implies
2(B-1 2(8—1)—1
/RN uL(’B )|Vu\2dx =—2(p-1) /RN uL(ﬁ TV uVuy, do
G
-|-/ (/ (y, ) dy) g(x, u)uuL(ﬁ Vaw
RV \JRY |y|*[z — y[#|z]*
+/ (z, u)uuy, 2081 4y

— [ V(@)|ului’Y da. (3.83)

RN

Since

28-1) [

RN

ui(ﬁ_l)_luVuVuL de =2(p — 1)/{ }ui(ﬂ_l)|V1,L|2 dz >0, (3.84)
<L

Ux

it follows from ([3.83) that

/ 2&(’8_1)|VU|2 dz </ (/ Gly,u) dy) g(x,u)uui(ﬁ_l) dz
RN N\ Jr

N ylofa — ylr|a|

+/ (x,u) uuﬂﬂ_l) dz. (3.85)

Note that

2
¥

([, Jwef )’
dx>2*

<S™ / |Vw|*de = S~ / uuL dz.

Thus,

(oo

<57 [ uil® VP de+ ST 3 - 12 [ Pl VP da
R R
gSfIBZ u?(ﬂfl) Vu 2 dr + S7162 u2(571) Yu 2 dx
RN L RN L

—05-142 /RN POV T de, (3.86)

where we have used Vu, = 0 in {u > L}, v = ug in {u < L} and § > 1. According to

" and " we obtain

2

(/RN lwp[* dx) > <2513 /RN (/R G(y,u) dy) g(z, u>uuL(6 D dz (3.87)

N Jyloe - y|“|x|°“

+257152 /RN (T, u)uuL Y da. (3.88)

Next, we estimate the right-hand side of (3.87)). By combining ([3.25)), Proposition and
Holder's inequality with Lemma [3.2.13] we deduce

/ (/ Gly, ) dy) g(:v,u)uu%(ﬁ_l)d$ <Oy (/ (
RNV \JRN [y|*|z — y|#|z| RN

2N —2a—p
2N

"‘“U 2(8— 1))de>
(3.89)



106

where C, := C(N, 0, o ,u,co)(SM) , which jointly with (3.87)) yields that

2 2N —2a—p
= 2N e jb

(/ |U)L|2* dx) 2 <C~'225'_152 (/ (|u|2<§,uu (B- 1))7” 2a #d:p)
RN RN
+C’228_162/N (T, u)uuL(’B Y da
R
=:Cy2S7 132 (I, + 1) . (3.90)
In the sequence, we estimate /; and [5. Recalling that
(a+b)P* <a™ + 0", Va,b>0,p €(0,1), (3.91)

for any K > 0, we have

2N—-2a—pu 2N-—2a—p

([ ey iman) ™ < ( [ (PPl ”>mwdx) "

RN {lul<K}
2N —2a—p
2N
+ (/ (‘u’2;7#u (B— 1))21\’2“#(11')
{lul>K}
=1} + I} (3.92)
Note that N2
2N
I} < K2 ( / (yu\zuiw”)wféi—udx) (3.93)
{lul<K}

*

and S one deduce

and using Holder's inequality with exponents 5%
QL

13<</{|U>K}|u|2*dx> (/R | dx) . (3.94)

Now, we estimate the right-hand side of (3.88). By (1)), we get

*
28 12
2*

I :/ hoo (2, w)uns ™ Yz < kq_%’“/ A |u?an 2P0 dg. (3.95)
RN RN

Since A\ € L%(RN), it follows from Holder's inequality

2N —2a—pu
I, < ,{q—za,#||>\||22]XH (/RN( 2Z,Hui(/3—1))21v2évaudx> e (3.96)
For any K > 0, we obtain
2N —2a—p
2N
Iy SKT 20 || 2 ( /. }<|u|22!uui”‘”>w25wdx) (3.97)
H u|>K
2N—2a—pu

2a+tp

by, ([ (P sima)

=: 1+ 1. (3.98)
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Arguing as in ([3.93]) and (3.94)), we reach

2N —-2a—pup

2N
I} < kOB | A|| o K202 / (|u[?2P Vo2 da (3.99)
Foctn {lul<K}
and
2;;,“_2
B oo ([ jufde (/ : dx) . (3.100)
2ot \ J{|u[>K} RN
Denote C' := 25C, in ([3.90)). In view of ([3.90)—(3.100) we derive
2 2N—2a—p
(sl ar)™ <o wr i) ([, (o0 isan)
RN 20+p RN
25, 12
—e &
+ OB (14 K720 Al 2 ) / [u* d (/ !wLF*df"")Q '
2oth {lul>K} RN
(3.101)
Since u € L?" (RY), we may fix K > 0 such that
/ u|? de P ! (3.102)
{Jul>K} T 20521+ 1P ]| 2 ) '
Taking into account (3.101]) and (3.102)) we get
& 2N—2a—p

([ lwel dw)™ <2081 + m2 ] 2

o) ([ (upaeyeiman)
n \Jr

(3.103)
Claim. u € L¥A(RY), for 8 = %=

In fact, since u;, < |u| and recalling wy, = uuf’ ", it follows from (B.103) that

2
5% 2N —2a—p

* 2N
dx < 00.

-

oy 2 ¥
</N(\U|uL T2 da:) <2082 (1 + RI720m ||| 2
R o

+u) (/RN ]u i

(3.104)

By taking the limit as L — oo we conclude that

f
RN

*

2
== da:<oo

which proves the claim.

Now, using that u;, < |u| and passing to the limit as L — oo in 3.103, we obtain

w28

2* 28
ol <080+ wr % g ) ( dff) (3:05

2a+p

=CH2(1+ KT%n Al 2x )
200+
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or equivalently,

2ep < [O3(1 4 K97 %|A|

lu

1 1
V21787 |[ull gy 51 (3.106)

2N
2a+p

22*
2507

The next step is using inequality ([3.106]) to obtain the desired L*°—estimate, through an

where g, =

iterative process. For this purpose, following a similar approach as in steps 1, 2, and 3 of

Lemma [2.2.11}in ([2.68))-(2.70]), we follow three steps.

First step. If § = v, := qQ— then ([3.106]) becomes
e

1
Ve [l

1 —2% * *
gy < [C2(1 4 K1 2a,u||)\|| ge, 2%y = V%Qa,w (3.107)

HlL 2N
2a+p

that is, u € L%ux (RN).
Second step. If 3 = v, := 77, then ¢, 72 = ¢, 77 = 2*y and (3.106) becomes

1 __9% lii
s [OH(L W25 )3]3597

Hu Qo127

1

)] (72) 72 |lu

poy < [CF (1 4+ KT %n ||\

[l

which jointly with ([3.107)) yields that

2%~1

2N
2a+p

. 1,141 1 1
ltlloy < [CHU+ AT 2o A )T () (1) Tl (3.108)

Since 2*y, = 2% = 2*y1m1 = ¢, 73, it follows that u?i € Léx(RY).

Third step. If 3 = 3 := 7}, then ¢ 73 = ¢}, 77 = 2*72 and (3.106]) becomes

1 1

% 5% ||u

200 < [OF (14 K% ] 2x )2]

2a+p

| u a3

.

)] (75) 7 [[u

1 __O%
o < [CHAL 4 RS20 ]

[

which jointly with ([3.108) yields that

2*y9y

2N
2a+p

1 1 1 1

1,1 1, 1 1
)2]7 52 R (1)1 (72) 72 (75) 73 ||u

2y < [CF(1 4 &1 %n |\

[u o’

2N
2a+p
Since 273 = 2°9% = (2*y1m)m1 = g%, it follows that ui € L (RY).

Inductively, if we consider 3 = ~,, := 77", then ¢}, ,Ym+1 = 2"V and (3.106) becomes

Ipp RTINS ST é% ;% ?%;
)2]on A g2 ey ||

2o < [CF(1 4 K972 ||| ’. (3.100)

[[u

2N
204p
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and we deduce that un”" € L%.»(RN) for all m € N. Recalling that 7; = o 1, then

(l

lim 2%, = 2* 11_r>ré071 =2 nll_rgoﬁ =

m—00

[e.9]

By taking the limit as m — oo in ([3.109)), leads to

lulloo < (14 £I720n X 2y )< My (3.110)

Y1 —_
for all \ € L7a+n (RY) with ||)\H 2y < ), where C := 2(7 L M, = 7D Dy and
Uy = u. This finishes the proof. O

At this point, in view of (3.110)) and Lemma|3.2.13, we are able to find suitable values of

||)\||% and & such that the following inequality holds true
lunilloe < (14 RT3 ||X]| 2 )IM(SM)? < &
In fact, we shall verify that
(14 KT | X[| 2 ) My(SM)? <

or equivalently,

. [}
Hq_za’“”/\”A < </€)> — 1.

Consider x > 0 such that

and fix ej* > 0 satisfying

1
a 1
M| 2x < 5 < min (“) JEEEY R SS
200+p Ml(SM)§ K/q oLl

Thus, taking kg > Ml(SM)%, we obtain £§* > 0, such that

[[tr ko lloo < o, (3.111)

for all A € L%(RN) with ||)\||% < g}, Therefore, by (3.111)), it follows from definition

of h,, that
Fo (U mo) = (@) [Un o [ 1721 - (3.112)
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Remark 3.2.15. Let u € E be the nonnegative solution obtained in Lemma|[3.2.12. In view
of Lemma and regularity theory (see for instance (TOLKSDORF, |1984, Theorem 1)),
we have that u € C.J(RN), for some v € (0,1). Therefore, in light of Strong Maximum

loc

Principle, we conclude that u is positive.

Proof of Theorem[3.1.2 In light of Lemma [3.2.12 for each k > 0, there exists €} :=
e¢(k) > 0 such that for all A € L%(RN) with ||)\||% < 5%, the auxiliary Problem (B,
admits a solution u, ,, in /. Thereby, in order to prove the existence of solution for the original
Problem ([P)), given that holds true, it is sufficient to prove that there exist R > 1
and gy € (0,&*] such that following inequality holds:

Vi(z)

) Uhko, V|z| > R and VAEL?HW(RN)
0

f(u)\ﬁo) <
with H)\H N < &p.
200+

Lemma 3.2.16. For each R > 1, let u, ., be a solution for the auxiliary Problem (B,,), such

that Ty (Ux k) = Cwo- Then, there exists ey € (0,¢e4*] such that

RNfQ

RN72
<
|JI|N_2

UN ky S WHUA,HO o S

Ko, VY|z| >R and V€ L (RY)

with || A|| 2xv < &.
200+p
Proof. For the sake of simplicity, we denote u = uy ,,. Let v be the C*°(R™\{0}) function

L
v(z) = W, x # 0.

Since 1/|z|¥~% is harmonic, it follows that Av(z) = 0 in RY¥\{0}. Note that

<l < B, ve<n

Let us introduce the function w € DY?(RY) defined by

w(z) = (u—v)T(x), if |z| >R, (3.113)
0, if |z| <R.

By using w as test function we obtain

o[, 8%) e

+ /RN P35 o (7, w)w dr. (3.114)
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Now, by the definition of w and according to (3.22)) and Lemma3.2.4} it follows from R* > 1

the following estimate

G(y,u) g(x
Lo </RN oy — o dy) EE
1

V(z)uw dz —/ V(x)uw dz
2(0)
< <IC(U)<I) - 1) V(z)uwdz < 0. (3.115)
B:,(0) lo
On the other hand, using the definition of w again, we obtain
/ |Vw|? dr = / VuVwdr — / VoVwde.
RN RN RN
Since Av =0in B4(0) and w =0 in 0Bg(0), there holds

/ VoVwdz = 0.
]RN

Moreover, by ([hi]), we have | A, (2, u)| < A(z)kd % [u¥ ~2u. Using Hélder's inequality twice,

we get the following estimate

2N —2a—pup
/RN P (T, w)w da gﬂg_%# Al 2x

e ([ (P2 o)
a+ R

2;;,;1,72 2
_o% « E3 oF
S/ig 2Q’“||)\|| N (/ |u2 dx)
200+p RN

([ i)

=I. (3.116)

Thanks to Young's inequality 2a,1b; < a? + a2 and invoking Sobolev embedding together with

Lemma[3.2.13] it follows from (3.91)) that

2(1#(2 1 2
_o* * 2 * * 2%
1<l N (/RN luf? dx) ; (/RN luf? dx+/RN w)? dx)
QEM—z 2%

1 * l"_2 * * * 2 2%
<§ﬁ %, 2 (SiM22+SQ2||Vw|I22>
1 =
<5 ? = (SM + S| Vwl3) . (3.117)

Combining ((3.114)-((3.117]), we see that

IVwll3 </C " (m — 1| V(z)uwdz

* *
1 - 25, =2 2}, =2

+ 5% == (SM + S| Vwli3),
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whence it follows that

2 2

I “wuumvs “M

(5M+S||vw||§)

< / ( 1) V(z)uw dz < 0, (3.118)
%(0)
Now, let g > 0 be such that
. . 2
0 < g < min {60 s L } : (3.119)

We claim that [[Vw|]2 = 0. In fact, suppose by contradiction that ||Vw]||2 # 0, for some

Ao € L%(RN) with ||/\OH% < 0. Thus, we may rewrite (3.118]) as follows
a+p

]_ _9* 22, —2 22 92 SM
(9l 1 1l g w2050 (20 s

Vw3
< /%(0) (’C(“)(“’) - 1) V(z)uwdz < 0, (3.120)

to
- 2:’4#_2 SM
M= — 4 S) > 0,
(IIVwII%

In view of ([3.119)) there holds
which jointly with ([3.120]) leads to a contradiction. Showing that w = 0. Recalling the

1 q 2
1_5“)‘0”%“0

definition of the w function in (3.113)), we obtain |u| < v in |z| > R. This joined with

(3.111)), implies that

RN—Z RN_2 oN
Unmo < HMHUW < ppvgte Vel > R and VA LFRRY) (3121
x o Tz
with H)\H% < g¢. This ends the proof of lemma. O
We note that (3.121)) ensures
RIN-2)(a-2) w2 RN-2)(a-2)
—92 -2
W < LG |- < et o Y= R (3.122)
Furthermore, by fixing xq as in ([3.111]), there holds
tnm || < Ko, WA € L7t (RY) (3.123)

with H)\H% < g9. By means of ((3.2)), (3.122)) and ([3.123), we obtain

f(u/\ﬁo) gco‘u/\ Ko |q72u:\ KO
RWN-2)(¢-2)

q—2
<C°| (N —2)(a=2) H“Mo

U, ko

, RIV-2)(a-2) .
|| (N-2)(g-2) "o

V|z| > R. (3.124)

SCokg
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Now, by fixing R > 1, it follows from that

RWN=2)(¢-2) V(z)

ZBaD S ag)y 2R
which jointly with ([3.124)) implies that
o V(2)
f(unno) < ook QWW’W Vl|z| > R. (3.125)

Thus, if A(R) > Ay = coﬁolﬁg_Q, then we conclude that

Viz)

/s, V2] > R and VA € Lot (RY) (3.126)
0

f(u)\,fm) <

with H)\H% < g¢. Consequently, by (3.13)), (3.18)), (3.19), (3.123)), (3.126]) and since wu, 4,

is a critical point of J,, we reach

0 =T (txrn ) / VuAKOngﬁdx—F/ T)Uy o @ dx
(L Gt ay) Sl [ oo
RN \JR RN

N Jylole —ylm ||

= [ VirwVode+ [ V@)uroda
L el ) Hedoas - [ @ lods
RN R RN

N Jyloe =yl ]

for all ¢ € E. Therefore, we conclude that u, ., is a solution of Problem (), which finishes

the proof of Theorem [3.1.2] [

Proof of the Corollary @ Now, by applying the same ideas from the previous sections,
we reconsider Problems (A4.])-(B.) with o = 0, A(z) = A, and ¢ > 2*. Additionally, we
assume that p satisfies 0 < p < NH, and in the truncation , we replace 22,# with 2*
and apply the growth condition given in (1)), |h.(z,t)] < Ax?72¢* ~1. We emphasize that
the functional 7, still verifies, with natural modifications, Lemmas [3.2.1] [3.2.2] 3.2.3] [3.2.4]
[3.2.6 3.2.7] [3.2.10} [3.2.11] and [3.2.12] Thus, arguing as Lemma [3.2.13] we obtain that there

exists C, > 0 such that u, , is solution of auxiliary Problem (B,)) i.e., uy , is a solution of

—Au+V(z)u = K(u)g(z,u) + he(x,u), in RY,

o < C., where K(u) = / |i<y’;|l
RN |z —

exists C such that ||[/C(uy )| < Ci. Now, arguing as Lemma [3.2.14) we will show that

dy. Moreover, by Lemma [3.2.4] there

uy, belongs to LOO(]RN) and we will obtain a convenient L>—estimate for u, ,. In fact, in
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view of [|[KK(uyx)lleo < C1, |9(m,urs)| < coluns|®* 7L [he(z,un )] < )\/@q_2*u§:;1, from of

(3.87)-(3.88)) in Lemma with a = 0, we obtain

(/ |wL|2* dx)Q* <2S_152/ (/ Gy, v) dy) g(x,u)uui(ﬁ_l) dz
RN RN RN |x — y|ﬂ

+2571p? /RN h,{(x,u)uui(ﬁfl) dz

<2571p? (C’lco/ ) 2D dz + AkI™ 2/ w2 2P~ 1)d:L’>
RN

Q*Ui(ﬁ_l) dz.

2 _ox
<CA (14 A )/RN lu
Adapting the proof in Lemma [3.2.14] we obtain constants C and M, such that
lunelloe < (1+Aw2) " 2, (3.127)

and fixing ro > M, we can obtain Ag > 0 such that [|uy.llec < k. for all A € [0, Xg).

Therefore, it follows from definition of h,, that

hHo (U)\,Ho) = A’uk,ﬁo|q_2u>\,f€0'
Finally, the proof of Theorem follows through adaptations of the arguments in Subsection

2.3 ]

3.3 THE SUPERCRITICAL NONLOCAL PERTURBATION

In this section, we aim to prove Theorem [3.1.4] Thus, we will study the existence of
solutions for the following equation involving Stein-Weiss term in RY with supercritical

nonlocal term

) Flu) >f<u> A( ulf )mq-?u :
_A —_ ot
ut Viz </RN e ) e o U e ) o @)

where 2 < ¢, A > 0is a parameter and f satisfies — (f3).

To avoid the repetition, we will only mention the results which are potentially different
from the case considered in Theorem [3.1.2l We start by noting that for any u € DV2(RY), it
follows by Proposition that

q
/ / y)lju() dyde < o0, if ¢=2, ,
RVJRN |y[® Il‘ yl#|z] "
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i.e., we cannot apply variational methods directly because the functional F : E — R,

associated with problem (P

F(u) :;AN(|VU|2+V(x)|u|2)dx—l (/R F(Wdy) Fu) o

2 Jev \Jew [y[ofz =yl ]

q q
_A/ (/ lu(y)| dy> Ju(z)| d.
2q JrV \JrN [y|*|z — y|# 2]

is not well defined on E unless ¢ = 27, .

3.3.1 The auxiliary Problems (4, ) and (B, )

In order to apply variational methods, we will need to consider the following truncation in

the nonlocal term, namely, given x € N, we define the function h, : R — R by

0, if t<0,
hi(t) = a1, if 0<t<k, (3.128)
RO 2ont?on=lif > k.

It is not hard to check that h, admits the following properties:
|he(t)| < KT 2ant?en™ Wt >0, (R})

Moreover, denoting H,.(t) = [i h.(7)dr, there holds

0, if ¢<0,
t? .
1 1
L a 2aut2w+<— )/iq, if t>k.
oL p q 23’#
and
1 * *
|Hi(t)| < 27’“‘1_2“’52“"% vt > 0. (H1)

a.p
By using (3.128)), (3.129)) and the fact that ¢ > 27, , > 0, one may check that

0, if <0,
q—0 .
ho ()t — OH,,(t) = ta (q) , if 0<t<r,
RO 2ot (1= ) 4 grt (= =), if ¢ 5,
am 2, q
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which ensures the following Ambrosetti-Rabinowitz type condition
he(t)t —O0H,(t) >0, VteR. (3.131)
Thus, we have the following auxiliary problem in RY

) Fw) .\ fw) How) O\ () -
_A“V(x)“‘(/w ol — ol dy) IR “(fw ry|ar:c—yrudy> ae A

The energy functional f,\ﬁ : ' — R associated with Problem 1) is given by

Ty eu 2/ (Vul? + V(2)[uf?) d 1 (/R F(u) dy) Fu)

2 JrN \ RN |y|o|z — y|# |[

B </ Hy(u) dy>H<>d$
2 Jax e Tyl — g ) Tale

and in view of assumption (HJ)), Z, . is well defined. It is evident that if u is a solution of

Problem (A4, ) and satisfies the estimate |u(x)| < & for all x € RV, then u is a solution of
the original problem (P,).
We also need to introduce truncation ([3.18), explored in Subsection [3.2.1] Hence, we

introduce another auxiliary problem in R, namely,

—Au+ Vi(z)u = </R G(y,u) dy) g(z,u) L </R H,(u) dy) h,@(u). (Byr)

N lylofe =yl | Nyl =yl ]

Thus, we say that a function u € E is a weak solution of the auxiliary Problem {) if

satisfies

/RN(VUVQb 4V (2)ud) de — /RN (/R _Glyw) dy> g(\iif) ¢ dz

N y|o]ae — ylm

ol e Sy ) pean =0 a1

for all ¢ € E. The energy functional associated with Problem 1) is given by

T (U 2/ (|Vul® + V(z)|ul )dx—1 (/R G(y,u)dy> G(z, u) da

2 Jev \JEN [yl — y|» |

A (/ H,,(u) dy) Hy(u) o
2 Jev \Je~ [yl*]z — gl ||

In view of our assumptions one may conclude that j,\,,i is well defined, belongs to C’l(E,R)

and its derivative given by

Y, u)

o e
Fnw)o = [ (VuVo+V(a /RN</RN ey ) Ao

o
—)\/ (/ dy> <) 4 g
RV \JRV [y| |CU yl" ||
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Thus, weak solutions of l} are precisely the critical points of jm.

It is also worth mentioning here that the auxiliary Problem is strongly related to
Problem (A, ). In fact, if u is a solution of (B, ) which verifies £f(u(z)) < V(z)u(x) for
all |z| > R, then g(z,u) = f(u) and u is also a solution for Problem (A, .J), which motivates
us to study the auxiliary Problem . The crucial role here is that working on Problem
we are able to restore some compactness.

3.3.2 Existence of solutions for the auxiliary Problem 1}

Next, using the same arguments explored in proof of Lemma , we can show that jm
verifies the mountain pass geometry. Consequently, there is a (PS)s,  —sequence (uy), C E

such that

jA7,.i(un) — Gy, and jk’n(un) — 0,

where ¢) ,, is the mountain pass level characterized by

0 < éxp := inf max Jy.(7(t)) (3.133)

'Yef te [071]

where

. {7 € C([0,1], E) : 7(0) = 0 and Frn(v(1)) < o}.
Now, we introduce the functional I, : H}(B1(0)) — R given by

- 1 1 ) . i
Zo(u) = */ |Vu|? do + —/ mlul? dz — = / (u) dy (u) d.
2 B1(0) 2 B1(0) 2 B1(0) By (0) |y|a|x _ y|,u, |fL‘|O‘

where m = maxj,<; V(z). Denote by d the level of the mountain pass value defined by

d = inf max Zo(tu) = Gy k.
weHL(By(0)) 120 o) = 0,

Analogously to Lemma [3.2.2, we have the following result.

Lemma 3.3.1. Assume that conditions and (3.130)) hold. Then,
1 1
(/ Gy, u) dy) glw,w) (/ G(y,u) dy) Glzu) 45
R R

0 Jev \Jrv |ylo|z — ylr ER 2 e \Jew Jylofa — gl EE

(3.134)

and

1 . H,(u) ) Py (w) 1 ( H,.(u) ) H,.(u)
i T d wdr — = d dz > 0.
0 Jrv </RN ly|*|z —yl» Y |z[ 2 /]RN /]RN ly|®|z — y|* Y ||

(3.135)
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Proof. The inequality in ([3.134]) has already been proved in Lemma|3.2.2, Now, by ([3.130)),

we have that holds true. ]
Arguing as in the proof Lemma[3.2.3] it follows that (u,), is bounded in E with
| ||* < 02_92(CZ+ )=:C, VneN
and by , we get the estimate
</sz | dx>22* < SV |2 < S7'C = C., VneN. (3.136)

Moreover, the functional j)\ﬁ still verifies, with natural modifications, Lemmas , ,
13.2.10} [3.2.11} [3.2.14] and [3.2.16] Indeed, in Lemma [3.2.6] we replace ([3.51)) by

lim (/R _ Hlun) dy> Poltin) () = 0.

n—=00 /B 0) \ /RN |y|¥|z — y|* ||

This limit is proved by arguing as in the proof of (3.50) in Lemma [3.2.6 given that there

exists C' > 0 such that

Now, (3.80) of Lemma [3.2.10| we replace by
H h
lim </ w(un) dy) ) (U —u)dz =0
RN\ JR

n—00 N yloa — ylr ||

/R Hy(un(y)) dy

N yloa — ylr|o|

<C, VneN. (3.137)

pt2a

and (3.64)) in Lemma is true with

HKZ n K n
/ (/ (1) dy) ha(u )unnf da
RN \JRV |y|¥|z — y|* |z|®

Q3,)\,n<n7 T) = A

Y

where we define 7, in (3.55]).
To derive estimates analogous to ([3.69)), (3.76)) and (3.77]), we use the assumption ([H}) and

instead of , as follows, respectively. Utilizing (3.52)) and applying Holder's inequality,
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2N —2a—p

in combination with (3.4]) and (3.136]), we obtain the following
HH n R4
/ (U ) dy (/ |hﬁ(un>un7]3|2NEé\;7” dx) o
BN [y|ofe —y|#|z] RN
2N—2a—p

* * 2N 2N
ORI ([ (a2~ ) 7755 o

223,AJ£(7l7T> S;A

2N
p+2a

* "’M * * 2%
<CRT2%uNCL ( | d:c)
RN
25,2
KORIZw)Cy 2§71 /RN 0.V, +u,Vn,|* dv

25,12

<ONM2oACE 57122 [ 2V f? + V(@) ) de

"
2% u—2
2

+ CRT%aNC, 2§12 / 2| V[? da
R

::Qil’),)\,li(nv 7”) + Qg»,/\,n(na T)‘

To estimate Q3 , .(n,7) and Q3 , .(n,7), we argue as in the proof of the Lemma 3.2.7| Then,

similarly, for each x > 0, we may obtain \j = A\{(x) > 0 such that

*
20“}172

4)\0,%2((1—23,#)0* 2 S_l <

VA € [0, A%]. (3.138)

The limits on (3.62)) and (3.63)) are replaced by the following limits

HH n hH n
lim sup A (/ (un) dy) (u >un do < Oy ke,
Bs,(0) \/R

nyoo Nyl =yl ]

HH n hK n
lim sup A (/ (un) dy> (u )udx < Ch e
B3,.(0) \/R

nyoo Nyl =yl ]

and which are verified in a similar way to the limits in ([3.60]) and ([3.61)).

By adapting the arguments explored in the proof of Lemmas [3.2.11] and [3.2.12] we see

that the functional j)\,,,i satisfies the (PS)(;M —condition and consequently, the functional has
a nonnegative critical point u, , € E such that jA,,.@(uM) = Cyru, I.€., Uy, IS @ NONNegative
mountain pass solution for Problem .

Arguing as in the proof of Lemma [3.2.13] we can obtain similar estimates involving the
norm of the solution of the auxiliary Problem 1) Then, there exist constants M (which
depends only on N, 6, i, v, p,m and independent of ¢, \, k and R) and A} := \;(k) > 0 such
that

20 - ~ 9

lluanl? < 5ol =M and gl < STIM, VYA e[0,\] (3.139)

In order to obtain the L>—estimate for the solution u, , of auxiliary Problem 1} we will

make the following adaptations to the proof of Lemma [3.2.14] We start by replacing estimate
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(E38) by

CNF oo Gly,u) glz,u) a1
</RN lwg |? d&:) <2571p2 /RN (/RN Yl = y[”dy> 2 uuL dx (3.140)
+257152/ (/R Hﬁ(u)ywdy) h| w( )uui(ﬁ_l)dx. (3.141)

v\ Tyl - E
To estimate the right-hand side of ({3.140]), we combine (3.25)), Proposition [1.0.2, the Holder's
inequality and ([3.139)), as follows, for all A € [0,5\[’5],

2N —2a—p

/ </ G(y,u) dy) g(:v,u)uui(ﬁfl)dx <O, (/ (\u|2& g 2(B— 1))2]\72a,u,dx> o
RN R RN

Nyl =yl

and similarly, we estimate ((3.141)) using -, as seen

H, _
/ (/ (v) dy> B (W)’ Ydz <
BN \JRN [y|*]z — yl|#|z]®
2N —2a—pup

<Cor2a=2a0) ) </N(|u|22,uui(ﬁ—l))m2§audx) 2N |
R

where Cy = %C(N,a,u)(S‘lM)%;“ and Cy := C'(N a ,u)(S_lM)QaT’“, which jointly
with (3.140)-(3.141) and setting C' := 25 max {C5, (JQ} , yields that

= 2N—2a—p
(/N |wL|2* dl‘) 2 <062(1 + /<52(q_2‘*’”‘))\) (/N( 22’“u (B— 1))2]\72audx> N
R R
By combining with (3.92)-((3.94)), we derive
s 2N—2a—p
([ Jwel de)™ < w2oznes? ([ (uPui ) Emas)
RN
2;;72%:2 N
A </{u>z<} |u’2*dx> (/ [ dx>2
(3.142)
Let K > 0 be sufficiently large such that
CVE
1 ~2iu) ) / 24 < . 14
Q) ([ W) < (3.143)

Next, combining ([3.143) with (3.142)), one has
(/N wp|* dx)w <(1+ K202 0O (/ (|u12u§<ﬂ”)w2évwdx) T (3.144)
R

Claim. u € L?P(RY) for 8 = C““, ie.,
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In fact, since u;, < |u| and recalling wy, = wuf’ ™", it follows from (3.144)) that

o* % 2N —2a—p

(/RNOUWLQ’S?)?*(LE) ’ <(1 + K2 au))\)CBQ </ |u|2*dx> N

C(N,B,S, M, a, i, k, ) < 0.

By Fatou's lemma, taking the limit as L. — 0o, we conclude that

f
RN

which proves the claim. Now, using u;, < |u| again and by passing to the limit as L — oo in

(3.144)) and arguing as in (3.105]), we obtain

lully 5 < [CF(1 + K202 ) 515 35 ||u

*

*2
2= dx<oo

s YAE0N] (3.145)

22+
28

By following steps 1, 2 and 3 in (3.107))-(3.111]) of Lemma|3.2.14| and applying inequality
(3.145)), we obtain the desired L*°—estimate. The resulting estimate is as follows:

where ¢, , :=

luralloo < (14 202 )0 M, flugglla-, VA € [0, 5],

1

35 1) A (112
where M; = C?01-T~; :

Finally, arguing as in (3.111) and by (3.139), fixing 7o > M, (SM)z, we may obtain
Ai* € (0, A\3], such that

N

unsolloe < (14 RE25#N)TT My (SM)E < Ro, VA € [0, A7), (3.146)

By applying the reasoning from Remark [3.2.15| we conclude that for any \ € [0, ;\3*], Uz, IS

positive solution for the problem (B, z,). Furthermore, by the definition of h) z,, we have

H h A g -2
(/ _HL{w) dy) (1) _ A (/ il dy> u L eRrY. (3147)
'Y [yl =yl el g \Jev [y|ofz — gl ||

Proof of Theorem[3.1.4 Next, using the same arguments explored in Section [3.2] we can
show the existence of solution for the original Problem 1) Thus, given that (3.147)) holds

true, it is sufficient to prove that there exist R > 1 and A\ € (0, \i*] such that following

inequality holds:

fung) < Vé(a:)u/\ﬁm V]z| > R and VX € [0, \o),
0

where from now on we will fix &g as in (3.146)). We start with the following result similar to

Lemma 3.2.16]
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Lemma 3.3.2. For each R > 1 and X\ > 0, let u, z, be a solution for the auxiliary Problem
(Bxz,), such that j;\ﬁo(uA,ko) — Caro- Then, there exists Ao € (0, \;*] such that

RN—2

e < |SL'|N_2

RN—2
Ungy S |x|N_2HU>\,Ro

/%07 V|ZL‘| = R and V) € [O,/\())

Proof. For the sake of simplicity, we denote uw = u, z,. By using w, the same function defined

in (3.113]), as test function in (3.132)), we obtain
[ (VuVw+ V(@) dr = [ ( [, G dy) gle.u) o
RN RN \ JR

N ylely — x| ||

" /RN </RN !ylj;(ﬁ)y!“ dy) h|l;(|z)w o (3149

By and using Hélder's inequality twice, from ([3.137)) we obtain the following estimate

H, H,
/ (/ (w) dy) hy(w)w dz < / () dy
RV \JRN [y|*[z — y[#|a|® RV [y|*fz — y[#|z|®

2N —2a—p
2N
X </ | P (u)w| 2N —20=x dm)
RN
2N—-2a—pnp

conon ([ oo ayetis ar) 7
RN

2N
pt2a

.
2au=? 2
2

2*dx) : (/ |uw|22*dx>2
RN

ORI\ ( [l
RN
=:1.

According to Young's inequality 2a,b; < a?+a3, and applying the Sobolev embedding theorem

along with (3.139)), it follows from ({3.91) that

* 2
>

| ;
o dx) - (/ |u|? dx+/ lw|* dx)
2 \Jr¥ RN

* * 2*%
27 -2 ~ 27 -2 5

Ol (ST ((STOENF 4+ (5T IVl )

I <Ol 2en (/N lu
R

N

2% 2 ~ 2% _2

Chrg (ST TEMT (SN + 57 [ Vwl3).

N
N — DN —

Now, arguing with the proof of Lemma [3.2.16| we reach the estimate

2* 2*

1 PSR L S L RN _
IVwli—5CAsg (S M7= (S71M + 57| Vul)

< /B%(O) (’q“)(””) - 1) V(z)uwdz <0,

by
which is similar to estimate ([3.115]). Follow the result arguing as in (3.119))-(3.120]). O

Finally, in order to conclude the proof of Theorem [3.1.4] it is enough to argue as in

3122)-(E129). 0
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3.4 THE UPPER CRITICAL STEIN-WEISS CASE WITH SUPERCRITICAL LOCAL AND
NONLOCAL PERTURBATIONS

In the proof of Theorem [3.1.5, we will only prove item (1), because the proof of item
(1) is verified in an analogous way. Thus, we study the existence of solutions for the following

equation involving Stein-Weiss type critical nonlinearity in RY with supercritical term (¢,),

“Au+ V()= ( / F<u>dy> 40

N lylole =yl ) x|

where F(u) = ol M, f(u) = |u?:2u, ¢ = 2% ,, Mx) = 0 and the potential V(z) is a

)
25 a, [

radial function, i.e., V(|z]) = V(z), for all z € RY satisfying (V).

ie.,

() Jul*"*u, (@Q)

We focus on the results which are potentially different from the case involving the function
f with subcritical growth. We start by noting that due to the presence of V'(|x|), we replace
the space D'2(RN) by D22 (RY) and consider

rad

FEraq == { Dia?i(]RN) /N V<x>’u‘2dx < OO}
R

Associated with (@), we consider the energy functional Z : Ey,q — R defined by

2*

) Perfu(z)*

T(w) = [ (Ve + V(@)luP)

dydx

RN JRY Iy\ |z — yl#|z[®

1
- - A Tdzx.
o o M)l o

3.4.1 The auxiliary Problems and

Next, arguing with Subsection [3.2.1] we begin to consider functions (3.15))-(3.18]) and the

respective auxiliary problems associated with each function,

—Au+V(z)u = (/R Flu(y)) dy) flu()) + he(z,u), in RN (A,)

Nyl —yl# ]
and
Gy, u) g(x,u) N :
—Au—i—V:cu:(/ ’ dy "~ 4+ he(x,u), inR B,
D= e el =g ®) T e (5]
where F(u) = M, f(u) = |ufer?u, ¢ > 2; ,. The energy functional associated with

-
25

problem |) is given by
A 1 G(y,u) G(z,u)
- 2 _I\DH ) _
Te(u) = HuH (/R dy) da /RN he(z,u)dz.  (3.149)

2 N Jylfe =yl |
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In view of our assumptions one may conclude that J.. is well defined, belongs to C''(E, R)

and its derivative is given by

J!(u)v :/N(VUVU + V(z)uv)dz — /RN </RN lyﬁl(gf;lu dy) giii:)vdm

—/ w(T,u)vde.

Thus, weak solutions of 1) are precisely the critical points of J,.

3.4.2 Existence of solutions for the auxiliary Problem 1}

The functional Z still verifies, with natural modifications, Lemmas [3.2.1] [3.2.2] [3.2.3]
3.2.6} [3.2.11) and [3.2.12] For modification to Lemma [3.2.7} see Remark [3.2.9 Thus, (B,)) has

a nonnegative solution in E..q4.

Following a similar reasoning as in the proofs of Lemmas|3.2.13| and [3.2.14] we can obtain

analogous estimates involving the norm of u, ,, and the L°°—estimate for u, ,. Then, by fixing
ko > 0, we can determine &, := &,(r) such that for all A € L7t# (RY) with [RY e v < &,

we conclude

[uamoll> <M and [y xylloo < Ko, (3.150)

for some M > 0.

Arguing with Remark|3.2.15) we conclude that for all A € L%(RN) satisfying H)\H% <
atp

€0, Uxp, IS a positive solution for the Problem (ERO). Moreover, by (3.150) and using the

definition of h,,, we have

hﬁo (U/\,Ho) = )‘(aj)|u>\,f£0|q_2u/\,no- (3151)

Proof of Theorem[3.1.5 To prove the existence of a solution for the original Problem ((Q)),
in light of (3.151)), it is sufficient to show that there exists R > 1 such that the following
inequality holds:

Flunn) < Véi’”)um, vzl > R
0

whenever HAH% < & for all A € L7 (RY),
atpu

Fixing R > 1, by hypothesis (V3]), we have

1 V(x)
<
I, S (R

V|z| > R. (3.152)



125

In light of the Lemma [3.2.8/ and (3.150)), for all A € L%(RN) satisfying H)\H% < &y, we
atp
deduce )
Vuy Mz C
U o ()] < C'H @HQ <C—F= = —5=, V=R
||z ||z ||
This implies that
* 022’“72
f(ukﬂio(x)) = |u>\,fﬂo(gj)|2a’M ZUA,HO < TN e oy UAsko (ZL“),
|$|T(2a,u_2)

which jointly with ([3.152)), we see that

500221“_2‘/(1})

f(uA,HO <$>> < goW(R)

Unro (), Y|z| >R,

for all A € L7a+# (RY) satisfying ||| ex < 2o. Thus, if W(R) = Wy := £,C%x~2, then we
2a+p

can infer that

V(z)
by

implying that Z'(u) = 0 in E,.q. Now, using the principle of symmetric criticality due to Palais

f(u)\,no) < U ko> V|$‘ >R

(WILLEM, 1996, Theorem 1.28), we conclude that Z'(u) = 0 in E, thus finishing the proof of
Theorem 3.1.5 O
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4 ON LINEARLY COUPLED SYSTEMS OF SCHRODINGER EQUATIONS
WITH DOUBLE WEIGHTED NONLOCAL INTERACTION PART AND
POTENTIAL VANISHING AT INFINITY

The main objective of this chapter is to study the following class of coupled systems with
the presence of the doubly weighted nonlocal interaction

F(u) ) Ji(uy

) N
+ AMx)ug, inR
v ol — gl (e)ue

—Auy + Vi(z)uy = (/R
(5)

F2 U9 2\ U .
—Auy + Va(z)uy = (/RN \y|a\:c(—)y\# dy) Ja(u2) + AMz)uy, inRY,

where N >3, 0<u< N, a>0,0<2a+u< min{%,él} and F; is the primitive of
function f;. We consider continuous functions Vi(x), V() that may decay to zero at infinity

and are related with the coupling function by
1
0 < Mz) < Smin{Vi(z), Va(z)}, &€ (o, 2) , VzeRY,

where V; and f; satisfy hypotheses similar to ([fi)-(f3)) of Problem in Chapter 3| In the

next section, we will specify the assumptions on V;(z) and f;.
The System (|S]) was motivated by work (DE ALBUQUERQUE; SANTOS, 2023 which
corresponds to Problem ([P]) with ¢ = 0.

4.1 ASSUMPTIONS AND MAIN RESULTS

Inspired by (ALVES; FIGUEIREDO; YANG| 2016; IDE ALBUQUERQUE; SILVA; SOUSA| 2022; DE
ALBUQUERQUE; SANTOS| [2023)), we will study System (|S]), considering the following hypotheses
about f; and V;(z). We assume that f; : R — R a nonnegative continuous function and

satisfies the the hypothesis for i = 1, 2:

. tfi(t)
lim —= < ;
Jm o < oo (fi1)
for g; > 2;,, = #5252 and fit)
i)
tginoo tpi =0, (fi’2)
2(N—a—p)

for p; € (1, ). We also assume that f; verifies the Ambrosetti-Rabinowitz type

N-2

condition, i.e., there exists #; > 2, such that

0 < 0:E(0) =0 [ " f(r)dr < 2f(0)t V> 0. (i)
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Henceforth, we will assume that #; < 4. Since we are looking for positive solutions, we suppose

that f;(t) =0, for all t < 0.

N+2

By considering that 0 < 2a 4+ ¢ < min ,4}, one may conclude that the interval

(1, 28— s nonempty. In view of and the fact that 2821 — 9%~ 9% there

N2 N2 au
holds
1L0 ttJ;Z( ) _ 0 and lim t];;(f) =0. (4.1)
Thus, it follows from ((fi1). (fi.2) and that there exists ¢, > 0 such that
ltfi(t)| < ltfi(t)| < and [tfi(t)] < Vt € R. (4.2)

Regarding to the potential V;(x), we assume that it is a positive continuous function and its

related with the coupling function A(z) through the following assumption:
1
0 < Mz) < Smin {Vi(2), Va(z)}, &€ (o, 2) . VzeRY, (Vi)
where V;(z) satisfies

DD (). (Viz)

1
inf |z

MR) = Famaors

We introduce the notation

m; = max V;(x).
{lzl<1}

Due to the presence of V;(x) in System ([S]), we introduce the subspace of DV2(RY)

D%/;Q(RN) = {u € DY (RY) : /N Vi(z)|u*dz < oo},
R
which is a Hilbert space when endowed with the inner product and norm
1
(u,v)y, = /RN(VUVU + Vi(x)uv)dz and HUH.D‘I/;Q = (u,u)y,.

We set the product space D := Dy”(RY) x Dy*(RY) is a Hilbert space when endowed with

the inner product and norm
((u1,u2), (v1,v2)) = (U1, v1)v; + (U2, v2)v, and  ||(uy, ug) H2 Z ||qupl2

Definition 4.1.1. A pair (uy,us) in D is said to be a weak solution for System (S| if it

satisfies

((u1,us), (v1,v9)) — /RN Az)(ugve + ugvy) do

uz) fz(uz) o
Z/ﬂw </RN MREET: dy) e =0

for all (v1,v2) € D. A weak solution (uy,us) is called vector solution if u; # 0 and uy # 0.
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[he energy functional Z : D — R associated to System 1) is given by
( )—*IH( )HQ_/ A(z)
T(uy,ug) = Uy, U x)urug do
1, W2 9 1, 42 N 102

- ;Z/ </RN \yrﬁﬁ)yw dy) F\:Er) ar. (43)

Given the assumptions on f; and by reasoning similar to Remark of Chapter [3| we may
infer from Remark below that Z is well defined and belongs to C*(D,R). Moreover,

critical points of Z are weak solutions to system (|S)) and vice-versa.

Regarding to System (|S]), we have the following theorem.

Theorem 4.1.2. Suppose that N > 3,0 < pu < N, a >0, 0 < 2a + p < min{*}2 4} and
that f satisfies (f1) — (f3). Then, there exists a constant A} = Aj(m;, 0;, «, ju, p;, o) such
that if A;(R) > Al for some R > 1, System has a positive solution.

Now we list some remarks on this chapter.

Remark 4.1.3. Note that if (u1,us) € D\{(0,0)} is a solution for System ([S]), then (u1,us)
is vectorial (see Definition (4.1.1)). In fact, if u; = 0, then it follows from the first equation
of that ug = 0 when \(z) > 0.

Remark 4.1.4. In order to obtain positive vector solutions, we consider a strictly positive

coupling function \(x) in RY.

Remark 4.1.5. Our main contribution in this chapter is to complete the study done by
the authors in ('DE ALBUQUERQUE; SANTOS, |2023; |ALVES; FIGUEIREDO; YANG, 2016), in the

following aspects:

(1) If \ =0, fi = fo and uy = uy, then System boils down to the class of scalar
equations of Chapter[3, Problem when 1 = 0;

2N — i
N —2

(2) fao=0,0<p<mn{%2 4}, N>3 ¢>2,:=2 = , then our results

complete the picture of (ALVES; FIGUEIREDO; YANG, |2016));
(3) Ifa#0, q =2, ,, then our results complement (DE ALBUQUERQUE; SANTOS, 2023);

(4) As far as we know, this is the first work considering coupled Schrédinger systems with

Stein-Weiss type nonlinearities involving potential with decay to zero at infinity.
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Remark 4.1.6. According to (V;1)) and Young's inequality, we deduce

5 . 2 5 . 2
/]RN AMz)ujug do < 2 /RN min{V;(z), Va(x) }ui dz + 2 /RN min{ Vi (z), Va(x) }u; de

< g/RN Vi(x)uidz + g /RN Va(x)us dz
< Sl )P
With this, the coupling term is related with the norm by
(14 0) | (ur, ua) [* > [ (ur, uz)[|* — Q/RN Ma)urug da > (1= 6) [ (ur, uz) 1%, (4.4)
for § € (0, %)

Our approach to showing the existence of a vector solution for is through variational
methods combined with penalization technique and L°°—estimates.

This chapter is organized as follows: In the forthcoming section in order to overcome the
lack of compactness, we introduce a penalized system and we obtain solution for this auxiliary
problem. Moreover, in Subsection [4.2.2we study L°°—estimates and positivity of such solution.

Finally, we show that the solution of the auxiliary System (|AS)) is in fact a solution for System
(15)-

42 THE AUXILIARY SYSTEM (AS)

Associated with System (|S]), we define the energy functional Z in (4.3). However, similar to
the challenge faced in Chapter [3, we encounter a lack of compactness, specifically in ensuring
that the energy functional satisfies the Palais-Smale condition. To address this, we also employ
the penalization method. To avoid repetition, we will emphasize only the results that differ

from those of Problem (|A,]). We start by adapting the functions ([3.18)-(3.19) from Section
to this specific context, resulting in the following auxiliary system

Gl(y7u1) d ) gl(‘raul)
N ylofz -yl ||

Ga(y, uz) q )92(5157“2)

N Jylole =yl ||

—Auy + Vi(2)u = (/R + AM@)up, in RY,
(AS5)
Ay + Vala)us = ( / FA@u, inRY,

where G; and g; satisfy ((3.20)—(3.28).
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We say that a function (uj,us) € D is a weak solution of the auxiliary System (AS]), if

satisfies
((ur, uz), (v1, V) — /]R @) (uyvy + ugvy) da

-5 Ll gt ) St =0 69

for all (v1,v2) € D. The energy functional associated with System ([AS]) is given by

1
T (ur,uz) = f||<u1,u2>||2 - [ A@wud

(Y, uy) Gi(z, u;)
/RN</RN ol ywdy) e T (4.6)

In view of our assumptions one may conclude that 7 is well defined, belongs to C'(D, R).

Thus, weak solutions of are precisely the critical points of 7.

It is also worth mentioning here that the auxiliary System is strongly related to
System ([S)). In fact, if (u1,us) is a solution of verifying fi(u;(x)) < Vi(x)u;(x) for all
|z| > R, then g;(x, ;) = fi(u;) and (uy,us) is also a solution for System ([S]). This motivates
us to study the System ((AS)).

4.2.1 Existence of solutions for the auxiliary System (AS))

In what follows we will explore some ideas from Chapter [3] We begin by observing that
using the ideas from the proof of Lemma [3.2.1}, we may prove that J verifies the mountain

pass geometry stated in the following lemma.
Lemma 4.2.1. The functional [J satisfies the following conditions:

(i) there exist T, > 0 such that J(uy,us) > n > 0, for all (uy,us) € D satisfying

[[(ur, u2)|| = 7
(1) there exists (uy,us) € D with ||(@,)|| > 7 such that J(ty,4s) < 0.

Proof. By using Remark and similar ideas to Lemma [3.2.1| one may conclude that J
verifies (i) — (i1). O

We will represent the mountain pass level by

0 < ¢:=inf max J(y(t)) where I := {7 € C([0,1], E) : v(0) =0 and J(v(1)) < O}.

~v€erl' t€]0,1]
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Now, we introduce the functional Z, : H}(B;(0)) x H}(B1(0)) — R given by
21

1
I 5 — - / V i2d */ i 1'2(1
o(ut, ug) = 2{ Bl(0)| ;| x—i—z Bl(o)m|u| x

=1

/ < / i) dy) A / M) uyug dz,
B1(0) \/B1(0) |y|*|x — y|» |z[ RN

where m; = max|;<1 V' (x). Moreover, we denote by d the level of the mountain pass associated

with the functional Z, i.e.,

0 < d:= inf max Zo(y(t)),

7€l t€l0,1]

where

o= {5 € (00, 1, Hy(B1(0)) :9(0) = 0 and Zo(r(1)) < 0}.

Here, it is important to emphasize that d is independent of the choice of £ and R. Moreover,

¢ < d. In view of Lemma in Chapter 3

]_ ) 7 7 GZ 9
1 (/ Gi(y,u) dy) gi(z,u) o de _7/ (/ u) dy) (z,u) dz > 0.
0; Jrv \JrN |y|*|z — y|» || RN RN|y||$-—yVL [

Thus, by Lemma and following Lemma [3.2.3] (u1,,, u2)n is bounded in D and there

exists ng € N such
12 < 46

0 —
where 2 < § =: min{#;, 0, }. In what follows,

(s, w2)l* < =5 (d+ 1), ¥ > no,

20

and
Gi(y, u)
KML%IZ/ b 47
(u)(x) A T (4.7)
Analogous to Lemma [3.2.4] for all u € B;, we have that
Gi(y U) N
Kiux::/ ——=—"—dy € L®(R"Y). 4.8
)= [ e (RY) (4.8)
In addition, there exists £y > 0, which is independent of R, such that
0

where 0 < C(§) < 1 — 0.
From now on, we assume ¢ > (o > 0 in the auxiliary System ((AS)). Similarly, to the result

of Lemma [3.2.6] we may obtain

</ Gl(y, Uz‘,n) dy) gi(l’, Ui,n) (ui,n — Uz) dxr =0, (410)

BV [y|*|z -yl |

2

Jim > [

i=1 Y B
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where R > 0. Moreover, it follows from Sobolev compact embedding that
L M@ [ = 1) + 10 (10— )] d = 0, (1), (4.11)
Bp(0)
Lemma 4.2.2. The functional J satisfies the (PS).— condition.

Proof. In what follows, we will explore some ideas from (DE ALBUQUERQUE; SANTOS, 2023)).
From (DE ALBUQUERQUE; SANTOS, 2023, Lemma 3.4 and Lemma 3.5), for each € > 0, there

exists r = r(e) > R verifying

lim supZ/ (Vi n? 4+ Vi(@)|uipn]?) do < &, (4.12)
n—oo = 1

. Gi(y, uip) i@, U p)

lim su / / T d L, da < Che, 4.13
nﬁmp; c (0>< RN \y|a\x gt ) T e ! (4.13)

lim supZ/ (/ iy, Uin) dy) 9:(, am) u; dz < Cae. (4.14)
5 c R

nvoo I N Jylole =yl ]

By (V1) and Hoder's inequality, we see

N[

/ M@ )ug (U, — up) 52 [/ (|Vu,, n|2 + Vi(z )|um|2) dx] |1, — wr ]| pr
B2(0) 3 Vi

and

N

/;(0) Ax)uyp (g, — ug) 52 [/ 7 (Vi + Vi(@)|uin]?) da:] llugn — u2||D%/,22.
By using and the fact that (uy,,, ua,,), is @ bounded in D we obtain

/c(o) M) [ugpn(ur, — ur) 4+ upp(ug, —ug)] doe = o,(1),
which together with (4.11)), it follows that

/RN M) [ugn(urn — ur) + urn(us, — ug)] dz = o,(1).

Therefore, in view of (4.10), (4.11), (4.13), (4.14) and arguing as in (DE ALBUQUERQUE;

SANTOS, [2023, Lemma 3.5), we deduce that J satisfies the (P.S).—condition. O

Lemma 4.2.3. The functional J has a nonnegative critical point (uy,us) € D such that

J (uy,us) = ¢, i.e., (u1,us) is a nonnegative mountain pass solution for System ((AS]).

Proof. In view of Lemmas [4.2.1] and [4.2.2, System (|AS]) admits a nontrivial solution of

mountain pass type. Let us write u; := u;” + u; . We deduce from (V; 1)) that

/]RN Ax) (uruy + uguy ) do < Q/RN Mz)uyuy do < 8| (up, uy) ||
By using (uj,uy ) as test function in (4.5)), it follows from the fact f(¢) = 0 for all ¢ < 0 that

l(uy,uy)|| <0, i.e., the nontrivial weak solution (uy,us) is nonnegative. O
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4.2.2 [ —estimates

In what follows, we deduce a uniform estimate for the norm of the solution of System

(AS)), obtained in Lemma [4.2.3] Similar to Lemmas [3.2.13 and [3.2.14, we have the following

results.

Lemma 4.2.4. Let (uy, us) be the critical point of J. Then, there exists a constant M (which

depends only on N, 0;, i, ., p;,m; and independent of { and R) such that

46
(1, u2) |I* < g_¢=M

Lemma 4.2.5. Let pair (u1,us) be the solution of (AS]). Then, there exists a constant My,

(which depends only on N, 0;, i, o, p;, m; independent of ¢ and R ) such that

[[(u1; u2) oo < M| (un, uz)]l2--

Proof. In what follows, we will explore arguments for the proof of Lemma|3.2.14, For L > 0,

we define ¢; = uiui(f_l) and w;; = uiugi_l), where u;;, = min{u;, L}. By taking

i = uiui(f_l) as test function in definition, where 3 > 1 will be chosen later, we have

Z/ Vu; V(uu 2(5 1) dx+Z/ uzuzf D dz

= o )\(x)(ulmug(f_ ) 4 U2u1ui(f_1)) dz

(L S sy,
RN \JRN |y|2|y — x|# || ’

which implies
2
Z/ |Vuz|2 de = — —1) Z /N u?(Lﬂ_l)_luiVuiVuM dx
‘ R ’
+Z/ (/ hly. ) dy) Gl ) 260 g
BN [yloly — jfe T

+/ )\(x)(ulugug(f* )+ uzului(f*l)) dx

- Z/ uluzf Y da. (4.15)

Since

2(5—1) /]RN u?ffl)fluiVuiVuM de =2(p—1) /{u'<L} ufffﬁl)wuﬁ dz > 0,
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it follows from (|4.15)) that
Z i |Vuz|2dx—2 /.. ( I dy> iy da
R :

Nyl ly
+ o )\(x)(ulu2u2(£ )—i-uQului(f_l))dx
2
_ Vi 205-1) 4 4.16
> [, Vit da. (4.16)

Note that

||wz‘,L

2 < c/ IV, |2 dz,
]RN

where C':= S~! and S denotes the constant of the embedding D*?(RY) — L?"(RY). Thus,

lwip |2 \c/ w2002 d + C(8 — 1) / i 2022 |V, 12 da
<cp* [ wlIvuPdo+0p? [ ol Vi da
RN RN
gCﬁQ/N u?(ffl)]Vuide, (4.17)
oy i
where we have used that Vu,; , = 0in {u; > L}, u; = u; 1 in {u; < L} and § > 1. By using
assumption (V;1]), we have
/ )\(x)u2u1u1(ﬁ D dx 5/ min{Vi(z), Va(x )}uluZL dzx
RN =2 Jrw
b0 [ min{Va(e), Va(a) ey d
) _
<5 [ Vit do

) .
5 [ mingVi(@), Va(e) pudud G dar
]RN
Now, note that

Jo mindVi(). Va(o) b dr < min{Vi(z), Va(w) huui) " do
RN

{u1<uz}

+ min{Vi(z), Va(2) budu;) Y da
{u1>u2}

2(8-1
é/ Va(z) u%uQE ) dw
RN

+/ Vi(x) uluQ(ﬁ Y da.
RN
Hence,

/RN A(:c)ugului(g_l) dz < 5/RN Vi(z)u? u2L Yz + 2/ Va(z)uju f(f Y dz. (4.18)
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Analogously, we deduce
/RN )\(x)uluguzL (5/ Vo(z u2u2L Vaz + = / Vi(x 2(571) dz.  (4.19)
Thus, (4.18) and (4.19) imply that
Q/RN )\(m)(ulung(f R u2u1u1(§ 1)) dz < 352/}@ Vi(x)ufui(ffl) dz,

which jointly with (4.16))-(4.17)) implies
Z sz LHZ < 052 Z/ (/ y, Uz) dy) gz(|$i Ui)uiu?([,/ﬁfl) dz. (4_20)
R xT « )

N yloy — x|

Finally, arguing as in estimates (3.87))-(3.110]) of Lemma [3.2.14] (see also (DE ALBUQUERQUE;

SANTOS| 2023, Lemma 4.2)), we see that exists M; > 0 such that

(| (w1, u2)|[oo < My |(ur, us)

Therefore, the result follows. O

Remark 4.2.6. Let (u1,us) € D be the nonnegative solution obtained in Lemma[4.2.3 In
view of Lemma and regularity theory (see for instance (TOLKSDORF,|1984, Theorem 1)),
we have that (uy,uy) € C(RY) x CLY(RN), for some v € (0,1). Therefore, in light of

loc loc

Strong Maximum Principle, we conclude that (uy,us) is positive.

Proof of Theorem[4.1.2 In light of Lemma [4.2.3] the auxiliary System (AS]) admits a
solution (uy,us) in D. Thereby, in order to prove the existence of solution for the original
System (|S)), it is sufficient to prove that there exists R > 1 such that following inequality

holds: y

}(:)Ui,
Lemma 4.2.7. For each R > 1, let (u1,uy) be a solution for the auxiliary System ((AS|), such
that J (uy,us) = c. Then,

filu;) <

V]z| > R

RN—2 RN_2
U; S WH(Uhl@)HOO < WMM Viz| > R

Proof. Let v be the C°°(R™\{0}) function

RN=2|(uy, uy
v(z) = IU%’(\N2 )HOO, x #0. (4.21)
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Since 1/|z|¥~% is harmonic, it follows that Av(z) = 0 in R¥\{0}. Note that

RN72
ui(z) < H(u1,u2)Hoo < WH(ul,UQ)HOO, Viz| <R

Let us introduce the function w; € DY?(RY) defined by

u; —v)t(z), if |z| >R,
w;(x) = ( )" () (4.22)
0, if |z|<R
Now, note that
2 2
/RN Vi(z)w; de < /RN Vi(x)u;w; dr < /RN Vi(x)u; dz < . (4.23)

By using (w1, ws) as test function we obtain

22: / (Vu; Vw; + Vi(x)uw; dx} Z/RN (/R CiZ(y’uZ) dy) gi(x’ﬁi)wi dx

= N yloa — ylr

+ /RN AMz) (ugwy + uqws) dz. (4.24)

We recall as mentioned in Section [4.2.1] G; and g; satisfy (3.20)—(3.28)) of Chapter [3| Thus,
from (3.22)), gi(x,t) < %Ox)t By the definition of w; and (4.7)), it follows from R® > 1 the

following estimate

2

Gz‘(?/,ui) ) gz'(l",uz‘) ]
d w; dr — Vi(z)uw; dx
Z [/cm </RN ylely — ) el /c<o> (@)

=1 R
2

< KiCui)(@) o,y g o
\Z [RO‘ /BC o 0 Vi(x)uw; de /BE(O)V;(x)uzwz dx

<§; / » (‘é() - 1) Vi(2)ugw; da. (4.25)

On the other hand, from ([V; 1), we achieved the following estimate

/ Az)ugwy dz <5/ min{V;(z), Va(z) }ugw dx
RN RN

min{V;(z), Va(x) fugw; dx

/{$|>R}ﬂ{u1 <uz}

5/ in{Vi(z), V: d
* {\x|>R}m{u1>u2}mm{ 1(2), Va() bugwy do
<5/ Vi(z)uywy do

RN

+0 /RN Vo(z)ugws da. (4.26)
Similarly, we also get the following

/ AMz)ujwy dz < (5/ Vi(z)ujwy dz + 5/ Vo () ugwy dz,
RN RN RN
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which together with (4.26)), implies that

/RN A2) (ugwy + ugwe) do < 26 Z/ x)u;w; de. (4.27)

On the other hand, using the definition of w; again, we obtain
/ |Vw,|? do = / Vu;Vw; do — / VoVuw; dz. (4.28)
RN RN RN
Since Av =0 in B%(0) and w; =0 in 9Bg(0), there holds
/ VoVuw; dz = 0. (4.29)
RN
Combining (4.24)-(4.29) with (4.9), we see that
2 2 e
> Vw3 < Z/ (ICZ(UZ)(x) — 1) Vi(z)uw,; dx
i=1
+ 26 Z/ x)u;w; de
_Z/ ( )—1+25>V( Juw; dr < 0.

Showing that w; = 0. Recalling the definition of the w; function in (4.22)), we obtain |u;| < v

in |x| > R, which finishes the proof of lemma. O
In view of (4.2)) we obtain

) RWN-2)(¢i—2)

i—2 i
fZ(U;) S CO|U 4 u S C()Mf WU, V|ZL'| Z R.
Now fix R > 1 such that A;(R) > 0. Thus, we have that
2 Vi
filu) < %2y < Lo M2 (z) u, V|z|>R.

Vi(R)ly

Set the number A} = coloM{* Let R > 1 be such that A;(R) > Aj. Thus, we conclude

that

filu )Svg(o)u V|z| > R.

Therefore, the proof of the Theorem |4.1.2] is finished. O
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5 N-LAPLACIAN COUPLED SYSTEMS INVOLVING DOUBLE WEIGHTED
NONLOCAL INTERACTION PART IN RY: EXISTENCE OF SOLUTIONS
AND REGULARITY

The aim of this chapter is to study the following class of coupled system involving Stein-

Weiss type nonlinearities

F
~ A+ N2 = (/ < dy) T | Nolulr=2ufols, i RY,
R

N JylBla — y|# |2|P
(Sx)

G(v) 9(v) :
~A v d Aglul?|v]1-2 RY
NV + o]V ( A P P y) PE + AglulPv]? v, in RY,

where N >2,0<pu <N, A>0,3200<23+pu<N,p>%,¢>% p+qg>N,
Anu = div(|]Vu|N"2Vu) is the N-Laplacian operator, f(s), g(s) have critical growth of
Trudinger-Moser type, F'(s), G(s) are the primitives of f(s), g(s) respectively.

From a mathematical point of view, the cases involving N—Laplacian (for N > 3) is
particularly very interesting as the corresponding Sobolev embedding yields W1V (RY) C
LYRYN) for all ¢ > N, but WLN(RYN) ¢ L®(RY). In these cases, the Pohozaev-Trudinger-
Moser inequality (CAO, 1992) (see (MOSER, (1971; POHOZAEV, |1965)) for bounded domain
case) can be treated as a substitute of Sobolev inequality which helps us to establish the sharp

maximal growth on functions in WH¥ (RY) as follows.

Proposition 5.0.1. (Pohozaev- Trudinger-Moser inequality, (CAO, 1992)) If o > 0,
N > 2 and u € WHN(RY), then

| (expalul¥1) = Sy-(a,w) do < o,

where N
N-2 —m NoT
™ u|N=1
Snoala,u) = > ————
’ = ml
1
Moreover, if |Vull}¥ < 1, |lullyx < M < oo and a < ay = Nwy_;, where wy_1

is the surface area of (N — 1)-dimensional unit sphere, then there exists a constant C' =

C(a, M,N) > 0 such that
/R{N(exp(a]u\%) — Sy_s(a,u))dz < C.

In the sense of the Pohozaev-Trudinger-Moser inequality, we say that a function h : R — R

has ay— critical exponential growth at +o0, if there exists oy > 0 such that

. h(s) 0, if o> a,
im =
srteo exp(a|u]%)—SN_2(a, u)

00, if a < a.
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This definition of criticality was introduced by Adimurthi and Yadava (ADIMURTHI; YADAVA,
1990)), see also (FIGUEIREDO; MIYAGAKI OLIMPIO; RUF, (1995). There are a few works considering
Stein-Weiss term and a nonlinearity with critical exponential growth, see for example (ALVES;
SHEN, 2023) and (YUAN et al., [2023)). For works considering Choquard type equations and
nonlinearities with critical exponential growth, we refer the readers to (ALVES et al., 2016b;
YANG)|, 2018 ALBUQUERQUE; FERREIRA; SEVERO), [2021}; |QIN; TANG| 2021}, |SHEN; RADULESCU;

YANG, 2022) and references therein.

5.1 ASSUMPTIONS AND MAIN RESULTS

Throughout the chapter, in order to deal with the coupling terms in System (|S)]), we use

the following hypotheses for p, ¢ and V:
N
N > 2, p,q>5 and p+qg> N. (5.1)
We consider the following assumptions on the functions f, g : R — R:

(a) f and g are continuous, f(s) = g(s) =0if s <0 and f(s) > 0,g(s) > 0if s > 0. Also

f(s) 9(s)

lim —3=35— = lim —wx557-"1—
s—0+ 52N7§ﬁ7#_1 s—0+ 82N722ﬁ7“_1

(b) f and g have ay— critical exponential growth at +oc;

F
(¢) liminf i}\), = liminf LS]\), = [y > 0;
|s|]—o00 eoosN-T |s|—00 eoosN-T

(d) there exist sg, My > 0 and mg € (0, 1] such that

0<s™F(s) < Myf(s), Vs=sp;

(e) the functions s — f(s)/sV ! and s — g(s)/sV ™! are increasing for s > 0;

(f) there exists 0 € (N,p + q} such that 0 < 0F(s) < f(s)s and 0 < 0G(s) < g(s)s, for

all s > 0.

In addition to the challenges posed by the nonlocal and critical growth behavior of the

nonlinearity, we outline several technical difficulties encountered in studying Systems (S,).

(7) The nonlocal term is not periodic for 5 # 0. For this reason, the standard approach

based on Lions' vanishing-nonvanishing argument is not applicable anymore;
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(i7) Since the system is not linear, showing the solution of System (|S,]) to be vectorial is

not obvious and requires a careful treatment;

(131) For N > 2, due to the lack of Hilbert space structure, a variant of Palais principle of

symmetric criticality is needed, see Appendix for details;

(1v) For the critical exponential growth in the general case N > 2, even some obvious results
require some careful analysis throughout the chapter. Needless to mention Lemma(5.2.11

as an example.

In order to present the main results of this chapter, we now introduce the normed space
suitable to study System ([Sy)). In fact, we denote by W1 (RY) the usual Sobolev space,

endowed with the standard scalar product (-, -) and the induced norm || - || as follows
(u,v) = AN(]Vu]N’2Vqu+ )N 2uv) de,  [ulY = /RN (IVal™ + Juf") da.

We introduce the product space W := WLV (RY) x WHN(RY) for N > 2 endowed with

the standard inner product and norm

((u,0), (6,9)) = (u, 0) + (v, 90), (w0 = [lul] ¥+ [Jo]] ¥,

One of the major difficulties is that Lions' vanishing argument is not applicable, due to the
non-periodic characteristic of Stein-Weiss term. To overcome this hurdle, we restrict ourselves

on radial Sobolev space

WEYRY) = {u e WY RY) : u(x) = u(lal)}

rad

and the radial product space WY, := WLV (RN) x WLY(RY), endowed with the norm
induced by W(RY) and WY respectively. Using a variant as discussed in (KOBAYASHI;
OTANI, 2014) of symmetric criticality principle of Palais (see (WILLEM, [1996)), the critical
points of 7, restricted to WX, turn out to be the critical points of 7, in W¥. The details
and applicability of symmetric criticality principle of Palais can be seen in the Appendix [A] of

this thesis.

Definition 5.1.1. A pair (u,v) € WY is said to be a weak solution for System if it
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satisfies

((w,0), (00) =M [ el *ufol*6de = Ag [ fullol" vy do
(] Fw)  NF@ (G ()
oo e 290 o= o (o 2 )

5 Ydx
—0,
for all (¢,1) € WY. A weak solution (u,v) is called vector solution if u # 0 and v # 0.
The energy functional 7, : W — R associated to System is given by
1
T v) = L@l = [ jullof da

1 F(u) F(u) 1 G(v) G(v)
5 o e e 2 ) 2= 3 (e e S ) T e 52

In view of the agy—critical growth assumption on f and g, Proposition [1.0.2] and Proposition
5.0.1, 7, is well defined and belongs to C'*(W" ). Moreover, critical points of 7\ are weak
solutions to System ([S)]) and vice-versa, see Section [5.2] for more details.

The main results of this chapter can be stated as follows.

Theorem 5.1.2. Suppose that [ and g satisfy assumptions (a) — (f). Then System has
a nonnegative solution (uy,vy), which is vectorial if A > )Xo, for some Ay > 0. In addition,

(uy, vy) € [L®(RN) N CH(RN)]?, for some v € (0,1) and (uy,vy) is positive.
Remark 5.1.3. The main contributions of this chapter are the following:

(i) The results of this chapter complete the picture of (DE ALBUQUERQUE et all, 2019) in any
dimension N > 2. We complement and extend some works which consider Choquard

type problems with critical exponential growth, for example (CHEN; TANG, 2022);

(i7) Even for scalar case (when \ = 0) the results of this chapter are new and complement

(ALVES; SHEN, 2023) for dimensions N > 2;

(¢4i) This chapter presents an alternative to the standard arguments based on Lions’
vanishing-nonvanishing and shifted sequences argument (not applicable if 5 # 0) by

utilizing a variant of Palais principle of symmetric criticality.

Remark 5.1.4. A solution (u,v) € WX of ([S) is said to be a radial ground state solution if
satisfies Jy\(u,v) < Jx(w, z), for any other nontrivial solution (w,z) € WY .. By considering
this notion, we point out that all solution obtained in Theorem is radial ground state

solution.
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Remark 5.1.5. Note that if N =2, 0 < XA < 1 and (u,v) € W*\{(0,0)} is a solution for
System , then (u,v) is vectorial, i.e., u # 0 and v # 0. In fact, if u = 0, then it follows
from the first equation of that v = 0. This conclusion is no longer trivial to System (|S,))
with N > 2. In this case we will consider the coupling parameter A\ > 0 sufficiently large to

prove that the nontrivial solution obtained is vectorial, see Subsection (5.2.5.1|

The remainder of this chapter is organized as follows: In the forthcoming section we
introduce the variational framework and the energy levels associated to System . Next,
we devoted to the proof of Theorem and it is divided into several subsections, which
are guided in the following order: Mountains pass level, Nehari manifold, level comparison,
estimate of the minimax level, compactness results, regularity and finally the existence of a

vectorial radial ground state solution for System (|S,]).

5.2 VARIATIONAL FRAMEWORK AND ENERGY LEVELS

We begin this section by proving that the energy functional (5.2) is well defined. In view
of assumptions (a) and (b), for any ¢ > 0, r > 1 and a > «, there exists a constant

C(e,r,a) > 0 such that

£ < elsl ™=+ Cle,rya) s [exp(as™T) — Sy_s(a5)] 653
9(s)] < els] ™ F 1+ Cle,r,@)lsl"" [exp(as™T) — Sy_a(a, ) |
and
F(s)| < els] ™2 + Cle,ra)ls|” [explas™) = Sy-a(a, )] (5.4)
G(s)] < elsl ™= + Cle,r,a)sl” [explas™T) - Sy_ala,s)] |
Thus, for any u in WHY(RY), it follows from that
IF @) <cCllully *
+ Cle.r, a)[ul (exp(au™T) — Sy_a(a,u))|_2x .  (55)

IN—-28—pn

For any 7 > 1 and a > 0, we have that

{exp(as%) — Sn_a(a, u)y <exp(TasN-1) — Sy_o(ra, s), Vs eR. (5.6)
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+ — =1, Sobolev embedding and using (5.6) we deduce

1,1
n m

205 __oN
/N ‘u’ﬁ {exp (auN—1> — Sn_a (Oz,u)} N2 o
R
™ __2Nn
< (\/RN |u|21\f2]f\+g:u dﬁ?) m {AN |:exp (auN%) SN 9 (Oé U)] 2N —-2B8—p dl‘}
<Cillul =1 | 2Nanljul| 7 ( Ju] \ ¥
S | 2N=28-p ex
| we [TV =25 =

2Nan|[ul| T |y B
— Sn_ d . 5.7
M(zzv—w—u’nun ' 0

Applying Holder's inequality with

3=

Now, choosing ||(u,v)|| < (%M)T , Proposition [5.0.1| together with (55.7]), we obtain

[0}

2N—-28—pu
2Nn 2N

{/RN ]u\% [exp (au%) — Sy_2 (Oz,u)}m dx} < Cyllu|”,
which jointly with imply that
IF@)2 2y < AC?|[ul M 72770 4 ACEC2 (e, 7, o)l
Gathering the last estimate with Proposition [1.0.2] and defining
C = C(N, 8, ;1) max {46202, 4C3C% (e, r, a)} ,
we may infer
Lo L T 2 dyde <OV, 5 M)

<O (u, 0) [PV CH(u,v)HZ’” < 400 (5.8)

2N — 26

Following the same lines, we obtain

[ S ayds <O 5 NG,

v — y|r|el? N2

<O (u, v)|PN=2074 4 é\l(u, )| < +oo. (5.9)

From (55.4)), arguing in a similar way to the previous lines, we deduce

/ / Flub)f (@@)u(e) 4 @0 / / G@®)g@)o(@) 4 s 4o
RNJRN |y ’ RYJRY |y ‘

Pl —yl#|]? Ol —yl|zf?

Therefore, one may conclude that the energy functional 7, introduced in (5.2)) is well defined
on WY belongs to C*(W¥ R) and its derivative is given by

T (u, ) (¢, ¥) =((u,v), (¢,9)) — Ap/ ulP2ulv]¢ dz — g /RN ulP|v]9 20t Az
P )f( u)
</RN g ) et

- L
~Js </RN |y|ﬂ|x—) i ) |o§|ﬂ) v
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for all (¢,7) € WY, Therefore, critical points of [J are weak solutions to System and
vice-versa.

In the next section, in addition to obtaining the existence of a solution, we will compare
the following energy and minimax levels:

cy:= inf  J\(u,v);

(u,v)ESy
= inf t));
my = inf trg{g}f] In(v(1)); 5.10)
= inf ;
e, 1= inf I(u,v);
Cl)\ .

inf max J»(t(u,v)),

(u)eWN \{(0,0)} t=0
where

S\ = {(u, v) € WY \{(0,0)} : (u,v) is a solution of };

Ty = {y € C([0,1; W),) : 7(0) = (0,0), Jr(+(1)) < 0};

Ny = {(u,0) € Wg \ {(0,0)} : Ti(u, v)(u, v) = 0}.

5.2.1 Mountain pass level

Next, we will show that the energy functional 7, satisfies the geometric requirement of

the Mountain Pass Theorem stated in the following lemma

Lemma 5.2.1. The functional 7, satisfies the following conditions

(i) there exist £,0 > 0 such that J\(u,v)

[(w, 0)|| = &

>0 > 0, for all (u,v) € WY satisfying

(ii) there exists (@i, ) € WY with ||(a@, 0)|| > £ such that Jy(@,0) < 0

Proof. In view of (5.1]), Hélder's inequality and Sobolev embedding, there holds

1 1
ulPlolfdr < ul? dz ’ v|? dx 2<Cupvq.
[ uplrde < ([ [

(5.11)
Thus,
L llol? de < i, o) 74 (5.12)
RN
No1
By combining (5.8)), (5.9)), (5-12)) with (5.2) and since ||(u,v)|| < <2N2]3ﬁ ““g) M it follows
that

1 A —28— A r
Ia(u,v) 2+ l(w, VY = X (w, 0)|[PH = Cl(u, ) [P¥ 27 = O (u, 0) [
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Denoting C) ,,, = max { 2< ,C and considering ||(u,v)|| = &, we obtain
sPq p+

1
jk(ua U) >§N N (1 + §2N_(p+Q)_26_“ + 527’—(134-(1)) Ck,p,qu—i_q_N

Thus, since that p+q¢ > N, N =28 —u > 0 and r > N, we may choose 0 < ¢ <

2N—=28—p an
2Nn «

)T sufficiently small such that
1/N — (1 4 Nt =28 §2rf(p+q)) Cip PN > 0,
Therefore, if ||(u,v)|| = &, then Jy\(u,v) = 0, where
§ =N {1/]\] — (1 4 N-(pta)=26-p 4 §2T—(p+q)) O/\pquJrq—N] >0,

which finishes the proof of item (7).

Regarding to (ii), let us take a fixed positive function (ug,v9) € WY. By (d), we have

F M, M,
0< lim (s) < lim =0 and 0< lim G(s) < lim 0
s—400 f(s)s s—+o00 Smo—i—l s——4o00 g( ) s——+o00 Sm0+1

= 0.
Hence, for every € > 0, there exists s, > 0 such that
F(s) <esf(s) and G(s) <esg(s), Vs> 5. (5.13)
Choosing e = 1/r > 0 in (5.13)) such that » > N, leads to
rF(s) <sf(s) and rG(s) < sg(s), Vs=>=s. =:s. (5.14)
Consequently, by there are positive constants a; and by such that
F(s) 2 a1s" and G(s) = bis", Vs >s. (5.15)

Now, for ¢ sufficiently large, using (5.15)) with s = ts;, i = 1,2, we may infer for all s; > 0

that the following estimates hold
F(ts))F(tsy) > ait* sish, and  G(ts))G(tsy) = bjt* s!sh. (5.16)

By Proposition [1.0.2, since that » > N, the estimates hold true

7) :
dyd N, 3, "o <
Awéwwwu—ywmw 7 S OBy plluoll oy < oo

and

z) :
dyd N "one . < .
éNéNwwu-ywuw = < OB illeoll ag - < o
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From this and (/5.16]), we obtain

t t
/ / (tuo(y)) F (tuo () dydx > aft%/ / (z) dydx
RN JRY \y!ﬁ\w—y\“\x!ﬁ RN JRV \y!ﬁ\w—y\“\x!ﬁ

t t
/ / UO UO( ) b2t2r/ / ) d dr.
RN JRN |y|5|9€ - 3/|“|33V3 RN JRN |ylﬁ|~’17 - y|“|37!6

and

Hence,

j)\(tU(),tU0>
N a2t (x)

<7 . w0) ||V — / / dydzx
<—|| (g, vo)|| RN JRN |y|5|$ —yl“lﬁlﬁ

b2t27’ )
- dydz =: kit™ — kot® — kgt®™, with ky, ko, ks > 0.
o oo Jo |y\ﬂr:c_yrﬂ|xw ydo =t knt” =kt — kst™, with E, bz, ko

Thus, Ji\(tug,tvy) — —oo, as t — 400, since that » > N. Therefore, there exists
(@,0) := t(ug,vo) € WY with [|(@,9)|| > ¢ and Jy(@,0) < 0, we conclude the proof of

item (7). O

Henceforth, for the sake of simplicity, we denote J\ = Ji|wy : Wiy — R. In view of
Definition [2.2.3, Lemma and Mountain Pass Theorem (WILLEM, 1996)), there exists a

Palais-Smale sequence (u,, v, ), C WX such that
In(tn,v,) = my  and Ty (un,v,) — 0, (5.17)

i.e., (Un,vp)n is @ (PS)m, sequence for J\. Moreover, Lemma ensures that my > 0.

5.2.2 Nehari manifold

Next, we shall discuss some properties on the Nehari manifold associated our main System

(S)]), which is defined as follows

Ny = {(u,v) € W\ (0,00} : T (u,v) (u,v) = 0}

Notice that if (u,v) € N, then

o) = [ ( /. W]’; @W dy> {aﬂlﬁ) da
# Lt an) et xo ) [ opllrar. (519

N ylPle — yl#

We first show that the number ¢y, = “ mf Jx(u,v) is well defined by proving that 7, is
v)eN

bounded from below on N, and the set N, is non-empty.
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Lemma 5.2.2. The functional [Jy is bounded from below on N.
Proof. In view of assumption (e), we have that
f(s)s—=NF(s)>0 and g(s)s— NG(s) >0, Vs>0, (5.19)
which implies that
L ()= LF(s) >0 and —g(s)s— ~G(s) >0, Vs>0 (5.20)
v (s)s =5 F(s and  +g(s)s — 5G(s , Vs >0. :
Therefore, ((5.18)) and ((5.20)) lead to

1
Tw0) = )|V =7 [ Julfol* da

1 F(u) F(u) 1 G(v) G(v)
- - d d
2 </ yPle — g dy) 27 9= Lo e g ) T

1
L f(uyu— 5F(w)
p+q ) / / F(u) Nf(u)u 5
(PR, Plyj7d d d
A( N o (010l da RN< o TolPle —gr Y [P g
G(u) [Fg(wu - 3G(u)]
d dz >0,
+/RN</RN yPle — gl y) [2]? !
which finishes the proof. [

Lemma 5.2.3. For any (u,v) € W¥ 0,0)}, there exists a unique ty > 0, depending on
rad

(u,v), such that
(tou, tov) € N\ and max I (t(u,v)) = Ta(to(u,v)).

Proof. First, we note that (5.19)) ensures
F(s) G(s)

N OGN are increasing for s >0

and, consequently, F'(s) and G(s) are also increasing for s > 0. Hence, for all sy, s9,t1,t5 €
(0, +OO>, if t1 < tq, then

F(tys1) f(tis2) 2N < F(tas1) f(tas2)

24N

Spty S
N N-1 N N-1 2v2 °1
tl S1 tl S9 t2 S1 t2 S9

and

G(tlsl) g(tlsg) 2, N G<t281) g(tQSQ)
N N1 Sel1 S1 S — N-1
tl S1 tl S9 tQ S1 tQ S92

1 F(tu) f(tu)
1 o </RN Pl — ol dy) a4

1 G(tv) g(tv)
5 e </RN WPl =yl dy) 2 '

24N

Hence, the functions

(5.21)
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are increasing for t > 0.

Let (u,v) € WX, \ {(0,0)} be fixed and consider the function ¢ : [0, +00) — R defined

rad

by ¢(t) = Jx(t(u,v)). Notice that ¢'(t)t = J{(t(u,v))t(u,v). Thus, ¢'(t) = 0 if only if
Ji(t(u, v))t(u,v) = 0, implying that

X = A+ g [ ol da

1 F(tu) f(tu)
:tN-l[/RN (o e 10) T e

" /RN </RN Iylﬁcliiti)ylu dy) g|§:|?“ d“"] ' (5-22)

Therefore, t( is a positive critical point of ¢ if and only if (tou,tyv) € N,. Moreover, note

that (5.21]) ensures that the right-hand side of (5.22) is an increasing function on ¢ > 0. From
(5.8), (5.9) and (5.11)), follows by the definition of ¢ that

1 )
p(t) =tV (u, )| [N = ACETIN| (u, v) [PFITN — CEN T () V2O

- étQT_NII(u,v)IIQT_N] >0,

provided ¢ > 0 is sufficiently small. On the other hand, arguing as in the proof of Lemma
5.2.1| (i), one may check that ¢(t) < 5tV — kyt?" — kst where ki, ko, ks are positive
constants. Hence, since > N, we have ¢(t) < 0 for t > 0 sufficiently large. Consequently, ¢

has maximum points in (0, +00). Suppose that there exist t1,t, > 0 with ¢; < t5 such that
' (t1) = ¢'(ta) = 0. In view of (5.22)), we have that

tN[/(/ e ) e
G(tiv) g(t1v)
* o </RN PHEETE dy) o] “d“’”]
‘W[AN<A@N e )

G<t20> g(tgv) B
+/RN (/RN |y|ﬁ|l’—y|u dy) |:L‘|B de] =0.

Therefore, since the right-hand side of (5.22)) is an increasing function on ¢ > 0, it follows

that u = v = 0, which is impossible and the proof is complete. O
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5.2.3 Comparing levels

As a consequence of Lemma [5.2.3] the set N, # (). Moreover, combining Lemma [5.2.2)
with Lemma and recalling the definition of d in (5.10)), we may conclude that

cy, = inf u,v) < inf max Jy(t(u,v)) = dy. 5.23
Ny (uu)em‘%( ) e 00y 55 In(t(u,v)) = dy (5.23)

The next lemma is crucial to achieve the objective of this section.

Lemma 5.2.4. For any (u,v) € N,, there holds

max Jy(t(u,v)) < Ta(u,v). (5.24)

t=0

In addition, we have

dy=cn, and my < e, (5.25)

where m, was defined in ((5.10]).

Proof. Firstly, we will verify that for any (u,v) € N, (5.24) holds true. According to (5.18)),

we may write

In(u, v) = Ia(t(u, v))

1N N +
==l )Y A= 1) [ fuplel de
N RN

o ol ) T e L (e e ) T ]

o Ul e ) e o= L (o e ) i o]
5 [/RN (o e 2 ) T o4

e </RN i ) i d‘”]

+<1 (p+q) +tp+q—1>A/RN [ul?[v]? dz
1
2
1
2

_|_

N
tu) F(tu) F(u) F(u)
[/R (/RN |y|ﬁ|x_y|u dy) <P do= [, </RN Pl — gl dy) FE dx}
(tv) G(tv) G(v) G(v)
VR </RN ly|Plz — y|» dy) |z|? dx_/nw </RN |yl lz — yl* dy) |z|? dx]'

+



150

On the other hand, note that

F(u) f(w) G(v) )
/RN</RN|y\5]:(;—y]Mdy) Wudx—i— RN</1RN|y\5|a:—y|“dy> Tx‘ﬂvdx
_1“ / F(u(y))f(u(z))u(z) + Fu(@)) f(u(y))uly) dydz

||z — yllx|®

o [ [ COWCEIe) + Gl dydx]_

yl? |z — y|#|x]?

These last two estimates take us

In(u,v) — Ji(t ( ))

|y|ﬁ|ﬂf — yl#|xf?

1 F(tu) F(tu) =~ Fu)dy '\ F(u) .
e Vw(fw |y|ﬁ|x—y|u dy) 2 4 fon </RN |y|ﬁ|x—y|~> RE d]
P Gl nle) Gl

[yl |z — yl#|x]?

s VRN (fw P g dy) e L </RN ThEET dy) T d‘”]

1— N
+ ( t (p+q) +t"H7 — 1> )\/N |ulP|v]? d. (5.26)
R

N

Now, for all ¢, s, $1, 85 € (0, +00) we define

1, 12) = o [F() )0+ F(0) ()05 + 5 () P(th) — F() (1)
ho(t, s1, $2) = 12_]\1; (G (s2)g(s1)s1 + G(s1)g(s2)s2] + ; [G(ts2)G(ts1) — G(s2)G(s1)],

N
hs(t,t1,s1) == < N (p+q)+t7+— 1) Aths.

Thus, to prove ((5.24)) it is sufficient to verify that
hl(t,tl,t2>, hg(t, 81782), h3<t,t1,81) > 0, Vt € (O,+OO) (527)

Following (ALVES; SHEN, 2023, Lemma 5.1), one may prove that hy(¢,t1,t2), ha(t, $1, 52) = 0,

for all ¢ € (0,400). Now, a direct computation shows that

) 1N
ohalt b s) =(p+ ) (77 =tV 1) Al

>0, if te][l,+00),

<0, if te(0,1].
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Consequently, we reach that hs(t,t1,s1) is decreasing on ¢t € (0,1) and increasing on

t € (1,400), implying that
h3<t, tl, 51) > I%’l>151 h(t,tl, 81) = h(l,tl, Sl) =0.

Thus, combining (5.26)) with (5.27)) we obtain (5.24)). Therefore, (5.23) and (5.24) imply

d)\ = CNy-

N
rad’

Finally, observe that for any (u,v) € W.,,, there holds J,(t(u,v)) — —o0, as t — +oc.

Let 7 > 0 be such that J\(7'(u,v)) < 0. Hence, the path (t) = ¢tT'(u, v) belongs to I'. Now
using ((5.24)) and the definition of mountain pass level, for any (u,v) € N, we have

my < max Jy(tT(u,v)) < max Jy(s(u,v)) = Jx(u,v).
te(0,1] =0

Therefore, my < cpr,, which finishes the proof. O

Let (ug,vp) be a mountain pass solution for System (|S)]) (see Subsection [5.2.5.1)). Thus

ey = inf  J(u,v) < Ta(ug, vo) = my.
(u,v)ES)

Therefore

C) < my. (528)

Since S, C N, there holds ¢y, < . Combining (5.23)), (5.25]) and (5.28]), we conclude that
dy =cn, <oy <my <y, <d)y

which implies that ¢y, = m) = d,.

5.2.4 Estimate of the minimax level

In this section we establish a suitable upper bound to the mountain pass minimax level,

which is very crucial to obtain compactness results in the next section.

Lemma 5.2.5. The energy level cy;, satisfies

1

CNy, < C(QOaaNaﬁau) =7 <

N

2N =2 —pay Nt
2N (%)) ‘

Proof. The technique to show the estimate on minimax level involves the celebrated idea of

analysis of Moser functions given by J. Moser (MOSER, [1971)). For some fixed p > 0, consider
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the following Moser sequence supported in B; defined as
N— ~
log(n) ™, 0< |z <2,
1 log(p .
o | loam)*
0, |z 2 p
From direct computations, we have
[l = [ V@Y dot [ de=1+0
RN RN log(n)
1
and thus ||, || = [1 +0 (log(n))} N
we have ||lu,| < 1 and
N-—1 ~
N P
0< el <2, (5.29)
n

By setting u,, = ||un||’
log(n)) % JwX_, (1
(log(n)) ™ Jwy (Og(z)) ta,

1
N N
)} WN-1

Up =
140 (5
where (a,), is a bounded sequence of non-negative real numbers. It suffices to show that
WX\ {(0,0)} such that ey, < maxso Jh(tu, tv) < C(ag, ay, B, 1)

there exists (u,v) €
We claim that there exists n € N such that

max J (tu,,0) < C(ag, an, 5, 1)

Suppose, by contradiction, that for any n € N there exists ¢, > 0, such that
\7>\( nUn, 0) P C(Oé(), O, 57 ILL)

max 7 (tu,,0) =
1, there holds

)

te[0,00)

Hence, t,, satisfies (75 (tun,0))]i=, = 0. Since [Ju, ||V

F
tfy 2/ (/ B(tnu") f(tnzn)tnun dz.
510 \ /B3 (0) [ylPlz — y|* ||

It follows from ([5.31)) and the fact that F'(s) > 0 for all s € R, that

NC(ag, an, B, 1) < NIy (tntn, 0) < Y ||Jun ||V,
2N — 203 — ,uow)Nl

N >
" < 2N (%))

(5.30)

(5.31)

(5.32)

(5.33)



153

On the other hand, it follows from assumptions (c¢) and (d) that for each € € (0, 3y), there
exists R, > 0 such that

N

F(s)f(s)s = My (8o — €)s™™e®* ™™ Vs > R.. (5.34)

Gathering the estimates ((5.29)), (5.32)), (5.33)) and (5.34)), we obtain

F(taun(y))f(tnun(2))trun(z)
t / B0 / B0 dydx

\y!ﬁ\x — y|#|z|P

N
_ t " mo+1 ,2a0(tnun) N-1
. mo+1
— )t (] Dapth T 1 N
>(60 ]\Z) n Og( ) a, exp Qo Og( ) +2a0t711\771an
0 & T3
/ / dydx
p/n(o p/n |y‘,8|x - y|ﬂ|x|ﬁ
. mo+1 N
— e)tmotl ] 200th 11 '
2 (60 ]\i[) n Og(ﬁ) + a, exp Qp . Og(n) + QQOtTJL\J—la
N-1 N—1
0 WN_1 WN-_1
~ 2N—28—p
p
<o (7)
mo—+1
_ COnpulbo = p™ 277 [log(n)
- —(m 1 n
Mty "0+ WN_1
N
antrlz\ul %
xexp |log(n) | ——— — (2N =25 — p) | + 2ata’ " a, |, (5.35)
N-1
WN-1

where we used that n~(GN=20=1) —= exp {log(n_(QN_Qﬂ_“))] = exp [—(2N — 28 — p) log(n)].
Note that

mo+1 mo+1 mo+1
1 1 1
WS W] WL
mo—+1
1
= | — exp ((mo + 1) log(log(n)))
N—-1
WN-1

which together with the estimate ([5.35]), we get

mo+1

C ~2N—28—p (5 —E) 1
N 5 YNBu P 0
t, = Mt;(m“l) wﬁ exp|(mgo + 1) log(log(n))]

N-1
_N
20ts _N_
x exp |log(n) %T (2N — 208 — p) | + 2a00ta " ay| - (5.36)

WN]
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N
Since (mo + 1) log(log(n)) 4+ 2apta ‘a, > 0and N —1 —mg > 0, we infer
2N -2 ot
H(N=1)=mo >CN,B,/LP - ﬂ—u(50 —¢) 11
Mo Wi
T
200t~
x exp |log(n) (0401 — (2N — 25 — ,u))
B
Consequently, we deduce
2N—-28 ot
log(t,, 1 C DN TEPTH( By — € 1
(N = 1) —mo) gi) > —ylog e M,y = ) o1
R e wh !
2a 2N — 23 —
+ log(n) - — £ a : (5.37)

which implies that (t,), is bounded. Therefore, up to a subsequence, ¢, — £, as n — co.

N 2N —28—
Claim. 1771 — 2V~ 20— 1oy
2N Qp

N
Indeed, otherwise, in view of (5.33), there would be 6 > 0, such that t2" ' —

1

(%%) > 6. Applying this in (5.37)) and remembering that ay = Nwxy |, we obtain

,as n — oo.

(N = 1) = mo) log(tn)

r mo—+17 N
w205 — ) [ 1 2t
> log N,B,uP 7 (BO 6) — + %T _ (2N — 23— M) log(n)
0 w1 w1
L N-1 i N—-1
[ IN—283 Mot
O u N 251Gy — 1
| ° SV
2@0 ) + IN_20—pay
+ ( = Om) — (2N =28 — ) | log(n)
N—_1
WN-1
IN—28 mot
C oY TP — € 1 20090
_ log N,B,uP - (BO ) — 4 i log(n)
0 o o
20090 20190
> ai log(n) = log(n5N), oN = Oi,
= N1
WN_] WN-1

which leads to tN =10 > pd~ where (N — 1) — mo > 0. Hence, we obtain a contradiction
with the fact that (¢,), is a bounded sequence. The claim is proved.

According to (5.36)), we may write

mo+1

~ — — — m 1
ti:/ P CN,ﬁ,,up2N 2 "M 1(50 — ety ot — 1 exp (log(log(n))),
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which jointly with the last claim, imply that

IN — 28 — pay)V IN =28 —pay\ ¥ ) [ o

YT RAN) o (TP RN - log(1

( 2 a0> ( 2 ao) | e lonton(o)
N-1

— 00, asn — 0o,

where C := Cp 50"V ~27#M; ' (B — €), which is a contradiction. Therefore, (5.30) is valid

and this completes the proof. O

The next lemma establishes the existence of ¢ > 0 such that ¢ < C(ag, an, 5, 1) =

1 (2N72B7u ax

N-1
~ N ao) and a (PS).—sequence for J,. The proof follows standard arguments

explored, for example, in (CHEN; LIU, 2018, Lemma 2.10).

Lemma 5.2.6. There exist a constant ¢ € (0, cy, ] and a sequence (uy,, vy, ), C WY, satisfying
In(tp,v,) = ¢ and T\ (un,v,) — 0.
Proof. Initially we choose (ug,v:)r, € Ny such that

eny < In(ug, vr) < ey + k € N. (5.38)

Ea
Once J\(tug,tvy) < 0 for large enough ¢ > 0, it follows from Lemma and Mountain

Pass Theorem that there exist (uy,,, Vg )n C Wiy and ¢ € [0, sup,- Ja(tug, tuy)] such that

j,\(uk,mvk,n) — Ck, j,((uk,mvk,n) — 0, keN, (5.39)

where § > 0 is given in Lemma [5.2.1| By (5.24), we have J,(tuy,tvy) < Ja(ug,vy) for all
t >0, ie, Tn(uk,vr) = sup,q J(tug, tv). Hence, from (5.38) and (5.39), for all £ € N,

we obtain

1
Ik, Ukm) = i € {5, cny Tt I<:>’ T (UWkpy Vi) — 0.

Now, let (n;)r C N be a sequence such that
1 , 1
I (Ukny,, Vkny,) € [5, N, + k)’ T\ (U Vkmy) < T k eN.
Define (uk, vg) := (Vg nys Uk, )- T herefore, passing to a subsequence if necessary, we reach
In(tn,vn) = ¢ € [0, ¢n,] and Ty (un,vn) — 0

and the lemma is proved. O]
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5.2.5 Compactness results

In this section we will establish compactness results which play a very important role to
verify that the functional satisfies the (P.S).—condition. It is important to emphasize that in
the case = 0, the boundedness of the nonlocal term

F
/ (w) dy, VaeRY
RN |z —y[#

is strongly used to prove that the functional satisfies the (P.S).— condition, see for instance
(ALVES; YANG, 2014; ALVES et al., 2016b} ALVES; YANG, [2016). However, as emphasized in
Remark [2.1.15| in Chapter , due to the presence of the double weight ﬁ and -1, the

[yl

convolution

1 / F(u) d
Y
|7 Jey |ylPle =yl
1

does not inherit such property in RY. But, removing the term L it is possible to prove

F
/ 7@) dy.
RN [y|P |z — y|»

This boundedness is one of the tools to show the following convergences:

Flu) .\ Flu) Fluo) .\ Flup)
f </RN yPle — gl dy) a7 o </RN yPle — gl dy) ap 4

G(vy,) G(vy) ~ G(v) G(vo)
/RN </RN lylP|z — yl dy) |z|? = fon (/RN ly[P|z — y|» dy) BE dz.

For more details see Lemma [5.2.9

boundedness of

Lemma 5.2.7. For any u € WHN(RY), we have that

/RF(u)dy,/ _ G 4y e @Y.

¥ ylPle =yl Je fylPle =yl
Proof. We follow some ideas of Lemma in Chapter 4 For u € WYN(RY) and R > 0,

we write

/ _ Pl _E@l +/ ()| (5.40)

Nyl —yle 7 T Jero) |ylPle — y|# <) |y|Plz —ylr

On the one hand, for z € BS,(0), we have |z — y| > |y| and

F F
/ | F(u)] dyg/ | (“)|dy,
Br(0) |y|P |z — y|* Br(0) |y[#+F
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Now, let p1,k > 0 be such that § +pu < p; < N and k := . Since £ > 1, it

N —p1
follows from Sobolev embedding that F' € L*(Bx(0)). Hence, by Hélder's inequality and
since N — 1 — (a+ p)2; > —1, we obtain

1 _k_ Tk
| F(u)] < K )’“ ( 1 )’”
T4 </ Flu)*d / - ) g

/;Ran |y|pts Y BR«»| ()l dy Br(0) \ |y|#*+? Y

k—1

k

R —1— _k_
< W@l ([0 0r) T = <o

For x € Byg(0), using similar arguments, we deduce

F F F
/ |F(u)] dy < | <“>|dy+/ |F(u)] dy
Br(0) |y|P|x — y|# Br(0) |y|*+h8 Bsr(z) |T — y|H+P

k-1

k

3R
<Oy + Cf </ |T|N717(a+“)ﬁ dr) < +o00.
0
Hence, for each z € RY, we conclude that

| F'(u)]
VL dy < oo 5.41
/BR<0> ly|Pla — y|» (5.41)

On the other hand, we write

| F(u)| du — | F(w)| q | F'(w)| q
g p Y= g TR o — g VY
B, 0) |y|P|z — y| B, (0)NBr(z) |y|° |z — y| ¢ (0)NBg ) |y]°|z —yl

= Il + Ig.

Arguing as in the preceding estimates, we deduce
112/ |F'(u)| y < |F'(u)|
Be(0)nBr() |yf|lz —y|* = " RP 0)NBr(x) [T — Y[~

1 |F(u)|
<=5 L 4y < .
RP /BR @) |z — y|“ Y<too

Now, choosing ¢; = %,QQ = %,Q‘g’ sat|sfy|ng ot -+ qi 1, it follows from

Holder's inequality that

2N—28—p

IN 2N
T, < ( | ) dy)
B%(0)

( 1 % 1 2N
X / — dy) (/ —_—— dy> < +00.
Bg,0) |y|*Y By(o) |v — y[2N

Thus, we obtain

|F'(u)|
————dy < 4o00. 5.42
/" 0 [y|’lz =yl (5.42)

Therefore, (5.40) jointly with (5.41) and ((5.42)) imply that the Lemma is proved. O
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Lemma 5.2.8. The (PS),. sequence (u,,v,), of J is bounded in WY ..

Proof. Let (u,,v,), C WY, be a (PS).—sequence for Jy, with ¢ < C(ag, an, 3, 1), i.e.
In(tun,v,) = c+o0,(1) and T\ (un,v,) = 0,(1). (5.43)

We deduce from (a) and (f) that

1
j)\(uny Un) - gj)i(unv Un)(uny Un)

1 1 p+gq
> (- Z N L P|o|q
> (= ) M) 1¥ + (B = 1) 3 [ Juplofrda
1 1
3w = ()
(i) e
e \Jev TyPlo — o Bk

Un, 59(vn)v, — 3G(vy)
" /]RN </RN |?J|5G|?§—)x|“dy) [ 2P } dz
1 1

> (5 = 5) Mums vl

From J} (tn, vy) = 0,(1), for n sufficiently large, we have — 575 (tn, Un ) (tn, vy) < |[(tn, v |-

In this way, from last estimate and using the fact that J)(un,v,) = ¢+ 0,(1), we see
06— N
on(1) -+ Nl > (25 Nl

for n sufficiently large. Therefore, (u,,v,,), is bounded in WY . O

In view of the preceding results, if (uy,v,), C WY, is a (PS).—sequence for J\, then

(Un, Un)n is bounded and it follows from (5.43) that

F(uy) f(un) G(v,) (vn)
/RN </RN Y|Pz — y|» dy) z]f dot fon (/RN |y|ﬂ|x—y|udy> gmﬂ Un dz

— N _ Pl |4
s v)IY = P+ @A [ o] d

rad

< ‘j/)\(unavn)(unavn)‘ = On(l)

which implies that

F(uy) ) Flun) ( G(vn) )g(%)
fo </RN P ) ToP 4 o U o = g ) T e

<L 0¥ = o+ @ [ faPloa]?

+ 0,(1).

Putting this together with the boundedness of (u,,, v,,), in WY . there exists constant K > 0

rad’

Fu,) f ()
su d u,dr < K,
neﬁ’/w </RN ylPlz — y|~ y) ]

G(vy) n
/ / 3 (v dy) g<vﬂ)vndx<K,
nen Jax \Jax [ylPle =yl ||

such that

(5.44)
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which jointly with ((5.19)) implies that
su d dr < K,
e /RN </RN [yl?lz — yl y) ||

G(v,) ) G(vy,) .
su d dr < K.
e Lo (fnw Pl — gl ™) TP

Moreover, we may assume, passing to a subsequence if necessary, that

(5.45)

N

(U, Un) — (ug,vg), weakly in W,

(tn, Un) — (ug,vg), strongly in LP(RYN) x LP(RY), p > N,
(Un, vn) = (ug,vp), a.e.z€RY, (5.46)

|| < by Jugl < h, ae. z€RY, for some h € LP(RY),

n\~> O\Na -<. ) h P .
lv,| < hy o] < h, ae xRN, for some h € LP(RY)

Gathering (5.44)), (5.46]) and Fatou's Lemma, one has
F(uo) [ (uo)
d d < K,
s </RN [yl =yl y) 2p 0%
G(vo) g9(vo)
d dr < K.
o </RN [yPle =yl y) 2

In view of assumption (d), for given € > 0, there exists s := 5(¢) > 0 such that

(5.47)

F(s) <esf(s) and G(s) <esg(s), Vs=s, (5.48)

which jointly with (5.44)) and (5.47)), imply that

F(u, F(u,
sup/ (/ 5 (un) dy) (uﬁ) dr < Ke,
neN Hlun 51 \JRY Jy|Plo — yl* |z

/ </ BF(UO) dy) F(u) dr < Ke,
{luol>5} \JRY [y[P|z — y|» ||

G(Un) G(Un)
sup/ / d ) dr < Ke,
neN {|vn|>s}( ax [ylPle —ylr ) Jal?

G(U()) ) G('Uo)
d dx < Ke.
/{W} (fw Pl —ylr V) Jal?

Finally, we are in condition to prove the following compactness result:

(5.49)

and

(5.50)

Lemma 5.2.9. Let (un,v,), be a (PS).—sequence for J such that ¢ < C(ag, an, (3, ).

Then, up to a subsequence, we have

() e ([ ) e

and

Jo </RN e o7 dy) e L </RN R dy) T 6




160

Proof. We follow the ideas from (ALVES; SHEN, 2023, Lemma 4.6). Let us prove ([5.51)). For

the sake of convenience, we will split the domain of integration in the following way

n n F F
/ / Flun) g N E(n) 4, _/ / (w) 4, Fw) 4,
rN \JRN |y|fla — y|» |z|? BN \JRV |yl — y|» |z|?
g/ / dy) dx
{Jun|>5} ( RN |y|Plo — y|# ||
F(Uo) F(Uo)
+/ / dy) dx
{Juo|>5} < RN |y|®|x —y|# |z|?
+/ / dy) dx
{Juo|=5}"{|un| <5} ( RN Jy|P|e —y|# |z|#
+ / / dy) dx
{Juo|#35}N{|un|<5} < RN |y|Blz — y|# |z|?
F(U,g) ) F(UQ)
_ dy dz
/{uo|<s} </RN Y|Pl — y|» ||

which together with ((5.50), becomes

Lo (Lo ) 2 v </RN |y|ﬂ|:c—y|udy> ey

<L2Ke+ / (/
{Juol=5}n{lunl <5} \ /RN |y|ﬁ|w — y|“ leﬁ

F(u,
N / </ - Fu) d ) Flu )d
{Juol#5}n{Junl<sy \JRN |y|fla — y|» |z|?

9

F F
{luol<sy \JBV [y|7fz — yl ]
It follows from ((5.3)) and ([5.4) that for given € > 0, there exists C'(5) > 0 such that
B IN—28—p oN— 25 u _
[f(s8)l < CE)Is|™ =71 and |F(s)] < C(5)]s] , Vsl <8 (5.54)

In order to prove ((5.51)) we will prove the following claims:

F(u, F
Claim 1. lim Sup/ (/ 5 (1n) dy) (u B) dr < Ce.
oo J{juol=s}{Jun|<s} \JRN [y|®|z — y|» ||

Claim 2. There holds

F F
el
{Juol#5}n{Junl<sy \JRN |y|Pla — y|» ||
F F
—>/ (/ 5 <u0) dy) <u60) dz.
{luol<s} \/RN |y|?|z — y|# ||
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Proof of Claim 1. In view of (5.45) and thanks to the Cauchy-Schwarz type inequality in
(LIEB; LOSS, 2001, Theorem 9.8), it follows from Proposition that

F F
/ ( / ! (un) dy) (ug) e
{Juo|=5}n{Junl<s} \JRV |y|®|z — y|* |z

<K3C(N, B, ) ( /{

2N—-28—pu

SN2 N
dy . (5.55)

F(un)X{\unKE}

luo|=5}
On the other hand, by ((5.46]) we note that |u,|Y — |ug|™ in L*({|ug| = 5}). Hence, it follows
from (5.54)) that

2N 2N _ N % _ N
| F (tn) Xjun <5 | PV=2070 < C2=20 (5) un|* — C (5)|uol ™
Therefore, the Lebesgue's Dominated Convergence Theorem implies that
NC2TR
-2+
Yy — | F(10) X uo]<5)

/{uo|s} {luo|=5}

which together with ((5.48) and ((5.55)), finishes the proof of Claim 1.

Proof of Claim 2. For the sake of simplicity we define

F F
{Juol#5}N{Jun|<s} \JRN |y|¥|a — y|» ||

2N
2N —2B+p dy
)

F(tn) X {Jun|<5}

F n U s U s F n nF n
_ / (u )X{I ol#5}N{|un|<5} dy (u ) dr = § <u dx (5.56)
RN \JRV ly|Pz — y| 2|8 RV |x|f
and
F(uo) ) F(uo) §oF (up
o ::/ / W) g A = dz, 5.57
O ftes ( e oPTe — oY) TalP T S Jalp (5:57)
where

F n u s u S F Uy s
c, ::/ (u )Xg ol£5I0{unl <5t g0 and g, ::/ (U;))X{ ol<s}
RN ly|Plo — y|» RN |y|Plz — y|#

To prove ©, — O, we need following claim:

Claim 2(i). The sequence (&), is uniformly bounded and &, — &, a.e. in RY.

Proof of Claim 2(i). Let R > 1 be an arbitrary constant. Thus, from (5.54) and Hélder's
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inequality, we derive that

N—f—p B+u

N(2N—28—p) N £n
_ |un| 2(N=B—n) dy
€n] <C(5) /N — s dy /_ —~u
R |y‘N757u lz—y|<R |;p — y|,3+u
| |2N—2,B—,u
U 2
+ C(g) / nidy
( {la=yl=R3n{ll<1} [y|Ple — y|*

2N—2B—p
+ C(5) / [un| 2 d
s T dy
{z—yl=R}n{lyl=1} |y|P|a — y|#

=:C(5)(AB+C+ D). (5.58)

It is not hard to see that B < C(wn_1, R, 3, 1t). Now, since |y| > R > 1, from Holder's

inequality we reach

N(2N-28—p)
N(2N—28—u) ”LL ’ 2(N—B—n)
A< W 4y [T
ly|>R lyl<R |y‘N—ﬁ—u
N(2N—28—p)
< \u | 2=5-m dy
RN
28
N—-28—p

N(2N—-28—p)(N—p) N—p
+ |u |2<N F=m(N=26-n) dy
RN

1 o
—a—d
/|y|<R| e
| -

N—28—
(2N—28—p)(N— ) N—uu

+ Clmrs B B) [ 1 0855 g
RN

NEN-28-p)
< |u | 2(N=B—p) dy
RN

(5.59)

N(@2N-28—p) N(@N—28—p)(N—p) N(N—p)
One can observe that W > N, 2(N—f— M)(;\; 25 ) > N and W’uﬂ) < N. Next, we

have
2N(2N—28—p) e o

N
|Un‘ 2(2N—p) dy 2N
€< / g Y / 2N
S Mle e le—y>R |7 — Y|

2N —p

IN(2N—28—u) SN
|Un| 22N—p)
gC(WN—Ia R) / 2NB dy
lyl<1 |y| 2N —r

B(2N —p)

dy V29 (2N—28—p)(N+28) %
gC(wal, R) / T N(NT25) </RN ‘un‘ (2N—p) dy)
ly N

<1 Jy|"2v=n

w

(2N—p)
(2N —28—p)(N+2B) 2(N+25)
2 -
SCon 1R 6 (/RN |un| @V dy) : (5.60)

where we used that N —p)

In order to estimate D, we consider the following cases:
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2N (2N—28—p)

(7) If pw < 28, then 83 — > 0 and observing that > N, then Holder's

AN—43-3u
inequality leads to
IN(2N—28—p) AN_28—3u d o d =
- — K 4N
D < (/ || TN -T5-30 dy> (/ y8N> / T:zy\m
RN le—y[>R |z — y| T lyI>1 |y|56-n
AN—48—3p
3 2N (2N —28—p) 4N
<waf1,ﬂ,u7R (/]RN |un’ IN—106—3p dy)
(79) If p > 205, then %ﬁ@“) > N, Qéﬁgu > N and using Holder's inequality again, we
obtain
| |2N7267,u
U 2
D < Vi - dy
{le—yl>R} |z —yl#
28+3p
2N (2N —28—u) 4N7421€73u dy w
< (/ |y, | V=280 dy> / — Ay
RN l[z—y[>R |ZL‘ — y|m

AN—28—3u

4 2N(2N—-28—pun) AN
ngN—l,B,M,R /]RN ’un| N353 dy

Consequently, D is uniformly bounded as (||u,||), is bounded. In a similar way, from ((5.59))
and (5.60)), A and C are uniformly bounded. Therefore, from (/5.58)), we conclude that (&),
is uniformly bounded. The proof of the fact &, — & a.e. in R, can be explored following the

ideas given in (ALVES; SHEN, 2023, Lemma 4.6), where it also makes use of Lemma [5.2.7|
Now, by (5.56)) and (5.57]), we see that

/ Il e ot [ o] PP () do

un|=3 Un|<3

|@n - ®0| =

— /|u 53 ’$|_650F(u0) dr — /| ‘x|_ﬁ€0F(u0) da

u0\<§
and using ([5.50)), we obtain

lim |@n - @0|
n—oo

< lim / 2|6 F (u) d — / 2|60 F (uo) dz

=00 | Jlup |25 |uo|>5

+ lim / 2|2 E F (u) da — / 2|~ €0 F (uo) dz] (5.61)
n=0 | J{u,|<5 lup|<5

Thus, to finish Claim 2, we shall prove that the limit on the right-hand side of the above

equation goes to zero. In fact, we may write

[ el e ) de = [ ] 76 P (o) da

'u,0|<§

Y

_ -8 _ _ -8 _
—‘/RN |26 F (un) X {Jun| <5} A /RN |26 F (1o)X {jup| <5y d
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and by ((5.54)), we see

_ — F Un ) X{|u s Un|<8
|‘T’ BgnF(un>X{|uM<§} :’JI| 6/ ( ) Lo 8} [un | <8} dyF(un)X{\unKE}

RN lylPle —y|#
| 2y -2
—B n =i
<lal /RN 9Pl — g 1 o

By using (|1.16]), we have that /RN v, dr < 400 and using Claim 2(i), we get /RN v, dr —

/ vodx, as n — oo, where
RN

_ |U0| N —2b—p
voi=lal ™ [ dylul
Y [ylole =yl
Now, from Claim 2(i) and in light of Lebesgue's Dominated Convergence Theorem, we infer

that
lim | 2| 7P En F () X (fun|<5) dx:/RN || 77€0 F (10) X {Juo) <5} . (5.62)

n—oo

Finally, applying (5.62)) in (5.61]) and taking s large enough, we get ©,, — O, and consequently
using (5.50)), Claim 1 and Claim 2 in (5.53)), we obtain the required result. The proof of ((5.52))

follows analogously. [l

Lemma 5.2.10. Suppose (u,,v,), be a (PS).—sequence for [J, such that ¢ <

C(ao, an, B, 1). Then, up to a subsequence, we have

F(uy,) f(uy) F(u) F(uo)
/RN </RN ly|8)z — y| dy) [P pdr — . </RN P — dy) BE ¢dx  (5.63)

and

G(Un) g(vn) G(UO) Q(Uo)
/RN </RN ly|f|z — y|» dy) [P Ydr — o (/RN WPl — ol dy) Bk Ypdz. (5.64)
for all (¢,7) € gf;ad(RN) > giad(RN)_

Proof. Define €2 := supp ¢ N supp ¥. Thus, we have

o </RN T dy) faean= [, (/RN e dy) Hedsao
= [ U o) o= (L ) o
oo 2t 5 ([, ) 2,
ol L ) 5

— F(UO) f(UO)
/Qﬂluo|<s </RN ly|®lx — y|» dy) EE ¢

< dr + dx

¢

|u0|2§

dz

¢

dx.
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For all € > 0, take s := s, = ¢ (K + 1)|¢|o, where K is the constant defined in (5.44).

Then from (5.44)), one can observe that

/Iun>s </1RN lylPla — y|"> ||

: </RN Iylgﬂguj)yl“> Lf|§?|g>u"

<
S K41 [un|>5
Therefore, (5.63) follows, arguing as in the final part of the proof in (ALVES; SHEN, [2023,

dx

¢

dx < e.

Lemma 4.6). Similarly, we may check the convergence in (5.64). O

In order to prove the next compactness result, we introduce a technical lemma. The idea

of the proof is similar as in (DO O, 1996, Lemma 4).

Lemma 5.2.11. Let (uy,,v,), be a (PS).—sequence for Jy. Then, there exists (u,v) € W%

rad>»
such that (Vu,, Vv,) = (Vu, Vo) a.e. in RN. Moreover,
(| V| N2V, [V, |V 2V0,) = (|Vu|V 2V, |Vo[¥ 2V), (5.65)
weakly in (L¥1(RN))N x (L¥1(RM))Y, as n — +o0.

Proof. It follows from Lemma that the sequence (uy,,v,), is bounded in WX

rad"

Consequently, the sequence
(IVn| V"2V, [V, [N 2V0,), is bounded in (L% (RV)N x (L¥=1 (R¥)V.
Therefore, up to a sebsequence,
(IVun |V "2V, [V, [N 2V0,) = (U, V) weakly in (L5 (RV))N x (L5 (RV))N,

as n — oo, for some (U, V) € (L¥1(RM))N x (L¥1(RM))N. Moreover, in view of the
boundedness of the sequence (|Vu,|Y + [u,|N, [Vu, [N +|va| V), in LHRY) x LYRY), there

exist measures (nonnegative) 1 and py satisfying
(|VUH|N + ’un|N7 |an|N + |Un|N) — (1, pt2) in D'(K) x D'(K),

up to a subsequence, as n — +oo for any compact subset K C RY. We show that
(U, V) = (|Vu|N2Vu, [Vu|N=2Vv). For any fixed v > 0 we define the energy concentration
set

X, = {x € RV : lim lim (|Vwk|N + |wk|N) dx > V}.
l

l—0 k—+o00 JB
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It is not hard to see that X, is a finite set. Suppose X, = {x1, 2, ..., 2, }. In order to show

(5.65|), we prove two claims.

Claim 1. If o > 0 is sufficiently small, then

. Flm) ), o ) S
(o e 5 ) et = (s e ) et 650

. G(vy) g(vy,) G(v) g(v)
1 d ndr = d dz, (5.67
A, </ P y) o= [ o e = ) e 667

for any Q cC RV \ X,,.

Proof of Claim 1. We just give the proof of (5.66]). Proof of ((5.67) is similar. Take zy €
arbitrarily such that p1(B,,(z9)) < o, where 79 > 0. Also, consider a function ¢ € D(R")
such that 0 < ¢ <1 forz € RN, ¢ =1 in B, s(z0) and ¢ = 0 in RV \ (B,,(20)). Then,

lim (V™ + [un Mo dz = [ gdm < (Bry(ao)) < o,
n—oo BTO(IO) 0 z0)
and consequently for € > 0 sufficiently small, we have
/ o (VY V)6 <01 =), n = o0 (5.68)
0 X0

Using assumptions (a), (b) and ([5.68)), we obtain

N
fluy, quéC’/ exp (aq|u,|~¥-1 ) dx
/Bm/z(m) £ () B,y s2(x0) ( ] )

1 1 |un|N
< C/ exp [agoN-T(1 — )N
Brgy2(s0) L (vl + ) do

ro/2

If we choose ¢ > 1 sufficiently close to 1 such that aqaﬁ(l - e)ﬁ < (1- %)(ZT]Z’ then

from Proposition [5.0.1, it follows

/ |/ (un)|*da < C. (5.69)
BrO/Z(itO



167

Next,

/Bro/ﬂ“ﬂw </RN Iylgfiuj)y\“dy> J](JJTZM" - </RN Iy\ﬂlir(qi)ywdy) ﬁ:?u
o ) )

’ </RN !ylgiuj)y\“ dy) f\%)“ - </sz Iylﬂllic‘(li)yw dy) {ggu
<y o ) 8 ot

F(uy) flun) F(u) flw)
+/Br0/2(zo) (/RN \ylﬁlw—yl“dy> o7 " </RN \ylﬁlx—yl“dy> |z|P

=. fl + fg.

dx

dx

dx

Using Cauchy-Schwarz type inequality in (LIEB; LOSS, 2001, Theorem 9.8) in F;, we deduce

F
/ </ ) dy) Pn) 1, ] da
B,y a(z0) \JRN |y|Plz — y|~ ||
1
F 2
() )
JBrq2(zo) \/RY |y|’8|x - y|u |x|ﬁ

S un) (e = w) )f(un) ~ )5
X</Bm/z(wo><RN ly|Ple — y|» W || [un —uldz ) .

In view of (5.8) and the boundedness of (||uy,|),, we conclude that the first term in the
right-hand side of the above inequality is bounded. Next, using (5.69) together with Holder's

inequality with exponents p/, p” (bigger than one but sufficiently close to 1), we obtain

/ ( I (un)(u, — u) dy) fun) (un — U)XBTO/z(xo) du
v \Jeny [ylPle — g]” ]2

2N—28—p
2

__oN
< CB,M </RN |f(un)(un — U)XBTO/2(I0)|2N7267” dx)

ON-26—p
2Np!! 2p’’/
< Cg,C / |, — u|?"=25=k da
B.q/2(x0)

Using compactness of the Sobolev embedding, it can be deduced that F; — 0 as n — oc.

The estimate F, — 0 as n — oo follows from Lemma [5.2.10| by taking ¢ = X B,y ja(20) U

and using density argument.

Claim 2. Let Q,, = {z € RV : ||z — z;]| > €0,j = 1,2,...,n} and B(z;,¢0) N B(zj,60) = 0
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if © # 7 where ¢y > 0 is fixed small enough. Then,

/ (\Vun]NﬂVun — ]Vu]N*QV@ (Vu, — Vu)dx

€0

+/ (]an\N*VUn - |VU|N’2VU) (Vu, —Vo)dx — 0, asn — oo.
Qe

Although the proof of this assertion can be adopted from (DO 0| 1996), due to presence

of Stein-Weiss term, we have added the proof here to make it precise. Consider the functions

L 9% asin (DO 0, 1996, Lemma 4). Using (¢, %) = (Ylun, Y2v,) in T\ (tn, vn)(6,9) — 0,

we have

L (190l 2V 9 @) + a2 (@) ) do+ [ (VoY 250,9 (620)

o 2a(200) ) do = A [l el 26t) de = Mg [ TPl 20a(620,) da
R R

Flun) g, £ Glon) ) 9lon)
g </RN ly|?|z — y|* dZ/) || ¢dr — /RN </RN m dy) 2|7 Ydr — 0,

as n — oo, whence it follows that

LoVl st da [ (unl Va2V 000 V02 ) da [V N 0 da
RN RN RN
4 [ (ol Vo 290,902 o V2 e
R
=0 [ fnlPloal et dz = Aq [Pl d
RN RN
F(un) f(un) 1 G(Un) g(“n) 2
_ d Jkd —/ / d w0 d
</ [yl =yl y) alp Y S e P — g ) e

< el viunlwrn @y + €al|V2vn lwry @y, (5.70)

where €, — 0 as n — oco. Again using (¢, %) = (Ylu,¥?v) in T{(un, v,)(d, 1) — 0, we see
that

[ (190l ¥ 29,9 (5l + ua () ) d
RN
N—-2 2 N-2 2
+ [ (190290, 9(@20) + ol ¥ 20a(620) ) da
— p—2 q( o)y} _ P q—2 2
A [l 2ualonl"(0tu) do = Ag [ fual? a0 (20) da

e </RN m dy) flgg) () do - /RN </RN Iylgﬂgvj)y!“dy> QIECUIZ) (i) da

— 0.
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Therefore,
—/ (]Vu]N’QwQVunVu—l— ]Vun\N’quunvwgl) dx—/ |t | N 2y, (V) da
RN R2
—/ (|VU|N_2¢E2VU7LVU+ |an|N_22)anV@/Jf) dx—/ [on | 20, (20) da
RN R2
p—2 q(,)1 D q—2 2
0 [l Bl da 4 Aq [ o 2o (620) da
F(“n) f(un> 1 G(Un) g(vn) 2
d d Lo d
oo e ) S et an (s e ) st

< En||¢€1u||W1,N(RN) + €n||¢€2v||W1,N(RN). (571)

Now using the strictly convex behavior of the function C' : RY x RY — R given by

Clu,v) = [ulN + vV, we get

0 <(|Vu [N 2V, — [VulN 2V ) (Vi — V) + (| Vo, 2V, — [Vo|N72V0) (Vu,— Vo)
and as a consequence, we deduce
0< /Q ) (1Yt ¥ 2V, — [VulN V) (Vu, — Vu)d, de
+ /Q ) (IV0a/ "2V, — [Vo[¥2V0) (Vo — Vo) de
< /RN (|Vun]N_2Vun — |Vu|N_2Vu) (Vu,, — Vu)y! dz
+ /]RN (|an|N_2VUn - |VU|N_2VU> (Vo, — Vo)y?dz,
which leads us to

0< / (Va8 V[NV V! — [Vl 2V, V! 4 [ulVel) de
R

+/RN (\anywa— Vo, [N 2V, Voy? — |VoN 2V, Voy? + yvv\%f) dz. (5.72)
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Next, combining (5.70)), (5.71]) and (5.72)), we obtain
0< / (un|Vun]N’2VunV1b€1 + ]un]Nw61> dr — / (vn]an\N’QanV?ﬂf - |vn]Nw62> dx
RN RN

+ )\p/RN |t |P [0, | 00} Az + Ag /RN |ty |P 0| 9902 A
d n d
+ o </RN Yl — gl y) ap (n¥e) 4T
G(Un) g(vn) 2
d n d
+ o </RN Yl — gl y) afp \UYe) 4T

+ EnHwelunHWl’N(RN) + Enlwzvn“Wl’N(RN)

+ / IVt [N 2uVu, V! dz + / N2 (0 0) dae + / Vo, |V 20V0, Vo2 de
RN RN RN

bl o) de = xp [ o (50) da
RN RN

_ p q—2 2
g /RN [t [P0 |20 (VZ0) A

e </RN Iy\gfiuj)yl“dy> f’(;fg)(uwel)dx - /RN </RN Iylffl;:ivj)yludy> glflz) () do

+ €n”¢51u“W1’N(]RN) + €n|WEQUHWLN(RN)

[ (V™! + 19002 — [Vul* 2V, Vu! — [90]Y -2V, Vout) da,

from which, equivalently, we may write
0< /N IV, | N2V, Vil (u — uy,) do + /N Vo, N2V, Vi (v — v,) dz
R R

= [ lual ¥t da
R

o N2 Play |dq/y1 Play |9q)2
/RN [vn| ™ 12 dx+)\p/RN |t P vn |10, dx—l—)\q/RN [t [P |02 da
d n— d
“Jon </RN WPl — o y) a]p (tn ~ WPe 4T
G(Un) g(”n) 2
d n — d
“Jon (fnw WPl — o y) afp (Vn A

+eallbuallnnan +enllV2onlwngn + [ ual¥ i) + [ ol e ()

=0 [ a0t de = N [Pl v, (420) da
RN RN

+ 6"‘|w61u‘|wl'N(RN) + en‘W?U”WLN(RN)

+ /RN (IVul¥ 2! Vu(Vu — Vu,) + [Vo| V" 262Ve(Vo — Vo)) de. (5.73)

Now, we estimate each term on right-hand side of the inequality (5.73]) separately. Following
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the estimates (24) and (25) from (DO O, (1996, Lemma 4), we can conclude that

limsup | |V, |V 2V u, Vil (u — u,) dz < 0,
R

n—o0

limsup | |V, | N2V, V2 (v — vy,) do <0,
R

n—oo (5.74)
/ VHVulN 2 Vu|(Vu — Vu,) dz — 0,
RN
/ V2VolN 2 Vol (Ve — Vu,)dz — 0, n — oo.
]RN
Moreover, from Lemma [5.2.10| we have
——dy U, — u), de — 0, 5.75
e </RN Pl — o ©) T U T 57%)
G (vn) ) g(vn) 2
d v, —v)YZdz — 0. 5.76
o </RN Lo — g ) Japp T (570)

Finally, using all the estimates (5.74)), (5.75)) and (5.76]) in (5.73]), we conclude that Claim

2 is true. Thus, (Vu,, Vv,) — (Vu, Vo), a.e. in RY. Using this fact and boundedness of
{IVun| ¥ "2V, [ Voo N2V, } in (L7 (RV))N x (L1 (RM))Y, up to a subsequence, we

get (5.65) and this completes the proof of Lemma[5.2.11]

Lemma 5.2.12. Under the same conditions of Lemma we have

Flu) o\ flun) F(u) )
fo </RN yPle — gl dy) 2p 977 Ja </RN yPle — gl dy) e

G(vy) ) g(vp) < G(v) > g(v
d vdz — / __ Y g4y 4,
/]RN </RN WPz — gl ) Taf? wv \Jev [ylfle —ylr 7 ) Ta]?

for all (u,v) € WX ,.

Proof. For any given £ > 0, noting that if (u,v) € WX, then we may choose (¢.,1.) €
[C’gjad(RN) X C(?iad(RN)] NWX, such that
1(9e, ¥e) — (u, v)]| <e. (5.77)
Thus, since J5(tn, vn)(0e, ¥:) = 0,(1) and T (tn, vyn)(u,v) = 0,(1), we have
On(l) :ji(unv Un) ((¢£a @Da) - (U,U))
:/ |V, | N2V, V(. —u)de + / Vo, [N 2V, V(1. —v)da
RN RN

_ )\P/RN ’Un’p*QUn’Un’q(gﬁs — u) dr — \q /RN ’un|pyvn|q72vn(w€ _ U) da

= ox (/R G v dy) iﬁz) (¢ —v)da. (5.78)

N ylPlo — ylr
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Combining the Cauchy-Schwarz inequality with the Holder's inequality, we derive

e st ot ([ ) ™ (], 5o’

<||UN||N_1H¢6 —ull, (5 79)

N-1

/ V0| V20,V (4. — ) de < </ |an|Nd:p>N (/ IV (4. — v)|Ndx>N
RN RN RN
oIV Hlvhe = .

Using Holder's inequality once more, we see that

p—1 9
/ |un‘p—2un‘vn|q(¢5 _ u) dr < (/ ’un’m—q da:) ptq </ |,Un|p+q da:) ptq
RN RN RN

< ([0 =y dx) | -

1

P q—2 _ p+q vta p+q v
[ bl e — ) do < (/RN ] dx) (/RN [l dx)
1
- p+q p+q
X (/RN(wE v) dx) :

Once that (||(tn,vn)||)n is bounded, there exists C' > 0, such that ||(u,,v,)|| < C for all
<

n € N. In particular, we have ||u,|| < C, ||v,]] < C, ||unllprq < C, |[vnllprq < C, for all
n € N. Since the Sobolev embedding WY (RY) < L*(R") is continuous, (5.79) and (5.80)

become

L 190Y 2V 0,902 — w)do < €6~ ul,
L 190l 290, 9 (0 = v) do < V. — o)
L Tl 2ol (62 = w) dz < G797, — ),
L TPl 72006, = v) do < €74 = o
which together with and (5.78)), imply that
( - dy) Pn) (6, — ) da

N JylPle =yl |z

0n(1) <e(20N1 4 2)CPH971) - /

RN

o </RN wﬁfﬁ)yw dy) g\(va) (Yo —v)da,

/RN </sz ly|P|z — y|» dy) || (e —u)de (5.81)

G(Un) g(vn)
+ /RN (/]RN W_y,ﬂ@/) ‘IW (1/}5 - ’U) dr < €C(N, )\,p,q) + 0n<1>7




173

where C(N, \,p,q) = 2(CN=1 + \CPFa1),

Claim. For any given € > 0, there exists C(N, A\, p,q) > 0, such that

/RN /Rdey f:;)(@—u)dx
ylPlz -yl Ed
+ /RN (/R G(v) d ) ‘(|5)(1/J —v)dx < C(N, A p,q)e. (5.82)

N ylPle — ylm

Indeed, for any ¢, v € C3%,4(R"Y) and by (5.46)), it follows from of Lebesgue’s Dominated

Convergence Theorem that

[ a2 unlenliode = [ jur—2ufolide,
RN RN

Ll de = [ jullof=2oy da,

5.83
/ [ |V 20 ¢dx—>/ lu| N 2ug da 55
RN n n RN Y
N-2 N-2
/]RN o] Foptp do — /]RN |o|Y v d,
and by Lemma[5.2.11] we see that
/N |V, |V 2 Vu, Vo dr — /N |Vu[N2VuVede,
R R (5.84)

/ V0, N2V, Vi dar — / IVo|N 2 VoV da,
RN RN
which together with ([5.83) and Lemma [5.2.10} imply that

j}i(U,U)(QO,l/}) = 07 V((,O,’lb> < 0rad(RN) X Orad(RN)

Arguing as in the proof of (5.81]), we conclude that Claim is true.

By Lemma ' and . we reach

/RN </RN !ylgfffuj)yl“ dy) flglég)“dx - /RN (/RN wwﬁ@w dy) {;W) dz

) /RN </RN |y|§;uf)y|u dy) J]EEITZ)‘PE de
ey </RN |y|5|x - ylﬂ ) |/3 e do

flu
| </RN \yrﬁwx—ywdy> \:crﬁ pe —w)da

flu

I </RN \y|ﬁ|x—y|ﬂ dy) FE

e —u)de

< 2C(N, A\, p,q)e + o,(1).
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Similarly, we have

Clo) . \owa) . G(v) o,
f </RN |y|6|x—y|udy> 0 f </RN |y|ﬁ|x—y|udy> 2]? d‘

< 2C(N, A\, p,q)e + o,(1),

which finishes the proof. O

In particular, arguing as in the proof of Lemma [5.2.12] we conclude that if © # 0 and

v = 0, then

L </RN yPle — gl dy) 2p 977 Ja </RN yPle — gl dy) ap

orif v #0 and u = 0, then

Clon) ) 9lvn) G(v) o
fo </RN yPle— gl dy) 2p VYT S </RN yPle — gl dy) ap U4

In view of these last two limits, it follows from (BREZIS, 2011, Theorem 4.9), up to subsequence

that, if u # 0 and v = 0, then

Flu,) ) f(u) ( F(u) ) f(u)
</RN e ) e e i ) e 699
a.e. in RY orif v # 0 and u = 0, then
G (vn) g(vn)v G(v) g(v)v
</RN yPle — o dy) 2P </uw WPle — o dy) ap (580
a.e. in RY. To prove (5.85)), we observe that
F(u,) ) fu) ( F(u) ) f(u) ‘
K/RN o ) T e o = ) P
SR

N ylPle — ylr

Flu) o\ flu) Flu) 0
+’</RN 7Pl — ol dy) jalf </RN WPl — o dy) W“‘

—0, ae inRY,

where we are using ([5.46]) and (5.85]). Similarly, (5.86) is verified.

Now if u £ 0 and v # 0, then we have that

_ Flun) ) S) F(u) flw)
</RN ylPlz —y|» dy) wp </sz [Pl — y|» dy) 2] (5.87)

a.e. in RY and

G (vn) (vn) G(v) (v)
</RN W—Wdy) T (fw [yl =yl dy) ppt 6%
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a.e. in RY.

It follows from Lemma m that the energy functional 7y restricted to WY, satisfies
the mountain pass geometry. Therefore, there exists a (PS),,, —sequence (uy,, v,), in WY,
satisfying (5.17)), which is bounded as proved in Lemma [5.2.8] Hence, there exists (ug, vg) €
W

rad

such that, up to a subsequence, (u,,v,) — (ug,vo) weakly in W2, (uy,v,) — (ug, vo)
in LY(RY) for all ¢ > N. Moreover, combining the boundedness of (u,,v,), with the fact
that J3 (un, v,) = 0,(1), we deduce J(tn, vp)(Un, vy) = 0,(1). The next Lemma proves that

the weak limit is a critical point of [J constrained to WZ .

Lemma 5.2.13. Let (u,,v,), be a (PS).—sequence for Jy. Then, there exists (u,v) €
W\ {(0,0)}, such that J{(u,v) = 0.

Proof. In view of (u,,v,), is a sequence (PS),., then (u,,v,), is bounded in WX .. Thus,

rad*

we may assume, passing to a subsequence if necessary, there exists (u,v) € WY, such
that (u,,v,) — (u,v) in WY, (un,v,) — (u,v) in LP(RY) x LP(RY) with p > N and

(tn,vn) — (u,v), a.e. in RV see (5.46). Hence, for any (¢, ) € 01fad(IRN) oad(RY),
it follows from of Lebesgue's Dominated Convergence Theorem that (| and (5.84) hold,

implying that

j}((“»“)(%ﬁb) = 07 (()0 @D) S Orad(RN) X Orad(RN)

By density arguments one may conclude that J5(u,v)(p, %) = 0, for all (p,1) € WX ,.

Now, we claim that (u,v) # (0,0). Let us assume by contradiction that (u,v) = (0,0).

From (5.1)) and (55.46)), we note that
1 -
|un|p|vn’q — 0 and |un‘p|vn|q < 5 (’h’%) + |h|2q) = hl, a.e. in RN,

where hy € L*(RY). Hence, it follows from of Lebesgue's Dominated Convergence Theorem

that
p q —
/RN [tn [Pl |Tda = 0,(1). (5.89)

It follows from Lemma [5.2.9] that

/RN </RN |y|§iuf)y|u dy) F|S|Lg)“” da = 0n(1),
/RN </RN Iylffl;fivj)yl“ dy) (TSCTZ)U” dz = on(1).

(5.90)




176

Now, we claim that

/RN </RN |y\5G!:6 —yl dy) !( \ﬁ) tn dz = on(1),
U" g\Un — Y
o </RN WPl — o dy) g 0 o = 0n(1)

Indeed, in view of Cauchy-Schwarz type inequality in (LIEB; LOSS| 2001, Theorem 9.8), we
/ / F(uy) dy f(un) u, dz
RN \JRY [y|%|z — y|» |7
fun)un fun)un
< d d
VRN </RN yPle =y ™) el
d d
" VRN </RN Pl — ol y) a7

Thus, in order to conclude (5.91)), it is sufficient to prove that there exists a constant C' > 0

(5.91)

have that

D=

N

such that

/RN (/R Mun dy) U )un dz < C, VneN. (5.92)

N JylPle =yl ]

In fact, since ¢ = Jx(un,v,,) + 0,(1), it follows from (5.89)) and ((5.90) that

tim sup (| Vo |[§ + [ Vn|[¥)
n—oo
< lim sup (H(unyvn)HN _ N)\/ ‘un‘p|vn|q d:L‘—i-N)\/ ‘Un‘p|'0n|q dl’)
n—00 RN RY

<N lim sup Ji (tp, vy) + NAlim Sup/N [tn|P|vn]? d
n—>00 R

n—oo

| / d d
+ 5 limsup ( 2 [ylPlz — gl y) "

N G(vn) G(vn)
) / d d
TP ( yPlz— gl y) 2

=Nc. (5.93)

By virtue of Lemma [5.2.5| one has

2N — 2B—MM>N_1

n;njogp(||wn||%+||Vun||%)<me<( N a

Hence, there exist § € (0,1) and ny € N such that

<2N—25—,uaN

1
(ol + 190l 3) 7 < { =551

) (L—=4), Vn=ne. (5.94)
Using Proposition [1.0.2] we see
/RN (/R Jun)uy, dy) Jun)uy, dz <O(N, B, 1) || f (un)un||* on . (5.95)

Nyl =yl ] N2
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On the other hand, by (5.3), for any ¢ > 0, » > 1 and a > «y, applying Hélder's inequality
and using (55.6)) to derive

1f () un | on < eClu |22
2N—2B—n
2N-28—p
N

+ C_’C(E, T, Oé) {/]RN |un|% [exp (au%) _ SN—Q (OI,U)} % dZL‘}

2N—-28—pn

!
N } IN—26—n

LeC|un |32 4 CC(e, 7, @) {/]RN {exp (auév 1) — Sn_o (a,uy) dx}

2N—-28—pu

2Nrt Nt
()
RN

N
_9g_ 2Nat’ |Un| A
<eCllun 3 “+{ L [GXP (ng”v ol (M) )

2N;V2[,3—p‘
2Nat! 2 | t
—Snoo (s IV [N e | | d
M(QN_%_MH uall¥ ”Wn”Nﬂ m}
2N —2B—p
2Nrt Nt
x (/ Iun|2N2M) : (5.96)
RN

where ¢ > 1 and % + tl, = 1. From (55.94) and choosing ¢ sufficiently close to 1 and choosing

a sufficiently close to ag, we may infer

2N at’ - aN
—  (IVUIN 4+ [V, [|¥) Y < ot ( ) 1-0)<ay, Yn=n
s =5 = (IVelly + V) ) (1 -6) <a
Next, let us recall the Gagliardo-Nirenberg inequality
a=N
[Jul|? < Cllull¥IVully® . Vg > N and u € WHY(RY). (5.97)

In view of Proposition , (5.97)) and choosing r > % we have

([ =) 2ot oy (-l )T
2 2 " - -
v 1 e | P\ o —2p— YN [Vl

2N—-28—pn
2Nat’ 2wy e
— Sy [ s IV [ e — ] | d
s (e gg— el !\Vun\lzv>] }
fnll \
2 2r—2 72ﬁ7“ Un |l N ¢
<Cllunlly F IVl (el )

— 2 2N —2
=Cllun || 32|V |3 N2

which jointly with ((5.96)), implies that

Hf(un)unHQsz% eClun |2X =251 4 Oy C [ | 2521 Wy |2~ =200,
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Gathering the last estimate with (5.95) and noticing that ||u, ||, [|Vunlly < || (tn, v,)]|, we

may infer
d ndx <C(N, n < C.
Lo et an) b, 4z <o ot
Therefore, (5.92)) is true and consequently we obtain ((5.91]).
Next, applying (5.89) and (5.91)) in J; (upn, vn)(tn, v,) = 0,(1), yields that
lim sup || (wn, v,)||Y = 0. (5.98)
n—oo

From ¢ = Jx(up,v,) + 0,(1) and by using (5.89) and (5.90)), it follows that

0 < Nec = Nlimsup Jy(up,v,) = hmsup | (g, 00 |

n—oo

which jointly with (5.98) leads to a contradiction. Therefore, there exists (u,v) €
WX \{(0,0)} such that 75 (u,v) = 0. O

Lemma 5.2.14. Let (u,,v,), C WY, be a (PS).—sequence for J\. Then, there exists
(u,v) € WY \{(0,0)} such that Jy\'(u,v) = 0 and Jy(u,v) = cu,. In addition, (u,,v,) —
(u,v) strongly in W¥,.

Proof. For the same reasons as in Lemma [5.2.13] we may assume, passing to a subsequence
if necessary, there exists (u,v) € WY, such that (uy,v,) — (u,v) in WY (u,,v,) = (u,v)
in L2(RY) x LP(RY) with p > N and (u,,v,) — (u,v), a.e. in RN, Similarly to the proof of
Lemma , one has J;(u,v) = 0. Since ¢y, > 0, we split the proof into two cases.

Case 1. (u,v) = (0,0). Similar to the proof of Lemma[5.2.13

Case 2. (u,v) # (0,0). Since (u,v) # (0,0), it follows from Lemma [5.2.3] that there exists a

unique t(,.) > 0, depending on (u,v), such that
(o) U tuyv) € Ny and r?%xjA(t( v)) = T (tuw)(u, v)). (5.99)

On the other hand, in view of ([5.46)), Lemma and (BREZIS, |2011, Theorem 4.9), one

may deduce, up to a subsequence, that

(/RN mdy> F"S"g) N </sz M@) ]’i;‘? ae inRY,  (5.100)

and

_ Glua) ) Gn) G NGO o
</RN lylP |z — y|» dy) P </RN Pz — gl dy) w2 RY.  (5.101)
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Since J'(u,v)(u,v) = 0 and according to ((5.20), (5.85)), (5.86]), (5.87)), (5.88)), (5.99), (5.100)
and (5.101]), it follows from Fatou's Lemma that

my < o, ST (1) — ;]JA(u ) (u,v) = p”A/ lufP|v]? do — A/ ufP|o|? do
) - iR ()
* o </RN PIHEETIE dy) FE——
1 1
G(v) [NQ(U)U - QG(U)]
* o (fnw MHEETG dy) O
<lim inf (p i q)\/ [t P 0] daz — )\/ ]un]p\vn\qu>

h i </ Fl(uy) > [Nf(un)un - éF(“n)} o

dy
N y|Ple — yl |z|?

+ lim inf

n—oo

+ lim inf . (/R G(vn) dy) L{/g(vn)vn _ ;G(Un)] dz

e v Pl o]
:ligggolf {j,\(un,vn) — ]tji(un,vn)(un,vn)} =c<my < ep,,
which implies that J(u, v) = cp,,. Combining this with Fatou's Lemma and Lemma , we
see that

1 1
v 1 oI < lim inf 2l (e, o) 1Y < lim sup ] (un, o) I

1 F F
<limsup [j (Un, vp) +)\/ |t |P |0 |9 Az + = : (/ () d ) (tn) da
R

n-s00 N JylPla —yl# |z|”
3 fo (e e ) i 0
Cex
+; RN </RN Iylﬂllzﬁ(zi)yl“ dy) Tx(r;) & +; RN </RN Iylﬁft(v—)yl“ dy) Cll(ll;) &
[l

i.e., limy, oo || (tn, v,) ||V = ||(u,v)]|"V. Putting this together with the fact that (u,,v,) —
(u,v) and WX, is uniformly convex, it follows that (u,,v,) — (u,v) in WX ,. It finishes the

proof of the Lemma. O

In view of Proposition one has that if (u,v) is a critical point of 7, restricted
to WY ,, then (u,v) is a critical point of Jy on W¥. Therefore, Lemma [5.2.14| ensures the

existence of a nontrivial solution for System ([S})). It follows from assumption (a) and ((5.19)
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that F'(|s|) > F(s) for all s € R. Hence, J\(|ul, |[v]) < Ti(u,v), for (u,v) € WY, Let

(u,v) € N, be the ground state obtained in Lemma [5.2.14] By using Lemma [5.2.3] there
exists to such that (to|ul, to|v|) € Ny. Thus, from (5.24) we deduce

ey < Jaltolul, tolv]) < Ta(tou, tov) < max Ji(tu, tv) = Ji(u,v) = ey,

which implies that J,(to|ul,to|v]) = cu,. Therefore, we may suppose that (u,v) is a
nonnegative solution (or radial ground state solution) for System (|S,]).

Next, we will check that if (u,v) is a solution of System ([S,]), then (u,v) belongs to
[L=(RN) N CHY(RM)]?, for some v € (0, 1).

Lemma 5.2.15. Let (u,v) be a solution of System (S,). Then, (u,v) € [L®(RY) N
CY(RM)?, for some v € (0,1).

Proof. We have the following two claims:

Claim 1. If u and v satisfy

- F(u) f () - .
~Anu+ [uN 2 = </RN PRETE— dy) PE + ApluP2ulv]?,  in RY, (5.102)

then, u € L>®(RY).

Claim 2. If u and v satisfy

- G(v) 9(v) o
~Apv+ NP = (/RN T dy) B + Aq|ul?|v|*%v, in RY,

then, v € L=(RY).

Proof of the Claim 1. We follow (ALVES; SHEN, 2023, Theorem 1.6). By setting s = r =

7= % and t = 3§ = % it is not hard to see that
1 1 26+4u g 1 pB+u
l4-—- d 222tk
+ - + N an N < E < N
Since F'(u) € L"(RY), it follows from Proposition [1.0.2 that
1 / F(u) s N
dy € L3 (RY). 5.103
ol e Tyl — g ¥ € V) (5103)

Now, note that if p > N_QQZE_M, then KN*Q)H;*ZB*“]’; > N. Hence, it follows from

Proposition [5.0.1), (55.4) and Hélder's inequality that

(N=2)+N—-28—p)p

[P de<cer [ T g
RN RN

+CC(a,r,€)P /]RN || (TP [exp (au%) — SN2 (oz,u)r3 do < 400,
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flu) € PRYY, Wp > — 2N

> N5 (5.104)

We claim that there exists ¢y > 0 such that

1 F(u)

h(z) = d AplulP~2ulv]? € LERY), Vi€ ((1— )8, 8).
()= 5 fon T g 9000+ Al ulol? € LR (1 - e0)3.9)
(5.105)
In fact, let ¢y > 0 be such that
=8 ! 2N Ve € (0, eo) (5.106)
B X N_QB_M7P q.(, € ,€0)- .

Note that (1 —¢€)s € ((1 — €9)3, §). One may deduce

iy 1 F(u)
h(l e)sd < A / / d
o <€) [ |5 e e =y

+ C’(e, §))\(1—€)§p(1—6)§ /RN(|u|(p—1)(1—6)§|U|(q—l)(1—e)§v(1—e)§) dz

(1-0)s s
| f ()| da

Cl(e, 8) Ay + Ce, 5)AI8p1=03 4, (5.107)

In view of (5.103), (5.104)), (5.106]) and Hélder's inequality, we obtain

1 F(u)
< d
o </RN o o T =

Moreover, using (5.1)), (5.106) and Hélder's inequality, we have

§dx) : (/RN () = dx)6<+oo. (5.108)

elp=1)
A2 < (/ |u‘2p —e€)$ dx) 2p (/N ‘,U|2(q 1 E)s dx)
RN R

x(/ o] S)de) < +00. (5.109)
RN

Therefore, (5.107)), (5.108]), (5.109) imply that (5.105) holds.
Finally, in light of standard regularity theory, we conclude that u € W2/(RYN), { €

((1 — €0)3,3). Since that ; — % < 0 for € sufficiently small, it follows from (BREZIS, 2011,
Corollary 9.13) that Wz’f(]RN) C L>=(R"), which finishes the proof of Claim 1. Analogously
one may check the proof of Claim 2.

Since the solution (u,v) € L®(RM) x L>*(R"™) and { > N, we can apply (BREZIS,
2011, Corollary 9.13) with m = 2, k = 1, v = 6 and p = t, to conclude that
(u,v) € CH(RYN) x C7(RY). O
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5.2.5.1 \Vectorial ground state

It is important to emphasize that unlike to the linearly coupled case (see Remark [5.1.5)),
the solution of System (|S,)) could be semitrivial, i.e., of type (u,0) or (0,v). Now we will
prove that for A sufficiently large the nontrivial solution obtained in Lemma[5.2.14| can not be

semitrivial.

Lemma 5.2.16. There exists Ao > 0 such that if A > Ay, then System (1S,]) admits a solution

(u,v) which is vectorial, i.e., w # 0 and v # 0.

Proof. We begin by studying the following equation
F
—Ayu+ |ulVPu = (/ () dy> f) in RY. (SY)
R

N [yl — yl |z
Associated to equation , we have the energy functional 7 : WLV (RY) — R

g =l =5 [ ([ e an) T a

2 JrN \JrN Jy|Plz — y|#

Recalling the proof of Lemma m it is not hard to check that the functional J has the

mountain pass geometry. We introduce the mountain pass level as

mj = inf max Jo(v(t)), where I':= {y € C([0, 1]; Wi (R™)) : 7(0) = 0, J; (v(1)) < 0}

~€T te[0,1] rad

and the Nehari energy level for equation given by

ey = inf Ji(u) and NG = {ue Wil (RY)\ {0}; (7)) (w)u = 0} .

0 ueN}
Using similar arguments from the previous sections one may deduce that m{ = c}\fol. Note that
the same arguments used in this work holds true for . Thus, let ug € ./\/’01 be a nonnegative
solution for at Nehari level, i.e., (J3) (ug) = 0 and Jy (ug) = ckfol. Furthermore, when
A = 0, the equation in becomes equation . Hence, for A = 0, we may argue in
a similar way to the proof of Lemma to conclude that uy € L®°(RY) N CY(RY). In
light of Strong Maximum Principle, we conclude that u is a positive ground state solution for
. By similar arguments used in the proof of Lemma , for any ug € Ny, we deduce

that

Jo (tug) is increasing for t € (0,1),
Jo (tug) is decreasing for ¢ € (1, +00),

Jo (tug) — —00, as t — +oo.
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Consequently, we have that Jj (ug) = maxo Jy (tug). Analogously, we can introduce JZ,
m3, NZ, c¢3 and conclude that there exists a positive solution vy € NZ at Nehari level for the

equation

Ay N2 = (/R G(“)dy) 90) g,

N ylPly — x| ||
In view of Lemma|5.2.3] there exists t, > 0, depending on (ug, vp), such that (tgug, tovg) € Ny.

Moreover, since p + ¢ > N, we obtain the following estimate

CN, S ax T (tug, tvg)

0

S d d
2 </ [yl — gl y) B

1 G(tvo) G(tvo)
— — d d
2 </ ylPlz — gl y) .

1
<I?§)X{NtN||(uo,vo)||N — \tPTa /RN |u0|p|vo|qu}

1
< r?gx{NtNH(uO,vO)HN = [ ol da

N(p+a)

1 (p+9—N)
= —T (p;\—fq_1> [ — [0, vo) 1] — 0, as A — +o0.
(p+ q)r+e=~ APFa ([ uolPlvg|? da) pha
Therefore, there exists A\g > 0, such that
cy, < min {c/l\[ol, 0/2\[02} ;YA Z= o (5.110)

Now, let (u,v) be a solution (radial ground state solution) for System at Nehari level,
with A > X\ (see Lemma [5.2.14)). Suppose, by contradiction, that this solution is semitrivial,

for instance, (u,0). Since (J3)"(v)u = J{(u,0)(u,0) = 0, it follows that u € Nj. Hence,
min {cjlvol,cjzvoz} < c}\/& < Ty (u) = Ta(u,0) = cps
which contradicts ((5.110]). Therefore, the solution is vectorial. ]

Proof of Theorem[5.1.2l Since (u,v) is a nonnegative solution for System (|S,]) and in view

of Lemmas|5.2.15/and [5.2.16 it follows from Strong Maximum Principle that (u, v) is positive,

which finishes the proof of Theorem [5.1.2 O]
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APPENDIX A - PRINCIPLE OF SYMMETRIC CRITICALITY

In this appendix, we present, for N > 2, due to the lack of Hilbert space structure, a
variant of Palais principle of symmetric criticality. This results is related to Chapter [5]

Let O(N) denotes the group of orthogonal linear transformations of RY. Let G be a
subgroup of O(N).

The action of G over a real Banach space (X, || - ||x) is said to be an isometry on X if
llgullx = |lu|lx, for all g € G, for all u € X.

Let us denote the class of all G—invariant C! functional on X by
CL(X) = {J € C': J(gu) = J(u), forallge€ Ganduc X}.

The linear subspace of G—symmetric (or invariant) points of X and X* are defined as common
fixed points of G
Fiz(G) :={ue X : gu=u,Vg € G},
Fiz(G), ={ve X" : gv* =v",Vg € G}.
Consider the following principle:

(P) : Let X be a Banach space and G an isometric action on X . If (J u =0 for

all J € CL(X), then J'(u) = 0 and u € Fiz(G).

/

Proposition A.0.1. For a uniformly convex Banach space X the principle (P) holds true.

Proof. In light of (PALAIS, 1979, Proposition 4.2), it is enough to show that (Fiz(G))* N
Fiz(G), = {0}. Let I’ be a duality map from X to X*. It is not hard to see that F" is surjective
as X is reflexive and from uniform convexity of X, one can conclude that F is strictly monotone
and hence F is injective (see (CIORANESCU, 1990)). Thus, F'~! is a single valued map in X*,
i.e., F71(2*) € Fiz(G) for all 2* € Fiz(G),. Now, if 2* € (Fiz(G))* N Fixz(G),, then the
facts that 2* € (Fiz(G))t and F~1(2*) € Fix(G) imply that 2* = 0. This completes the
proof. n

Let us recall that the energy functional J, : WY — R associated to System ([S))) is



190

CHWH R) and it is defined as

i, 0) = o) |¥ =X [ JuP o dz
1 (/R F<u<y>>dy> Flu(z)) o

2 Jov \ S TylPla — g ) " Jal?
1 Glu(y) |\ Glu(x)

— = P dz.
2 </ wlPle — b ) TP

It is well known that the space W is reflexive and strictly convex. In what follows, we define

the action of G on WY as

g(u, ) (@) = (u(g™'x),v(g™"'@)). (1.1)

Note that this action is a continuous map

GxX — X
l9,u] = gu
satisfying
(1) 1-u=nu,
(1) (gh)u = g(hu),
(171) u > gu is linear.

Moreover, the action of G is isometric and Fiz(G) = WXY,. Next, we verify that J, €
CLWN) e, Ta(g(u,v)) = Jr(u,v) for every g € G. Initially, we will prove that

F(gu(z)) _ Fluy)F(u(x) o
fo o 5 |y|ﬁ|x—y|ﬂ|xrﬁ s = [ o Tyl = glelafr e o€ (12

and

G(gu(z)) B Glu(y)Glu(@))
/RN/RN Iylﬁlx—y|u|a:|ﬁ dude = [ [ WPl — gl Wde YoeGo (13)

In fact, from the definition ([1.1)) we have

VE(u(gta))
dydzx. 1.4
Lok |y|ﬁ|x—y|~|x|ﬁ r= [ f ™ |y|ﬂ|x—y|~|x|ﬁ yda. - (14)

-1

Let us consider the change of variables, z; = ¢~ 'z and 2 = ¢g~'y, or yet, g1 = z and

gzy = y. Since that g7' € O(N) (i.e., |detg7!| = 1), we have dz; = dz and dz, = dy,
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which jointly with ((1.4)) imply that

ol o= o
RN /RN \y!5|ﬂf—y|“\fc|ﬁ RN /RN IQZQV*Igzl g#|"lgz|?
_ / / JF@=)) o 4.
RN JRN |Z2|5|g Zl — )]

_/ / Fu(z1)) dzodzg
RN JRN |22|f3|21 — 29|M| 21 |P ’

where we used the fact that g is an isometry in RY, i.e., |gz| = |z|, for all z € RY. This

proves the equality in ((1.2)). Analogously, it turns out that (1.3) is also true. In a similar way,

it is verified

(g, go)I¥ = [ (9(gu@)” +lgu@) o+ [ (V(go@)| +lgv(@)|") da
= [ (Vu@ + @) de+ [ (Vo@)Y + po()]) do
= Il v
and
[ gu@Plgo@)itde = [ fu@@)pPlog)) e,

Thus, Jy is G—invariant functional. Therefore, it follows from Proposition that the

critical points of 7, restricted to WX, are critical points of 7y in W,
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