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RESUMO

Neste trabalho, investigamos a existência de soluções positivas para certas classes de
equações de Schrödinger e sistemas acoplados com não linearidades do tipo Stein-Weiss. No
caso escalar, analisamos classes de equações que envolvem perturbações no termo de Stein-
Weiss com potencial que pode se anular no infinito ou ser constante igual a 1. Consideramos
tanto o caso de uma não linearidade geral, com crescimento subcrítico que satisfaz certas
condições apropriadas, quanto o caso homogêneo crítico no sentido da desigualdade de Stein-
Weiss. Além disso, exploramos duas classes de sistemas acoplados. A primeira classe envolve
um sistema linear, com potenciais que podem se anular no infinito e não linearidades gerais com
crescimento subcrítico, também atendendo a condições específicas. A segunda classe trata-
se de um sistema não linear acoplado, cujas não linearidades gerais apresentam crescimento
exponencial crítico no sentido da desigualdade de Trudinger-Moser. Estudamos a existência de
soluções positivas e a regularidade das soluções para este sistema. Para alcançar os resultados,
empregamos métodos variacionais, utilizando técnicas de minimização sobre a variedade de
Nehari, truncamentos combinados com a técnica de penalização de Del Pino e Felmer, e o
método de iteração de Moser para obter estimativas 𝐿∞. Além disso, ao lidar com o sistema
não linear acoplado, apresentamos uma alternativa aos argumentos padrão, baseada em uma
variante do princípio de criticalidade simétrica de Palais, em vez dos argumentos tradicionais
de vanishing-nonvanishing e shifted sequences de Lions, que não são aplicáveis, devido o duplo
peso presente na convolução do tipo Stein-Weiss.

Palavras-chaves: Não linearidade do tipo Stein-Weiss. Interação não local com peso duplo.
Expoente supercrítico. Iteração de Moser. Crescimento exponencial crítico. Desigualdade de
Trudinger-Moser.



ABSTRACT

In this work, we investigate the existence of positive solutions for certain classes of
Schrödinger equations and coupled systems with Stein-Weiss type nonlinearities. In the scalar
case, we analyze classes of equations that involve perturbations in the Stein-Weiss term with
a potential that may vanish at infinity or remain constant at 1. We consider both the case
of a general nonlinearity with subcritical growth that satisfies certain appropriate conditions,
and the critical homogeneous case in the sense of the Stein-Weiss inequality. Additionally, we
explore two classes of coupled systems. The first class involves a linear system with potentials
that may vanish at infinity and general nonlinearities with subcritical growth, also meeting
specific conditions. The second class deals with a coupled nonlinear system, where the general
nonlinearities exhibit critical exponential growth in the sense of the Trudinger-Moser inequality.
We study the existence of positive solutions and the regularity of solutions for this system. To
achieve these results, we employ variational methods, utilizing techniques such as minimization
over the Nehari manifold, truncations combined with the penalization technique of Del Pino
and Felmer, and Moser’s iteration method to obtain 𝐿∞−estimates. Furthermore, when dealing
with the coupled nonlinear system, we present an alternative to the standard arguments, based
on a variant of Palais symmetric criticality principle, instead of the traditional vanishing-
nonvanishing and shifted sequences arguments of Lions, which are not applicable, due to the
double weight present in the Stein-Weiss type convolution.

Keywords: Stein-Weiss type nonlinearity. Double weighted nonlocal interaction. Supercritical
exponent. Moser iteration. Critical exponential growth. Trudinger-Moser inequality
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1 INTRODUCTION

In 1958, Stein and Weiss proved the so-called weighted Hardy-Littlewood-Sobolev
inequality, which generalizes the classical Hardy-Littlewood-Sobolev inequality in (SOBOLEV,
1938) by inserting two weights |𝑥|−𝛽 and |𝑦|−𝛼. Being more precise, it was proved in (STEIN;

WEISS, 1958) that there is a sharp constant 𝐶(𝑟, 𝑠,𝑁, 𝛼, 𝛽, 𝜇) such that⃒⃒⃒⃒
⃒
∫︁
R𝑁

∫︁
R𝑁

𝑔(𝑦)ℎ(𝑥)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥
⃒⃒⃒⃒
⃒ ⩽ 𝐶(𝑟, 𝑠,𝑁, 𝛼, 𝛽, 𝜇)‖𝑔‖𝑟‖ℎ‖𝑠, (1.1)

where 𝑔 ∈ 𝐿𝑟(R𝑁), ℎ ∈ 𝐿𝑠(R𝑁) and 𝑟, 𝑠, 𝛼, 𝛽, 𝜇 satisfy the following conditions:

1 < 𝑟, 𝑠 < +∞, 0 < 𝜇 < 𝑁, 𝛼 + 𝛽 ≥ 0, 0 < 𝛼+ 𝛽 + 𝜇 ≤ 𝑁,

1
𝑟

+ 1
𝑠

+ 𝛼 + 𝛽 + 𝜇

𝑁
= 2 and 1 − 1

𝑟
− 𝜇

𝑁
<
𝛼

𝑁
< 1 − 1

𝑟
.

In particular, if we consider 𝑔 = ℎ = |𝑢|𝑞, 𝛼 = 𝛽 and 𝑟 = 𝑠, in inequality (1.1), then
2𝛼 + 𝜇 ⩽ 𝑁 and ∫︁

R𝑁

∫︁
R𝑁

|𝑢(𝑦)|𝑞|𝑢(𝑥)|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦d𝑥 < ∞,

provided
2*𝛼,𝜇 := 2𝑁 − 2𝛼− 𝜇

𝑁
⩽ 𝑞 ⩽

2𝑁 − 2𝛼− 𝜇

𝑁 − 2 =: 2*
𝛼,𝜇, (1.2)

where 2*
𝛼,𝜇 is called the upper critical Sobolev exponent (𝑁 ⩾ 3) and 2*𝛼,𝜇 the lower critical

Sobolev exponent by (DU; GAO; YANG, 2022), in the sense of (1.1). If 𝑁 = 2 then 2*
𝛼,𝜇 = ∞.

For details, see Remark 2.1.16 in Chapter 2 of this thesis.
Given its importance in applications to harmonic analysis and partial differential equations,

the Stein-Weiss inequality has recently attracted considerable attention. In particular, there has
been a surge in research on elliptic problems motivated by this inequality. A notable example is
the work by (DU; GAO; YANG, 2022), where the authors studied the following equation involving
the upper critical Sobolev exponent

−Δ𝑢 = 1
|𝑥|𝛼

(︃∫︁
R𝑁

|𝑢(𝑦)|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢, in R𝑁 , (1.3)

where the convolutionary nonlinearity with double weight is called the Stein–Weiss type. They
established the existence of nontrivial solutions and investigated qualitative properties of the
solutions of (1.3), such as, regularity and symmetry. Moreover, the authors have studied the
existence of nontrivial solutions for the following class of equations

−Δ𝑢+ 𝑢 = 1
|𝑥|𝛼

(︃∫︁
R𝑁

|𝑢(𝑦)|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢, in R𝑁 , (1.4)
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where 𝑁 ⩾ 3, 0 < 𝜇 < 𝑁 , 𝛼 ⩾ 0, 0 < 2𝛼 + 𝜇 ⩽ 𝑁 and for 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇.

It is obtained regularity, existence, symmetry of solutions and nonexistence for 𝑝 ⩾ 2*
𝛼,𝜇

or 2*𝛼,𝜇 ⩾ 𝑝. They still established a nonlocal version of the concentration-compactness
principle. In (DE ALBUQUERQUE; SANTOS, 2023), the authors have considered the Schrödinger
problem involving Stein-Weiss type nonlinearity and a potential which may vanishes at infinity.
In (BISWAS; GOYAL; SREENADH, 2023b) it was considered the case when the nonlinearity
has critical exponential growth in Trudinger-Moser inequality sense. For quasilinear critical
Kirchhoff-Schrödinger Stein-Weiss problem, we refer (BISWAS; GOYAL; SREENADH, 2023a) for
existence of infinitely many nontrivial solutions via concentration-compactness argument. A
fractional Kirchhoff Hardy problem combining weighted Choquard and singular nonlinearity is
discussed in (GOYAL; SHARMA, 2022). We refer to (ZHANG X. TANG, 2021) for an Anisotropic
Choquard problem. In (YANG; ZHOU, 2021) the existence, nonexistence, regularity, symmetry
and asymptotic behavior of solutions for a coupled Schrödinger system with Stein-Weiss type
convolution part have been explored.

Equation (1.4) when 𝛼 = 𝛽 = 0, reduces to the following classic Choquard equation

−Δ𝑢+ 𝑢 =
(︃

1
|𝑥|𝜇

* |𝑢|𝑝
)︃

|𝑢|𝑝−2𝑢, in R𝑁 , (1.5)

where * denotes the convolution operator. The term 1
|𝑥|𝜇 can be reinterpreted as the classical

Riesz potential. Consequently, equation (1.5) is closely related to the Choquard equation,
which arises from the study of Bose-Einstein condensation. This relationship can be utilized
to describe finite-range many-body interactions among particles. Equation (1.5) has a strong
physical meaning and appears in several physical contexts, for example, in the relevant case
in which 𝑝 = 2, 𝑁 = 3 and 𝜇 = 1, equation (1.5) boils down to the special case

−Δ𝑢+ 𝑢 =
(︃

1
|𝑥|

* |𝑢|2
)︃
𝑢, in R3. (1.6)

Equation (1.6) is called Choquard-Pekar equation. This equation appeared first in 1954,
(PEKAR, 1954), where Pekar studied the quantum theory of a polaron at rest. Successively,
in 1976, Choquard adopted this equation to characterize an electron trapped in its own hole,
in a certain approximation to the Hartree-Fock theory for the one-component plasma, see
(LIEB, 1976/77). In 1996, Penrose (PENROSE, 1996), proposed, in a particular case, a model
of self-gravitating matter in a programme in which quantum state reduction is regarded
as a gravitational phenomenon and, in that context, it is referred as Schrödinger-Newton
equation. Finally we observe that if 𝑢 solves equation (1.6), then the function Ψ defined by
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Ψ(𝑡, 𝑥) = 𝑒𝑖𝑡𝑢(𝑥) is a solitary wave of the focusing time-dependent Hartree equation

𝑖Ψ𝑡 + ΔΨ = −
(︃

1
|𝑥|

* |Ψ|2
)︃

Ψ, in R+ × R3.

Thus, (1.6) is also known as the stationary nonlinear Hartree equation. In the pioneering
work (LIEB, 1976/77), proved the existence and uniqueness of positive solutions to (1.6).
Later, multiplicity results for (1.6) were obtained by (LIONS, 1980; LIONS, 1982) by variational
methods.

Motivated by the physical relevance, many authors studied the equation (1.5) in dimension
𝑁 ≥ 3 and and nonlinearity with subcritical or critical polynomial growth in the sense of Hardy-
Littlewood-Sobolev inequality. In (ACKERMANN, 2004) has considered Schrödinger equation
with nonlocal superlinear part and shown the existence of infinitely many solutions. In (MOROZ;

SCHAFTINGEN, 2013), the authors have studied the existence of positive ground state solution
as well as they have discussed the regularity and decaying behavior of such solutions. Moreover,
considering a suitable control on the potential term in (MOROZ; SCHAFTINGEN, 2015b), they
have also studied existence and nonexistence results where the convolution term involves critical
exponent with respect to the Hardy-Littlewood-Sobolev inequality. In (MOROZ; SCHAFTINGEN,
2015a), it is proved the existence of a ground state solution under assumptions of Berestycki-
Lions type. We also refer the readers to (BUFFONI; JEANJEAN; STUART, 1993; ALVES; YANG,
2014; ALVES et al., 2016a; ALVES; YANG, 2016; ALVES; FIGUEIREDO; YANG, 2016; SCHAFTINGEN;

XIA, 2017; GAO; YANG, 2018; DU; YANG, 2019; GAO et al., 2020; CINGOLANI; GALLO; TANAKA,
2022) and references therein, specially (MOROZ; SCHAFTINGEN, 2017), for a meaningful review
of Choquard equations.

Naturally, the results were extended to coupled systems. For instance, in (XU; MA; XING,
2020) the authors studied the existence and asymptotic behavior of vector solutions for the
following class of linearly coupled Choquard-type systems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ𝑢+ 𝜆1𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢(𝑦))
|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢(𝑥)) + 𝜆𝑣, in R𝑁 ,

−Δ𝑣 + 𝜆2𝑣 =
(︃∫︁

R𝑁

𝐺(𝑣(𝑦))
|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣(𝑥)) + 𝜆𝑢, in R𝑁 ,

where 𝑁 ≥ 3, 𝜆1, 𝜆2, 𝜆 > 0 and nonlinearities 𝑓, 𝑔 with polynomial growth. For other works
concerned with coupled systems involving Choquard type equations, we refer the readers to
(CHEN; LIU, 2018; DE ALBUQUERQUE et al., 2019; XU; MA; XING, 2020; SUN, 2021) and references
therein.
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Inspired by the preceding discussion, we decided to study in this thesis certain classes
of Schrödinger equations and coupled systems with Stein-Weiss type nonlinearities. In the
following, we outline the main results that will be explored in the subsequent chapters of this
thesis.

In Chapter 2, inspired by (GAO; YANG, 2017; AO, 2019; PAN; LIU; TANG, 2022), we are
going to study the existence of ground states for the following class of perturbations of the
Stein-Weiss convolution

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
+ 𝑓(𝑥, 𝑢), in R𝑁 , (1.7)

where 𝑁 ⩾ 3, 0 < 𝜇 < 𝑁 , 𝛼 ⩾ 0, 0 < 2𝛼+𝜇 ⩽ 𝑁 , 2𝑁−2𝛼−𝜇
𝑁

=: 2*𝛼,𝜇 < 𝑠 ⩽ 2*
𝛼,𝜇 := 2𝑁−2𝛼−𝜇

𝑁−2

and under suitable assumptions on different types of nonlinearities 𝑓 . In (PAN; LIU; TANG, 2022),
the authors examined a variant of Problem (1.7) without the double weight, i.e., when 𝛼 = 0.
They further assumed that 𝑠 = 2*

0,𝜇, 𝑓(𝑥, 𝑢) = 𝜆|𝑢|𝑞 with 2 < 𝑞 < 2*, and proved the existence
of a positive radial solution for sufficiently large 𝜆. In the case where 𝜆 = 1, the author in
(AO, 2019) established the existence of a nontrivial solution. Our objective is to investigate
Problem (1.7) involving double weighted nonlocal terms, specifically in the scenario where
𝛼 ̸= 0, considering different types of 𝑓 , namely:

(𝑓1) 𝑓(𝑥, 𝑢) = 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, 2*𝛼,𝜇 < 𝑝 < 2*

𝛼,𝜇;

(𝑓2) 𝑓(𝑥, 𝑢) = 𝜆
𝑢

|𝑥|2
;

(𝑓3) 𝑓(𝑥, 𝑢) = 𝜆|𝑢|𝑝−2𝑢, 2 < 𝑝 < 2*;

(𝑓4) 𝑓(𝑥, 𝑢) = 𝜆|𝑢|𝑞−2𝑢, 𝑞 ⩾ 2*,

where 𝜆 > 0 is a parameter. When 𝜆 = 0, Problem (1.7) becomes (1.4) without the term 𝑓

with 𝑠 = 2*
𝛼,𝜇 and as proved in (DU; GAO; YANG, 2022), there does not exist any nontrivial

solution. Furthermore, we also study the version of Problem (1.7) with 𝑓 satisfying (𝑓1) above,
however for the critical case in the sense of the Sobolev inequality, i.e., we consider the following
class of Schrödinger equations

−Δ𝑢+ 𝑢 = |𝑢|2*−2𝑢+ 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, in R𝑁 , (1.8)

where 2* = 2𝑁
𝑁−2 . We emphasize that the key to addressing the critical case of the double

weighted nonlocal interaction, together with the hypotheses about 𝑓 , was the utilization of
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the minimizing function 𝑈(𝑥) of 𝑆𝛼,𝜇 (see (2.12) in Chapter 2) as established in (DU; GAO;

YANG, 2022, Theorem 1.3), this function satisfies (1.3), with∫︁
R𝑁

|∇𝑈 |2 d𝑥 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 = 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 .

In addition to this challenge, we draw attention to the case (𝑓4), where dealing with the
supercritical exponent 𝑞 ⩾ 2* requires the application of a truncation argument to define the
associated energy functional properly. For further details, refer to Subsection 2.5.1 of Chapter
2. Our approach to solving Problems (1.7) and (1.8) is variational, relying on a minimization
technique over the Nehari manifold. Additionally, to address the case (𝑓4) in Problem (1.7),
we combine the truncation argument with 𝐿∞−estimates. The results presented in Chapter
2 are novel and extend the existing solutions found in (AO, 2019; PAN; LIU; TANG, 2022; DU;

GAO; YANG, 2022) in the following ways:

1. If 𝑓 ̸= 0, 𝛼 = 0, then our results complete the picture of (AO, 2019; PAN; LIU; TANG,
2022), for 2*𝛼,𝜇 < 𝑠 ⩽ 2*

𝛼,𝜇;

2. If 𝑓 ̸= 0, 𝛼 ̸= 0, then our results complete the picture of (AO, 2019; PAN; LIU; TANG,
2022; DU; GAO; YANG, 2022).

In Chapter 3, drawing inspiration from (ALVES; SOUTO, 2012; ALVES; FIGUEIREDO; YANG,
2016; CARDOSO; DOS PRAZERES; SEVERO, 2020; DE ALBUQUERQUE; SANTOS, 2023), we explore
the existence of positive solutions for the following class of Schrödinger equations with Stein-
Weiss type nonlinearity.

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛼

+ 𝜓(𝑥, 𝑢), in R𝑁 , (1.9)

where the potential 𝑉 : R𝑁 → R decays to zero at infinity and 𝐹 is the primitive of function
𝑓 . Later, we will introduce the assumptions on 𝑉 (𝑥), 𝑓 and 𝜓. Furthermore, we also study
a special version of Problem (1.9) with the same 𝜓, however the nonlinearity 𝑓 assumes
the homogeneous critical case in the sense of the Stein-Weiss inequality (1.1). Precisely, we
consider the following class of Schrödinger equations

−Δ𝑢+ 𝑉 (𝑥)𝑢 = 1
2*

𝛼,𝜇

(︃∫︁
R𝑁

|𝑢(𝑦)|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢(𝑥)|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ 𝜓(𝑥, 𝑢), in R𝑁 , (1.10)

where 2*
𝛼,𝜇 = 2𝑁−2𝛼−𝜇

𝑁−2 and the potential 𝑉 (𝑥) is a radial function, i.e., 𝑉 (|𝑥|) = 𝑉 (𝑥), for all
𝑥 ∈ R𝑁 . In order to find solutions of Problems (1.9) and (1.10), our intention is to study it
considering the following types of hypotheses about 𝜓:
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(𝜓1) 𝜓(𝑥, 𝑢) = 𝜆(𝑥)|𝑢|𝑞−2𝑢, and 𝜆(𝑥) a nonnegative function such that 𝜆(𝑥) ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁);

(𝜓2) 𝜓(𝑥, 𝑢) = 𝜆

𝑞

(︃∫︁
R𝑁

|𝑢|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑞−2𝑢

|𝑥|𝛼
, 𝜆 ⩾ 0 is a parameter

with 𝑞 ⩾ 2*
𝛼,𝜇 and 𝑓(𝑢) is a general nonlinearity with subcritical growth satisfying some

appropriate conditions and with 𝑉 (𝑥) that may vanish at infinity, i.e., 𝑉 (𝑥) → 0 as |𝑥| → ∞,
in the sense of (ALVES; SOUTO, 2012), where the authors studied existence of solutions for the
following equation

−Δ𝑢+ 𝑉 (𝑥)𝑢 = 𝑔(𝑢), in R𝑁 , (1.11)

where 𝑉 (𝑥) has the following decay behavior

1
𝑅4 inf

|𝑥|⩾𝑅
|𝑥|4𝑉 (𝑥) ⩾ Λ > 0. (1.12)

It is important to mention that (ALVES; SOUTO, 2012) was extended in several directions, for
instance: (DO Ó; GLOSS; SANTANA, 2015) for quasilinear problems, (ALVES; FIGUEIREDO; YANG,
2016) for Choquard-type equation, (DO Ó; SOUTO; UBILLA, 2020) for Kirchhoff-type equation,
(DE ALBUQUERQUE; SILVA; SOUSA, 2022) fractional linearly coupled Choquard-type system, etc.
In these works, the decay (1.12) was adapted to the respective class of problems. Inspired by
(ALVES; SOUTO, 2012), the existence of solutions is obtained by applying variational methods
jointly with the penalization method in the spirit of (DEL PINO; FELMER, 1996). Our focus is to
study the Problem (1.9), assuming that the potential 𝑉 (𝑥) satisfies the following hypotheses:

(𝑉1) 𝑉 (𝑥) is positive and there exists 𝑅0 > 1 such that

1
𝑅

(𝑞−2)(𝑁−2)
0

inf
|𝑥|⩾𝑅0

|𝑥|(𝑞−2)(𝑁−2)𝑉 (𝑥) =: Λ > 0;

We will assume that 𝑓 : R → R+ is a nonzero continuous function and satisfies the
following general hypotheses:

(𝑓1) lim𝑡→0+
𝑡𝑓(𝑡)
𝑡𝑞

< ∞ and lim𝑡→∞
𝑡𝑓(𝑡)
𝑡𝑝

= 0 for some 𝑝 ∈
(︃

1, 2(𝑁 − 𝛼− 𝜇)
𝑁 − 2

)︃
;

(𝑓2) there exists 𝜃 ∈ (2,min
{︁
2*

𝛼,𝜇, 4
}︁
), such that 0 < 𝜃𝐹 (𝑡) ⩽ 2𝑓(𝑡)𝑡, for all 𝑡 ⩾ 0, where

𝐹 (𝑡) =
∫︀ 𝑡

0 𝑓(𝜏)d𝜏 .

To finish the Chapter 3, we will study the Problem (1.10), with the following hypotheses
about the potential 𝑉 (𝑥):
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(𝑉2) 𝑉 (𝑥) radial (i.e., 𝑉 (|𝑥|) = 𝑉 (𝑥)), and there exists 𝑅̂0 > 1 such that

inf
|𝑥|⩾𝑅̂0

|𝑥|(2*
𝛼,𝜇−2)( 𝑁−2

2 )𝑉 (𝑥) =: Λ̂ > 0.

In order to deal with the nonlocal term and supercritical term in Problems (1.9) and (1.10),
we use the following hypotheses for 𝛼, 𝜇:

𝑁 ⩾ 3, 0 < 𝜇 < 𝑁, 𝛼 ⩾ 0, 0 < 2𝛼 + 𝜇 < min
{︂
𝑁 + 2

2 , 4
}︂
.

We encountered some obstacles while investigating Problems (1.9) and (1.10), primarily
due to the presence of the Stein-Weiss term combined with a supercritical term, which
introduced additional difficulties. Firstly, because of the supercritical term, we needed to
apply a truncation argument to properly define the associated energy functional. Unlike in
(CARDOSO; DOS PRAZERES; SEVERO, 2020), however, we were unable to simultaneously apply
truncation and penalization to both terms. Our approach involved applying truncation to the
supercritical power and penalization to the Stein-Weiss term separately. This strategy, detailed
in Subsection 3.2.1, introduced significant difficulties throughout the chapter.

To overcome these difficulties, we introduced two auxiliary problems to restore some
compactness, while carefully controlling the terms 𝜆 and Λ to connect the solution of the
auxiliary problem with the original Problem (1.9). We applied similar arguments to Problem
(1.10). In addressing these problems, our approach combined truncation arguments, an adapted
version of the penalization method, and 𝐿∞−estimates.

Our main contribution in this chapter lies in our ability to handle three challenging scenarios
simultaneously: the case where 𝑞 ⩾ 2*

𝛼,𝜇, potentials 𝑉 (𝑥) that may vanish at infinity, and the
double weighted nonlocal terms, where we still consider the critical case. In this context, we
emphasize the following:

1. If 𝜓 ≡ 0, 𝛼 = 0, 0 < 𝜇 < min{𝑁+2
2 , 4}, 𝑁 ⩾ 3, 𝑞 ⩾ 2*

0,𝜇 := 2*
𝜇 = 2𝑁 − 𝜇

𝑁 − 2 , then our
results complete the picture of (ALVES; FIGUEIREDO; YANG, 2016);

2. If (𝜓1) holds with 𝜆(𝑥) ≡ 𝜆, 𝛼 = 0, 0 < 𝜇 < 𝑁+2
2 , 𝑞 ⩾ 2*, then our results extend and

complement the previous item;

3. If 𝜓 ≡ 0, 𝛼 ̸= 0, 𝑞 ⩾ 2*
𝛼,𝜇, then our results complement (DE ALBUQUERQUE; SANTOS,

2023);

4. The case 𝜓 ̸≡ 0 extends and complements the previous items.



17

In Chapter 4, motivated by the work in (DE ALBUQUERQUE; SILVA; SOUSA, 2022; DE

ALBUQUERQUE; SANTOS, 2023), we investigate the existence of solution for the following
class of linear coupled systems involving Stein-Weiss type nonlinearities⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ𝑢1 + 𝑉1(𝑥)𝑢1 =
(︃∫︁

R𝑁

𝐹1(𝑢1)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓1(𝑢1)
|𝑥|𝛼

+ 𝜆(𝑥)𝑢2, in R𝑁

−Δ𝑢2 + 𝑉2(𝑥)𝑢2 =
(︃∫︁

R𝑁

𝐹2(𝑢2)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓2(𝑢2)
|𝑥|𝛼

+ 𝜆(𝑥)𝑢1, in R𝑁 ,

(1.13)

where 𝑁 ⩾ 3, 0 < 𝜇 < 𝑁,𝛼 ⩾ 0, 0 < 2𝛼 + 𝜇 < min
{︁

𝑁+2
2 , 4

}︁
and 𝐹𝑖 is the primitive of

function 𝑓𝑖. We consider continuous functions 𝑉1(𝑥), 𝑉2(𝑥) that may decay to zero at infinity
and are related with the coupling function by

0 < 𝜆(𝑥) ⩽ 𝛿min{𝑉1(𝑥), 𝑉2(𝑥)}, 𝛿 ∈
(︂

0, 1
2

)︂
, ∀𝑥 ∈ R𝑁 ,

where 𝑉𝑖 and 𝑓𝑖 satisfy hypotheses similar to (𝑉1), (𝑓1) − (𝑓2) of Problem (1.9), i.e., for
𝑖 = 1, 2, we have:

(𝑉𝑖,1) 𝑉𝑖(𝑥) is positive and there exists 𝑅0 > 1 such that

1
𝑅

(𝑞𝑖−2)(𝑁−2)
0

inf
|𝑥|≥𝑅0

|𝑥|(𝑞𝑖−2)(𝑁−2)𝑉𝑖(𝑥) =: Λ𝑖 > 0;

(𝑓𝑖,1) lim𝑡→0+
𝑡𝑓𝑖(𝑡)
𝑡𝑞𝑖

< ∞ and lim𝑡→∞
𝑡𝑓𝑖(𝑡)
𝑡𝑝𝑖

= 0 for some 𝑝𝑖 ∈
(︃

1, 2(𝑁 − 𝛼− 𝜇)
𝑁 − 2

)︃
;

(𝑓𝑖,2) there exists 𝜃𝑖 ∈ (2, 4), such that 0 < 𝜃𝑖𝐹𝑖(𝑡) ⩽ 2𝑓𝑖(𝑡)𝑡, for all 𝑡 ⩾ 0, where
𝐹𝑖(𝑡) =

∫︀ 𝑡
0 𝑓𝑖(𝜏)d𝜏 .

This class of systems imposes some difficulties. The first one is the presence of the Stein-
Weiss terms which are nonlocal. Moreover, this class of systems is also characterized by its lack
of compactness inherent to problems defined on unbounded domains. In order to overcome
such difficulties, we use the Del Pino and Felmer penalization method, in which we introduce
an auxiliary problem where we are able to recover some compactness and obtain a solution.
After that, we prove an 𝐿∞−estimate which jointly with regularity theory, we obtain a positive
vector solution for System (1.13). In this way, in solving the system we will take an approach
based on variational method combined with with penalization technique and 𝐿∞−estimates.
Our main contribution in this chapter is to complete the study done by the authors in (DE

ALBUQUERQUE; SANTOS, 2023; ALVES; FIGUEIREDO; YANG, 2016), in the following aspects:



18

1. If 𝜆 = 0, 𝑓1 = 𝑓2 and 𝑢1 = 𝑢2, then System (1.13) boils down to the class of scalar
equations in (1.9) when 𝜓 ≡ 0;

2. If 𝛼 = 0, 0 < 𝜇 < min{𝑁+2
2 , 4}, 𝑁 ⩾ 3, 𝑞 ⩾ 2*

0,𝜇 := 2*
𝜇 = 2𝑁 − 𝜇

𝑁 − 2 , then our results
complete the picture of (ALVES; FIGUEIREDO; YANG, 2016);

3. If 𝛼 ̸= 0, 𝑞 ⩾ 2*
𝛼,𝜇, then our results complement (DE ALBUQUERQUE; SANTOS, 2023);

4. To the best of our knowledge, this is the first work to consider coupled Schrödinger
systems with Stein-Weiss type nonlinearities involving potentials that decay to zero at
infinity.

Finally, in Chapter 5, inspired by the work of (ALVES; SHEN, 2023; BISWAS; GOYAL;

SREENADH, 2023b), our focus is to study the following class of coupled system involving
doubly weighted nonlocal interaction.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ𝑁𝑢+ |𝑢|𝑁−2𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢(𝑦))
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢(𝑥))

|𝑥|𝛽
+ 𝜆𝑝|𝑢|𝑝−2𝑢|𝑣|𝑞, in R𝑁 ,

−Δ𝑁𝑣 + |𝑣|𝑁−2𝑣 =
(︃∫︁

R𝑁

𝐺(𝑣(𝑦))
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣(𝑥))

|𝑥|𝛽
+ 𝜆𝑞|𝑢|𝑝|𝑣|𝑞−2𝑣, in R𝑁 ,

(1.14)
where 𝑁 ≥ 2, 0 < 𝜇 < 𝑁 , 𝜆 > 0, 𝛽 ≥ 0, 0 < 2𝛽 + 𝜇 < 𝑁 , 𝑝 > 𝑁

2 , 𝑞 >
𝑁
2 , 𝑝 + 𝑞 > 𝑁 ,

Δ𝑁𝑢 = div(|∇𝑢|𝑁−2∇𝑢) is the 𝑁 -Laplacian operator, 𝑓(𝑠), 𝑔(𝑠) have critical growth of
Trudinger-Moser type, 𝐹 (𝑠), 𝐺(𝑠) are the primitives of 𝑓(𝑠), 𝑔(𝑠) respectively.

From a mathematical point of view, the cases involving 𝑁−Laplacian (for 𝑁 ≥ 3) or
Laplacian (for𝑁 = 2 ) are particularly very interesting as the corresponding Sobolev embedding
yields 𝑊 1,𝑁(R𝑁) ⊂ 𝐿𝑞(R𝑁) for all 𝑞 ≥ 𝑁 , but 𝑊 1,𝑁(R𝑁) ̸⊂ 𝐿∞(R𝑁). In these cases, the
Pohozaev-Trudinger-Moser inequality (CAO, 1992) (see (MOSER, 1971; POHOZAEV, 1965) for
the bounded domain case) serves as an alternative to the Sobolev inequality, allowing us to
establish the sharp maximal growth for functions in 𝑊 1,𝑁(R𝑁) as follows.

Proposition 1.0.1. (Pohozaev-Trudinger-Moser inequality, (CAO, 1992)) If 𝛼 > 0,

𝑁 ≥ 2 and 𝑢 ∈ 𝑊 1,𝑁(R𝑁), then
∫︁
R𝑁

(exp(𝛼|𝑢|
𝑁

𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑢)) d𝑥 < ∞,

where

𝑆𝑁−2(𝛼, 𝑢) =
𝑁−2∑︁
𝑚=0

𝛼𝑚|𝑢|
𝑚𝑁
𝑁−1

𝑚! .
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Moreover, if ‖∇𝑢‖𝑁
𝑁 ≤ 1, ‖𝑢‖𝑁 ≤ 𝑀 < ∞ and 𝛼 < 𝛼𝑁 = 𝑁𝜔

1
𝑁−1
𝑁−1, where 𝜔𝑁−1 is the surface

area of (𝑁 − 1)−dimensional unit sphere, then there exists a constant 𝐶 = 𝐶(𝛼,𝑀,𝑁) > 0

such that ∫︁
R𝑁

(exp(𝛼|𝑢|
𝑁

𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑢)) d𝑥 ≤ 𝐶.

In the sense of the Pohozaev-Trudinger-Moser inequality, we say that a function ℎ : R → R

has 𝛼0− critical exponential growth at +∞, if there exists 𝛼0 > 0 such that

lim
𝑠→+∞

ℎ(𝑠)
exp(𝛼|𝑢|

𝑁
𝑁−1 )−𝑆𝑁−2(𝛼, 𝑢)

=

⎧⎪⎪⎨⎪⎪⎩
0, if 𝛼 > 𝛼0,

+∞, if 𝛼 < 𝛼0.

(1.15)

This definition of criticality was introduced by Adimurthi and Yadava (ADIMURTHI; YADAVA,
1990), see also (FIGUEIREDO; MIYAGAKI OLIMPIO; RUF, 1995). There are a few works considering
Stein-Weiss term and a nonlinearity with critical exponential growth, see for example (ALVES;

SHEN, 2023) and (YUAN et al., 2023). For works considering Choquard type equations and
nonlinearities with critical exponential growth, we refer the readers to (ALVES et al., 2016b;
YANG, 2018; ALBUQUERQUE; FERREIRA; SEVERO, 2021; QIN; TANG, 2021; SHEN; RADULESCU;

YANG, 2022) and references therein.
With this in mind, in the same spirit as (1.15), we suppose that the nonlinearities 𝑓 and

𝑔 have 𝛼0− critical exponential growth at +∞ and the following hypotheses:

(𝑎) 𝑓 and 𝑔 are continuous, 𝑓(𝑠) = 𝑔(𝑠) = 0 if 𝑠 ≤ 0 and 𝑓(𝑠) > 0, 𝑔(𝑠) > 0 if 𝑠 > 0. Also

lim
𝑠→0+

𝑓(𝑠)
𝑠

2𝑁−2𝛽−𝜇
2 −1

= lim
𝑠→0+

𝑔(𝑠)
𝑠

2𝑁−2𝛽−𝜇
2 −1

= 0;

(𝑏) lim inf
|𝑠|→∞

𝐹 (𝑠)

𝑒𝛼0𝑠
𝑁

𝑁−1
= lim inf

|𝑠|→∞

𝐺(𝑠)

𝑒𝛼0𝑠
𝑁

𝑁−1
= 𝛽0 > 0;

(𝑐) there exist 𝑠0,𝑀0 > 0 and 𝑚0 ∈ (0, 1] such that

0 < 𝑠𝑚0𝐹 (𝑠) ≤ 𝑀0𝑓(𝑠), ∀ 𝑠 ≥ 𝑠0;

(𝑑) the functions 𝑠 ↦→ 𝑓(𝑠)/𝑠𝑁−1 and 𝑠 ↦→ 𝑔(𝑠)/𝑠𝑁−1 are increasing for 𝑠 > 0;

(𝑒) there exists 𝜃 ∈
(︂
𝑁, 𝑝 + 𝑞

]︂
such that 0 < 𝜃𝐹 (𝑠) ≤ 𝑓(𝑠)𝑠 and 0 < 𝜃𝐺(𝑠) ≤ 𝑔(𝑠)𝑠, for

all 𝑠 > 0.
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In order to deal with the coupling terms in System (1.14), we use the following hypotheses for
𝑝, 𝑞 and 𝑁 :

𝑁 > 2, 𝑝, 𝑞 >
𝑁

2 and 𝑝+ 𝑞 > 𝑁.

Beyond the challenges posed by the nonlocal and critical growth behavior of the
nonlinearity, we encountered several technical difficulties while studying Systems (1.14). These
include:

(𝑖) The nonlocal term is not periodic for 𝛽 ̸= 0. For this reason, the standard approach
based on Lions’ vanishing-nonvanishing argument is not applicable anymore;

(𝑖𝑖) Showing the solution of System (1.14) to be vectorial is not obvious and requires a
careful treatment;

(𝑖𝑖𝑖) For 𝑁 > 2, due to the lack of Hilbert space structure, a variant of Palais principle of
symmetric criticality is needed, see Appendix A for details;

(𝑖𝑣) For the critical exponential growth in the general case 𝑁 > 2, even some obvious results
require some careful analysis throughout the chapter. Needless to mention Lemma 5.2.11
as an example.

The main contributions of this chapter are as follows:

1. The results presented here complete the framework established in (DE ALBUQUERQUE

et al., 2019) in any dimension 𝑁 > 2. We complement and extend some works which
consider Choquard type problems with critical exponential growth, such as (CHEN; TANG,
2022);

2. In case of dimension 𝑁 = 2, the existence result obtained in (ALVES; SHEN, 2023) can be
achieved from the study of asymptotic behavior of solutions of (𝑆𝜆) as 𝜆 ↘ 0, described
in Section 4.2 of (DE ALBUQUERQUE et al., 2024) in details;

3. Even for scalar case (when 𝜆 = 0) the results of this chapter are new and complement
(ALVES; SHEN, 2023) for dimensions 𝑁 > 2;

4. This chapter offers an alternative to the standard arguments based on Lions’ vanishing-
nonvanishing and shifted sequences, which are not applicable for 𝛽 ̸= 0 Instead, we
utilize a variant of Palais principle of symmetric criticality.
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Given its motivational significance and frequent application in this thesis, we will precisely
state the weighted Hardy-Littlewood-Sobolev inequality, commonly referred to as the Stein-
Weiss inequality.

Proposition 1.0.2. (Weighted Hardy-Littlewood-Sobolev inequality, (STEIN; WEISS,

1958)) Let 1 < 𝑟, 𝑠 < +∞, 0 < 𝜇 < 𝑁 , 𝛼 + 𝛽 ≥ 0, 0 < 𝛼 + 𝛽 + 𝜇 ≤ 𝑁 , 𝑔 ∈ 𝐿𝑟(R𝑁) and

ℎ ∈ 𝐿𝑠(R𝑁). Then, there exists a sharp constant 𝐶(𝑟, 𝑠,𝑁, 𝛼, 𝛽, 𝜇) such that⃒⃒⃒⃒
⃒
∫︁
R𝑁

∫︁
R𝑁

𝑔(𝑦)ℎ(𝑥)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥
⃒⃒⃒⃒
⃒ ≤ 𝐶(𝑟, 𝑠,𝑁, 𝛼, 𝛽, 𝜇)‖𝑔‖𝑟‖ℎ‖𝑠, (1.16)

where
1
𝑟

+ 1
𝑠

+ 𝛼 + 𝛽 + 𝜇

𝑁
= 2

and

1 − 1
𝑟

− 𝜇

𝑁
<
𝛼

𝑁
< 1 − 1

𝑟
.

In addition, for all ℎ ∈ 𝐿𝑠(R𝑁), we have⃦⃦⃦⃦
⃦⃦ ∫︁

R𝑁

ℎ(𝑦)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦

⃦⃦⃦⃦
⃦⃦

𝑡

≤ 𝐶(𝑡, 𝑠,𝑁, 𝛼, 𝛽, 𝜇)‖ℎ‖𝑠,

where 𝑡 verifies

1 + 1
𝑡

= 1
𝑠

+ 𝛼 + 𝛽 + 𝜇

𝑁
and 𝛼

𝑁
<

1
𝑡
<
𝛼 + 𝜇

𝑁
.

Note that if 𝛼 = 𝛽 = 0, then (1.16) reduces to the classical Hardy-Littlewood-Sobolev
inequality, see (SOBOLEV, 1938; LIEB; LOSS, 2001). For other references involving the Stein-
Weiss inequality, see (HAN; LU; ZHU, 2012; NGÔ, 2021) and references therein.

To conclude the thesis, in Appendix A, we present, for 𝑁 > 2, due to the lack of Hilbert
space structure, a variant of Palais principle of symmetric criticality, which was essential for
obtaining the main result of Chapter 5.
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2 EXISTENCE OF POSITIVE SOLUTIONS FOR PERTURBATIONS OF THE

DOUBLE WEIGHTED NONLOCAL INTERACTION PART WITH CRITICAL

OR SUBCRITICAL EXPONENTS

In this chapter, our main goal is to study the following class of Schrödinger equations
involving double weighted nonlocal

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
+ 𝑓(𝑥, 𝑢), in R𝑁 , (2.1)

where 2*𝛼,𝜇 < 𝑠 ⩽ 2*
𝛼,𝜇, 𝑁 ⩾ 3, 0 < 𝜇 < 𝑁 , 𝛼 ⩾ 0, 2𝛼 + 𝜇 ⩽ 𝑁 . The lower bound 2*𝛼,𝜇

is called lower critical exponent and the upper bound 2*
𝛼,𝜇 is called upper critical exponent

in the sense of the weighted Hardy-Littlewood-Sobolev inequality, see (1.2). Here 𝑓 in (2.1)
is a nonlinearity satisfying certain assumptions. Later, we will specify the assumptions on 𝑓 .
Furthermore, we also study the version of the Problem (2.1) for the critical case in the sense
of the Sobolev inequality. Precisely, we consider the following class of Schrödinger equations

−Δ𝑢+ 𝑢 = |𝑢|2*−2𝑢+ 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, in R𝑁 , (2.2)

where 2* = 2𝑁
𝑁−2 is the critical exponent for the embedding of 𝒟1,2(R𝑁) to 𝐿2*(R𝑁) and

2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇.

2.1 ASSUMPTIONS AND MAIN RESULTS

Inspired by (GAO; YANG, 2017; AO, 2019; PAN; LIU; TANG, 2022), we study the existence of
solutions for Problem (2.1), considering different types of 𝑓 :

(𝑓1) 𝑓(𝑥, 𝑢) = 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, 2*𝛼,𝜇 < 𝑝 < 2*

𝛼,𝜇;

(𝑓2) 𝑓(𝑥, 𝑢) = 𝜆
𝑢

|𝑥|2
;

(𝑓3) 𝑓(𝑥, 𝑢) = 𝜆|𝑢|𝑝−2𝑢, 2 < 𝑝 < 2*;

(𝑓4) 𝑓(𝑥, 𝑢) = 𝜆|𝑢|𝑞−2𝑢, 𝑞 ⩾ 2*;

where 𝜆 > 0 is a parameter.
Throughout this chapter, let 𝐻1(R𝑁) be the usual Sobolev space endowed with the usual

inner product and norm

⟨𝑢, 𝑣⟩ :=
∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥 and ‖𝑢‖ = ⟨𝑢, 𝑢⟩
1
2 , ∀𝑢, 𝑣 ∈ 𝐻1(R𝑁).
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As the results will be proved by variational methods, the energy functional ℱ : 𝐻1(R𝑁) −→

R associated to Problem (2.1) is given by

ℱ(𝑢) =1
2

∫︁
R𝑁

(︁
|∇𝑢|2 + |𝑢|2

)︁
d𝑥

− 1
2𝑠

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠

|𝑥|𝛼
d𝑥−

∫︁
R𝑁
𝐹 (𝑥, 𝑢) d𝑥,

where 𝐹 (𝑥, 𝑢) =
∫︀ 𝑢

0 𝑓(𝑥, 𝜏) d𝜏 and 𝑓 is one of the nonlinearities (𝑓1)−(𝑓4). Note that, for any
of the functions (𝑓1) − (𝑓3), one may deduce that ℱ ∈ 𝐶1(𝐻1(R𝑁),R) (see Remark 2.1.17
and Lemma 2.1.18 below) with

ℱ ′(𝑢)𝑣 =
∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
𝑣 d𝑥−

∫︁
R𝑁
𝑓(𝑥, 𝑢)𝑣 d𝑥,

for each 𝑣 ∈ 𝐻1(R𝑁). The case (𝑓4) is studied separately and we will discuss with more details
in Section 2.5.

Definition 2.1.1. We say that a function 𝑢 ∈ 𝐻1(R𝑁) is a weak solution of Problem (2.1),
if there holds

∫︁
R𝑁

(∇𝑢∇𝑣d𝑥+ 𝑢𝑣) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
𝑣 d𝑥−

∫︁
R𝑁
𝑓(𝑥, 𝑢)𝑣 d𝑥 = 0, ∀ 𝑣 ∈ 𝐻1(R𝑁).

Thus the weak solutions of (2.1) are precisely the critical points of ℱ .
At this point, we emphasize that the presence of the Stein-Weiss term jointly with the

conditions on 𝑓 bring additional difficulties. The main difficulties when dealing with this
problem lie in the fact that Lions’ vanishing argument is not applicable, due to the non-periodic
characteristic of Stein-Weiss term and the lack of compactness due to the unboundedness of
the domain R𝑁 . To overcome this hurdle, we restrict the energy functional on radial Sobolev
space

𝐻1
rad(R𝑁) =

{︁
𝑢 ∈ 𝐻1(R𝑁) : 𝑢(𝑥) = 𝑢(|𝑥|)

}︁
,

endowed with the norm ‖·‖ induced by 𝐻1(R𝑁). Thus, throughout the chapter we will consider
Problem (2.1) in 𝐻1

rad(R𝑁) and if 𝑢 is a point critical of functional ℱ restricted to 𝐻1
rad(R𝑁),

then using the principle of symmetric criticality due to Palais (WILLEM, 1996, Theorem 1.28),
we conclude that 𝑢 is a point critical of ℱ (see Remark 2.1.3 below).



24

Now, we define the Nehari manifold as

𝒩 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁) ∖ {0} : ℱ ′(𝑢)𝑢 = 0
}︁
.

The radially symmetric critical points of the functional ℱ must lie on the Nehari manifold 𝒩 .
Therefore, to establish the existence of a solution for Problem (2.1), we consider the following
constrained minimization problem:

𝑐 := inf
𝒩

ℱ . (2.3)

Definition 2.1.2. We will say that a solution is a nontrivial radial ground state solution (or

positive radial ground state) if its energy is minimal among all the nontrivial radial solutions

(or all the nontrivial radial positive solutions) of Problem (2.1).

We shall prove that if the infimum in (2.3) is attained by 𝑢, then 𝑢 is a radial ground state
solution of (2.1).

Similarly to Problem (2.1), we define a weak solution for Problem (2.2). See the next
sections for more details.

Remark 2.1.3. We consider Problems (2.1) and (2.2) in 𝐻1
rad(R𝑁). If 𝑢 is a point critical

of functional ℱ restricted to 𝐻1
rad(R𝑁), then 𝑢 is a critical of ℱ . In fact, we consider the

action of group of linear transformations 𝐺 = 𝑂(𝑁) on 𝐻1(R𝑁), according to the definition

in (WILLEM, 1996, Definition 1.23), then this action is isometric. Moreover, ℱ is invariant

(ℱ(𝑔𝑢) = ℱ(𝑢)), since that

‖𝑔𝑢‖2 = ‖𝑢‖2, ∀𝑔 ∈ 𝐺

and∫︁
R𝑁

∫︁
R𝑁

|𝑔𝑢(𝑦)|𝑞|𝑔𝑢(𝑥)|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦d𝑥 =

∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑦)|𝑞|𝑢(𝑥)|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦d𝑥, ∀𝑔 ∈ 𝐺, 2*𝛼,𝜇 ⩽ 𝑞 ⩽ 2*

𝛼,𝜇

where above we use the change of variables theorem, the fact that R𝑁 is G-invariant and that

𝑔 is an orthogonal liner transformation. It follows from of principle of symmetric criticality

(WILLEM, 1996, Theorem 1.28) that 𝑢 is a point critical of functional ℱ . See a more general

version in the Appendix A of the thesis.

The main results of this chapter can be stated as follows.

For Problem (2.1) in R𝑁 , we will first consider the case with subcritical nonlocal term
(𝑓1), then Problem (2.1) becomes

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
+ 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, (2.4)
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and we have the following existence result.

Theorem 2.1.4. Assume that 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇 and 𝑠 = 2*

𝛼,𝜇. Then, Problem (2.4) has a

nontrivial radial ground state solution if either

(i) 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇, 2𝛼 + 𝜇 = 𝑁 , 𝑁 ⩾ 3, 𝜆 > 0 and 𝛼 ̸= 0,

(ii) 2*𝛼,𝜇 <
𝑁+2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 = 3, 4 and 𝜆 > 0,

(iii) 2*𝛼,𝜇 <
2𝑁−2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 ⩾ 5 and 𝜆 > 0,

or

(iv) 2*𝛼,𝜇 < 𝑝 ⩽ 𝑁+2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 = 3, 4 and 𝜆 sufficiently large,

(v) 2*𝛼,𝜇 < 𝑝 ⩽ 2𝑁−2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 ⩾ 5 and 𝜆 sufficiently large.

Theorem 2.1.5. Let 𝑢 ∈ 𝐻1
rad(R𝑁) be a nontrivial radial ground state solution of Problem

(2.4) obtained in Theorem 2.1.4 and assume that 0 < 2𝛼 + 𝜇 < min{𝑁+2
2 , 4}. Then,

𝑢 ∈ 𝐿∞(R𝑁) if either

(i) 2*𝛼,𝜇 < max{𝑁+2−2𝛼−𝜇
𝑁−2 , 4

2*
𝛼,𝜇

𝑁+2−2𝛼−𝜇
𝑁−2 } < 𝑝 < 2*

𝛼,𝜇, 𝑁 = 3, 4 and 𝜆 > 0,

(ii) 2*𝛼,𝜇 < max{ 4
2*

𝛼,𝜇

𝑁+2−2𝛼−𝜇
𝑁−2 , 2𝑁−2−2𝛼−𝜇

𝑁−2 } < 𝑝 < 2*
𝛼,𝜇, 𝑁 ⩾ 5 and 𝜆 > 0,

or

(iii) 2*𝛼,𝜇 <
4

2*
𝛼,𝜇

𝑁+2−2𝛼−𝜇
𝑁−2 ⩽ 𝑝 ⩽ 𝑁+2−2𝛼−𝜇

𝑁−2 < 2*
𝛼,𝜇, 𝑁 = 3, 2𝛼 + 𝜇 < 2 and 𝜆 sufficiently

large.

In addition, 𝑢 ∈ 𝐶1,𝛾
loc (R𝑁), for some 𝛾 ∈ (0, 1) and 𝑢 is positive.

We are also interested in the Problem (2.1) with Hardy potential term (𝑓2), i.e.,

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
+ 𝜆

𝑢

|𝑥|2
, in R𝑁 , (2.5)

in which, we establish the following existence result.

Theorem 2.1.6. Assume that 𝜆 ∈ (0, 1), 𝑠 = 2*
𝛼,𝜇 and 𝑁 > 4. Then, Problem (2.5) has a

nontrivial radial ground state solution.
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We also study Problem (2.1) with subcritical local term (𝑓3) with 𝜆 = 1, i.e.,

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
+ |𝑢|𝑝−2𝑢, in R𝑁 . (2.6)

For this case, we establish the following existence result.

Theorem 2.1.7. Assume that 2 < 𝑝 < 2*, 𝑠 = 2*
𝛼,𝜇 and 𝑁 ⩾ 3. Then, Problem (2.6) has a

nontrivial radial ground state solution.

Theorem 2.1.8. Let 𝑢 ∈ 𝐻1
rad(R𝑁) be a nontrivial radial ground state solution of Problem

(2.6) obtained in Theorem 2.1.7 and assume that 0 < 2𝛼+𝜇 < min{𝑁+2
2 , 4}. Then, Problem

(2.6) has a nonnegative radial ground state solution 𝑢 ∈ 𝐿∞(R𝑁) ∩ 𝐶1,𝛾
loc (R𝑁) for some

𝛾 ∈ (0, 1). Moreover, the radial ground state is positive.

Furthermore, we will study Problem (2.1) with supercritical local term (𝑓4), i.e.,

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|𝑠

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑠−2𝑢

|𝑥|𝛼
+ 𝜆|𝑢|𝑞−2𝑢, in R𝑁 , (2.7)

where 𝑞 ⩾ 2* and 𝜆 > 0 is a parameter. We precisely have the following result.

Theorem 2.1.9. Assume that 𝑞 ⩾ 2* and 𝑠 = 2*
𝛼,𝜇. Then, there exists 𝜆0 > 0 such that if

𝜆 ∈ (0, 𝜆0], then Problem (2.7) has a positive radial ground state solution.

Lastly we will study Problem (2.2) with subcritical nonlocal term (𝑓1), i.e.,

−Δ𝑢+ 𝑢 = |𝑢|2*−2𝑢+ 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, in R𝑁 , (2.8)

where we have the following existence result.

Theorem 2.1.10. Assume that 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇. Then, Problem (2.8) has a nontrivial radial

ground state solution if either

(i) 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇, 2𝛼 + 𝜇 = 𝑁 , 𝑁 ⩾ 3, 𝜆 > 0 and 𝛼 ̸= 0,

(ii) 2*𝛼,𝜇 <
𝑁+2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 = 3, 4 and 𝜆 > 0,

(iii) 2*𝛼,𝜇 <
2𝑁−2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 ⩾ 5 and 𝜆 > 0,

or

(iv) 2*𝛼,𝜇 < 𝑝 ⩽ 𝑁+2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 = 3, 4 and 𝜆 sufficiently large,

(v) 2*𝛼,𝜇 < 𝑝 ⩽ 2𝑁−2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 ⩾ 5 and 𝜆 sufficiently large.
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Theorem 2.1.11. Assume that 2*𝛼,𝜇 < 𝑠 < 2*
𝛼,𝜇. Then, Problems (2.4), (2.5) (2.6)

and (2.7) has a nontrivial radial ground state solution. Furthermore, if we assume that

0 < 2𝛼 + 𝜇 < min{𝑁+2
2 , 4}, then Problems (2.4), (2.6) and (2.7) has a radial ground

state solution 𝑢 ∈ 𝐿∞(R𝑁) ∩ 𝐶1,𝛾
loc (R𝑁) for some 𝛾 ∈ (0, 1), which is positive.

Now, we list some remarks.

Remark 2.1.12. The main contributions of this chapter are the following:

1. If 𝑓 ̸= 0, 𝛼 = 0, then our results complete the picture of (AO, 2019; PAN; LIU; TANG,

2022), for 2*𝛼,𝜇 < 𝑠 ⩽ 2*
𝛼,𝜇;

2. If 𝑓 ̸= 0, 𝛼 ̸= 0, then our results complete the picture of (AO, 2019; PAN; LIU; TANG,

2022; DU; GAO; YANG, 2022).

Thus, the results presented of this chapter are new and completes and extends the results of

the existence of solutions in the works of (AO, 2019; PAN; LIU; TANG, 2022; DU; GAO; YANG,

2022). The approach is variational and based on minimization technique over the Nehari

manifold. Moreover, we combine this approach, to deal with the local term (𝑓4) in Problem

(2.7), truncation arguments with 𝐿∞−estimates.

Remark 2.1.13. For Problem (2.1) with 𝑠 = 2*
𝛼,𝜇 without the term 𝑓 , as proved in (DU; GAO;

YANG, 2022, Theorem 1.10), there does not exist any nontrivial solution. For this, the authors

established the following Pahožaev identity,
𝑁 − 2

2

∫︁
R𝑁

|∇𝑢|2 d𝑥+ 𝑁

2

∫︁
R𝑁

|𝑢|2 d𝑥 = 2𝑁 − 2𝛼− 𝜇

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑞

|𝑥|𝛼
d𝑥,

where 𝑢 ∈ 𝑊 2,2
loc (R𝑁) ∩ 𝐿

2𝑁𝑝
2𝑁−2𝛼−𝜇 (R𝑁) is a positive solution of (2.1) for 𝑓 ≡ 0.

Remark 2.1.14. In the presence of potential 𝑉 (𝑥) that may decay to zero at infinity, we

show in the Chapter 3 of the thesis the existence of a positive solution to the Problem (2.1)
without the term 𝑓 . We precisely consider the following class of Schrödinger equations with

Stein-Weiss type nonlinearity

−Δ𝑢+ 𝑉 (𝑥)𝑢 = 1
2*

𝛼,𝜇

(︃∫︁
R𝑁

|𝑢(𝑦)|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢(𝑥)|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ 𝜓(𝑥, 𝑢), in R𝑁 ,

where 𝑁 ⩾ 3, 0 < 𝜇 < 𝑁 , 𝛼 ⩾ 0, 0 < 2𝛼 + 𝜇 < min{𝑁+2
2 , 4}, the potential 𝑉 is a

radial function, i.e., 𝑉 (|𝑥|) = 𝑉 (𝑥), for all 𝑥 ∈ R𝑁 and 𝜓 is a nonlinearity satisfying certain

assumptions including the case 𝜓 ≡ 0. The approach was based on variational methods

combined with penalization techniques and 𝐿∞−estimates, see Chapter 3 for more details.
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Remark 2.1.15. In the proof of Theorems 2.1.5, 2.1.8 and 2.1.9, we shall use the Moser’s

iteration method in combination with Proposition 1.0.2. However, due to the presence of the

weights 1
|𝑥|𝛼 and 1

|𝑦|𝛼 , the convolutions

1
|𝑥|𝛼

∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 (2.9)

introduces difficulty in establishing 𝐿∞−estimates involving solution of our problems. For this

reason, we require the assumption 0 < 2𝛼+ 𝜇 < min
{︁

𝑁+2
2 , 4

}︁
to carry out Moser’s iteration

method.

Remark 2.1.16. In view of Proposition 1.0.2, if 𝑔 = ℎ = 𝐹 , 𝛼 = 𝛽, 𝑠 = 𝑟, then we obtain∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

d𝑥 ⩽ 𝐶(𝑁,𝛼, 𝜇)‖𝐹 (𝑢)‖2
𝑠, (2.10)

where 𝑠 > 1 is defined by 2
𝑠

+ 2𝛼 + 𝜇

𝑁
= 2, i.e., 𝑠 = 2𝑁

2𝑁 − 2𝛼− 𝜇
. This means we must

require 𝐹 (𝑢) ∈ 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁). By considering 𝑁 ⩾ 3 and the pure power 𝐹 (𝑡) = |𝑡|𝑞, we

may use Sobolev embedding when

2𝑁𝑞
2𝑁 − 2𝛼− 𝜇

∈ [2, 2*] ,

i.e., when the exponent 𝑞 satisfies

2*𝛼,𝜇 := 2𝑁 − 2𝛼− 𝜇

𝑁
⩽ 𝑞 ⩽

2𝑁 − 2𝛼− 𝜇

𝑁 − 2 =: 2*
𝛼,𝜇,

where 2*
𝛼,𝜇 is called the upper critical Sobolev exponent and 2*𝛼,𝜇 the lower critical Sobolev

exponent by (DU; GAO; YANG, 2022), in the sense of inequality (1.16) (Proposition 1.0.2), due

to the following inequalities[︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥
]︃ 1

2*
𝛼,𝜇

⩽ 𝐶*(𝑁,𝛼, 𝜇)
∫︁
R𝑁

|𝑢|2* d𝑥, (2.11)
[︃∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢|2*𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*𝛼,𝜇

|𝑥|𝛼
d𝑥
]︃ 1

2*𝛼,𝜇

⩽ 𝐶*(𝑁,𝛼, 𝜇)
∫︁
R𝑁

|𝑢|2 d𝑥.

In view of (2.11), we define

‖𝑢‖𝛼,𝜇 :=
[︃∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥
]︃ 1

22*
𝛼,𝜇

,

which turns out to be a norm on 𝐿2*(R𝑁) and use 𝑆𝛼,𝜇 to denote the best constant

𝑆𝛼,𝜇 := inf
𝑢∈𝒟1,2(R𝑁 )∖{0}

∫︁
R𝑁

|∇𝑢|2d𝑥[︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥
]︃ 1

2*
𝛼,𝜇

, (2.12)
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where 𝑆𝛼,𝜇 is related to the nonlocal Euler-Lagrange equation (1.3).
From (2.11), for all 𝑢 ∈ 𝒟1,2(R𝑁), we know

‖𝑢‖2
𝛼,𝜇 ⩽ 𝐶(𝛼, 𝜇,𝑁)

1
2*

𝛼,𝜇 ‖𝑢‖2
2* .

Then

𝑆𝛼,𝜇 ⩾
𝑆

𝐶(𝑁,𝛼, 𝜇)
1

2*
𝛼,𝜇

> 0,

where 𝑆 is the best Sobolev constant for the embedding of 𝒟1,2(R𝑁) into 𝐿2*(R𝑁),

𝑆
(︂∫︁

R𝑁
|𝑢|2 d𝑥

)︂ 2
2*

⩽
∫︁
R𝑁

|∇𝑢|2 d𝑥. (2.13)

Remark 2.1.17. In view of (2.10) and Hölder’s inequality, for any 𝑢, 𝑣 ∈ 𝐻1(R𝑁) and

2*𝛼,𝜇 ⩽ 𝑞 ⩽ 2*
𝛼,𝜇, we obtain∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑞−2𝑢

|𝑥|𝛼
𝑣 d𝑥

⩽𝐶(𝑁,𝛼, 𝜇)
(︂∫︁

RN
|𝑢|

2𝑁𝑞
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

×
(︂∫︁

RN
|𝑢|

2𝑁(𝑞−1)
2𝑁−2𝛼−𝜇 |𝑣|

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶(𝑁,𝛼, 𝜇)
(︂∫︁

RN
|𝑢|

2𝑁𝑞
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

×
(︂∫︁

RN
|𝑢|

2𝑁𝑞
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

𝑞−1
𝑞
(︂∫︁

RN
|𝑣|

2𝑁𝑞
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

1
𝑞

=𝐶(𝑁,𝛼, 𝜇)‖𝑢‖2𝑞−1
2𝑁𝑞

2𝑁−2𝛼−𝜇

‖𝑣‖ 2𝑁𝑞
2𝑁−2𝛼−𝜇

,

i.e., the integral ∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑞−2𝑢

|𝑥|𝛼
𝑣 d𝑥

is well defined if 2*𝛼,𝜇 ⩽ 𝑞 ⩽ 2*
𝛼,𝜇, by Sobolev embedding.

In order to be able to deal with the term 𝑓(𝑢) = 𝑢

|𝑥|2
in equation (2.5), we need to recall

the Hardy inequality in (AZORERO; ALONSO, 1998, Lemma 2.1).

Lemma 2.1.18. Assume 𝑁 ⩾ 3. If 𝑢 ∈ 𝐻1(R𝑁), then

(1) 𝑢

|𝑥|
∈ 𝐿2(R𝑁).

(2) (Hardy inequality) ∫︁
R𝑁

|𝑢|2

|𝑥|2
d𝑥 ⩽ 𝐶𝑁,2

∫︁
R𝑁

|∇𝑢|2d𝑥,

where the constant 𝐶𝑁,2 =
(︂ 2
𝑁 − 2

)︂2
is optimal.



30

Remark 2.1.19. We emphasize that we will study the results previous for the critical case

𝑠 = 2*
𝛼,𝜇, having observed that the results involving the case 2𝛼,𝜇 < 𝑠 < 2*

𝛼,𝜇 are naturally

adaptable.

The remainder of this chapter is organized as follows: In Section 2.2, we introduce the
Nehari manifold associated with Problem (2.4), outline its key properties, and derive several
estimates and convergence lemmas, including a nonlocal version of the Brézis-Lieb Lemma.
Using a minimization method on the Nehari manifold, we obtain a nontrivial radial ground
state solution, thereby proving Theorem 2.1.4. To establish Theorem 2.1.5, we apply Moser’s
iteration to ensure the regularity of the solution obtained in Theorem 2.1.4, and subsequently
use the Maximum Principle to demonstrate that the solution is positive. Section 2.3 focuses
on the proof of Theorem 2.1.6, employing a similar approach to that used in proving Theorem
2.1.4, but under the assumption that the parameter 𝜆 is small. Theorems 2.1.7, 2.1.8, and
2.1.10 are proven in Sections 2.4 and 2.6, respectively, using a method analogous to that in
Section 2.2. Finally, in Section 2.5, following the ideas developed by (CHABROWSKI; YANG,
1997), we truncate the local term in Problem (2.7) and define an auxiliary problem with
subcritical growth based on this truncation. We then apply the approach from Section 2.2
to find a solution to the auxiliary problem. Using Moser’s iteration method, we introduce a
suitable 𝐿∞−estimate for the solution to the auxiliary problem, ultimately showing that it is
indeed a solution to the original problem, thereby proving Theorem 2.1.9.

2.2 THE NONLOCAL PERTURBATION

The main goal in the present section is to prove Theorems 2.1.4 and 2.1.5. Thus, we will
study the existence of solution for the following equation involving Stein-Weiss type critical
nonlinearity in R𝑁 with nonlocal term (𝑓1):

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, (2.14)

where 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇 and 𝜆 > 0.

We introduce the energy functional associated with Problem (2.14):

𝐼𝜆(𝑢) =1
2‖𝑢‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥,
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where, according to Remark 2.1.17, 𝐼𝜆 belongs to 𝐶1(𝐻1(R𝑁),R), and its derivative is given
by

𝐼 ′
𝜆(𝑢)𝑣 =

∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*−2𝑢

|𝑥|𝛼
𝑣 d𝑥

− 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑦 − 𝑥|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑣 d𝑥. (2.15)

Note that solutions of (2.14) correspond to the critical points of the energy functional 𝐼𝜆. We
consider 𝐼𝜆 on 𝐻1

rad(R𝑁). If 𝑢 is a point critical of 𝐼𝜆 when restricted to 𝐻1
rad(R𝑁), then 𝑢

is a critical of 𝐼𝜆, see Remark 2.1.3. A necessary condition for 𝑢 ∈ 𝐻1
rad(R𝑁) to be a critical

point of 𝐼𝜆 is that 𝐼 ′
𝜆(𝑢)𝑢 = 0. This condition defines the Nehari manifold:

𝒩𝜆 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : 𝐼 ′
𝜆(𝑢)𝑢 = 0

}︁
.

Notice that if 𝑢 ∈ 𝒩𝜆, then

‖𝑢‖2 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥. (2.16)

Now, we consider the following constrained minimization problem:

𝑐𝜆 := inf
𝒩𝜆

𝐼𝜆. (2.17)

We will prove that if the infimum in (2.17) is attained by 𝑢, then 𝑢 is a radial ground state
solution of (2.14). It is important to emphasize that the number 𝑐𝜆 is well defined by proving
that 𝐼𝜆 is bounded from below on 𝒩𝜆 and the set 𝒩𝜆 is non-empty. Indeed, for 𝑢 ∈ 𝒩𝜆, from
(2.16), we obtain

𝐼𝜆(𝑢) =1
2‖𝑢‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
2𝑝𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥

=
(︃

1
2 − 1

2𝑝

)︃
‖𝑢‖2 +

(︃
1
2𝑝 − 1

22*
𝛼,𝜇

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 ⩾ 0,

(2.18)

provided 1 < 𝑝 < 2*
𝛼,𝜇, i.e., 𝐼𝜆 is bounded from below on 𝒩𝜆.

As a consequence of the next lemma, the set 𝒩𝜆 ̸= ∅.

Lemma 2.2.1. For any 𝑢 ∈ 𝐻1
rad(R𝑁) ∖ {0}, we have that

(𝑖) there exists a unique 𝑡0 > 0, depending on 𝑢, such that

𝑡0𝑢 ∈ 𝒩𝜆 and max
𝑡≥0

𝐼𝜆(𝑡𝑢) = 𝐼𝜆(𝑡0𝑢);
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(𝑖𝑖) there exists a constant 𝛿 > 0 such that ‖𝑢‖ ⩾ 𝛿, for any 𝑢 ∈ 𝒩𝜆;

(𝑖𝑖𝑖) 𝑐𝜆 = inf
𝒩
𝐼𝜆 > 0.

Proof. (𝑖) Let 𝑢 ∈ 𝐻1
rad(R𝑁)∖{0} be fixed and consider the function 𝑔 : [0,+∞) → R defined

by

𝑔(𝑡) = 𝐼𝜆(𝑡𝑢) =𝑡
2

2 ‖𝑢‖2 − 𝑡22*
𝛼,𝜇

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝑡2𝑝𝜆

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥,

then 𝑔′(𝑡) = 𝐼 ′
𝜆(𝑡𝑢)𝑡𝑢. Hence, 𝑡0 is a positive critical point of 𝑔 if and only if 𝑡0𝑢 ∈ 𝒩𝜆. Since

1 < 𝑝 < 2*
𝛼,𝜇, we conclude that 𝑔(𝑡) < 0 for 𝑡 > 0 sufficiently large. On the other hand,

combining the Remark 2.1.17 and Sobolev embedding, we have
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 ⩽ 𝐶‖𝑢‖22*

𝛼,𝜇 , (2.19)
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥 ⩽ 𝐶‖𝑢‖2𝑝, (2.20)

which imply that

𝑔(𝑡) ⩾ 𝑡2‖𝑢‖2
[︃

1
2 − 𝑡22*

𝛼,𝜇−2

22*
𝛼,𝜇

𝐶‖𝑢‖22*
𝛼,𝜇−2 − 𝑡2𝑝−2

2𝑝 𝜆𝐶‖𝑢‖2𝑝−2
]︃
> 0,

provided 𝑡 > 0 is sufficiently small. Thus 𝑔 has maximum points in (0,∞). Suppose that there
exists 𝑡1, 𝑡2 > 0 such that 𝑔′(𝑡1) = 𝑔′(𝑡2) = 0. Since every critical point of 𝑔 satisfies

‖𝑢‖2 =𝑡22*
𝛼,𝜇−2

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝑡2𝑝−2𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥,

we deduce,

0 =
(︁
𝑡
22*

𝛼,𝜇−2
1 − 𝑡

22*
𝛼,𝜇−2

2

)︁ ∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+
(︁
𝑡2𝑝−2
1 − 𝑡2𝑝−2

2

)︁
𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥.

Therefore, since both terms in parentheses have the same sign if 𝑡1 ̸= 𝑡2 and we also have
𝜆 > 0, it follows that 𝑡1 = 𝑡2 and the proof of (𝑖) is complete.
(𝑖𝑖) For any 𝑢 ∈ 𝒩𝜆, together (2.16) with (2.19) and (2.20), we obtain

‖𝑢‖2 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇 + 𝜆𝐶‖𝑢‖2𝑝.
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Hence, 1 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇−2 + 𝜆𝐶‖𝑢‖2𝑝−2, which implies that (𝑖𝑖) holds.

(𝑖𝑖𝑖) Combining (2.18) with (𝑖𝑖) we obtain

𝐼𝜆(𝑢) =
(︃

1
2 − 1

2𝑝

)︃
‖𝑢‖2 +

(︃
1
2𝑝 − 1

22*
𝛼,𝜇

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

⩾

(︃
1
2 − 1

2𝑝

)︃
𝛿2 > 0,

provided 1 < 𝑝 < 2*
𝛼,𝜇. Thus, for the arbitrary of 𝑢 ∈ 𝒩𝜆, we infer

𝑐𝜆 = inf
𝒩𝜆

𝐼𝜆(𝑢) ⩾ inf
𝒩𝜆

𝛿2 > 0,

which finishes the proof.

The next lemma is crucial in our arguments, because it establishes an important estimate
involving the level 𝑐𝜆.

Lemma 2.2.2. The level 𝑐𝜆 satisfies

0 < 𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 ,

if either

(𝑖) 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇, 2𝛼 + 𝜇 = 𝑁 , 𝑁 ⩾ 3,

(𝑖𝑖) 2*𝛼,𝜇 <
𝑁+2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 = 3, 4,

(𝑖𝑖𝑖) 2*𝛼,𝜇 <
2𝑁−2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 ⩾ 5,

or

(𝑖𝑣) 2*𝛼,𝜇 < 𝑝 ⩽ 𝑁+2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 = 3, 4 and 𝜆 sufficiently large,

(𝑣) 2*𝛼,𝜇 < 𝑝 ⩽ 2𝑁−2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 ⩾ 5 and 𝜆 sufficiently large.

Proof. We will divide the proof into two cases.
Case 1. In what follows, the proof only includes items (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖).

For 𝜀 > 0 define
𝑈𝜀(𝑥) = 𝜀

2−𝑁
2 𝑈(𝑥

𝜀
),

where 𝑈(𝑥) is a minimizant of 𝑆𝛼,𝜇 (see (DU; GAO; YANG, 2022, Theorem 1.3)) and satisfies

−Δ𝑢 =
(︃∫︁

R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
, in R𝑁
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with ∫︁
R𝑁

|∇𝑈 |2 d𝑥 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 = 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 . (2.21)

Applying the change of variable theorem, we observe that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥 =
∫︁
R𝑁

|∇𝑈 |2 d𝑥,∫︁
R𝑁

|𝑈𝜀|2 d𝑥 = 𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥,∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥

=
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥,

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥

= 𝜀(2−𝑁)𝑝+2𝑁−2𝛼−𝜇
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥.

(2.22)

Now, arguing as in the proof of Lemma 2.2.1 (𝑖), implies that there exists 𝑡𝜀 > 0 such that

𝑡𝜀𝑈𝜀 ∈ 𝒩𝜆 and max
𝑡⩾0

𝑔(𝑡) = 𝑔(𝑡𝜀) = 𝐼𝜆(𝑡𝜀𝑈𝜀).

Furthermore, 𝑡𝜀 is unique. In view of 𝑡𝜀𝑈𝜀 ∈ 𝒩𝜆 and since 𝜆 > 0, we deduce

2
∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥+
∫︁
R𝑁

|𝑈𝜀|2 d𝑥 ⩾
∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥+
∫︁
R𝑁

|𝑈𝜀|2 d𝑥

=𝑡2(2*
𝛼,𝜇−1)

𝜀

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝑡2(𝑝−1)
𝜀 𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥 (2.23)

⩾𝑡
2(2*

𝛼,𝜇−1)
𝜀

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥

and combining with (2.21)-(2.22), we obtain

2𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝜀2

∫︁
R𝑁

|𝑈 |2 d𝑥 ⩾ 𝑡
2(2*

𝛼,𝜇−1)
𝜀 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 , (2.24)

whence we have 0 < 𝑡𝜀 ⩽ 2
1

2(2*
𝛼,𝜇−1) , for 𝜀 small enough.

Claim. 𝑡𝜀 → 1, as 𝜀 → 0.
In fact, by (2.21)-(2.22), it follows that∫︁

R𝑁
|∇𝑈 |2 d𝑥− 𝑡

2(2*
𝛼,𝜇−1)

𝜀

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

= −𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥+ 𝑡2(𝑝−1)
𝜀 𝜀(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥

→ 0, (2.25)
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as 𝜀 → 0, implying that 𝑡𝜀 → 1 as 𝜀 → 0, which proves the claim.
Finally, combining once more (2.21)-(2.22), we see that

𝑐𝜆 ⩽max
𝑡⩾0

𝐼𝜆(𝑡𝑈𝜀) = 𝐼𝜆(𝑡𝜀𝑈𝜀)

=
⎛⎝𝑡2𝜀

2 − 𝑡
22*

𝛼,𝜇
𝜀

22*
𝛼,𝜇

⎞⎠𝑆 2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥

− 𝑡2𝑝

2𝑝 𝜀
(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥

⩽max
𝑡>0

(︃
𝑡2

2 − 𝑡22*
𝛼,𝜇

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥

− 𝑡2𝑝

2𝑝 𝜀
(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥

=
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥

− 𝑡2𝑝

2𝑝 𝜀
(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥,

i.e.,

𝑐𝜆 ⩽

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥

− 𝑡2𝑝

2𝑝 𝜀
(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥. (2.26)

But, since 𝜆 > 0 and (2 −𝑁)𝑝+ 2𝑁 − 2𝛼−𝜇 < 2 for every choice of 𝑝 in (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖),
we have for 𝜀 small enough that

𝑡2𝜀
2 𝜀

2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝑡2𝑝

2𝑝 𝜀
(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥 < 0.

This together with (2.26), one has

𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 .

Therefore, the proof of Case 1 is complete.
Case 2. For this case, we assume 𝜆 sufficiently large, and the proof in what follows will include
items (𝑖𝑣) and (𝑣). In fact, for 𝑡 > 0, we define

𝑔𝜆(𝑡) :=𝐼𝜆(𝑡𝑈𝜀) = 𝑡2

2

∫︁
R𝑁

|∇𝑈𝜀(𝑥)|2 d𝑥+ 𝑡2

2

∫︁
R𝑁

|𝑈𝜀(𝑥)|2 d𝑥

− 𝑡22*
𝛼,𝜇

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆
𝑡2𝑝

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥. (2.27)
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It is well known that for 𝑡 > 0 large enough 𝑔𝜆(𝑡) < 0, for 𝑡 > 0 small enough 𝑔𝜆(𝑡) > 0. This
implies there exists 𝑡𝜆 > 0 such that

𝑡𝜆𝑈𝜀 ∈ 𝒩 and 𝑐𝜆 ⩽ max
𝑡⩾0

𝑔𝜆(𝑡) = 𝑔𝜆(𝑡𝜆), (2.28)

‖𝑈𝜀‖2 =𝑡2(2*
𝛼,𝜇−1)

𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆𝑡
2(𝑝−1)
𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥 (2.29)

and, we deduce

‖𝑈𝜀‖2 ⩾ 𝜆𝑡
2(𝑝−1)
𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥.

This implies that

𝑡𝜆 ⩽

⎛⎜⎜⎜⎜⎝ ‖𝑈𝜀‖2

𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥

⎞⎟⎟⎟⎟⎠
1

2(𝑝−1)

.

Follows that lim𝜆→∞ 𝑡𝜆 = 0. Finally, from (2.27)-(2.29), we observe that

max
𝑡⩾0

𝑔𝜆(𝑡) =𝑡
2
𝜆

2 ‖𝑈𝜀‖2 − 𝑡
22*

𝛼,𝜇

𝜆

22*
𝛼,𝜇

∫︁
R𝑁

∫︁
R𝑁

|𝑈𝜀(𝑥)|2*
𝛼,𝜇|𝑈𝜀(𝑦)|2*

𝛼,𝜇

|𝑥|𝛼|𝑦 − 𝑥|𝜇|𝑦|𝛼
d𝑥d𝑦

− 𝜆
𝑡2𝑝
𝜆

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥 → 0,

as 𝜆 → ∞. This means there exists 𝜆0 > 0 such that when 𝜆 ⩾ 𝜆0, one can always get

𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇

and this proves Case 2. Thus, in both cases, estimate (2.17) holds true . Finishing the proof
of lemma.

In the following, we will explore some convergence lemmas that are crucial for proving that
every (𝑃𝑆)𝑐−sequence has a convergent subsequence. Specifically, the following definition will
be employed throughout the thesis:

Definition 2.2.3. A sequence (𝑢𝑛)𝑛 ⊂ 𝑋 (𝑋 is a Banach space) is called Palais-Smale

sequence for 𝐼 ∈ 𝐶1(𝑋,R) at level 𝑐 ∈ R ((𝑃𝑆)𝑐−sequence for short), if there holds

𝐼(𝑢𝑛) → 𝑐 and ‖𝐼 ′(𝑢𝑛)‖ → 0, as 𝑛 → ∞. We say that 𝐼 satisfies the Palais-Smale

condition at level 𝑐 ∈ R ((𝑃𝑆)𝑐−condition for short) if any (𝑃𝑆)𝑐−sequence has a convergent

subsequence in 𝑋.
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Lemma 2.2.4. ((WILLEM, 2022, Proposition 5.4.7)) Let 𝑁 ⩾ 3, 𝑠 ∈ (1,∞) and (𝑢𝑛)𝑛 ∈

𝐿𝑠(R𝑁). If (𝑢𝑛)𝑛 is a bounded sequence in 𝐿𝑠(R𝑁) such that 𝑢𝑛 → 𝑢 a.e. in R𝑁 as 𝑛 → ∞,

then 𝑢𝑛 ⇀ 𝑢 in 𝐿𝑠(R𝑁).

The next Lemma is a nonlocal version of the Brézis-Lieb convergence lemma (see (BRÉZIS;

LIEB, 1983)).

Lemma 2.2.5. ((DU; GAO; YANG, 2022, Lemma 2.2)) Let 𝑁 ⩾ 3, 𝛼 ⩾ 0, 0 < 𝜇 < 𝑁 ,

2𝛼 + 𝜇 ⩽ 𝑁 and 2*𝛼,𝜇 ⩽ 𝑝 ⩽ 2*
𝛼,𝜇. If (𝑢𝑛)𝑛 is a bounded sequence in 𝐿

2𝑁𝑝
2𝑁−2𝛼−𝜇 (R𝑁) such

that 𝑢𝑛 → 𝑢 a.e. in R𝑁 as 𝑛 → ∞, then
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛 − 𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛 − 𝑢|𝑝

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1).

Lemma 2.2.6. If 𝑢𝑛 ⇀ 𝑢 in 𝐻1(R𝑁), then
∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦 ⇀

∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦, in 𝐿

2𝑁
𝜇+2𝛼 (R𝑁),

for all 2*𝛼,𝜇 ⩽ 𝑝 ⩽ 2*
𝛼,𝜇. In addition, the sequence

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦
)︃

𝑛

is bounded in

𝐿
2𝑁

𝜇+2𝛼 (R𝑁).

Proof. Since 𝑢𝑛 ⇀ 𝑢 in 𝐻1(R𝑁), we have that 𝑢𝑛 → 𝑢 in 𝐿𝑡(R𝑁), for 𝑡 ∈ (2, 2*) and 𝑢𝑛 → 𝑢

a.e. in R𝑁 . Hence, |𝑢𝑛|𝑝 → |𝑢|𝑝 a.e. in R𝑁 . By continuous Sobolev embedding (|𝑢𝑛|𝑝)𝑛 is
bounded in 𝐿

2𝑁
2𝑁−𝜇−𝛼 (R𝑁) and by Lemma 2.2.4, we obtain

|𝑢𝑛|𝑝 ⇀ |𝑢|𝑝 in 𝐿
2𝑁

2𝑁−𝜇−𝛼 (R𝑁).

In light of Proposition 1.0.2, we see that the operator

𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁) ∋ ℎ ↦−→
∫︁
R𝑁

ℎ

|𝑥|𝛼|𝑥− 𝑦|𝜇|𝑦|𝛼
d𝑦 ∈ 𝐿

2𝑁
𝜇+2𝛼 (R𝑁)

is a linear bounded operator from 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁) to 𝐿
2𝑁

𝜇+2𝛼 (R𝑁), which assures us

∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦 ⇀

∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦, in 𝐿

2𝑁
𝜇+2𝛼 (R𝑁).
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Lemma 2.2.7. Let 𝑁 ⩾ 3, 𝛼 ⩾ 0, 0 < 𝜇 < 𝑁 , 2𝛼 + 𝜇 ⩽ 𝑁 . If (𝑢𝑛)𝑛 is a sequence in

𝐻1
rad(R𝑁) such that 𝑢𝑛 ⇀ 𝑢 in 𝐻1

rad(R𝑁), then for any 𝑣 ∈ 𝐻1(R𝑁) and 2*𝛼,𝜇 ⩽ 𝑝 ⩽ 2*
𝛼,𝜇,∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝−2𝑢𝑛

|𝑥|𝛼
𝑣 d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑣 d𝑥

+ 𝑜𝑛(1).

Proof. In what follows, we will adapt some ideas from the case 𝛼 = 0 in (AO, 2019, Theorem
1.1). Since 𝑢𝑛 ⇀ 𝑢 in 𝐻1

rad(R𝑁), we have that 𝑢𝑛 → 𝑢 in 𝐿𝑡(R𝑁), for 𝑡 ∈ (2, 2*) and 𝑢𝑛 → 𝑢

a.e. in R𝑁 . By continuous Sobolev embedding (|𝑢𝑛|𝑝−2𝑢𝑛)𝑛 is bounded in 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁) and
by Lemma 2.2.4, obtain

|𝑢𝑛|𝑝−2𝑢𝑛 ⇀ |𝑢|𝑝−2𝑢 in 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁).

Now, by Egorov’s Theorem, |𝑢𝑛|𝑝−2𝑢𝑛 → |𝑢|𝑝−2𝑢 a.e. uniformly in 𝐾, where 𝐾 ⊂⊂ R𝑁 .
Hence, |𝑢𝑛|𝑝−2𝑢𝑛 → |𝑢|𝑝−2𝑢 measure on 𝐾. Since |𝑢𝑛|𝑝−2𝑢𝑛 → |𝑢|𝑝−2𝑢 in measure on 𝐾, for
any 𝜀 > 0, 𝛿 > 0, there exists some 𝑛0 > 0 such that any 𝑛 > 𝑛0, we have

meas
{︁
𝑥 ∈ 𝐾 :

⃒⃒⃒
|𝑢𝑛(𝑥)|𝑝−2𝑢𝑛(𝑥) − |𝑢(𝑥)|𝑝−2𝑢(𝑥)

⃒⃒⃒
> 𝛿

}︁
< 𝜀. (2.30)

Setting 𝜓 ∈ 𝐶∞
0 (R𝑁) with supp(𝜓) ⊂ 𝐾 and

𝐾1 := {𝑥 ∈ 𝐾 :
⃒⃒⃒
|𝑢𝑛(𝑥)|𝑝−2𝑢(𝑥) − |𝑢(𝑥)|𝑝−2𝑢(𝑥)

⃒⃒⃒
> 𝛿}.

Claim. It is true that

𝑜𝑛(1) =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝−2𝑢𝑛

|𝑥|𝛼
𝜓 d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝜓 d𝑥

=: 𝒬𝑛.

Indeed, we observe that

𝒬𝑛 ⩽
⃒⃒⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝 − |𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝜓 d𝑥

⃒⃒⃒⃒

+
⃒⃒⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝−2𝑢𝑛 − |𝑢|𝑝−2𝑢

|𝑥|𝛼
𝜓 d𝑥

⃒⃒⃒⃒

⩽
⃒⃒⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝 − |𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝜓 d𝑥

⃒⃒⃒⃒

+
∫︁

𝐾1

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃ ⃒⃒⃒⃒
⃒ |𝑢𝑛|𝑝−2𝑢𝑛 − |𝑢|𝑝−2𝑢

|𝑥|𝛼
𝜓

⃒⃒⃒⃒
⃒ d𝑥

+
∫︁

𝐾∖𝐾1

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃ ⃒⃒⃒⃒
⃒ |𝑢𝑛|𝑝−2|𝑢𝑛 − |𝑢|𝑝−2𝑢

|𝑥|𝛼
𝜓

⃒⃒⃒⃒
⃒ d𝑥

=:𝒬1
𝑛 + 𝒬2

𝑛 + 𝒬3
𝑛. (2.31)
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We will estimate 𝒬1
𝑛, 𝒬2

𝑛 and 𝒬3
𝑛. In fact, since |𝑢|𝑝−2𝑢𝜓 ∈ 𝐿

2𝑁
2𝑁−2𝛼−𝜇 (R𝑁), it follows from

Lemma 2.2.6 that 𝒬1
𝑛 → 0. Moreover, by Lemma 2.2.6, there exists 𝐶 > 0 such that⃦⃦⃦⃦

⃦⃦ ∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦

⃦⃦⃦⃦
⃦⃦

2𝑁
𝜇+2𝛼

⩽ 𝐶. (2.32)

This and from Hölder’s inequality, it follows that

𝒬2
𝑛 ⩽

⎡⎢⎣∫︁
𝐾1

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦
)︃ ⃒⃒⃒⃒
⃒⃒

2𝑁
𝜇+2𝛼

⎤⎥⎦
𝜇+2𝛼

2𝑁

×
(︂∫︁

𝐾1

⃒⃒⃒
|𝑢𝑛|𝑝−2𝑢𝑛 − |𝑢|𝑝−2𝑢𝜓

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶
(︂∫︁

𝐾1

⃒⃒⃒
|𝑢𝑛|𝑝−2𝑢𝑛 − |𝑢|𝑝−2𝑢𝜓(𝑥)

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶
(︂∫︁

𝐾1

⃒⃒⃒
|𝑢𝑛|𝑝−2𝑢𝑛 − |𝑢|𝑝−2𝑢

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇

𝑝
𝑝−1 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

𝑝−1
𝑝

×
(︃∫︁

𝐾1

⃒⃒⃒
𝜓
⃒⃒⃒ 2𝑁𝑝

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁
1
𝑝

. (2.33)

Now, to get an estimate for 𝒬3
𝑛, we observe that

|𝑢𝑛(𝑥)|𝑝−2𝑢𝑛(𝑥) − |𝑢|𝑝−2𝑢(𝑥) ⩽ 𝛿, in 𝐾∖𝐾1,

which jointly with (2.32) and Hölder inequality implies that

𝒬3
𝑛 ⩽ 𝛿𝐶

(︃∫︁
𝐾∖𝐾1

⃒⃒⃒
𝜓(𝑥)

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

⩽ 𝛿𝐶
(︂∫︁

R𝑁

⃒⃒⃒
𝜓(𝑥)

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

Combining with (2.31) and (2.33), we obtain

𝒬𝑛 ⩽𝐶
(︂∫︁

𝐾1

⃒⃒⃒
|𝑢𝑛(𝑥)|𝑝−2𝑢𝑛(𝑥) − |𝑢(𝑥)|𝑝−2𝑢(𝑥)

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇

𝑝
𝑝−1 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

𝑝−1
𝑝

×
(︃∫︁

𝐾1

⃒⃒⃒
𝜓(𝑥)

⃒⃒⃒ 2𝑁𝑝
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

1
𝑝

+ 𝛿𝐶
(︂∫︁

R𝑁

⃒⃒⃒
𝜓(𝑥)

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

.

By the arbitrariness of 𝜀 and 𝛿, we have 𝒬𝑛 → 0. Which proves the claim.
Since 𝐶∞

0 (R𝑁) is dense in 𝐻1(R𝑁), we have
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝−2𝑢𝑛

|𝑥|𝛼
𝑣 d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑣 d𝑥

+ 𝑜𝑛(1),

for any 𝑣 ∈ 𝐻1(R𝑁) and 2*𝛼,𝜇 ⩽ 𝑝 ⩽ 2*
𝛼,𝜇.
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Lemma 2.2.8. Let 𝑁 ⩾ 3, 𝛼 ⩾ 0, 0 < 𝜇 < 𝑁 , 2𝛼 + 𝜇 ⩽ 𝑁 and 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇. If (𝑢𝑛)𝑛

is a sequence in 𝐻1
rad(R𝑁) such that 𝑢𝑛 ⇀ 𝑢 in 𝐻1

rad(R𝑁), then
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1).

Proof. Combining Proposition 1.0.2 with Hölder’s inequality, we infer that
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝−2𝑢𝑛(𝑢𝑛 − 𝑢)
|𝑥|𝛼

d𝑥

⩽𝐶(𝑁,𝛼, 𝜇)
(︂∫︁

R𝑁
|𝑢𝑛|

2𝑁𝑝
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

(︂∫︁
R𝑁

||𝑢𝑛|𝑝−1(𝑢𝑛 − 𝑢)|
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

⩽𝐶(𝑁,𝛼, 𝜇)‖𝑢𝑛‖𝑝
2𝑁𝑝

2𝑁−2𝛼−𝜇

‖𝑢𝑛‖𝑝−1
2𝑁𝑝

2𝑁−2𝛼−𝜇

‖𝑢𝑛 − 𝑢‖ 2𝑁𝑝
2𝑁−2𝛼−𝜇

. (2.34)

Similarly
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢(𝑢𝑛 − 𝑢)
|𝑥|𝛼

d𝑥 ⩽ 𝐶‖𝑢𝑛 − 𝑢‖ 2𝑁𝑝
2𝑁−2𝛼−𝜇

, (2.35)

where 𝐶 := 𝐶(𝑁,𝛼, 𝜇)‖𝑢‖2𝑝−1
2𝑁𝑝

2𝑁−2𝛼−𝜇

. Since 𝑢𝑛 ⇀ 𝑢 in 𝐻1
rad(R𝑁), we have that 𝑢𝑛 → 𝑢 in

𝐿𝑡(R𝑁), for 𝑡 ∈ (2, 2*). Hence, one has that

‖𝑢𝑛 − 𝑢‖ 2𝑁𝑝
2𝑁−2𝛼−𝜇

= 𝑜𝑛(1), ∀𝑝 ∈ (2*𝛼,𝜇 , 2*
𝛼,𝜇),

which together with (2.34)-(2.35), we infer⃒⃒⃒⃒
⃒
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥
⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢𝑛(𝑦)|𝑝

|𝑥|𝛼|𝑦 − 𝑥|𝜇|𝑦|𝛼
d𝑦
)︃

|𝑢𝑛|𝑝−2𝑢𝑛𝑢 d𝑥−
∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑦)|𝑝|𝑢(𝑥)|𝑝

|𝑥|𝛼|𝑦 − 𝑥|𝜇|𝑦|𝛼
d𝑦d𝑥

⃒⃒⃒⃒
⃒⃒+ 𝑜𝑛(1)

=: 𝒬𝑛 + 𝑜𝑛(1),

where taking 𝑣 = 𝑢 in Lemma 2.2.7, we obtain 𝒬𝑛 = 𝑜𝑛(1). Finishing the proof of the
lemma.

Lemma 2.2.9. If (𝑢𝑛)𝑛 is a (𝑃𝑆)𝑐−sequence of the constrained functional 𝐼𝜆|𝒩 is also a

(𝑃𝑆)𝑐𝜆
−sequence of 𝐼𝜆, namely, if (𝑢𝑛)𝑛 in 𝒩𝜆 satisfies

𝐼𝜆(𝑢𝑛) = 𝑐𝜆 + 𝑜𝑛(1) and 𝐼 ′
𝜆|𝒩𝜆

(𝑢𝑛) = 𝑜𝑛(1),

then 𝐼 ′
𝜆(𝑢𝑛) = 𝑜𝑛(1).
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Proof. Initially, we will check that (𝑢𝑛)𝑛 is bounded. In fact, since (𝑢𝑛)𝑛 ⊂ 𝒩𝜆 and
𝐼𝜆(𝑢𝑛) = 𝑐𝜆 + 𝑜𝑛(1), we have

‖𝑢𝑛‖2 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥 (2.36)

and

𝑐𝜆 + 𝑜𝑛(1) =1
2‖𝑢𝑛‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
2𝑝𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥.

Whence it follows from 𝑝 < 2*
𝛼,𝜇 that

𝑐𝜆 + 𝑜𝑛 >
1
2‖𝑢𝑛‖2 − 1

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
2𝑝𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥

=
(︃

1
2 − 1

2𝑝

)︃
‖𝑢𝑛‖2, (2.37)

thus (𝑢𝑛)𝑛 is bounded. Now, we prove that 𝒩𝜆 is a 𝐶1−manifold. Let 𝐽𝜆 : 𝐻1(R𝑁) −→ R

be the 𝐶1−functional defined by 𝐽𝜆(𝑢) = 𝐼 ′
𝜆(𝑢)𝑢. Then 𝒩𝜆 = 𝐽−1

𝜆 (0). If 𝑢𝑛 ∈ 𝒩𝜆, then it
follows from (2.36) that

𝐽 ′
𝜆(𝑢𝑛)𝑢𝑛 =2‖𝑢𝑛‖2 − 22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 2𝑝𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥

⩽2‖𝑢‖2 − 2𝑝
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 2𝑝𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥

=(2 − 2𝑝)‖𝑢‖2,

which together with Lemma 2.2.1 (𝑖𝑖) and since 2 < 𝑝 implies that

𝐽 ′
𝜆(𝑢)𝑢 ⩽ (2 − 2𝑝)𝛿2 < 0. (2.38)

Thus, 0 is a regular value of 𝐽𝜆 and therefore 𝒩𝜆 is a 𝐶1−manifold. By the Lagrange multiplier
theorem, there exists a sequence (𝑡𝑛)𝑛 ⊂ R such that

𝑜𝑛(1) = 𝐼 ′
𝜆|𝒩𝜆

(𝑢𝑛) = 𝐼 ′
𝜆(𝑢𝑛) − 𝑡𝑛𝐽

′
𝜆(𝑢𝑛), (2.39)
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implying 𝑡𝑛𝐽 ′
𝜆(𝑢𝑛)𝑢𝑛 = 𝑜𝑛(1). Using once more (2.36) and since that 𝜆(22*

𝛼,𝜇 − 2𝑝) > 0, we
see

𝐽 ′
𝜆(𝑢𝑛)𝑢𝑛 =2‖𝑢𝑛‖2 − 22*

𝛼,𝜇

[︃
‖𝑢𝑛‖2 − 𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥
]︃

− 2𝑝𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥

⩾(2 − 22*
𝛼.𝜇)‖𝑢𝑛‖2.

This and by (2.38), it follows that (𝐽 ′
𝜆(𝑢𝑛)𝑢𝑛)𝑛 is bounded thanks to the boundedness of

(𝑢𝑛)𝑛. Hence, 𝑡𝑛 → 0, and from (2.39), we achieve that 𝐼 ′
𝜆(𝑢𝑛) → 0. Finishing the proof of

the lemma.

In the following lemma, we prove that the functional 𝐼𝜆 satisfies the (𝑃𝑆)𝑐𝜆
−condition

when 𝑐𝜆 meets the estimate provided in Lemma 2.2.2. This condition is crucial for obtaining
a nontrivial solution to Problem (2.14). Specifically, we present the following result.

Lemma 2.2.10. If

𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 ,

then 𝐼𝜆 satisfies the (𝑃𝑆)𝑐𝜆
−condition.

Proof. Let (𝑢𝑛)𝑛 ⊂ 𝐻1
rad(R𝑁) be a (𝑃𝑆)𝑐𝜆

−sequence for 𝐼𝜆. Thus, the sequence (𝑢𝑛)𝑛 is
bounded in 𝐻1

rad(R𝑁) and, up to a subsequence, 𝑢𝑛 ⇀ 𝑢 in 𝐻1
rad(R𝑁), which implies that

∫︁
R𝑁

∇𝑢𝑛∇𝑣 d𝑥+
∫︁
R𝑁
𝑢𝑛𝑣 d𝑥 =

∫︁
R𝑁

∇𝑢∇𝑣 d𝑥+
∫︁
R𝑁
𝑢𝑣 d𝑥+ 𝑜𝑛(1). (2.40)

Consequently, in light of Lemma 2.2.7, we obtain 𝐼 ′
𝜆(𝑢𝑛)𝑣 = 𝐼 ′

𝜆(𝑢)𝑣 + 𝑜𝑛(1) and since that
𝐼 ′

𝜆(𝑢𝑛)𝑣 = 𝑜𝑛(1), we deduce for all 𝑣 ∈ 𝐻1
rad(R𝑁),

∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼−2𝑢

|𝑥|𝛼
𝑣 d𝑥

+ 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑣 d𝑥, (2.41)

i.e., 𝑢 is a solution of the Problem (2.14). Taking 𝑢 = 𝑣 in (2.41), implies that

ℐ𝜆(𝑢) =
(︃

1
2 − 1

22*
𝛼,𝜇

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆

(︃
1
2 − 1

2𝑝

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥 ⩾ 0, (2.42)

since that 1
2 − 1

22*
𝛼,𝜇

> 0 and 𝜆(1
2 − 1

2𝑝
) > 0.
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Let 𝑣𝑛 := 𝑢𝑛 − 𝑢. Thus,

‖𝑢𝑛‖2 = ‖𝑣𝑛‖2 + ‖𝑢‖2 + 𝑜𝑛(1) (2.43)

and combining Proposition 1.0.2 with Sobolev embedding, we see
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|𝑝

|𝑥|𝛼
d𝑥 ⩽ 𝐶(𝑁,𝛼, 𝜇)‖𝑣𝑛‖2𝑝

2𝑁𝑝
2𝑁−2𝛼−𝜇

= 𝑜𝑛(1). (2.44)

Now, by Lemma 2.2.5, it follows that
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

(2.45)

and
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1), (2.46)

which together with the fact that 𝑜𝑛(1) = 𝐼 ′
𝜆(𝑢𝑛)𝑢𝑛, we deduce

𝑜𝑛(1) =𝐼 ′
𝜆(𝑢𝑛)𝑢𝑛 = ‖𝑣𝑛‖2 + ‖𝑢‖2

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=𝐼 ′
𝜆(𝑢)𝑢+ ‖𝑣𝑛‖2 −

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=‖𝑣𝑛‖2 −
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1). (2.47)

Suppose that ‖𝑣𝑛‖2 → 𝑏, then
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 → 𝑏.

By the definition of the best constant 𝑆𝛼,𝜇 in (2.12)

𝑆𝛼,𝜇

[︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥
]︃ 1

2*
𝛼,𝜇

⩽
∫︁
R𝑁

|∇𝑣𝑛|2 d𝑥,
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which yields 𝑏
1

2*
𝛼,𝜇 𝑆𝛼,𝜇 ⩽ 𝑏. This implies that either 𝑏 = 0 or 𝑏 ⩾ 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 > 0. Now, using

(2.42)-(2.46), we observe

𝑐𝜆 + 𝑜𝑛(1) =𝐼𝜆(𝑢𝑛)

=1
2‖𝑢𝑛‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
2𝑝𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|𝑝

|𝑥|𝛼
d𝑥

=1
2‖𝑣𝑛‖2 + 1

2‖𝑢‖2 − 1
22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
2𝑝𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=𝐼𝜆(𝑢) + 1
2‖𝑣𝑛‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=𝐼𝜆(𝑢) +
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
𝑏+ 𝑜𝑛(1)

⩾

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑏+ 𝑜𝑛(1), (2.48)

i.e., 𝑐𝜆 ⩾
(︂

1
2 − 1

22*
𝛼,𝜇

)︂
𝑏. Therefore, if 𝑏 ⩾ 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 , then

𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 =

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 ⩽

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑏 ⩽ 𝑐𝜆,

which contradicts with the fact that 𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 . Thus, 𝑏 = 0 and

‖𝑢𝑛 − 𝑢‖ → 0,

as 𝑛 → ∞, this completes the proof.

Proof of Theorem 2.1.4. Since 𝐼𝜆 bounded from below on 𝒩𝜆, we have by Ekeland’s
variational principle, (WILLEM, 1996, Theorem 2.4), there exists a sequence (𝑢𝑛)𝑛 in 𝒩𝜆

satisfying
𝐼𝜆(𝑢𝑛) = 𝑐𝜆 + 𝑜𝑛(1) and 𝐼 ′

𝜆|𝒩𝜆
(𝑢𝑛) = 𝑜𝑛(1).

By Lemma 2.2.9, 𝐼 ′
𝜆(𝑢𝑛) = 𝑜𝑛(1). In light of Lemma 2.2.10, we infer that 𝑢𝑛 → 𝑢 strongly in

𝐻1
rad(R𝑁). Thus, 𝐼 ′

𝜆(𝑢) = 0 e 𝐼𝜆(𝑢) = 𝑐𝜆 > 0. We conclude that, 𝑢 ̸= 0 is a radial ground
state solution of (2.4). This ends the proof of theorem.
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Proof of Theorem 2.1.5. In the following we will show that each 𝑢 obtained in Theorem
2.1.4 belongs to 𝐿∞(R𝑁). For this, we shall use the Moser’s iteration method and according
to the Theorem 2.1.5, let us recall the following hypotheses for 𝛼, 𝜇 and 𝑝: 0 < 𝜇 < 𝑁 ,
𝛼 ⩾ 0, 𝑁 ⩾ 3,

0 < 2𝛼 + 𝜇 < min
{︂
𝑁 + 2

2 , 4
}︂

and 2*𝛼,𝜇 <
4

2*
𝛼,𝜇

𝑁 + 2 − 2𝛼− 𝜇

𝑁 − 2 ⩽ 𝑝 < 2*
𝛼,𝜇. (2.49)

It is important to mention that, in order to handle the double weight in the Stein-Weiss term
and apply the iteration process, we use (2.49) in combination with Proposition 1.0.2.

Lemma 2.2.11. Let 𝑢 be the solution of (2.4) obtained in Theorem 2.1.4. Assume that

(2.49) is satisfied. Then, 𝑢 ∈ 𝐿∞(R𝑁) ∩ 𝐶1,𝛾
loc (R𝑁), for some 𝛾 ∈ (0, 1).

Proof. For 𝐿 > 0, we define 𝜑𝐿 = 𝑢𝑢
2(𝛽−1)
𝐿 and 𝑤𝐿 = 𝑢𝑢

(𝛽−1)
𝐿 , where 𝑢𝐿 = min {𝑢, 𝐿}. By

taking 𝜑𝐿 = 𝑢𝑢
2(𝛽−1)
𝐿 as test function in (2.15), where 𝛽 > 1 will be chosen later, we have

∫︁
R𝑁

∇𝑢∇(𝑢𝑢2(𝛽−1)
𝐿 ) d𝑥+

∫︁
R𝑁

|𝑢|2𝑢2(𝛽−1)
𝐿 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝑢𝑢

2(𝛽−1)
𝐿 d𝑥

− 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑢𝑢

2(𝛽−1)
𝐿 d𝑥 = 0,

which implies
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥 = − 2(𝛽 − 1)

∫︁
R𝑁
𝑢

2(𝛽−1)−1
𝐿 𝑢∇𝑢∇𝑢𝐿 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝑢𝑢

2(𝛽−1)
𝐿 d𝑥

+ 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑢𝑢

2(𝛽−1)
𝐿 d𝑥

−
∫︁
R𝑁

|𝑢|2𝑢2(𝛽−1)
𝐿 d𝑥. (2.50)

Since

2(𝛽 − 1)
∫︁
R𝑁
𝑢

2(𝛽−1)−1
𝐿 𝑢∇𝑢∇𝑢𝐿 d𝑥 = 2(𝛽 − 1)

∫︁
{𝑢⩽𝐿}

𝑢
2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥 ⩾ 0, (2.51)

it follows from (2.50) that
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥 ⩽

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
𝑢

2(𝛽−1)
𝐿 d𝑥

+ 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
𝑢

2(𝛽−1)
𝐿 d𝑥. (2.52)
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By (2.13), note that
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽ 𝑆−1
∫︁
R𝑁

|∇𝑤𝐿|2 d𝑥 = 𝑆−1
∫︁
R𝑁

∇(𝑢𝑢(𝛽−1)
𝐿 ) d𝑥,

Thus,
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽𝑆−1
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥+ 𝑆−1(𝛽 − 1)2

∫︁
R𝑁

|𝑢|2𝑢2(𝛽−2)
𝐿 |∇𝑢𝐿|2 d𝑥

⩽𝑆−1𝛽2
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥+ 𝑆−1𝛽2

∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥

=2𝑆−1𝛽2
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥, (2.53)

where we have used ∇𝑢𝐿 = 0 in {𝑢 > 𝐿}, 𝑢 = 𝑢𝐿 in {𝑢 ⩽ 𝐿} and 𝛽 > 1. According to
(2.52) and (2.53), we obtain

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽2𝑆−1𝛽2
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
𝑢

2(𝛽−1)
𝐿 d𝑥 (2.54)

+ 2𝑆−1𝛽2𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
𝑢

2(𝛽−1)
𝐿 d𝑥. (2.55)

Next, we estimate the right-hand side of (2.54)-(2.55). By (2.37), we get ‖𝑢‖2 ⩽ 2𝑝
𝑝−1𝑐𝜆 =: 𝑀

and from (2.13), ‖𝑢‖2
2* ⩽ 𝑆−1𝑀 . Combining this with Proposition 1.0.2, we deduce

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
𝑢

2(𝛽−1)
𝐿 d𝑥 ⩽ 𝐶2

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

,

where 𝐶2 := 𝐶(𝑁,𝛼, 𝜇)(𝑆−1𝑀)
2*

𝛼,𝜇
2 . Similarly, we deduce

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
𝑢

2(𝛽−1)
𝐿 d𝑥 ⩽ 𝐶3

(︂∫︁
R𝑁

(|𝑢|𝑝𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

,

where 𝐶3 := 𝐶(𝑁,𝛼, 𝜇)𝐶𝑝𝑀
𝑝
2 and we are denoting by 𝐶 the constant of the embedding

𝐻1
rad(R𝑁) →˓ 𝐿𝑠(R𝑁), for all 𝑠 ∈ [2, 2*]. Using these last two estimates in (2.54)-(2.55) and

denoting by 𝐶 = 2𝑆−1 max{𝐶2, 𝐶3}, we estimate that
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽𝐶𝛽2
(︂∫︁

R𝑁
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

+ 𝐶𝛽2𝜆
(︂∫︁

R𝑁
(|𝑢|𝑝𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

=:𝐶𝛽2(𝐼1 + 𝜆𝐼2). (2.56)

In the sequence, we estimate 𝐼1 and 𝐼2. Recalling that

(𝑎+ 𝑏)𝑝1 < 𝑎𝑝1 + 𝑏𝑝1 , ∀𝑎, 𝑏 > 0, 𝑝1 ∈ (0, 1),
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for any 𝐾 > 0, we have

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

<

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2*
𝛼,𝜇−2|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁

+
(︃∫︁

{|𝑢|>𝐾}
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

=:𝐼1
1 + 𝐼2

1 . (2.57)

Note that

𝐼1
1 ⩽ 𝐾2*

𝛼,𝜇−2
(︃∫︁

{|𝑢|⩽𝐾}
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁

(2.58)

and using Hölder’s inequality with exponents 2*
𝛼,𝜇

2*
𝛼,𝜇−2 and 2*

𝛼,𝜇

2 one deduce

𝐼2
1 ⩽

(︃∫︁
{|𝑢|>𝐾}

|𝑢|2*d𝑥
)︃ 2*

𝛼,𝜇−2
2* (︂∫︁

R𝑁
|𝑤𝐿|2*d𝑥

)︂ 2
2*

. (2.59)

This and estimates (2.57)-(2.58), imply that

𝐼1 ⩽𝐶1

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

+
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2* (︂∫︁
R𝑁

|𝑤𝐿|2*d𝑥
)︂ 2

2*

. (2.60)

Now we will estimate 𝐼2. Analogously, from Hölder’s inequality and (2.49), we obtain

𝐼2 ⩽𝐶2

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

+
(︃∫︁

{|𝑢|>𝐾}
|𝑢|(𝑝−2)

2*
𝛼,𝜇

2*
𝛼,𝜇−2 d𝑥

)︃ 2*
𝛼,𝜇−2

2* (︂∫︁
R𝑁

|𝑤𝐿|2*d𝑥
)︂ 2

2*

. (2.61)

Combining (2.56), (2.60) and (2.61), we derive
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽𝐶𝛽2
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

+ 𝐶𝛽2

⎡⎢⎢⎣
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2*

+ 𝜆

(︃∫︁
{|𝑢|>𝐾}

|𝑢|(𝑝−2)
2*

𝛼,𝜇
2*

𝛼,𝜇−2 d𝑥
)︃ 2*

𝛼,𝜇−2
2*

⎤⎥⎥⎦
×
(︂∫︁

R𝑁
|𝑤𝐿|2*d𝑥

)︂ 2
2*

. (2.62)
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Taking into account (2.49) and since 𝑢 ∈ 𝐿𝑠(R𝑁), for all 𝑠 ∈ [2, 2*], we may fix 𝐾 > 0 such
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︃∫︁
{|𝑢|>𝐾}

|𝑢|2*d𝑥
)︃ 2*

𝛼,𝜇−2
2*

⩽
1

4𝐶𝛽2 ,

(︃∫︁
{|𝑢|>𝐾}

|𝑢|(𝑝−2)
2*

𝛼,𝜇
2*

𝛼,𝜇−2 d𝑥
)︃ 2*

𝛼,𝜇−2
2*

⩽
1

4𝐶𝛽2𝜆
.

(2.63)

Combining (2.63) with (2.62) implies that
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽2𝐶𝛽2
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

. (2.64)

Claim. 𝑢 ∈ 𝐿2*𝛽(R𝑁), for 𝛽 = 2*
𝛼,𝜇

2 .
In fact, since 𝑢𝐿 ⩽ |𝑢| and recalling 𝑤𝐿 = 𝑢𝑢

(𝛽−1)
𝐿 , it follows from (2.64) that

(︃∫︁
R𝑁

(|𝑢|𝑢
2*

𝛼,𝜇−2
2

𝐿 )2*d𝑥
)︃ 2

2*

⩽ 2𝐶𝛽2
(︂∫︁

R𝑁
|𝑢|2*d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

< ∞. (2.65)

By taking the limit as 𝐿 → ∞ we conclude that
∫︁
R𝑁

|𝑢|2* 2*
𝛼,𝜇
2 d𝑥 < ∞,

which proves the claim.
Now, using that 𝑢𝐿 ⩽ |𝑢| and passing to the limit as 𝐿 → ∞ in (2.64), we obtain

‖𝑢‖2𝛽
2*𝛽 ⩽ 𝐶𝛽2

(︃∫︁
R𝑁

|𝑢|2𝛽 2*
2*

𝛼,𝜇 d𝑥
)︃ 2*

𝛼,𝜇
2*

2𝛽
2𝛽

= 𝐶𝛽2‖𝑢‖2𝛽
𝑞*

𝛼,𝜇𝛽, (2.66)

or equivalently,

‖𝑢‖2*𝛽 ⩽ [𝐶 1
2 ]

1
𝛽 𝛽

1
𝛽 ‖𝑢‖𝑞*

𝛼,𝜇𝛽, (2.67)

where 𝑞*
𝛼,𝜇 := 22*

2*
𝛼,𝜇

.
The next step is using inequality (2.67) to obtain 𝑢 ∈ 𝐿∞(R𝑁), through an iterative

process. For this purpose, we follow three steps.

First step. If 𝛽 = 𝛾1 := 2*

𝑞*
𝛼,𝜇

, then (2.67) becomes

‖𝑢‖2*𝛾1 ⩽ [𝐶 1
2 ]

1
𝛾1 𝛾

1
𝛾1
1 ‖𝑢‖2* , 2*𝛾1 = 𝛾2

1𝑞
*
𝛼,𝜇, (2.68)

that is, 𝑢𝛾2
1 ∈ 𝐿𝑞*

𝛼,𝜇(R𝑁).
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Second step. If 𝛽 = 𝛾2 := 𝛾2
1 , then 𝑞*

𝛼,𝜇𝛾2 = 𝑞*
𝛼,𝜇𝛾

2
1 = 2*𝛾1 and (2.67) becomes

‖𝑢‖2*𝛾2 ⩽ [𝐶 1
2 ]

1
𝛾2 𝛾

1
𝛾2
2 ‖𝑢‖𝑞*

𝛼,𝜇𝛾2 ,

i.e.,
‖𝑢‖2*𝛾2 ⩽ [𝐶 1

2 ]
1

𝛾2 (𝛾2)
1

𝛾2 ‖𝑢‖2*𝛾1 ,

which jointly with (2.68) yields that

‖𝑢‖2*𝛾2 ⩽ [𝐶 1
2 ]

1
𝛾1

+ 1
𝛾2 (𝛾1)

1
𝛾1 (𝛾2)

1
𝛾2 ‖𝑢‖2* . (2.69)

Since 2*𝛾2 = 2*𝛾2
1 = 2*𝛾1𝛾1 = 𝑞*

𝛼,𝜇𝛾
3
1 , it follows that 𝑢𝛾3

1 ∈ 𝐿𝑞*
𝛼,𝜇(R𝑁).

Third step. If 𝛽 = 𝛾3 := 𝛾3
1 , then 𝑞*

𝛼,𝜇𝛾3 = 𝑞*
𝛼,𝜇𝛾

3
1 = 2*𝛾2 and (2.67) becomes

‖𝑢‖2*𝛾3 ⩽ [𝐶 1
2 ]

1
𝛾3 𝛾

1
𝛾3
3 ‖𝑢‖𝑞*

𝛼,𝜇𝛾3 ,

i.e.,
‖𝑢‖2*𝛾3 ⩽ [𝐶 1

2 ]
1

𝛾3 (𝛾3)
1

𝛾3 ‖𝑢‖2*𝛾2 ,

which jointly with (2.69) yields that

‖𝑢‖2*𝛾3 ⩽ [𝐶 1
2 ]

1
𝛾1

+ 1
𝛾2

+ 1
𝛾3 (𝛾1)

1
𝛾1 (𝛾2)

1
𝛾2 (𝛾3)

1
𝛾3 ‖𝑢‖2* .

Since 2*𝛾3 = 2*𝛾3
1 = (2*𝛾1𝛾1)𝛾1 = 𝑞*

𝛼,𝜇𝛾
3
1 , it follows that 𝑢𝛾4

1 ∈ 𝐿𝑞*
𝛼,𝜇(R𝑁).

Inductively, if we consider 𝛽 = 𝛾𝑚 := 𝛾𝑚
1 , then 𝑞*

𝛼,𝜇𝛾𝑚+1 = 2*𝛾𝑚 and (2.67) becomes

‖𝑢‖2*𝛾𝑚 ⩽ [𝐶 1
2 ]

1
𝛾1

+ 1
𝛾2

+···+ 1
𝛾𝑚 𝛾

1
𝛾1
1 𝛾

1
𝛾2
2 · · · 𝛾

1
𝛾𝑚
𝑚 ‖𝑢‖2* , (2.70)

and we deduce that 𝑢𝛾
(𝑚+1)
1 ∈ 𝐿𝑞*

𝛼,𝜇(R𝑁) for all 𝑚 ∈ N. Recalling that 𝛾1 = 2*

𝑞*
𝛼,𝜇

> 1, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
𝑚→∞

2*𝛾𝑚 = 2* lim
𝑚→∞

𝛾𝑚
1 = 2* lim

𝑚→∞
𝛽𝑚 = ∞,

∞∑︁
𝑗=1

1
𝛾𝑗

=
∞∑︁

𝑗=1

(︃
1
𝛾1

)︃𝑗

= 1
𝛾1 − 1 ,

∞∑︁
𝑗=1

𝑗

𝛾𝑗

=
∞∑︁

𝑗=1

𝑗

𝛾𝑗
1

= 𝛾1

(𝛾1 − 1)2 ,

𝛾
1

𝛾1
1 𝛾

1
𝛾2
2 · · · 𝛾

1
𝛾𝑚
𝑚 = 𝛾

1
𝛾1
1 𝛾

2
𝛾2

1
1 · · · 𝛾

𝑚
𝛾𝑚

1
1 ⩽ 𝛾

∑︀∞
𝑗=1

𝑗

𝛾
𝑗
1

= 𝛾1
(𝛾1−1)2

1 .

By taking the limit as 𝑚 → ∞ in (2.70), leads to

‖𝑢‖∞ ⩽𝑀1‖𝑢‖2* , (2.71)

where 𝑀1 := 𝐶
1

2(𝛾1−1)𝛾
𝛾1

(𝛾1−1)2
1 . Thus, using regularity theory (see for instance (TOLKSDORF,

1984, Theorem 1)), we obtain 𝑢 ∈ 𝐶1,𝛾
loc (R𝑁), for some 𝛾 ∈ (0, 1).



50

Finally, since |𝑢| ∈ 𝒩𝜆 and 𝐼𝜆(|𝑢|) = 𝐼𝜆(𝑢), we have that |𝑢| is a nonnegative solution
of Problem (2.4). We denote 𝑢1 = |𝑢|. Therefore, in light of Strong Maximum Principle, we
conclude that 𝑢1 is positive. This finishes the proof of the Theorem 2.1.5.

2.3 THE HARDY POTENTIAL PERTURBATION

In this section, we aim to prove Theorem 2.1.6. Thus, we will study the existence of
solutions for the following equation involving Stein-Weiss convolutions and Hardy potential
term (𝑓2):

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ 𝜆

𝑢

|𝑥|2
, in R𝑁 . (2.72)

The energy functional associated with (2.72) is given by

𝐼𝜆(𝑢) =1
2‖𝑢‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
2𝜆

∫︁
R𝑁

|𝑢|2

|𝑥|2
d𝑥

and, in view of Lemma 2.1.18 and Remark 2.1.17, 𝐼𝜆 is well defined on 𝐻1(R𝑁), belongs to
𝐶1(𝐻1(R𝑁),R), and its derivative given by

𝐼 ′
𝜆(𝑢)𝑣 =

∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝑣 d𝑥

− 𝜆
∫︁
R𝑁

𝑢𝑣

|𝑥|2
d𝑥.

Thus, weak solutions of (2.72) are precisely the critical points of 𝐼𝜆.
As a consequence of Lemma 2.1.18, we have the following result.

Lemma 2.3.1. Assume that (𝑓2) holds. Then, for all 𝑁 ⩾ 3, there exists 𝐶𝑁,2,𝜆 > 0 such

that

‖𝑢‖2 −
∫︁
RN
𝑓(𝑥, 𝑢) d𝑥 ⩾ 𝐶𝑁,2,𝜆‖𝑢‖2, ∀𝑢 ∈ 𝐻1(R𝑁), (2.73)

where 𝐶𝑁,2,𝜆 := 1 − 𝜆𝐶𝑁,2 > 0, if ∈ 𝜆 ∈ (0, 1) for all 𝑁 > 4 or if 𝜆 = 1, 𝐶𝑁,2,1 > 0, for

𝑁 = 3, 4.

Proof. According to Lemma 2.1.18, we have

‖𝑢‖2 −
∫︁
RN
𝑓(𝑥, 𝑢) d𝑥 ⩾ (1 − 𝜆𝐶𝑁,2) ‖𝑢‖2. (2.74)
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For 𝑁 > 4 and 𝜆 ∈ (0, 1), let us note that (1 − 𝐶𝑁,2) > 0. Now, for 𝑁 = 3, 4, we suppose
𝜆 = 1 and we see that (1 − 𝜆𝐶𝑁,2) > 0. Therefore, in both cases, it follows that (2.73) holds
true.

Now, we consider the Nehari set associated our Problem (2.72) as follows

𝒩𝜆 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : 𝐼 ′
𝜆(𝑢)𝑢 = 0

}︁
.

For any 𝑢 ∈ 𝒩𝜆, implies that

‖𝑢𝑛‖2 − 𝜆
∫︁
R𝑁

|𝑢|2

|𝑥|2
d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥,

which jointly with Lemma 2.73, we infer from 𝐶𝑁,2,𝜆 > 0 and 1
2 − 1

22*
𝛼,𝜇

> 0 that

𝐼𝜆(𝑢) =1
2

(︃
‖𝑢‖2 − 𝜆

∫︁
R𝑁

|𝑢|2

|𝑥|2
d𝑥
)︃

− 1
22*

𝛼,𝜇

(︃
‖𝑢𝑛‖2 − 𝜆

∫︁
R𝑁

|𝑢|2

|𝑥|2
d𝑥
)︃

⩾

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
(1 − 𝐶𝑁,2,𝜆)‖𝑢‖2 ⩾ 0. (2.75)

Hence, we may we consider the following constrained minimizing problem:

𝑐𝜆 := inf
𝒩𝜆

𝐼𝜆. (2.76)

We shall prove that if the infimum in (2.76) is attained by 𝑢, then 𝑢 is a radial ground state
solution of Problem (2.72).

Similar to Lemma 2.2.1, we infer the following result.

Lemma 2.3.2. For each 𝑢 ∈ 𝐻1
rad(R𝑁) ∖ {0}, we have that

(𝑖) there exists a unique 𝑡0 > 0, depending on 𝑢, such that

𝑡0𝑢 ∈ 𝒩𝜆 and max
𝑡≥0

𝐼𝜆(𝑡𝑢) = 𝐼𝜆(𝑡0𝑢);

(𝑖𝑖) there exists a constant 𝛿 > 0 such that ‖𝑢‖ ⩾ 𝛿, for any 𝑢 ∈ 𝒩𝜆;

(𝑖𝑖𝑖) 𝑐𝜆 = inf𝒩𝜆
𝐼𝜆 > 0.

Proof. Using the same arguments explored in proof of Lemma 2.2.1, if 𝑔𝜆(𝑡) := 𝐼𝜆(𝑡𝑢), then
we may see that 𝑔𝜆(𝑡) < 0 for 𝑡 > 0 sufficiently large and, combining (2.19) with Lemma
2.3.1, implies that

𝑔𝜆(𝑡) ⩾ 𝑡2‖𝑢‖2
[︃

1
2𝐶𝑁,2,𝜆 − 𝑡22*

𝛼,𝜇−2

22*
𝛼,𝜇

𝐶‖𝑢‖22*
𝛼,𝜇−2

]︃
> 0,
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provided 𝑡 > 0 is sufficiently small. Thus 𝑔𝜆 has a unique 𝑡0 maximum point in (0,∞) if and
only if 𝑡0𝑢 ∈ 𝒩𝜆. The proof of (𝑖) is complete.
(𝑖𝑖) For any 𝑢 ∈ 𝒩 , together (2.19) with Lemma 2.73, we obtain

𝐶𝑁,2,𝜆‖𝑢‖2 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇 .

Hence, 𝐶𝑁,2,𝜆 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇−2, which implies that (𝑖𝑖) holds.

(𝑖𝑖𝑖) In view of (2.75) and (𝑖𝑖), it follows that

𝐼𝜆(𝑢) ⩾
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
(1 − 𝜆𝐶𝑁,2)‖𝑢‖2 ⩾

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
(1 − 𝜆𝐶𝑁,2)𝛿2 > 0.

Therefore, for the arbitrary of 𝑢 ∈ 𝒩𝜆, we infer 𝑐𝜆 = inf𝒩𝜆
𝐼𝜆(𝑢) ⩾ inf𝒩𝜆

𝛿2 > 0, which
finishes the proof.

The next lemma, as well as Lemma 2.2.2, establishes a key estimate involving the level
𝑐𝜆, which is essential for confirming that the solution to the Problem (2.72) is nontrivial. The
result will be derived for sufficiently small 𝜆.

Lemma 2.3.3. Let 𝑁 > 4 and 𝜆 ∈ (0, 1). Then, the level 𝑐𝜆 satisfies

0 < 𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 , (2.77)

for 𝜆 > 0 small enough.

Proof. Arguing as in the proof Lemma 2.2.1, it follows that replacing
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥 = 𝜀(2−𝑁)𝑝+2𝑁−2𝛼−𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥

by ∫︁
R𝑁

|𝑈𝜀(𝑥)|2

|𝑥|2
d𝑥 =

∫︁
R𝑁

|𝑈(𝑥)|2

|𝑥|2
d𝑥

in (2.22) and (2.23), we obtain similar estimates,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥 =
∫︁
R𝑁

|∇𝑈 |2 d𝑥,∫︁
R𝑁

|𝑈𝜀|2 d𝑥 = 𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥,∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥,

∫︁
R𝑁

|𝑈𝜀|2

|𝑥|2
d𝑥 =

∫︁
R𝑁

|𝑈 |2

|𝑥|2
d𝑥

(2.78)
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and

2𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝜀2

∫︁
R𝑁

|𝑈 |2 d𝑥 ⩾ 𝑡
2(2*

𝛼,𝜇−1)
𝜀 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 .

Thus, we achieved 0 < 𝑡𝜀 ⩽ 2
1

2(2*
𝛼,𝜇)−1 , for 𝜀 small enough.

We will consider that 𝜀 < 𝜆.
Claim. 𝑡𝜀 → 1, as 𝜀 → 0, once that 𝜆 → 0.

In fact, from Lemma 2.1.18 and (2.21),

𝜆
∫︁
R𝑁

|𝑈 |2

|𝑥|2
d𝑥 ⩽ 𝜆𝐶𝑁,2

∫︁
R𝑁

|∇𝑈 |2d𝑥 ⩽ 𝜆𝐶𝑁,2𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 =: 𝜆𝐶𝑁,𝛼,𝜇, (2.79)

where 𝐶𝑁,𝛼,𝜇 does not depend on 𝜆. Similar to (2.25), by (2.21), (2.78) and (2.79), it follows
that

∫︁
R𝑁

|∇𝑈 |2 d𝑥− 𝑡
2(2*

𝛼,𝜇−1)
𝜀

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

= −𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥+ 𝜆
∫︁
R𝑁

|𝑈 |2

|𝑥|2
d𝑥 → 0,

as 𝜀 → 0, once that 𝜆 → 0 implying that 𝑡𝜀 → 1. Which proves the claim.
Finally, combining once more (2.21) and (2.78), we see that

𝑐𝜆 ⩽max
𝑡⩾0

𝐼𝜆(𝑡𝑈𝜀) = 𝐼𝜆(𝑡𝜀𝑈𝜀)

⩽max
𝑡>0

(︃
𝑡2

2 − 𝑡22*
𝛼,𝜇

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝑡2𝜀
2 𝜆

∫︁
R𝑁

|𝑈 |2

|𝑥|2
d𝑥,

i.e.,

𝑐𝜆 ⩽

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈(𝑥)|2 d𝑥− 𝑡2𝜀
2 𝜆

∫︁
R𝑁

|𝑈(𝑥)|2

|𝑥|2
d𝑥. (2.80)

But, since we are assuming 𝜀 < 𝜆, we have for 𝜆 small enough that

𝑡2𝜀
2 𝜀

2
∫︁
R𝑁

|𝑈(𝑥)|2 d𝑥− 𝑡2𝜀
2 𝜆

∫︁
R𝑁

|𝑈(𝑥)|2

|𝑥|2
d𝑥 < 0.

This together with (2.80) implies that

𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 .

Therefore, the proof is complete.

Similar to the proof of Lemma 2.2.9 and Lemma 2.2.10, we have the following conclusions.
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Lemma 2.3.4. If (𝑢𝑛)𝑛 is a (𝑃𝑆)𝑐𝜆
−sequence of the constrained functional 𝐼𝜆|𝒩𝜆

is also a

(𝑃𝑆)𝑐𝜆
−sequence of 𝐼𝜆, namely, if (𝑢𝑛)𝑛 in 𝒩𝜆 satisfies

𝐼𝜆(𝑢𝑛) = 𝑐+ 𝑜𝑛(1) and 𝐼 ′
𝜆|𝒩𝜆

(𝑢𝑛) = 𝑜𝑛(1),

then 𝐼 ′
𝜆(𝑢𝑛) = 𝑜𝑛(1).

Lemma 2.3.5. If

𝑐𝜆 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 ,

then, 𝐼𝜆 satisfies the (𝑃𝑆)𝑐𝜆
−condition.

Proof. Let (𝑢𝑛)𝑛 ⊂ 𝐻1
rad(R𝑁) be a (𝑃𝑆)𝑐𝜆

−sequence for 𝐼𝜆. Then, according to the proof of
Lemma 2.2.9, the sequence (𝑢𝑛)𝑛 is bounded in 𝐻1

rad(R𝑁) and, up to a subsequence, 𝑢𝑛 ⇀ 𝑢

weakly in 𝐻1
rad(R𝑁). Hence, we have, from Lemma 2.1.18

𝑢𝑛

|𝑥|
⇀

𝑢

|𝑥|
in 𝐿2(R𝑁),

i.e., ∫︁
R𝑁

𝑢𝑛

|𝑥|
𝑣

|𝑥|
d𝑥 →

∫︁
R𝑁

𝑢

|𝑥|
𝑣

|𝑥|
d𝑥, ∀ 𝑣

|𝑥|
∈ 𝐿2(R𝑁),

which leads us to infer∫︁
R𝑁

𝑢𝑛𝑣

|𝑥|2
𝑣 d𝑥 →

∫︁
R𝑁

𝑢𝑣

|𝑥|2
d𝑥, ∀𝑣 ∈ 𝐻1

rad(R𝑁).

Now, arguing as in the proof of Lemma 2.2.7, we obtain 𝐼 ′
𝜆(𝑢)𝑣 = 0 and 𝐼𝜆(𝑢) ⩾ 0. Let

𝑣𝑛 := 𝑢𝑛 − 𝑢 and ‖𝑤‖2
𝐻 :=

∫︁
R𝑁

|𝑤|2

|𝑥|2
d𝑥. Then, by Brézis-Lieb Lemma (BRÉZIS; LIEB, 1983)

and Lemma 2.2.5⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖𝑢𝑛‖2 = ‖𝑣𝑛‖2 + ‖𝑢‖2 + 𝑜𝑛(1),

‖𝑢𝑛‖2
𝐻 = ‖𝑣𝑛‖2

𝐻 + ‖𝑢‖2
𝐻 + 𝑜𝑛(1),∫︁

R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

=
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1).

Furthermore, similarly to the estimate (2.47), we have

𝑜𝑛(1) = 𝐼 ′
𝜆(𝑢𝑛)𝑢𝑛 =‖𝑣𝑛‖2 − 𝜆‖𝑣𝑛‖2

𝐻

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1).
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Suppose that ‖𝑣𝑛‖2 − 𝜆‖𝑣𝑛‖2
𝐻 → 𝑏, then∫︁

R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 → 𝑏.

Similarly to the estimate (2.48), we obtain

𝑐𝜆 + 𝑜𝑛(1) =𝐼𝜆(𝑢) + 1
2
(︁
‖𝑣𝑛‖2 − 𝜆‖𝑣𝑛‖2

𝐻

)︁
− 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=𝐼𝜆(𝑢) +
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
𝑏+ 𝑜𝑛(1) ⩾

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑏+ 𝑜𝑛(1).

Thus, we finish the proof of the lemma by arguing as in the final part of the proof of Lemma
2.2.10.

Proof of Theorem 2.1.6. Using Lemmas 2.3.4 and 2.3.5, the proof of Theorem 2.1.6 is
similar to that of Theorem 2.1.4. Thus, we finish the proof of the theorem.

2.4 THE LOCAL PERTURBATION

In this section we will study the existence of solutions for the following equation involving
Stein-Weiss type critical nonlinearity with local perturbation (𝑓3):

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ |𝑢|𝑝−2𝑢, in R𝑁 , (2.81)

where 2 < 𝑝 < 2*.
To avoid repetition, we focus only on the results that differ from the case involving the

nonlocal term. We begin by noting that the energy functional 𝐼 : 𝐻1(R𝑁) −→ R, defined by

𝐼(𝑢) =1
2‖𝑢‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥− 1

𝑝

∫︁
R𝑁

|𝑢|𝑝 d𝑥,

is differentiable, and its critical points correspond to the solutions of Problem (2.81). In other
words, the solutions of (2.81) satisfy

𝐼 ′(𝑢)𝑣 =
∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝑣 d𝑥

−
∫︁
R𝑁

|𝑢|𝑝−2𝑢𝑣 d𝑥 = 0. (2.82)

We introduce the Nehari manifold associated our Problem (2.81), which is defined as follows

𝒩 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : 𝐼 ′(𝑢)𝑢 = 0
}︁
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and the level
𝑐 := inf

𝒩
𝐼. (2.83)

We shall prove that if the infimum in (2.83) is attained by 𝑢, then 𝑢 is a radial ground state
solution of (2.81).

For the manifold 𝒩 defined above, we have the following result.

Lemma 2.4.1. For each 𝑢 ∈ 𝐻1
rad(R𝑁) ∖ {0}, we have that

(𝑖) there exists a unique 𝑡0 > 0, depending on 𝑢, such that

𝑡0𝑢 ∈ 𝒩 and max
𝑡≥0

𝐼𝜆(𝑡𝑢) = 𝐼(𝑡0𝑢);

(𝑖𝑖) there exists a constant 𝛿 > 0 such that ‖𝑢‖ ⩾ 𝛿, for all 𝑢 ∈ 𝒩𝜆;

(𝑖𝑖𝑖) 𝑐 = inf𝒩 𝐼 > 0.

Proof. Exploring similar arguments in the proof of (𝑖) − (𝑖𝑖) in Lemma 2.2.1, we will omit the
proof of (𝑖) − (𝑖𝑖) and we will only prove the item (𝑖𝑖𝑖). In fact, for each 𝑢 ∈ 𝒩 , we see

𝐼(𝑢) =1
2‖𝑢‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥− 1

𝑝

∫︁
R𝑁

|𝑢|𝑝 d𝑥

=
(︃

1
2 − 1

𝑝

)︃
‖𝑢‖2 +

(︃
1
𝑝

− 1
22*

𝛼,𝜇

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 (2.84)

=
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
‖𝑢‖2 +

(︃
1

22*
𝛼,𝜇

− 1
𝑝

)︃∫︁
R𝑁

|𝑢|2 d𝑥. (2.85)

Combining with (𝑖𝑖), if 1
𝑝

− 1
22*

𝛼,𝜇
> 0, then we have that (2.84) implies

𝐼(𝑢) ⩾
(︃

1
2 − 1

𝑝

)︃
‖𝑢‖2 ⩾

(︃
1
2 − 1

𝑝

)︃
𝛿2

1 > 0

and, on the other hand, if 1
22*

𝛼,𝜇
− 1

𝑝
> 0, then (2.85) implies

𝐼(𝑢) ⩾
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
‖𝑢‖2 ⩾

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝛿2

1 > 0.

Take 𝛿0 = min
{︂(︁

1
2 − 1

𝑝

)︁
,
(︂

1
2 − 1

22*
𝛼,𝜇

)︂}︂
, then for the arbitrary of 𝑢 ∈ 𝒩 , we infer

𝑐 = inf
𝒩
𝐼(𝑢) ⩾ inf

𝒩
𝛿0𝛿

2
1 > 0,

which finishes the proof.

We also need the following result similar to Lemma 2.2.10.
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Lemma 2.4.2. The level 𝑐 satisfies

𝑐 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁−, 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 .

Proof. The proof follows the lines of Case 1 in Lemma 2.2.10, replacing∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥 = 𝜀(2−𝑁)𝑝+2𝑁−2𝛼−𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥

by ∫︁
R𝑁

|𝑈𝜀|𝑝 d𝑥 = 𝜀
2𝑁−𝑝(𝑁−2)

2

∫︁
R𝑁

|𝑈 |𝑝 d𝑥

in (2.22).

With natural adaptations to the proof of Lemmas 2.2.9 and 2.2.10, the following results
hold.

Lemma 2.4.3. If (𝑢𝑛)𝑛 is a (𝑃𝑆)𝑐−sequence of the constrained functional 𝐼|𝒩 is also a

(𝑃𝑆)𝑐−sequence of 𝐼, namely, if (𝑢𝑛)𝑛 in 𝒩 satisfies

𝐼(𝑢𝑛) = 𝑐+ 𝑜𝑛(1) and 𝐼 ′
|𝒩 (𝑢𝑛) = 𝑜𝑛(1),

then 𝐼 ′(𝑢𝑛) = 𝑜𝑛(1).

Lemma 2.4.4. If

𝑐 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 ,

then, 𝐼 satisfies the (𝑃𝑆)𝑐−condition.

Proof of Theorem 2.1.7. Using Lemmas 2.4.3 and 2.4.4, the proof of Theorem 2.1.7 is
similar to that of Theorem 2.1.4. Thus, we finish the proof of the theorem.

Proof of Theorem 2.1.8. Thus, as in the previous section, the next lemma is crucial to
complete the proof of this theorem.

Lemma 2.4.5. Let 𝑢 be the solution of (2.6) obtained in Theorem 2.1.4. Then, 𝑢 ∈

𝐿∞(R𝑁) ∩ 𝐶1,𝛾
loc (R𝑁), for some 𝛾 ∈ (0, 1).

Proof. According to the arguments presented in the proof of Lemma 2.2.11, and using
𝜑𝐿 = 𝑢𝑢

2(𝛽−1)
𝐿 , where 𝑢𝐿 = min {𝑢, 𝐿}, as a test function in (2.82), we derive the following

estimate(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽2𝑆−1𝛽2
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2|𝑢|2𝑢2(𝛽−1)

𝐿 d𝑥 (2.86)

+ 2𝑆−1𝛽2
∫︁
R𝑁

|𝑢|𝑝−2|𝑢|2𝑢2(𝛽−1)
𝐿 d𝑥. (2.87)
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Next, we estimate the right-hand side of (2.86)-(2.87). Since 𝑢 is a solution of Problem (2.6),
we have that (2.82) holds. Hence, (2.84) and (2.85) hold, whence it follows

‖𝑢‖2 ⩽ 𝛿−1
0 𝑐 =: 𝑀 where 𝛿0 = min

{︃(︃
1
2 − 1

𝑝

)︃
,

(︃
1
2 − 1

22*
𝛼,𝜇

)︃}︃
. (2.88)

Combining this with (2.13), we have ‖𝑢‖2* ⩽ 𝑆−1𝑀 . Further, by applying Proposition 1.0.2,
we deduce∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦
)︃

|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 d𝑥 ⩽ 𝐶2

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

,

where 𝐶2 := 𝐶(𝑁,𝛼, 𝜇)(𝑆−1𝑀)
2*

𝛼,𝜇
2 , which jointly with (2.86) yields that

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽𝐶22𝑆−1𝛽2
(︂∫︁

R𝑁
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

+ 𝐶22𝑆−1𝛽2
∫︁
R𝑁

|𝑢|𝑝−2|𝑢|2𝑢2(𝛽−1)
𝐿 d𝑥

=:2𝐶2𝑆
−1𝛽2(𝐼1 + 𝐼2). (2.89)

Next, we estimate 𝐼1 and 𝐼2. Following a similar approach to the estimates in (2.57)-(2.59),
we obtain that

𝐼1 ⩽𝐶

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

+
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2* (︂∫︁
R𝑁

|𝑤𝐿|2*d𝑥
)︂ 2

2*

. (2.90)

Now we will estimate 𝐼2. By (2.88) and Hölder’s inequality, it follows that

𝐼2 ⩽‖𝑢‖𝑝−2
2𝑁(𝑝−2)

2𝛼+𝜇

(︂∫︁
R𝑁

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝑀
𝑝−2

2 𝐶𝑝−2
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

, (2.91)

where 𝐶 denotes the constant of the embedding 𝐻1
rad(R𝑁) →˓ 𝐿𝑠(R𝑁), for all 𝑠 ∈ [2, 2*].

Combining (2.89), (2.90) and (2.91), we derive
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽𝐶𝛽2(1 +𝑀
𝑝−2

2 𝐶𝑝−2)
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

+ 𝐶𝛽2
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2* (︂∫︁
R𝑁

|𝑤𝐿|2*d𝑥
)︂ 2

2*

.

Note that we may obtain estimates similar to (2.63)-(2.65) and thus we reach

‖𝑢‖2*𝛽 ⩽ [𝐶 1
2 (1 +𝑀

𝑝−2
2 𝐶𝑝−2) 1

2 ]
1
𝛽 𝛽

1
𝛽 ‖𝑢‖𝑞*

𝛼,𝜇𝛽, where 𝑞*
𝛼,𝜇 := 22*

2*
𝛼,𝜇

. (2.92)
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In the next step, by applying inequality (2.92) and following a similar approach as in steps
1, 2, and 3 of Lemma 2.2.11 in (2.68)-(2.70), we obtain the following estimate

‖𝑢‖∞ ⩽ (1 +𝑀
𝑝−2

2 𝐶𝑝−2)
1

2(𝛾1−1)𝑀1‖𝑢‖2* ,

where 𝑀1 = 𝐶
1

2(𝛾1−1 )
𝛾

𝛾1
(𝛾1−1)2
1 . Hence, by regularity theory (see for instance (TOLKSDORF, 1984,

Theorem 1)), we have that 𝑢 ∈ 𝐶1,𝛾
loc (R𝑁), for some 𝛾 ∈ (0, 1).

Finally, since |𝑢| ∈ 𝒩𝜆 and 𝐼𝜆(|𝑢|) = 𝐼𝜆(𝑢), we have that |𝑢| is a nonnegative solution
of Problem (2.6). We denote 𝑢1 = |𝑢| Therefore, in light of Strong Maximum Principle, we
conclude that 𝑢1 is positive. This finishes the proof of the Theorem 2.1.8.

2.5 THE SUPERCRITICAL PERTURBATION

In this subsection, we focus on studying the existence of positive solution for Problem (2.1)
with supercritical term. Precisely, we consider

−Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ 𝜆|𝑢|𝑞−2𝑢, in R𝑁 , (2.93)

where 𝑞 ⩾ 2* and 𝜆 is positive parameter.
One of the main challenges in studying the problem above is the potential loss of

compactness, given that we are working in the whole space R𝑁 . Additionally, variational
methods cannot be directly applied to the problem under consideration, as the energy functional
associated with Problem (2.93) is given by

ℱ𝜆(𝑢) =1
2

∫︁
R𝑁

(︁
|∇𝑢|2 + |𝑢|2

)︁
d𝑥− 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆

𝑞

∫︁
R𝑁

|𝑢|𝑞 d𝑥,

is not well defined for 𝑞 > 2*. It is not hard to check that ℱ𝜆 is well defined in 𝐻1(R𝑁), if
and only, 𝑞 = 2*.

Associated with Problem (2.93), let us consider the following constrained minimizing
problem:

𝑐𝜆 := inf
𝒩𝜆

ℱ𝜆 where 𝒩𝜆 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : ℱ ′
𝜆(𝑢)𝑢 = 0

}︁
. (2.94)

For the reasons discussed earlier, (2.94) is well defined only for 𝑞 = 2*.
As pointed out, we are not able to work variationally directly on the energy functional

associated to (2.93) when 2* < 𝑞. For this reason, we will make an appropriate truncation,
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similar to the one used in the papers (RABINOWITZ, 1973/74; CHABROWSKI; YANG, 1997) and,
thus introduce an auxiliary problem where we have a well defined variational structure and
we recover some compactness, see next sections for more details. Throughout the text we
will consider Problem (2.93) in 𝐻1

rad(R𝑁) and, if 𝑢 is a weak solution of the Problem (2.93)
restricted to 𝐻1

rad(R𝑁), then 𝑢 is a weak solution of the Problem 2.93, see Remark 2.1.3.

2.5.1 The auxiliary Problem

As already noted above, in order to apply minimax methods to obtain a solutions for (2.93),
we consider an auxiliary problem. We start by introducing the truncation in the supercritical
local term. Given by 𝜅 ∈ N, we define the function 𝑔𝜅 : R → R by

𝑔𝜅(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

𝑡𝑞−1, if 0 ⩽ 𝑡 ⩽ 𝜅,

𝜅𝑞−𝑝𝑡𝑝−1, if 𝑡 ⩾ 𝜅,

(2.95)

where
2𝛼 + 𝜇

𝑁
+ 2 ⩽ 𝑝 ⩽

2𝛼 + 𝜇

𝑁 − 2 + 2. (2.96)

It is not hard to check that 𝑔𝜅 admits the following inequalities:

|𝑔𝜅(𝑡)| ⩽ 𝜅𝑞−𝑝𝑡𝑝−1, ∀ 𝑡 ⩾ 0. (𝑔1)

Moreover, denoting 𝐺𝜅(𝑡) =
∫︀ 𝑡

0 𝑔𝜅(𝜏) d𝜏 , there holds

𝐺𝜅(𝑡) =
∫︁ 𝑡

0
𝑔𝜅(𝜏) d𝜏 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,
𝑡𝑞

𝑞
, if 0 ⩽ 𝑡 ⩽ 𝜅,

1
𝑝
𝜅𝑞−𝑝𝑡𝑝 +

(︃
1
𝑞

− 1
𝑝

)︃
𝜅𝑞, if 𝑡 ⩾ 𝜅.

(2.97)

By simple computations, 𝐺𝜅 admits the following inequalities:

|𝐺𝜅(𝑡)| ⩽ 1
𝑝
𝑘𝑞−𝑝𝑡𝑝, ∀ 𝑡 ⩾ 0. (𝐺1)

Now, related to 𝑔𝜅, we shall consider the auxiliary problem

Δ𝑢+ 𝑢 =
(︃∫︁

R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ 𝜆𝑔𝜅(𝑢), in R𝑁 . (𝐴𝜆,𝜅)
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Thus, we say that a function 𝑢 ∈ 𝐻1(R𝑁) is a weak solution of auxiliary Problem (𝐴𝜆,𝜅) if
and only if

∫︁
R𝑁

(∇𝑢∇𝜑+ 𝑢𝜑) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝜑 d𝑥

− 𝜆
∫︁
R𝑁
𝑔𝜅(𝑢)𝜑 d𝑥 = 0, ∀𝜑 ∈ 𝐻1(R𝑁). (2.98)

Remark 2.5.1. According to (2.95), it is important to note that if 𝑢 is a weak solution of the

Problem (𝐴𝜆,𝜅) and satisfies |𝑢(𝑥)| ⩽ 𝜅 for all 𝑥 ∈ R𝑁 , then 𝑢 is a weak solution of Problem

(2.93).

The energy functional ℐ𝜆,𝜅 : 𝐻1(R𝑁) → R associated with Problem (𝐴𝜆,𝜅) is given by

ℐ𝜆,𝜅(𝑢) =1
2

∫︁
R𝑁

(|∇𝑢|2 + |𝑢|2) d𝑥− 1
22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆
∫︁
R𝑁
𝐺𝜅(𝑢) d𝑥

and, in view of the assumptions on 𝐺𝜅 above and Proposition (1.0.2), ℐ𝜆,𝜅 is well defined.
We consider (𝐴𝜆,𝜅) in 𝐻1

rad(R𝑁). If 𝑢 is a point critical of functional ℐ𝜆,𝜅 restricted to
𝐻1

rad(R𝑁), then 𝑢 is a point critical of ℐ𝜆,𝜅, see Remark 2.1.3, for more details.
Next, we shall discuss some properties on the Nehari manifold associated auxiliary Problem

(𝐴𝜆,𝜅), which is defined as follows

𝒩𝜆,𝜅 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : ℐ ′
𝜆,𝜅(𝑢)𝑢 = 0

}︁
.

Notice that if 𝑢 ∈ 𝒩𝜆,𝜅, then

‖𝑢‖2 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝜆

∫︁
R𝑁
𝑔𝜅(𝑢)𝑢 d𝑥. (2.99)

Now we define the following constrained minimizing problem:

𝑐𝜆,𝜅 := inf
𝒩𝜆,𝜅

ℐ𝜆,𝜅. (2.100)

The number 𝑐𝜆,𝜅 is well defined by proving that ℐ𝜆,𝜅 is bounded from below on 𝒩𝜆,𝜅 and the
set 𝒩𝜆,𝜅 is non-empty. Refer to Lemmas 2.5.3 and 2.5.4 below. We shall prove that if the
infimum in (2.100) is attained by 𝑢, then 𝑢 is a radial ground state solution of (𝐴𝜆,𝜅).

Remark 2.5.2. We emphasize that if the infimum in (2.100) is attained by 𝑢 := 𝑢𝜆,𝜅, i.e.,

ℐ𝜆,𝜅(𝑢) = 𝑐𝜆,𝜅, satisfying |𝑢(𝑥)| ⩽ 𝜅, for all 𝑥 ∈ R𝑁 and for 𝜅, 𝜆 which we will choose
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appropriately later, then, according to (2.97)

𝑐𝜆,𝜅 =1
2

∫︁
R𝑁

(|∇𝑢|2 + |𝑢|2) d𝑥− 1
22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆
∫︁
R𝑁
𝐺𝜅(𝑢) d𝑥

=1
2

∫︁
R𝑁

(|∇𝑢|2 + |𝑢|2) d𝑥− 1
22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆

𝑞

∫︁
R𝑁

|𝑢|𝑞 d𝑥

=ℱ𝜆(𝑢).

Furthermore, thanks to Remark 2.5.1, with appropriately chosen 𝜅 and 𝜆, from (2.94), we

obtain

𝒩𝜆,𝜅 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : ℐ ′
𝜆,𝜅(𝑢)𝑢 = 0

}︁
=
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : ℱ ′
𝜆(𝑢)𝑢 = 0

}︁
=𝒩𝜆

and 𝑐𝜆,𝜅 := inf𝒩𝜆,𝜅
ℐ𝜆,𝜅 = inf𝒩𝜆

ℱ𝜆 =: 𝑐𝜆. This leads us to infer that 𝑢 is a radial ground

state solution of (2.93), which motivates us to study the auxiliary Problem (𝐴𝜆,𝜅).

Lemma 2.5.3. The functional ℐ𝜆,𝜅 is bounded from below on 𝒩𝜆,𝜅.

Proof. In view of (2.95), (2.96) and (2.97), there exists 𝜃 ∈ (2, 𝑝) such that

𝑔𝜅(𝑡)𝑡− 𝜃𝐺𝜅(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

𝑡𝑞
(︃
𝑞 − 𝜃

𝑞

)︃
, if 0 ⩽ 𝑡 ⩽ 𝜅,

𝑘𝑞−𝑝𝑡𝑝
(︃

1 − 𝜃

𝑝

)︃
+ 𝜃𝜅𝑞

(︃
1
𝑝

− 1
𝑞

)︃
, if 𝑡 ⩾ 𝜅,

⩾0. (2.101)

For 𝑢 ∈ 𝒩𝜆,𝜅, from (2.101), we obtain

ℐ𝜆,𝜅(𝑢) =1
2‖𝑢‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥− 𝜆

∫︁
R𝑁
𝐺𝜅(𝑢) d𝑥

=
(︃

1
2 − 1

22*
𝛼,𝜇

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆

2

∫︁
R𝑁

(𝑔𝜅(𝑢)𝑢− 2𝐺𝜅(𝑢)) d𝑥 ⩾ 0, (2.102)

provided 1 < 2*
𝛼,𝜇, which finishes the proof.
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Throughout this section, we assume that

𝑁 ⩾ 3, 0 < 𝜇 < 𝑁, 𝛼 ⩾ 0, 0 < 2𝛼 + 𝜇 < min
{︂
𝑁 + 2

2 , 4
}︂
. (2.103)

This and by (2.96), we get
𝑝 ⩽

2𝛼 + 𝜇

𝑁 − 2 + 2 < 22*
𝛼,𝜇. (2.104)

As a consequence of the next lemma, the set 𝒩𝜆,𝜅 ̸= ∅.

Lemma 2.5.4. For any 𝑢 ∈ 𝐻1
rad(R𝑁) ∖ {0}, we have that

(𝑖) there exists a unique 𝑡0 > 0, depending on 𝑢, such that

𝑡0𝑢 ∈ 𝒩𝜆,𝜅 and max
𝑡≥0

ℐ𝜆,𝜅(𝑡𝑢) = ℐ𝜆,𝜅(𝑡0𝑢);

(𝑖𝑖) there exists a constant 𝛿 > 0 such that ‖𝑢‖ ⩾ 𝛿, for any 𝑢 ∈ 𝒩𝜆,𝜅. In particular
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 > 𝛿2;

(𝑖𝑖𝑖) 𝑐𝜆,𝜅 = inf
𝒩𝜆,𝜅

ℐ𝜆,𝜅 > 0.

Proof. (𝑖) First, we note that (2.95) ensures 𝑔𝜅(𝑡)
𝑡

is increasing for 𝑡 > 0. Hence, for all

𝑡1, 𝑡2, 𝑠 ∈ (0,+∞), if 𝑡1 < 𝑡2, then 𝑔𝜅(𝑡1𝑠)𝑠
𝑡1

<
𝑔𝜅(𝑡2𝑠)𝑠

𝑡2
, implying that the function

1
𝑡

∫︁
R𝑁
𝑔𝜅(𝑡𝑢)𝑢 d𝑥 is increasing for 𝑡 > 0. (2.105)

Let 𝑢 ∈ 𝐻1
rad(R𝑁)∖{0} be fixed and consider the function 𝜙𝜆,𝜅 : [0,+∞) → R defined by

𝜙𝜆,𝜅(𝑡) = ℐ𝜆,𝜅(𝑡𝑢) =𝑡
2

2 ‖𝑢‖2 − 𝑡22*
𝛼,𝜇

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥− 𝜆

∫︁
R𝑁
𝐺𝜅(𝑡𝑢) d𝑥,

then 𝜙′
𝜆,𝜅(𝑡) = ℐ ′

𝜆,𝜅(𝑡𝑢)𝑡𝑢. Thus, 𝜙′
𝜆,𝜅(𝑡) = 0 if only if ℐ ′

𝜆,𝜅(𝑡𝑢)𝑡𝑢 = 0, implying that

‖𝑢‖2 =𝑡22*
𝛼,𝜇−2

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝜆

𝑡

∫︁
R𝑁
𝑔𝜅(𝑡𝑢)𝑢 d𝑥. (2.106)

Hence, 𝑡0 is a positive critical point of 𝜙𝜆,𝜅 if and only if 𝑡0𝑢 ∈ 𝒩𝜆,𝜅. Moreover, from (2.105),
we may infer that the right-hand side of (2.106) is an increasing function on 𝑡 > 0. Recalling
the definition of 𝐺𝜅 in (2.97) and since 𝑝 < 22*

𝛼,𝜇, we obtain

lim
𝑡→∞

𝐺𝜅(𝑡)
𝑡22*

𝛼,𝜇
= 0, (2.107)
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which leads us to deduce that 𝜙𝜆,𝜅(𝑡) < 0 for 𝑡 > 0 sufficiently large. On the other hand,
combining the Proposition 1.0.2 and Sobolev embedding, we have

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 ⩽ 𝐶‖𝑢‖22*

𝛼,𝜇 (2.108)

and by (𝐺1) ∫︁
R𝑁
𝐺𝜅(𝑡𝑢) d𝑥 ⩽

1
𝑝
𝜅𝑞−𝑝𝑡𝑝‖𝑢‖𝑝

𝑝 ⩽
1
𝑝
𝜅𝑞−𝑝𝐶𝑡𝑝‖𝑢‖𝑝, (2.109)

which implies that

𝜙𝜆,𝜅(𝑡) ⩾ 𝑡2‖𝑢‖2
[︃

1
2 − 𝑡22*

𝛼,𝜇−2

22*
𝛼,𝜇

𝐶‖𝑢‖22*
𝛼,𝜇−2 − 𝑡𝑝−2

𝑝
𝜆𝜅𝑞−𝑝𝐶‖𝑢‖𝑝−2

]︃
> 0,

provided 𝑡 > 0 is sufficiently small. Thus 𝜙𝜆,𝜅 has maximum points in (0,∞). Suppose that
there exists 𝑡1, 𝑡2 > 0 such that 𝜙′

𝜆,𝜅(𝑡1) = 𝜙′
𝜆,𝜅(𝑡2) = 0. Since every critical point of 𝜙𝜆,𝜅

satisfies (2.106), we see

0 =
(︁
𝑡
22*

𝛼,𝜇−2
1 − 𝑡

22*
𝛼,𝜇−2

2

)︁ ∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆
∫︁
R𝑁

(︃
𝑔𝜅(𝑡1𝑢)𝑢

𝑡1
− 𝑔𝜅(𝑡2𝑢)𝑢

𝑡2

)︃
d𝑥.

Therefore, since both terms in parentheses have the same sign if 𝑡1 ̸= 𝑡2, it follows that 𝑡1 = 𝑡2

and the proof of (𝑖) is complete.
(𝑖𝑖) For any 𝑢 ∈ 𝒩𝜆,𝜅, together (2.99) with (2.108) and by (𝑔1),∫︁

R𝑁
𝑔𝜅(𝑢)𝑢 d𝑥 ⩽ 𝜅𝑞−𝑝‖𝑢‖𝑝

𝑝 ⩽ 𝜅𝑞−𝑝𝐶‖𝑢‖𝑝,

it follows that ‖𝑢‖2 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇 +𝜆𝜅𝑞−𝑝𝐶‖𝑢‖𝑝. Hence, we have that 0 < 1 ⩽ 𝐶‖𝑢‖22*

𝛼,𝜇−2 +
𝜆
𝑝
𝜅𝑞−𝑝𝐶‖𝑢‖𝑝−2, which implies that (𝑖𝑖) holds.

(𝑖𝑖𝑖) Combining (2.102) with (𝑖𝑖) we obtain

ℐ𝜆,𝜅(𝑢) =
(︃

1
2 − 1

22*
𝛼,𝜇

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 ⩾

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝛿2 > 0,

provided 2 < 22*
𝛼,𝜇. Thus, for the arbitrary of 𝑢 ∈ 𝒩𝜆,𝜅, we achieved

𝑐𝜆,𝜅 = inf
𝒩𝜆,𝜅

ℐ𝜆,𝜅(𝑢) ⩾
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
𝛿2 > 0,

finishing the proof of the lemma.

Similar to the Lemma 2.2.2, we establish an important estimate involving the level 𝑐𝜆,𝜅.
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Lemma 2.5.5. For any 𝜆 and 𝜅, the level 𝑐𝜆,𝜅 satisfies

𝑐𝜆,𝜅 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 .

Proof. Again, for 𝜀 > 0 define 𝑈𝜀(𝑥) = 𝜀
2−𝑁

2 𝑈(𝑥
𝜀
), where 𝑈(𝑥) is a minimizant of 𝑆𝛼,𝜇 (see

(DU; GAO; YANG, 2022, Theorem 1.3)) and satisfies

−Δ𝑢 =
(︃∫︁

R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
, in R𝑁

with ∫︁
R𝑁

|∇𝑈 |2 d𝑥 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 = 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 . (2.110)

Applying the change of variable theorem, we observe that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥 =
∫︁
R𝑁

|∇𝑈 |2 d𝑥,∫︁
R𝑁

|𝑈𝜀|2 d𝑥 = 𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥,∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥,

∫︁
R𝑁
𝐺𝜅(𝑈𝜀) d𝑥 = 𝜀𝑁

∫︁
R𝑁
𝐺𝜅(𝜀

2−𝑁
2 𝑈) d𝑥,∫︁

R𝑁
|𝑈𝜀|𝑝 d𝑥 = 𝜀

2𝑁−𝑝(𝑁−2)
2

∫︁
R𝑁

|𝑈 |𝑝 d𝑥, 2 > 2𝑁 − 𝑝(𝑁 − 2)
2 > 0.

(2.111)

Now, arguing as in the proof of Lemma 2.5.4 (𝑖), it follows that there exists 𝑡𝜀 > 0 such that

𝑡𝜀𝑈𝜀 ∈ 𝒩𝜆,𝜅 and max
𝑡⩾0

𝑔(𝑡) = 𝑔(𝑡𝜀) = 𝐼𝜆(𝑡𝜀𝑈𝜀).

Furthermore, 𝑡𝜀 is unique. Since 𝑡𝜀𝑈𝜀 ∈ 𝒩𝜆,𝜅 and 𝜆 > 0, we deduce

2
∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥+
∫︁
R𝑁

|𝑈𝜀|2 d𝑥 ⩾
∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥+
∫︁
R𝑁

|𝑈𝜀|2 d𝑥

=𝑡2(2*
𝛼,𝜇−1)

𝜀

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆
∫︁
R𝑁

𝑔𝜅(𝑡𝜀𝑈𝜀)
𝑡𝜀

𝑈𝜀 d𝑥 (2.112)

⩾𝑡
2(2*

𝛼,𝜇−1)
𝜀

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|2
*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|2
*
𝛼,𝜇

|𝑥|𝛼
d𝑥

and combining with (2.110)-(2.111), we obtain

2𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝜀2

∫︁
R𝑁

|𝑈 |2 d𝑥 ⩾ 𝑡
2(2*

𝛼,𝜇−1)
𝜀 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 , (2.113)
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whence we have 0 < 𝑡𝜀 ⩽ 2
1

2(2*
𝛼,𝜇−1) , for 𝜀 small enough.

Claim. 𝑡𝜀 → 1, as 𝜀 → 0.
In fact, first, from (𝑔1) and (2.111), we have that⃒⃒⃒⃒

⃒−𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥+ 𝜆
∫︁
R𝑁

𝑔𝜅(𝑡𝜀𝑈𝜀)
𝑡𝜀

𝑈𝜀 d𝑥
⃒⃒⃒⃒
⃒

⩽𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥+ 𝜆𝜅𝑞−𝑝𝑡𝑝−2
𝜀

∫︁
R𝑁

|𝑈𝜀|𝑝 d𝑥

⩽𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥+ 𝜆𝜅𝑞−𝑝𝑡𝑝−2
𝜀 𝜀

2𝑁−𝑝(𝑁−2)
2

∫︁
R𝑁

|𝑈 |𝑝 d𝑥 → 0, as 𝜀 → 0,

which jointly with (2.110), (2.111) and since 𝑡𝜀𝑈𝜀 ∈ 𝒩𝜆,𝜅, it follows that∫︁
R𝑁

|∇𝑈 |2 d𝑥− 𝑡
2(2*

𝛼,𝜇−1)
𝜀

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

= −𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥+ 𝜆
∫︁
R𝑁

𝑔𝜅(𝑡𝜀𝑈𝜀)
𝑡𝜀

𝑈𝜀 d𝑥 → 0,

as 𝜀 → 0, implying that 𝑡𝜀 → 1 as 𝜀 → 0. Which proves the claim.
Finally, using (2.110) and (2.111), we see that

𝑐𝜆,𝜅 ⩽max
𝑡⩾0

𝐼𝜆(𝑡𝑈𝜀) = 𝐼𝜆(𝑡𝜀𝑈𝜀)

=
⎛⎝𝑡2𝜀

2 − 𝑡
22*

𝛼,𝜇
𝜀

22*
𝛼,𝜇

⎞⎠𝑆 2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝜆𝜀𝑁
∫︁
R𝑁
𝐺𝜅(𝑡𝜀𝜀

2−𝑁
2 𝑈) d𝑥

⩽max
𝑡>0

(︃
𝑡2

2 − 𝑡22*
𝛼,𝜇

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝜆𝜀𝑁
∫︁
R𝑁
𝐺𝜅(𝑡𝜀𝜀

2−𝑁
2 𝑈) d𝑥

=
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝜆𝜀𝑁
∫︁
R𝑁
𝐺𝜅(𝑡𝜀𝜀

2−𝑁
2 𝑈) d𝑥,

i.e.,

𝑐𝜆 ⩽

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝜆𝜀𝑁
∫︁
R𝑁
𝐺𝜅(𝑡𝜀𝜀

2−𝑁
2 𝑈) d𝑥. (2.114)

On the other hand, using the definition in (2.97), for 𝑠 large enough, we may infer

𝐺𝑘(𝑠) = 1
𝑝
𝜅𝑞−𝑝𝑠𝑝 +

(︃
1
𝑞

− 1
𝑝

)︃
𝜅𝑞.

Let 𝑠 := 𝑠

𝜀
𝑁−2

2
, then

𝜀𝑁𝐺𝜅

(︃
𝑠

𝜀
𝑁−2

2

)︃
= 𝜀

2𝑁−𝑝(𝑁−2)
2

1
𝑝
𝜅𝑞−𝑝𝑠𝑝 + 𝜀𝑁

(︃
1
𝑞

− 1
𝑝

)︃
𝜅𝑞, ∀𝑠 > 0,

whence it follows that
lim

𝜀→0+
𝜀𝑁𝐺𝜅

(︃
𝑠

𝜀
𝑁−2

2

)︃
= 0, ∀𝑠 > 0.
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Hence and since 𝜆 > 0, 2 > 2𝑁−𝑝(𝑁−2)
2 > 0, we have for 𝜀 small enough that

𝑡2𝜀
2 𝜀

2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝜆
∫︁
R𝑁

(︃
𝜀

2𝑁−𝑝(𝑁−2)
2

1
𝑝
𝜅𝑞−𝑝𝑈𝑝 + 𝜀𝑁

(︃
1
𝑞

− 1
𝑝

)︃
𝜅𝑞

)︃
d𝑥 < 0.

This together with (2.114), one has

𝑐𝜆,𝜅 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 .

Therefore, the proof is complete.

We also have the following result similar to Lemma 2.2.9.

Lemma 2.5.6. If (𝑢𝑛)𝑛 is a (𝑃𝑆)𝑐𝜆,𝜅
−sequence of the constrained functional ℐ𝜆,𝜅|𝒩𝜆,𝜅

is also

a (𝑃𝑆)𝑐𝜆,𝜅
−sequence of ℐ𝜆,𝜅, namely, if (𝑢𝑛)𝑛 in 𝒩𝜆,𝜅 satisfies

ℐ𝜆,𝜅(𝑢𝑛) = 𝑐𝜆,𝜅 + 𝑜𝑛(1) and ℐ ′
𝜆,𝜅|𝒩𝜆,𝜅

(𝑢𝑛) = 𝑜𝑛(1), (2.115)

then ℐ ′
𝜆,𝜅(𝑢𝑛) = 𝑜𝑛(1).

Proof. Initially, we will check that (𝑢𝑛)𝑛 is bounded. In fact, from (2.101), (2.115) and since
𝜃 ∈ (2, 𝑝) where 𝑝 < 22*

𝛼,𝜇, it follows that

𝑐𝜆,𝜅 + 𝑜𝑛(1) =ℐ𝜆,𝜅(𝑢𝑛) − 1
𝜃

ℐ ′
𝜆,𝜅(𝑢𝑛)𝑢𝑛

=
(︂1

2 − 1
𝜃

)︂
‖𝑢𝑛‖2 +

(︃
1
𝜃

− 1
22*

𝛼,𝜇

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆
∫︁
R𝑁

(︃
𝑔𝜅(𝑢𝑛)𝑢𝑛

𝜃
−𝐺𝜅(𝑢𝑛)

)︃
d𝑥

⩾
(︂1

2 − 1
𝜃

)︂
‖𝑢𝑛‖2, (2.116)

thus (𝑢𝑛)𝑛 is bounded. Now, we prove that 𝒩𝜆,𝜅 is a 𝐶1−manifold. Let 𝐽𝜆,𝜅 : 𝐻1(R𝑁) −→ R

be the 𝐶1−functional defined by 𝐽𝜆,𝜅(𝑢) = ℐ ′
𝜆,𝜅(𝑢)𝑢. Then 𝒩𝜆,𝜅 = 𝐽−1

𝜆,𝜅(0). From (2.95), we
deduce

𝑔𝜅(𝑡)𝑡− 𝑔′
𝜅(𝑡)𝑡2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

[1 − (𝑞 − 1)] 𝑡𝑞, if 0 ⩽ 𝑡 ⩽ 𝜅,

[1 − (𝑝− 1)]𝜅𝑞−𝑝𝑡𝑝, if 𝑡 ⩾ 𝜅,

⩽0. (2.117)
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For any fixed 𝑢 ∈ 𝒩𝜆,𝜅, it follows from (2.117) that

𝐽 ′
𝜆,𝜅(𝑢)𝑢 =2‖𝑢‖2 − 22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆
∫︁
R𝑁

(︁
𝑔′

𝜅(𝑢)𝑢2 + 𝑔𝜅(𝑢)𝑢
)︁

d𝑥

=(2 − 22*
𝛼,𝜇)

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

+ 𝜆
∫︁
R𝑁

(︁
𝑔𝜅(𝑢)𝑢− 𝑔′

𝜅(𝑢)𝑢2
)︁

d𝑥

⩽(2 − 22*
𝛼,𝜇)

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥, (2.118)

which together with (𝑖𝑖) in Lemma 2.5.4 and since 1 < 2*
𝛼,𝜇 implies that

𝐽 ′
𝜆,𝜅(𝑢)𝑢 ⩽ (2 − 22*

𝛼,𝜇)𝛿2 < 0. (2.119)

Thus, 0 is a regular value of 𝐽𝜆,𝜅 and therefore 𝒩𝜆,𝜅 is a 𝐶1−manifold. By the Lagrange
multiplier theorem, there exists a sequence (𝑡𝑛)𝑛 ⊂ R such that

𝑜𝑛(1) = ℐ ′
𝜆,𝜅|𝒩𝜆,𝜅

(𝑢𝑛) = ℐ ′
𝜆,𝜅(𝑢𝑛) − 𝑡𝑛𝐽

′
𝜆,𝜅(𝑢𝑛), (2.120)

implying
𝑡𝑛𝐽

′
𝜆,𝜅(𝑢𝑛)𝑢𝑛 = 𝑜𝑛(1). (2.121)

We claim that there exists 𝛿0 > 0 such that

|𝐽 ′
𝜆,𝜅(𝑢𝑛)𝑢𝑛| > 𝛿0, ∀𝑛 ∈ N. (2.122)

In fact, by (2.118), it follows that

−𝐽 ′
𝜆,𝜅(𝑢𝑛)𝑢𝑛 ⩾ (22*

𝛼,𝜇 − 2)
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 ⩾ 0,

thus, assuming by contradiction that 𝐽 ′
𝜆,𝜅(𝑢𝑛)𝑢𝑛 → 0, we get

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 → 0,

but this is an absurd, from (𝑖𝑖) in Lemma 2.5.4. By (2.121) and (2.122), 𝑡𝑛 → 0, and from
(2.120), we achieve that ℐ ′

𝜆,𝜅(𝑢𝑛) → 0. Finishing the proof of the lemma.

Let (𝑢𝑛)𝑛 be a (𝑃𝑆)𝑐𝜆,𝜅
−sequence for ℐ𝜆,𝜅. It follows from Lemma 2.5.6 that (𝑢𝑛)𝑛

is bounded in 𝐻1
rad(R𝑁). Hence we may assume, passing to a subsequence if necessary, as
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𝑛 → ∞ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛 ⇀ 𝑢, weakly in 𝐻1
rad(R𝑁),

𝑢𝑛 → 𝑢, strongly in 𝐿𝑠(R𝑁), 2 < 𝑠 < 2*,

𝑢𝑛(𝑥) → 𝑢(𝑥), a.e. in R𝑁 ,

|𝑢𝑛(𝑥)|, |𝑢(𝑥)| ≤ ℎ(𝑥), for some ℎ ∈ 𝐿𝑠(R𝑁),

(2.123)

and
‖𝑢𝑛‖2 ⩽

2𝜃
𝜃 − 2(𝑐𝜆,𝜅 + 1), ∀𝑛 ⩾ 𝑛0.

Lemma 2.5.7. If 𝑢𝑛 ⇀ 𝑢 in 𝐻1
rad(R𝑁), then

(𝑖) 𝑔𝜅(𝑢𝑛)𝑣 → 𝑔𝜅(𝑢)𝑣 in 𝐿1(R𝑁), for all 𝑣 ∈ 𝐻1(R𝑁);

(𝑖𝑖) 𝑔𝜅(𝑢𝑛 − 𝑢)(𝑢𝑛 − 𝑢) → 0 in 𝐿1(R𝑁). In addition∫︁
R𝑁
𝑔𝜅(𝑢𝑛)𝑢𝑛 d𝑥−

∫︁
R𝑁
𝑔𝜅(𝑢𝑛 − 𝑢)(𝑢𝑛 − 𝑢) d𝑥 =

∫︁
R𝑁
𝑔𝜅(𝑢)𝑢 d𝑥+ 𝑜𝑛(1).

Proof. Let us define 𝑓𝑛,𝜅(𝑥) = 𝑔𝜅(𝑢𝑛)𝑣 − 𝑔𝜅(𝑢)𝑣. In view of (2.95) and (2.123), 𝑓𝑛,𝜅(𝑥) → 0

a.e. in R𝑁 , as 𝑛 → ∞ and from Hölder’s inequality, there exists ℎ𝜅 ∈ 𝐿1(R𝑁) such that
|𝑓𝑛,𝜅(𝑥)| ⩽ ℎ𝜅(𝑥). Hence, applying Lebesgue Dominated Convergence Theorem, (𝑖) holds
true. Let 𝑣𝑛 := 𝑢𝑛 − 𝑢. Then, (𝑖𝑖) is true by arguments similar to the proof of (𝑖).

In order to obtain a nontrivial solution, the next result, similar to Lemma 2.2.10, is crucial.

Lemma 2.5.8. If

𝑐𝜆,𝜅 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 ,

then, ℐ𝜆,𝜅 satisfies the (𝑃𝑆)𝑐𝜆,𝜅
−condition for all 𝜆 > 0 and 𝜅 > 0.

Proof. Let (𝑢𝑛)𝑛 ⊂ 𝐻1
rad(R𝑁) be a (𝑃𝑆)𝑐𝜆,𝜅

−sequence for ℐ𝜆,𝜅. Then, the sequence (𝑢𝑛)𝑛 is
bounded in 𝐻1

rad(R𝑁) and, up to a subsequence, 𝑢𝑛 ⇀ 𝑢 in 𝐻1
rad(R𝑁), which implies that∫︁

R𝑁
∇𝑢𝑛∇𝑣 d𝑥+

∫︁
R𝑁
𝑢𝑛𝑣 d𝑥 =

∫︁
R𝑁

∇𝑢∇𝑣 d𝑥+
∫︁
R𝑁
𝑢𝑣 d𝑥+ 𝑜𝑛(1).

In light of Lemmas 2.2.7 and 2.5.7, we obtain ℐ ′
𝜆,𝜅(𝑢𝑛)𝑣 = ℐ ′

𝜆,𝜅(𝑢)𝑣 + 𝑜𝑛(1) and since that
ℐ ′

𝜆,𝜅(𝑢𝑛)𝑣 = 𝑜𝑛(1), we deduce for all 𝑣 ∈ 𝐻1
rad(R𝑁),

∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥 =
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼−2𝑢

|𝑥|𝛼
𝑣 d𝑥

+ 𝜆
∫︁
R𝑁
𝑔𝜅(𝑢)𝑣 d𝑥, (2.124)



70

i.e., 𝑢 is solution of the Problem (2.93). Taking 𝑢 = 𝑣 in (2.124), we obtain from (2.102) that
ℐ𝜆,𝜅(𝑢) ⩾ 0. Now, let 𝑣𝑛 := 𝑢𝑛 − 𝑢. Then,

‖𝑢𝑛‖2 = ‖𝑣𝑛‖2 + ‖𝑢‖2 + 𝑜𝑛(1) (2.125)

and using Lemmas 2.2.5 and 2.5.7, we see

𝑜𝑛(1) =ℐ ′
𝜆,𝜅(𝑢𝑛)𝑢𝑛 = ‖𝑣𝑛‖2 + ‖𝑢‖2

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 𝜆
∫︁
R𝑁
𝑔𝜅(𝑢)𝑢 d𝑥+ 𝑜𝑛(1)

=ℐ ′
𝜆,𝜅(𝑢)𝑢+ ‖𝑣𝑛‖2 −

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=‖𝑣𝑛‖2 −
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1).

Suppose that ‖𝑣𝑛‖2 → 𝑏, then
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥 → 𝑏.

By the definition of the best constant 𝑆𝛼,𝜇 in (2.12)

𝑆𝛼,𝜇

[︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥
]︃ 1

2*
𝛼,𝜇

⩽
∫︁
R𝑁

|∇𝑣𝑛|2 d𝑥,

which yields 𝑏
1

2*
𝛼,𝜇 𝑆𝛼,𝜇 ⩽ 𝑏. This implies that either 𝑏 = 0 or 𝑏 ⩾ 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 > 0. From

(2.125), Lemmas 2.2.7, 2.5.7 and since ℐ𝜆,𝜅(𝑢) ⩾ 0, we may infer

𝑐𝜆,𝜅 + 𝑜𝑛(1) =ℐ𝜆,𝜅(𝑢𝑛)

=1
2‖𝑢𝑛‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥− 𝜆

∫︁
R𝑁
𝐺𝜅(𝑢𝑛) d𝑥

=1
2‖𝑣𝑛‖2 + 1

2‖𝑢‖2 − 1
22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥

− 1
22*

𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥− 𝜆

∫︁
R𝑁
𝐺𝜅(𝑢) d𝑥+ 𝑜𝑛(1)

=ℐ𝜆,𝜅(𝑢) + 1
2‖𝑣𝑛‖2 − 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=ℐ𝜆,𝜅(𝑢) +
(︃

1
2 − 1

22*
𝛼,𝜇

)︃
𝑏+ 𝑜𝑛(1)

⩾

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑏+ 𝑜𝑛(1),
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i.e., 𝑐𝜆,𝜅 ⩾
(︂

1
2 − 1

22*
𝛼,𝜇

)︂
𝑏. Therefore, if 𝑏 ⩾ 𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 , then

𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 =

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑆

2𝑁−2𝛼−𝜇
𝑁+2−2𝛼−𝜇
𝛼,𝜇 ⩽

(︃
1
2 − 1

22*
𝛼,𝜇

)︃
𝑏 ⩽ 𝑐𝜆,𝜅,

which contradicts with the fact that 𝑐𝜆,𝜅 <
𝑁 + 2 − 2𝛼− 𝜇

2(2𝑁 − 2𝛼− 𝜇)𝑆
2𝑁−2𝛼−𝜇

𝑁+2−2𝛼−𝜇
𝛼,𝜇 . Thus, 𝑏 = 0 and

‖𝑢𝑛 − 𝑢‖ → 0,

as 𝑛 → ∞, this completes the proof.

Lemma 2.5.9. The functional ℐ𝜆,𝜅 has a nonnegative critical point 𝑢 ∈ 𝐻1
rad(R𝑁) such that

ℐ𝜆,𝜅(𝑢) = 𝑐𝜆,𝜅, i.e., 𝑢 is a nonnegative radial ground state solution for auxiliary Problem

(𝐴𝜆,𝜅).

Proof. In view of (2.116), ℐ𝜆,𝜅 is coercive. Hence, ℐ𝜆,𝜅 bounded from below on 𝒩𝜆,𝜅. By
Ekeland’s variational principle, (WILLEM, 1996, Theorem 2.4), there exists a sequence (𝑢𝑛)𝑛

in 𝒩𝜆,𝜅 satisfying

ℐ𝜆,𝜅(𝑢𝑛) = 𝑐𝜆,𝜅 + 𝑜𝑛(1) and ℐ ′
𝜆,𝜅|𝒩𝜆

(𝑢𝑛) = 𝑜𝑛(1).

By Lemma 2.5.6, ℐ ′
𝜆,𝜅(𝑢𝑛) = 𝑜𝑛(1). In light of Lemma 2.5.8, we infer that 𝑢𝑛 → 𝑢 strongly

in 𝐻1
rad(R𝑁) as 𝑛 → ∞. Thus, ℐ ′

𝜆,𝜅(𝑢) = 0 e ℐ𝜆,𝜅(𝑢) = 𝑐𝜆,𝜅 > 0. We conclude that, 𝑢 ̸= 0 is
a radial ground solution of (𝐴𝜆,𝜅). By using 𝑢− := max{−𝑢, 0} as test function in (2.98), we
deduce from (2.95) that

0 =
∫︁
R𝑁

(∇𝑢∇𝑢− + 𝑢𝑢−) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝑢− d𝑥

−
∫︁
R𝑁
𝑔𝜅(𝑢)𝑢− d𝑥

=
∫︁
R𝑁

(|∇𝑢−|2 + |𝑢−|2) d𝑥−
∫︁

{𝑢>0}

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝑢− d𝑥

−
∫︁

{𝑢<0}

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝑢− d𝑥−

∫︁
{𝑢<0}

𝑔𝜅(𝑢)𝑢− d𝑥

−
∫︁

{𝑢>0}
𝑔𝜅(𝑢)𝑢− d𝑥

=‖𝑢−‖ +
∫︁

{𝑢<0}

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢2

|𝑥|𝛼
d𝑥

⩾‖𝑢−‖,

i.e., the nontrivial weak solution 𝑢 is nonnegative.
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2.5.1.1 𝐿∞−estimates

By virtue of Lemma 2.5.9, the auxiliary Problem (𝐴𝜆,𝜅) admits a solution 𝑢 := 𝑢𝜆,𝜅 for all
𝜆 > 0 and 𝜅 > 0. In what follows, we derive a uniform estimate for the norm of the solution
𝑢𝜆,𝜅 of Problem (𝐴𝜆,𝜅). To achieve this, we introduce the functional ℐ0 : 𝐻1

rad(R𝑁) → R

given by

ℐ0(𝑢) = 1
2

∫︁
R𝑁

(︁
|∇𝑢|2 + |𝑢|2

)︁
d𝑥− 1

22*
𝛼,𝜇

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇

|𝑥|𝛼
d𝑥.

Moreover, we denote by 𝑐0 the level of the Mountain Pass associated with the functional ℐ0,
i.e.,

0 < 𝑐0 := inf
𝛾∈Γ0

max
𝑡∈[0,1]

ℐ0(𝛾(𝑡)),

where
Γ0 :=

{︂
𝛾 ∈ 𝐶([0, 1], 𝐻1

rad(R𝑁) : 𝛾(0) = 0 and ℐ0(𝛾(1)) < 0
}︂
.

Here, it is important to emphasize that 𝑐0 is independent of the choice of 𝜆 and 𝜅. In addition,
𝑐𝜆,𝜅 ⩽ 𝑐0.

Lemma 2.5.10. Let 𝑢𝜆,𝜅 be the critical point of ℐ𝜆,𝜅 obtained in Lemma 2.5.9. Then, there

exists a constant 𝑀 (which depends only on 𝑁, 𝜃, 𝜇, 𝛼, 𝑝 and independent of 𝜆 and 𝜅) such

that

‖𝑢𝜆,𝜅‖2 ⩽
2𝜃
𝜃 − 2𝑐0 =: 𝑀.

In particular, by (2.12) we have that ‖𝑢𝜆,𝜅‖2
2* ⩽ 𝑆−1𝑀 .

Proof. In view of estimate (2.116) and recalling that 𝑐𝜆,𝜅 ⩽ 𝑐0, we have that

𝑐0 ⩾ 𝑐𝜆,𝜅 = ℐ𝜆,𝜅(𝑢𝜆,𝜅) − 1
𝜃

ℐ ′
𝜆,𝜅(𝑢𝜆,𝜅)𝑢𝜆,𝜅 ⩾

𝜃 − 2
2𝜃 ‖𝑢𝜆,𝜅‖2

and the proof is finished.

The next lemma plays a crucial role in our arguments, since it establishes an important
estimate involving the 𝐿∞−norm of the solution of the auxiliary Problem (𝐴𝜆,𝜅). For this
purpose, we shall use Moser’s iteration method. However, as mentioned in Remark 2.1.15,
the Stein-Weiss type convolutions, present in the problems of this thesis, does not admit
boundedness in the entire space R𝑁 . In this direction, to deal with double weight in the Stein-
Weis term, and apply the iteration process, we use (2.103) combined with the Proposition
1.0.2.
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Lemma 2.5.11. Let 𝑢𝜆,𝑘 be the solution of (𝐴𝜆,𝜅) obtained in Lemma 2.5.9. Then, there

exist 𝐶1 > 0 and 𝑀1 > 0 (which depends only on 𝑁 , 𝜃, 𝜇, 𝛼, 𝑝 and independent of 𝜆 and 𝜅)

such that

‖𝑢𝜆,𝜅‖∞ ⩽ (1 + 𝜆𝜅𝑞−𝑝)𝐶1𝑀1‖𝑢𝜆,𝑘‖2* .

Proof. Building on the arguments presented in the proof of Lemma 2.2.11, we derive the
following estimate, using the 𝜑𝐿 = 𝑢𝑢

2(𝛽−1)
𝐿 as test function in (2.98):

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽2𝑆−1𝛽2
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−1𝑢𝑢

2(𝛽−1)
𝐿 d𝑥 (2.126)

+ 2𝑆−1𝛽2𝜆
∫︁
R𝑁
𝑔𝜅(𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥. (2.127)

Next, we estimate the right-hand side of (2.126). By combining Proposition 1.0.2 and Hölder’s
inequality with Lemma 2.5.10, we deduce
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦
)︃

|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 d𝑥 ⩽ 𝐶2

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

,

(2.128)
where 𝐶2 := 𝐶(𝑁, 𝜃, 𝛼, 𝜇)(𝑆−1𝑀)

2*
𝛼,𝜇
2 , which jointly with (2.126) yields that

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽𝐶22𝑆−1𝛽2
(︂∫︁

R𝑁
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

+ 𝐶22𝑆−1𝛽2𝜆
∫︁
R𝑁
𝑔𝜅(𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

=:2𝐶2𝑆
−1𝛽2(𝐼1 + 𝜆𝐼2). (2.129)

In the sequence, we estimate 𝐼1 and 𝐼2. Similarly to estimates (2.57)-(2.59), we obtain the
following estimate for 𝐼1,

𝐼1 ⩽𝐾2*
𝛼,𝜇−2

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

+
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2* (︂∫︁
R𝑁

|𝑤𝐿|2*d𝑥
)︂ 2

2*

. (2.130)

By (𝑔1), it follows from Hölder’s inequality and Lemma 2.5.10 that

𝐼2 ⩽𝑘𝑞−𝑝
∫︁
R𝑁

|𝑢|𝑝−2𝑢2𝑢
2(𝛽−1)
𝐿 d𝑥

⩽𝜅𝑞−𝑝‖𝑢‖𝑝−2
2𝑁(𝑝−2)

2𝛼+𝜇

(︂∫︁
R𝑁

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝜆𝜅𝑞−𝑝𝑀
𝑝−2

2 𝐶𝑝−2
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

, (2.131)
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where 𝐶 denotes the constant of the embedding 𝐻1
rad(R𝑁) →˓ 𝐿𝑠(R𝑁), for all 𝑠 ∈ [2, 2*].

Denote 𝐶 := 2𝑆𝐶2 in (2.129). In view of (2.130) and (2.131) we derive
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽𝐶𝛽2(1 + 𝜆𝜅𝑞−𝑝𝑀
𝑝−2

2 𝐶𝑝−2)
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

+ 𝐶𝛽2
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2* (︂∫︁
R𝑁

|𝑤𝐿|2*d𝑥
)︂ 2

2*

. (2.132)

Since 𝑢 ∈ 𝐿2*(R𝑁), we may fix 𝐾 > 0 such that

(︃∫︁
{|𝑢|>𝐾}

|𝑢|2*d𝑥
)︃ 2*

𝛼,𝜇−2
2*

⩽
1

2𝐶𝛽2 . (2.133)

Note that we can obtain estimates analogous to (2.63)-(2.67), and thus we arrive at

‖𝑢‖2*𝛽 ⩽ [𝐶 1
2 (1 + 𝜆𝜅𝑞−𝑝) 1

2 ]
1
𝛽 𝛽

1
𝛽 ‖𝑢‖𝑞*

𝛼,𝜇𝛽, where 𝑞*
𝛼,𝜇 := 22*

2*
𝛼,𝜇

(2.134)

The next step is using inequality (2.134) to obtain the desired 𝐿∞–estimate, through an
iterative process. For this purpose, following a similar approach as in steps 1, 2, and 3 of
Lemma 2.2.11 in (2.68)-(2.70), we obtain the following estimate

‖𝑢𝜆,𝑘‖∞ ⩽ (1 + 𝜆𝜅𝑞−𝑝)𝐶1𝑀1‖𝑢𝜆,𝑘‖2* , (2.135)

where 𝐶1 := 1
2(𝛾1−1) and 𝑀1 := 𝐶

1
2(𝛾1−1)𝛾

𝛾1
(𝛾1−1)2
1 . This finishes the proof.

Remark 2.5.12. Let 𝑢 ∈ 𝐻1
rad(R𝑁) be the nonnegative solution obtained in Lemma 2.5.9.

In view of Lemma 2.5.11 and regularity theory (see for instance (TOLKSDORF, 1984, Theorem

1)), we have that 𝑢 ∈ 𝐶1,𝛾
loc (R𝑁), for some 𝛾 ∈ (0, 1). Therefore, in light of Strong Maximum

Principle, we conclude that 𝑢 is positive.

Proof of Theorem 2.1.9. At this point, in view of (2.135), we are able to find suitable
values of 𝜆 and 𝜅 such that the following inequality holds true

‖𝑢𝜆,𝜅‖∞ ⩽ (1 + 𝜆𝜅𝑞−𝑝)𝐶1𝑀1(𝑆𝑀) 1
2 ⩽ 𝜅.

In fact, we shall verify that (1 + 𝜆𝜅𝑞−𝑝)𝐶1𝑀1(𝑆𝑀) 1
2 ⩽ 𝜅, or equivalently,

𝜆𝜅𝑞−𝑝 ⩽

(︃
𝜅

𝑀1(𝑆𝑀) 1
2

)︃ 1
𝐶1

− 1.

Consider 𝜅 > 0 such that (︃
𝜅

𝑀1(𝑆𝑀) 1
2

)︃ 1
𝐶1

− 1 > 0
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and fix 𝜆*
0 > 0 satisfying

𝜆 ⩽ 𝜆*
0 ⩽

⎡⎣(︃ 𝜅

𝑀1(𝑆𝑀) 1
2

)︃ 1
𝐶1

− 1
⎤⎦ 1
𝜅𝑞−𝑝

.

Thus, taking 𝜅0 > 𝑀1(𝑆𝑀) 1
2 , we obtain 𝜆*

0 > 0, such that

‖𝑢𝜆,𝑘0‖∞ ⩽ 𝜅0, (2.136)

for all 𝜆 ∈ (0, 𝜆*
0]. Therefore, by (2.136), it follows from definition of 𝑔𝜅0 that

𝑔𝜅0(𝑢𝜆,𝜅0) = 𝜆|𝑢𝜆,𝜅0|𝑞−2𝑢𝜆,𝜅0 and 𝐺𝜅0(𝑢𝜆,𝜅0) = 𝜆

𝑞
|𝑢𝜆,𝜅0|𝑞, ∀𝜆 ∈ (0, 𝜆*]. (2.137)

Consequently, by (2.95), (2.137) and since 𝑢𝜆,𝜅0 is a critical point of ℐ𝜆,𝜅0 , we reach

0 = ℐ ′
𝜆,𝜅0(𝑢𝜆,𝜅0)𝜑 =

∫︁
R𝑁

∇𝑢𝜆,𝜅0∇𝜑 d𝑥+
∫︁
R𝑁
𝑢𝜆,𝜅0𝜑 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝜆,𝜅0|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝜆,𝜅0|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝜑 d𝑥− 𝜆

∫︁
R𝑁
𝑔𝜅0(𝑢𝜆,𝜅0)𝜑 d𝑥

=
∫︁
R𝑁

∇𝑢𝜆,𝜅0∇𝜑 d𝑥+
∫︁
R𝑁
𝑢𝜆,𝜅0𝜑 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢𝜆,𝜅0|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢𝜆,𝜅0|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
𝜑 d𝑥− 𝜆

∫︁
R𝑁

|𝑢𝜆,𝜅0 |𝑞−1𝜑 d𝑥.

for all 𝜑 ∈ 𝐻1
rad(R𝑁). Therefore, from Remarks 2.5.1 and 2.5.2, we conclude that 𝑢𝜆,𝜅0 is a

positive radial ground state solution of Problem (2.93), which finishes the proof of Theorem
2.1.9.

2.6 THE CRITICAL SOBOLEV CASE WITH NONLOCAL PERTURBATION

In this section, we follow ideas from the previous sections and prove Theorem 2.1.10. Thus,
our main goal is to study the existence result for problem

−Δ𝑢+ 𝑢 = |𝑢|2*−2𝑢+ 𝜆

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
, in R𝑁 , (2.138)

where 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇, 2* = 2𝑁

𝑁−2 and 𝜆 > 0.
Associated with equation (2.138), we define the energy functional 𝐼𝜆 : 𝐻1(R𝑁) −→ R by

𝐼𝜆(𝑢) = 1
2

∫︁
R𝑁

(︁
|∇𝑢|2 + |𝑢|2

)︁
d𝑥− 1

2*

∫︁
R𝑁

|𝑢|2* d𝑥− 𝜆

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥.

In other words, the solutions of (2.138) satisfy

𝐼 ′
𝜆(𝑢)𝑣 =

∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥−
∫︁
R𝑁

|𝑢|2*−2𝑢𝑣 d𝑥

− 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑣 d𝑥 = 0.
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This leads us to define the Nehari manifold associated with Problem (2.138) as follows

𝒩𝜆 =
{︁
𝑢 ∈ 𝐻1

rad(R𝑁)∖{0} : 𝐼 ′
𝜆(𝑢)𝑢 = 0

}︁
.

For any 𝑢 ∈ 𝒩𝜆,

‖𝑢‖2 =
∫︁
R𝑁

|𝑢|2* d𝑥+ 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥,

which implies that

𝐼𝜆(𝑢) =1
2‖𝑢‖2 − 1

2*

∫︁
R𝑁

|𝑢|2* d𝑥− 𝜆

2𝑝

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥

=
(︃

1
2 − 1

2𝑝

)︃
‖𝑢‖2 + 𝜆

(︃
1
2𝑝 − 1

2*

)︃∫︁
R𝑁

|𝑢|2* d𝑥 (2.139)

=
(︂1

2 − 1
2*

)︂
‖𝑢‖2 + 𝜆

(︃
1
2* − 1

2𝑝

)︃∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥. (2.140)

If 1
2𝑝

− 1
2* > 0, then (2.139) implies 𝐼𝜆(𝑢) > 0; if 1

2𝑝
− 1

2* ⩽ 0, then (2.140) implies 𝐼𝜆(𝑢) ⩾ 0.
Consequently, we take 𝛿0 := min

{︁(︁
1
2 − 1

2*

)︁
,
(︁

1
2 − 1

2𝑝

)︁}︁
, then for any 𝑢 ∈ 𝒩𝜆, we infer

𝐼𝜆(𝑢) ⩾ 𝛿0‖𝑢‖2 ⩾ 0.
We consider the following constrained minimizing problem:

𝑐𝜆 := inf
𝒩𝜆

𝐼𝜆. (2.141)

We shall prove that if the infimum in (2.141) is attained by 𝑢, then 𝑢 is a radial ground state
solution of (2.138). Using the same arguments explored in proof of Lemma 2.2.1, we can show
that 𝒩𝜆 satisfies:

Lemma 2.6.1. For each 𝑢 ∈ 𝐻1
rad(R𝑁) ∖ {0}, we have that

(𝑖) 𝒩𝜆 ̸= ∅;

(𝑖𝑖) there exists a constant 𝛿 > 0 such that ‖𝑢‖ ⩾ 𝛿, for all 𝑢 ∈ 𝒩𝜆;

(𝑖𝑖𝑖) 𝑐𝜆 = inf𝒩𝜆
𝐼𝜆 > 0.

As Lemma 2.2.2, the next lemma establishes an important estimate involving the level
𝑐𝜆. In this way we introduce the function, for 𝜀 > 0, 𝑈𝜀(𝑥) := 𝜀

2−𝑁
2 𝑈(𝑥

𝜀
), where 𝑈(𝑥) is a

minimizant of 𝑆 and satisfies
−Δ𝑢 = 𝑢2*−2𝑢, in R𝑁

with ∫︁
R𝑁

|∇𝑈 |2 d𝑥 =
∫︁
R𝑁

|𝑈 |2* d𝑥 = 𝑆
𝑁
2 . (2.142)
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Notice that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫︁
R𝑁

|∇𝑈𝜀|2 d𝑥 =
∫︁
R𝑁

|∇𝑈 |2 d𝑥,∫︁
R𝑁

|𝑈𝜀|2 d𝑥 = 𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥,∫︁
R𝑁

|𝑈𝜀|2
* d𝑥 =

∫︁
R𝑁

|𝑈 |2* d𝑥,∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥 =

= 𝜀(2−𝑁)𝑝+2𝑁−2𝛼−𝜇
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈 |𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈 |𝑝

|𝑥|𝛼
d𝑥.

(2.143)

Therefore, we have the following estimates involving level 𝑐𝜆, namely:

Lemma 2.6.2. 0 < 𝑐𝜆 <
1
𝑁
𝑆

𝑁
2 , if either

(𝑖) 2*𝛼,𝜇 < 𝑝 < 2*
𝛼,𝜇, 2𝛼 + 𝜇 = 𝑁 , 𝑁 ≥ 3;

(𝑖𝑖) 2*𝛼,𝜇 <
𝑁+2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 = 3, 4;

(𝑖𝑖𝑖) 2*𝛼,𝜇 <
2𝑁−2−2𝛼−𝜇

𝑁−2 < 𝑝 < 2*
𝛼,𝜇, 𝑁 ≥ 5;

or

(𝑖𝑣) 2*𝛼,𝜇 < 𝑝 ⩽ 𝑁+2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 = 3, 4 and 𝜆 sufficiently large;

(𝑣) 2*𝛼,𝜇 < 𝑝 ⩽ 2𝑁−2−2𝛼−𝜇
𝑁−2 < 2*

𝛼,𝜇, 𝑁 ≥ 5 and 𝜆 sufficiently large.

Proof. We will use similar arguments as in the proof of Lemma 2.2.2. Accordingly, we will
divide the proof into two cases.
Case 1. In what follows, the proof only includes items (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖).

Initially, observe that arguing as in the proof of Lemma 2.6.1 (𝑖), implies that there exists
𝑡𝜀 > 0 such that

𝑡𝜀𝑈𝜀 ∈ 𝒩𝜆 and max
𝑡≥0

𝑔(𝑡) = 𝑔(𝑡𝜀) = 𝐼𝜆(𝑡𝜀𝑈𝜀).

Since that 𝑡𝜀𝑈𝜀 ∈ 𝒩𝜆, we deduce

2
∫︁
R𝑁

|∇𝑈𝜀(𝑥)|2 d𝑥+
∫︁
R𝑁

|𝑈𝜀(𝑥)|2 d𝑥 ⩾ 𝑡2
*−2

𝜀

∫︁
R𝑁

|𝑈𝜀(𝑥)|2* d𝑥

and combining with (2.142)-(2.143), we obtain 0 < 𝑡𝜀 ⩽ 2
1

2*−2 , for 𝜀 small enough.
Claim. 𝑡𝜀 → 1, as 𝜀 → 0.
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For (2.142)-(2.143), we have
∫︁
R𝑁

|∇𝑈 |2 d𝑥− 𝑡2
*−2

𝜀

∫︁
R𝑁

|𝑈𝜀|2
* d𝑥

= − 𝜀2
∫︁
R𝑁

|𝑈 |2 d𝑥+ 𝑡2(𝑝−1)
𝜀 𝜀(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥

→ 0, as 𝜀 → 0,

implying that 𝑡𝜀 → 1 as 𝜀 → 0, which proves the claim.
Finally, combining once more (2.142)-(2.143), we see that

𝑐𝜆 ⩽ max
𝑡≥0

𝐼𝜆(𝑡𝑈𝜀) = 𝐼𝜆(𝑡𝜀𝑈𝜀) ⩽
(︂1

2 − 1
2*

)︂
𝑆

𝑁
2 + 𝑡2𝜀

2 𝜀
2
∫︁
R𝑁

|𝑈 |2 d𝑥

− 𝑡2𝑝
𝜀

2𝑝 𝜀
(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥.

Since (2 −𝑁)𝑝+ 2𝑁 − 2𝛼− 𝜇 < 2, we have for 𝜀 small enough that

𝑡2𝜀
2 𝜀

2
∫︁
R𝑁

|𝑈 |2 d𝑥− 𝑡2𝑝

2𝑝 𝜀
(2−𝑁)𝑝+2𝑁−2𝛼−𝜇𝜆

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑈𝜀|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑈𝜀|𝑝

|𝑥|𝛼
d𝑥 < 0.

Therefore, 𝑐𝜆 <
1
𝑁
𝑆

𝑁
2 , the proof is complete for this case.

Case 2. Now, for 𝜆 sufficiently large the proof of items (𝑖𝑣) and (𝑣) follows the same arguments
explored in Case 2 of Lemma 2.2.2. With this the proof of the lemma is complete.

We also have the following results similar to Lemma 2.2.9 and 2.2.10.

Lemma 2.6.3. If (𝑢𝑛)𝑛 is a (𝑃𝑆)𝑐𝜆
−sequence of the constrained functional 𝐼𝜆|𝒩𝜆

is also a

(𝑃𝑆)𝑐𝜆
−sequence of 𝐼𝜆, namely, if (𝑢𝑛)𝑛 in 𝒩𝜆 satisfies

𝐼𝜆(𝑢𝑛) = 𝑐𝜆 + 𝑜𝑛(1) and 𝐼 ′
𝜆|𝒩𝜆

(𝑢𝑛) = 𝑜𝑛(1)

then 𝐼 ′
𝜆(𝑢𝑛) = 𝑜𝑛(1).

For the sake of completeness of the thesis, we will prove the following lemma.

Lemma 2.6.4. The functional 𝐼𝜆 satisfies the (𝑃𝑆)𝑐𝜆
−condition with 𝑐𝜆 <

1
𝑁
𝑆

𝑁
2 .

Proof. Let (𝑢𝑛)𝑛 ⊂ 𝐻1
rad(R𝑁) be a (𝑃𝑆)𝑐𝜆

−sequence for 𝐼𝜆. Then, the sequence (𝑢𝑛)𝑛 is
bounded in 𝐻1

rad(R𝑁) and, up to a subsequence, 𝑢𝑛 ⇀ 𝑢 weakly in 𝐻1
rad(R𝑁). Hence, we have

∫︁
R𝑁

∇𝑢𝑛∇𝑣 d𝑥+
∫︁
R𝑁
𝑢𝑛𝑣 d𝑥 =

∫︁
R𝑁

∇𝑢∇𝑣 d𝑥+
∫︁
R𝑁
𝑢𝑣 d𝑥+ 𝑜𝑛(1).
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Since 𝑢𝑛 ⇀ 𝑢 in 𝐻1
rad(R𝑁), we have that 𝑢𝑛 → 𝑢 a.e. in R𝑁 . Since (𝑢𝑛)𝑛 is bounded in

𝐿2*(R𝑁), (|𝑢𝑛|2*−2𝑢𝑛)𝑛 is bounded in 𝐿
2*

2*−1 (R𝑁) and thus by Lemma 2.2.4, |𝑢𝑛|2*−2𝑢𝑛 ⇀

|𝑢|2*−2𝑢 in 𝐿 2*
2*−1 (R𝑁) , i.e.,∫︁
R𝑁

|𝑢𝑛|2*−2𝑢𝑛𝑣 d𝑥 =
∫︁
R𝑁

|𝑢|2*−2𝑢𝑣 d𝑥+ 𝑜𝑛(1), ∀𝑣 ∈ 𝐿2*(R𝑁),

in particular, ∫︁
R𝑁

|𝑢𝑛|2*−2𝑢𝑛𝑣 d𝑥 =
∫︁
R𝑁

|𝑢|2*−2𝑢𝑣 d𝑥+ 𝑜𝑛(1), ∀𝑣 ∈ 𝐻1
rad(R𝑁).

In light of Lemma 2.2.7, we obtain 𝐼 ′
𝜆(𝑢𝑛)𝑣 = 𝐼 ′

𝜆(𝑢)𝑣+ 𝑜𝑛(1), for all 𝑣 ∈ 𝐻1
rad(R𝑁) and since

that 𝐼 ′
𝜆(𝑢𝑛)𝑣 = 𝑜𝑛(1), for all 𝑣 ∈ 𝐻1

rad(R𝑁), we deduce for all 𝑣 ∈ 𝐻1
rad(R𝑁) that∫︁

R𝑁
(∇𝑢∇𝑣 + 𝑢𝑣) d𝑥 =

∫︁
R𝑁

|𝑢|2*−2𝑢𝑣 d𝑥

+ 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝−2𝑢

|𝑥|𝛼
𝑣 d𝑥, (2.144)

i.e., 𝑢 is solution of the Problem (2.138). Taking 𝑢 = 𝑣 in (2.144), we may infer that 𝐼𝜆(𝑢) ≥ 0.
Let 𝑣𝑛 := 𝑢𝑛 − 𝑢. Then, by Brézis-Lieb Lemma in (BRÉZIS; LIEB, 1983), we have

‖𝑢𝑛‖2 = ‖𝑣𝑛‖2 + ‖𝑢‖2 + 𝑜𝑛(1),∫︁
R𝑁

|𝑢𝑛|2* d𝑥 =
∫︁
R𝑁

|𝑣𝑛|2* d𝑥+
∫︁
R𝑁

|𝑢|2* d𝑥+ 𝑜𝑛(1).
(2.145)

Combining Proposition 1.0.2 with Sobolev embedding, we see∫︁
R𝑁

(︃∫︁
R𝑁

|𝑣𝑛|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑣𝑛|𝑝

|𝑥|𝛼
d𝑥 ⩽ 𝐶(𝑁,𝛼, 𝜇)‖𝑣𝑛‖2𝑝

2𝑁𝑝
2𝑁−2𝛼−𝜇

= 𝑜𝑛(1). (2.146)

By using (2.145)-(2.146) and Lemma 2.2.5, we deduce

𝑜𝑛(1) =𝐼 ′
𝜆(𝑢𝑛)𝑢𝑛 = ‖𝑣𝑛‖2 + ‖𝑢‖2 −

∫︁
R𝑁

|𝑢|2* d𝑥−
∫︁
R𝑁

|𝑣𝑛|2* d𝑥

− 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢|𝑝

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑝

|𝑥|𝛼
d𝑥+ 𝑜𝑛(1)

=‖𝑣𝑛‖2 −
∫︁
R𝑁

|𝑣𝑛|2* d𝑥+ 𝑜𝑛(1).

Suppose that ‖𝑣𝑛‖2 → 𝑏, then
∫︁
R𝑁

|𝑣𝑛|2* d𝑥 → 𝑏. By (2.13), which yields 𝑏 2
2* 𝑆 ⩽ 𝑏. This

implies that either 𝑏 = 0 or 𝑏 ≥ 𝑆
𝑁
2 > 0. Now, using 𝐼𝜆(𝑢) ≥ 0 and (2.145)-(2.146), the

result follows through similar arguments as in the proof of Lemma 2.2.10.

Proof of Theorem 2.1.10. Using Lemmas 2.6.3 and 2.6.4, the proof of Theorem 2.1.10 is
similar to that of Theorem 2.1.4. Thus, we finish the proof of the theorem.
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3 SUPERCRITICAL SCHRÖDINGER EQUATIONS

WITH VANISHING POTENTIAL AND DOUBLE WEIGHTED NONLOCAL

INTERACTION PART

This chapter focuses on the study of the existence of positive solutions for the following
class Schrödinger equations involving double weighted nonlocal interaction

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛼

+ 𝜓(𝑥, 𝑢), in R𝑁 , (𝑃 )

where 𝑁 ⩾ 3, 0 < 𝜇 < 𝑁 , 𝛼 ⩾ 0, 0 < 2𝛼 + 𝜇 < min{𝑁+2
2 , 4}, 𝑉 : R𝑁 → R is a

continuous and positive potential and 𝐹 is the primitive of function 𝑓 . Later, we will introduce
the assumptions on 𝑉 (𝑥), 𝑓 and 𝜓. Furthermore, we also study the version of the Problem
(𝑃 ) with the same 𝜓, however the nonlinearity 𝑓 assumes the homogeneous critical case in the
sense of the weighted Hardy-Littlewood-Sobolev inequality. Precisely, we consider the following
class of Schrödinger equations

−Δ𝑢+ 𝑉 (𝑥)𝑢 = 1
2*

𝛼,𝜇

(︃∫︁
R𝑁

|𝑢|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|2*
𝛼,𝜇−2𝑢

|𝑥|𝛼
+ 𝜓(𝑥, 𝑢), in R𝑁 , (𝑄)

where 2*
𝛼,𝜇 = 2𝑁−2𝛼−𝜇

𝑁−2 and the potential 𝑉 (𝑥) is a radial function, i.e., 𝑉 (|𝑥|) = 𝑉 (𝑥), for all
𝑥 ∈ R𝑁 .

3.1 ASSUMPTIONS AND MAIN RESULTS

Inspired by the works of (ALVES; SOUTO, 2012; ALVES; FIGUEIREDO; YANG, 2016; CARDOSO;

DOS PRAZERES; SEVERO, 2020), we study Problem (𝑃 ) under the assumption that 𝑉 (𝑥) a
positive continuous function. We adopt the following notation: 𝑚 = max|𝑥|⩽1 𝑉 (𝑥), and we
introduce the function Λ : (1,∞) → [0,∞) defined by

Λ(𝑅) = 1
𝑅(𝑞−2)(𝑁−2) inf

|𝑥|⩾𝑅
|𝑥|(𝑞−2)(𝑁−2)𝑉 (𝑥). (𝑉1)

Moreover, we assume that 𝑓 : R → R is a continuous function satisfying

lim
𝑡→0+

𝑡𝑓(𝑡)
𝑡𝑞

< ∞, (𝑓1)

for 𝑞 ⩾ 2* = 2𝑁
𝑁−2 and

lim
𝑡→∞

𝑡𝑓(𝑡)
𝑡𝑝

= 0, (𝑓2)
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for 𝑝 ∈ (1, 2(𝑁−𝛼−𝜇)
𝑁−2 ). By considering that 0 < 2𝛼+𝜇 < min{𝑁+2

2 , 4}, one may conclude that
the interval (1, 2(𝑁−𝛼−𝜇)

𝑁−2 ) is nonempty. In view of (𝑓1) and the fact that 2(𝑁−𝛼−𝜇)
𝑁−2 < 2*

𝛼,𝜇 < 2*,
there hold

lim
𝑡→0

𝑡𝑓(𝑡)
𝑡2

*
𝛼,𝜇

= 0 and lim
𝑡→0

𝑡𝑓(𝑡)
𝑡𝑝

= 0. (3.1)

In this chapter, we will also consider the case in which 2*
𝛼,𝜇 ⩽ 𝑞 in (𝑓1), i.e.,

lim
𝑡→0+

𝑡𝑓(𝑡)
𝑡𝑞

< ∞, for 2*
𝛼,𝜇 ⩽ 𝑞. (𝑓 ′

1)

Using assumptions (𝑓 ′
1), (𝑓2) and (3.1), there exists 𝑐0 > 0 such that

|𝑡𝑓(𝑡)| ⩽ 𝑐0|𝑡|2
*
𝛼,𝜇 , |𝑡𝑓(𝑡)| ⩽ 𝑐0|𝑡|𝑞, |𝑡𝑓(𝑡)| ⩽ 𝑐0|𝑡|𝑝, ∀𝑡 ∈ R. (3.2)

We also assume that 𝑓 satisfies the Ambrosetti-Rabinowitz condition, i.e., there exists
𝜃 ∈ (2,min

{︁
2*

𝛼,𝜇, 4
}︁
), such that

0 < 𝜃𝐹 (𝑡) := 𝜃
∫︁ 𝑡

0
𝑓(𝜏)d𝜏 ⩽ 2𝑓(𝑡)𝑡, ∀𝑡 > 0. (𝑓3)

Since we are going to look for positive solutions, we will assume that 𝑓(𝑡) = 0, for all 𝑡 ⩽ 0.

On the other hand, in order to study Problem (𝑄), we will assume that the potential
𝑉 (𝑥) is a radial function, i.e., 𝑉 (|𝑥|) = 𝑉 (𝑥), for all 𝑥 ∈ R𝑁 and we introduce the function
𝑊 : (1,∞) → [0,∞) defined by

𝑊 (𝑅) = inf
|𝑥|≥𝑅

|𝑥|(2*
𝛼,𝜇−2)( 𝑁−2

2 )𝑉 (𝑥). (𝑉2)

Throughout the chapter, we are going to study the existence of solutions for Problems (𝑃 )
and (𝑄), under the following assumptions regarding 𝜓:

(𝜓1) 𝜓(𝑥, 𝑢) = 𝜆(𝑥)|𝑢|𝑞−2𝑢, 𝑞 ⩾ 2*
𝛼,𝜇, 𝜆(𝑥) is a nonnegative function such that 𝜆(𝑥) ∈

𝐿
2𝑁

2𝛼+𝜇 (R𝑁);

(𝜓2) 𝜓(𝑥, 𝑢) = 𝜆

𝑞

(︃∫︁
R𝑁

|𝑢|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑞−2𝑢

|𝑥|𝛼
, 𝑞 ⩾ 2*

𝛼,𝜇 and 𝜆 ⩾ 0 is a parameter.

Furthermore, we assume the following assumptions for 𝛼 and 𝜇:

𝑁 ⩾ 3, 0 < 𝜇 < 𝑁, 𝛼 ⩾ 0, 0 < 2𝛼 + 𝜇 < min
{︂
𝑁 + 2

2 , 4
}︂
. (3.3)

To present the main results of this chapter, we now introduce the normed space suitable
for solving Problem (𝑃 ). In fact, due to the presence of 𝑉 (𝑥) in Problem (𝑃 ), we defined the
subspace of 𝒟1,2(R𝑁)

𝐸 :=

⎧⎨⎩𝑢 ∈ 𝒟1,2(R𝑁) :
∫︁
R𝑁
𝑉 (𝑥)|𝑢|2 d𝑥 < ∞

⎫⎬⎭,
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which is a Hilbert space when endowed with the inner product and its correspondent norm

⟨𝑢, 𝑣⟩ :=
∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑉 (𝑥)𝑢𝑣) d𝑥 and ‖𝑢‖ = ⟨𝑢, 𝑢⟩
1
2 .

Since 𝑉 (𝑥) is positive, the embedding 𝐸 →˓ 𝐿2*(R𝑁) is continuous.
As in Chapter 2, we denote by 𝑆 as the best Sobolev constant for the embedding of

𝒟1,2(R𝑁) into 𝐿2*(R𝑁), i.e.,

𝑆
(︂∫︁

R𝑁
|𝑢|2* d𝑥

)︂ 2
2*

⩽
∫︁
R𝑁

|∇𝑢|2 d𝑥. (3.4)

With this in mind, we have the following definition.

Definition 3.1.1. We say that a function 𝑢 ∈ 𝐸 is a weak solution of Problem (𝑃 ), if there

holds ∫︁
R𝑁

(∇𝑢∇𝜑+ 𝑉 (𝑥)𝑢𝜑) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

𝜑 d𝑥

−
∫︁
R𝑁
𝜓(𝑥, 𝑢)𝜑 d𝑥 = 0, ∀𝜑 ∈ 𝐸. (3.5)

Now, by noting that due to the presence of 𝑉 (|𝑥|) in Problem (𝑄), we replace the space
𝒟1,2(R𝑁) by 𝒟1,2

rad(R𝑁) and consider

𝐸rad :=

⎧⎨⎩𝑢 ∈ 𝒟1,2
rad(R𝑁) :

∫︁
R𝑁
𝑉 (𝑥)|𝑢|2 d𝑥 < ∞

⎫⎬⎭.
Similarly to (3.5), we define a weak solution for Problem (𝑄), see Section 3.4 for more details.

Regarding Problem (𝑃 ), we have the following results:

Theorem 3.1.2. Suppose the case (𝜓1) and that 𝑓 satisfies (𝑓 ′
1)− (𝑓3). There are 𝜀0,Λ0 > 0

such that if ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0 and Λ ⩾ Λ0, then Problem (𝑃 ) has a positive solution.

Corollary 3.1.3. Suppose the case (𝜓1) with 𝜆(𝑥) ≡ 𝜆, 𝛼 = 0 and that 𝑓 satisfies (𝑓1)−(𝑓3).
There are 𝜆*

0,Λ0 > 0 such that if 𝜆 ∈ [0, 𝜆*
0) and Λ ⩾ Λ0, then Problem (𝑃 ) has a positive

solution.

Theorem 3.1.4. Suppose the case (𝜓2) and that 𝑓 satisfies (𝑓 ′
1)− (𝑓3). There are 𝜆0,Λ0 > 0

such that if 𝜆 ∈ [0, 𝜆0) and Λ ⩾ Λ0, then Problem (𝑃 ) has a positive solution.

With respect to Problem (𝑄), we find the following result:

Theorem 3.1.5. Suppose that (𝜓1) (or (𝜓2)) holds. There are 𝜀0, Λ̂0 > 0 such that if

‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0 (or if 𝜆 ∈ [0, 𝜆̂0)) and Λ̂ ⩾ Λ̂0, then Problem (𝑄) has a radial positive solution.
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One of the challenges in studying the problems above is the lack of compactness, as we are
working in the entire space R𝑁 . Moreover, as noted in Section 2.5 of Chapter 2, variational
methods cannot be directly applied to these problems. For example, the energy functional
associated with Problem (𝑃 ), given by

ℱ(𝑢) =1
2

∫︁
R𝑁

(|∇𝑢|2 + 𝑉 (𝑥)|𝑢|2) d𝑥

− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

d𝑥−
∫︁
R𝑁

Ψ(𝑥, 𝑢) d𝑥, (3.6)

where Ψ(𝑥, 𝑢) =
∫︀ 𝑢

0 𝜓(𝑥, 𝜏) d𝜏 and 𝜓 is one of the nonlinearities (𝜓1) − (𝜓2), is not well
defined for 𝑞 > 2*

𝛼,𝜇. For more details, see Remark 3.1.7 below and the following sections of
this chapter. A similar difficulty arises in Problem (𝑄).

Now we list some remarks on this chapter.

Remark 3.1.6. The main contributions of this chapter are the following:

1. If 𝜓 ≡ 0, 𝛼 = 0, 0 < 𝜇 < min{𝑁+2
2 , 4}, 𝑁 ⩾ 3, 𝑞 ⩾ 2*

0,𝜇 := 2*
𝜇 = 2𝑁 − 𝜇

𝑁 − 2 , then our

results complete the picture of (ALVES; FIGUEIREDO; YANG, 2016);

2. If 𝜓 ̸≡ 0, (𝜓1) holds with 𝜆(𝑥) ≡ 𝜆, 𝛼 = 0, 0 < 𝜇 < 𝑁+2
2 , 𝑞 ⩾ 2*, then our results

extends and complements the previous item ;

3. If 𝜓 ≡ 0, 𝛼 ̸= 0, 𝑞 ⩾ 2*
𝛼,𝜇, then our results complement (DE ALBUQUERQUE; SANTOS,

2023);

4. The case 𝜓 ̸≡ 0 extends and complements the previous items.

The approach is based on variational methods combined with penalization techniques and
𝐿∞−estimates.

Remark 3.1.7. In view of (3.2) and (𝑓3), we have

𝐹 (𝑡) ⩽ 2𝑐0

𝜃
|𝑡|2*

𝛼,𝜇 , (3.7)

and noticing that 2𝑁
2𝑁−2𝛼−𝜇

2*
𝛼,𝜇 = 2*, we conclude that for each 𝑢 ∈ 𝐸, ensures that

∫︁
R𝑁

|𝐹 (𝑢)|
2𝑁

2𝑁−2𝛼−𝜇 d𝑥 ⩽
(︂2𝑐0

𝜃

)︂ 2𝑁
2𝑁−2𝛼−𝜇

∫︁
R𝑁

|𝑢|2* d𝑥 < ∞, (3.8)

∫︁
R𝑁

|𝑓(𝑢)𝑢|
2𝑁

2𝑁−2𝛼−𝜇 d𝑥 ⩽ 𝑐
2𝑁

2𝑁−2𝛼−𝜇

0

∫︁
R𝑁

|𝑢|2* d𝑥 < ∞, (3.9)
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which implies that

𝑓(𝑢)𝑢, 𝐹 (𝑢) ∈ 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁), ∀𝑢 ∈ 𝐸.

In light of the Proposition 1.0.2, (2.10), (3.7), (3.8), (3.9) and Sobolev embedding, there hold
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑦))𝐹 (𝑢(𝑥))
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦d𝑥 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇 , ∀𝑢 ∈ 𝐸, (3.10)

∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑦))𝑓(𝑢(𝑥))𝑢(𝑥)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦d𝑥 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇 , ∀𝑢 ∈ 𝐸. (3.11)

According to (3.10), the energy functional ℱ : 𝐸 → R given in (3.6) associated with (𝑃 ), is

well defined in 𝐸, if and only, 𝑞 = 2*
𝛼,𝜇 in (𝜓1) and (𝜓2). In order to study Problem (𝑃 ) when

2*
𝛼,𝜇 < 𝑞, we cannot directly apply variational methods to the functional ℱ . To deal with this

technical difficulty, we introduce an appropriate truncation technique, similar to the approach

used in (RABINOWITZ, 1973/74; CHABROWSKI; YANG, 1997). This method was also employed

in Chapter 2, Section 2.5.

Remark 3.1.8. An example of potential 𝑉 (𝑥) that satisfies our assumptions is given by

𝑉 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜚1, if |𝑥| ⩽ 𝜚1 + 𝜚2,

|𝑥| − 𝜚2, if 𝜚1 + 𝜚2 < |𝑥| ⩽ 𝑅,

𝑅(𝑞−2)(𝑁−2)

|𝑥|(𝑞−2)(𝑁−2) (𝑅 − 𝜚2), if |𝑥| ⩾ 𝑅,

where 𝜚1, 𝜚2 > 0 and 0 < 𝜚1 + 𝜚2 < 𝑅. A function 𝑓 that satisfies (𝑓 ′
1)-(𝑓3) is given by

𝑓(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

|𝑡|𝑞−1, if 0 < 𝑡 < 1,

|𝑡|𝑝−1, if 𝑡 ⩾ 1.

The next sections of the chapter are organized as follows: Section 3.2 is devoted to the
proof of Theorem 3.1.2. We establish the variational structure, the penalized problems related
to (𝑃 ), we apply Mountain Pass Theorem to obtain the existence of nonnegative solution for
the auxiliary problem, we introduce a suitable 𝐿∞−estimate for the solution of the auxiliary
problem to conclude that the solution of the auxiliary problem is positive and, in fact, a solution
for (𝑃 ). We conclude Section 3.2 with the proof of Corollary 3.1.3. The proofs of Theorems
3.1.4 and 3.1.5 are performed in Sections 3.3 and 3.4, respectively.
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3.2 THE SUPERCRITICAL LOCAL PERTURBATION

In this section, we explore the existence of positive solutions for Problem (𝑃 ) involving the
supercritical term (𝜓1). Precisely, we consider

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛼

+ 𝜆(𝑥)|𝑢|𝑞−2𝑢, in R𝑁 , (3.12)

where 𝑞 ⩾ 2*
𝛼,𝜇, 𝜆(𝑥) is a nonnegative function such that 𝜆(𝑥) ∈ 𝐿

2𝑁
2𝛼+𝜇 (R𝑁). As pointed

out in Remark 3.1.7, we are not able to work variationally directly on the energy functional
associated to (3.12). For this reason, we introduce auxiliary problems where we have a well
defined variational structure and we recover some compactness.

3.2.1 The auxiliary Problems (𝐴𝜅) and (𝐵𝜅)

In order to apply minimax methods to obtain a solutions for (𝑃 ) with supercritical local term
(𝜓1), we consider two auxiliary problems. Initially, we will introduce a truncation in the function
given in (𝜓1). In fact, given a natural number 𝜅, we define the function ℎ𝜅 : R𝑁 ×R → R by

ℎ𝜅(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

𝜆(𝑥)𝑡𝑞−1, if 0 ⩽ 𝑡 ⩽ 𝜅,

𝜆(𝑥)𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇−1, if 𝑡 ⩾ 𝜅.

(3.13)

Observe that ℎ𝜅 admits the following inequalities:

|ℎ𝜅(𝑥, 𝑡)| ⩽ 𝜆(𝑥)𝜅𝑞−2*
𝛼,𝜇𝑡2

*−1 and |ℎ𝜅(𝑥, 𝑡)| ⩽ 𝜆(𝑥)𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇−1, ∀ 𝑡 ⩾ 0. (ℎ1)

Moreover, denoting 𝐻𝜅(𝑥, 𝑡) =
∫︀ 𝑡

0 ℎ𝜅(𝑥, 𝜏) d𝜏 , there holds

𝐻𝜅(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,
𝜆(𝑥)
𝑞

𝑡𝑞, if 0 ⩽ 𝑡 ⩽ 𝜅,

𝜆(𝑥)
2*

𝛼,𝜇

𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇 + 𝜆(𝑥)

(︃
1
𝑞

− 1
2*

𝛼,𝜇

)︃
𝜅𝑞, if 𝑡 ⩾ 𝜅.

(3.14)

Thus, 𝐻𝜅 admits the following inequalities:

|𝐻𝜅(𝑥, 𝑡)| ⩽ 𝜆(𝑥)
2* 𝜅𝑞−2*

𝛼,𝜇𝑡2
* and |𝐻𝜅(𝑥, 𝑡)| ⩽ 𝜆(𝑥)

2*
𝛼,𝜇

𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇 , ∀ 𝑡 ⩾ 0. (𝐻1)
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By using (3.13), (3.14) and the fact that 𝑞 ⩾ 2*
𝛼,𝜇 > 𝜃, one may check that

ℎ𝜅(𝑥, 𝑡)𝑡− 𝜃𝐻𝜅(𝑥, 𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

𝜆(𝑥)𝑡𝑞
(︁

𝑞−𝜃
𝑞

)︁
, if 0 ⩽ 𝑡 ⩽ 𝜅,

𝜆(𝑥)𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇

(︁
1 − 𝜃

2*
𝛼,𝜇

)︁
+ 𝜃𝜆(𝑥)𝜅𝑞

(︁
1

2*
𝛼,𝜇

− 1
𝑞

)︁
, if 𝑡 ⩾ 𝜅,

⩾ 0, (3.15)

which ensures the following Ambrosetti-Rabinowitz type condition

ℎ𝜅(𝑥, 𝑡)𝑡− 𝜃𝐻𝜅(𝑥, 𝑡) ⩾ 0, ∀𝑡 ∈ R, (3.16)

leading us to infer in the existence of constants 𝑑1, 𝑑2 > 0, such that for all 𝑡 > 0,

𝐻𝜅(𝑥, 𝑡) ⩾ 𝑑1𝑡
𝜃 − 𝑑2. (3.17)

Now, related to 𝜅, we shall consider the auxiliary problem

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛼

+ ℎ𝜅(𝑥, 𝑢), in R𝑁 . (𝐴𝜅)

Thus, we say that a function 𝑢 ∈ 𝐸 is a weak solution of auxiliary Problem (𝐴𝜅), if
∫︁
R𝑁

(∇𝑢∇𝜑+ 𝑉 (𝑥)𝑢𝜑) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

𝜑 d𝑥

−
∫︁
R𝑁
𝐻𝜅(𝑥, 𝑢)𝜑 d𝑥 = 0, ∀𝜑 ∈ 𝐸.

It is important to note that if 𝑢 is a weak solution of the auxiliary Problem (𝐴𝜅) and
satisfies |𝑢(𝑥)| ⩽ 𝜅 for all 𝑥 ∈ R𝑁 , then 𝑢 is a weak solution of Problem (𝑃 ). This motivates
us to study the auxiliary Problem (𝐴𝜅).

The energy functional ℐ𝜅 : 𝐸 → R associated with Problem (𝐴𝜅) is given by

ℐ𝜅(𝑢) =1
2

∫︁
R𝑁

(|∇𝑢|2 + 𝑉 (𝑥)|𝑢|2) d𝑥− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

d𝑥

−
∫︁
R𝑁
𝐻𝜅(𝑥, 𝑢) d𝑥

and in view of the assumptions above regarding the function 𝜅 and since 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁), ℐ𝜅

is well defined.
However, there are at least two difficulties in dealing with the auxiliary Problem (𝐴𝜅).

The first is the lack of compactness, i.e., is to assure that the energy functional ℐ𝜅 satisfies
the Palais-Smale condition. The second one is to prove uniform estimates (independent of
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‖𝜆‖ 2𝑁
2𝛼+𝜇

and 𝜅) for the solutions of (𝐴𝜅). In order to overcome such difficulty, we introduce a
new auxiliary problem where we can restore some compactness. For this purpose, we use the
penalization method introduced in (DEL PINO; FELMER, 1996) and adapted in (ALVES; SOUTO,
2012; ALVES; FIGUEIREDO; YANG, 2016). For ℓ > 1 and 𝑅 > 1 to be determined later, we
define the function 𝑓 : R𝑁 × R+ → R by

𝑓(𝑥, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓(𝑡), if ℓ𝑓(𝑡) ⩽ 𝑉 (𝑥)𝑡,

𝑉 (𝑥)
ℓ

𝑡, if ℓ𝑓(𝑡) > 𝑉 (𝑥)𝑡,
(3.18)

𝑓(𝑥, 𝑡) = 0, for all 𝑥 ∈ R𝑁 if 𝑡 ⩽ 0 and

𝑔(𝑥, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓(𝑡), if |𝑥| ⩽ 𝑅,

𝑓(𝑥, 𝑡), if |𝑥| > 𝑅.

(3.19)

Observe that for all 𝑡 ∈ R, the following inequalities hold:

𝑔(𝑥, 𝑡) ⩽ 𝑓(𝑡), ∀𝑥 ∈ R𝑁 , (3.20)

𝐺(𝑥, 𝑡) ⩽ 𝐹 (𝑡), ∀𝑥 ∈ R𝑁 , (3.21)

𝑔(𝑥, 𝑡) ⩽ 𝑉 (𝑥)
ℓ

𝑡, if |𝑥| > 𝑅, (3.22)

𝐺(𝑥, 𝑡) ⩽ 𝑉 (𝑥)
2ℓ 𝑡2, if |𝑥| > 𝑅, (3.23)

𝐺(𝑥, 𝑡) = 𝐹 (𝑡), if |𝑥| ⩽ 𝑅. (3.24)

Hence, it follows from (𝑓3), (3.2), (3.20) and (3.21) that for all 𝑡 ∈ R

𝐺(𝑥, 𝑡) ⩽ 2𝑐0

𝜃
|𝑡|𝑝, 𝐺(𝑥, 𝑡) ⩽ 2𝑐0

𝜃
|𝑡|2*

𝛼,𝜇 and 𝑔(𝑥, 𝑡)𝑡 ⩽ 𝑐0|𝑡|2
*
𝛼,𝜇 , ∀𝑥 ∈ R𝑁 . (3.25)

Moreover, combining (𝑓3) and (3.24) we obtain

1
𝜃
𝑔(𝑥, 𝑡)𝑡− 1

2𝐺(𝑥, 𝑡) ⩾ 0, ∀ |𝑥| ⩽ 𝑅 and ∀ 𝑡 ⩾ 0 (3.26)

and joining (3.20) and (3.21) with (3.10) and (3.11), one have∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑦, 𝑢)𝐺(𝑥, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦d𝑥 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇 , ∀𝑢 ∈ 𝐸, (3.27)

∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝑢
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦d𝑥 ⩽ 𝐶‖𝑢‖22*
𝛼,𝜇 , ∀𝑢 ∈ 𝐸. (3.28)

Using the previous notations, we introduce the following auxiliary problem

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
+ ℎ𝜅(𝑥, 𝑢), in R𝑁 , (𝐵𝜅)
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where 𝐺(𝑥, 𝑡) =
∫︀ 𝑡

0 𝑔(𝑥, 𝜏) d𝜏 .
We say that a function 𝑢 ∈ 𝐸 is a weak solution of the auxiliary Problem (𝐵𝜅), if satisfies∫︁

R𝑁
(∇𝑢∇𝜑+ 𝑉 (𝑥)𝑢𝜑) d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝜑 d𝑥

−
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝜑 d𝑥 = 0, ∀𝜑 ∈ 𝐸. (3.29)

The energy functional associated with Problem (𝐵𝜅) is given by

𝒥𝜅(𝑢) = 1
2‖𝑢‖2 − 1

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢)

|𝑥|𝛼
d𝑥−

∫︁
R𝑁
𝐻𝜅(𝑥, 𝑢) d𝑥.

In light of our assumptions one may conclude that 𝒥𝜅 is well defined, belongs to 𝐶1(𝐸,R),
and its derivative given by

𝒥 ′
𝜅(𝑢)𝑣 =

∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑉 (𝑥)𝑢𝑣) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑣 d𝑥

−
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑣 d𝑥.

Thus, weak solutions of (𝐵𝜅) are precisely the critical points of 𝒥𝜅.
It is also worth mentioning that the auxiliary Problem (𝐵𝜅) is strongly related to Problem

(𝐴𝜅). In fact, if 𝑢 is a solution of (𝐵𝜅) which verifies ℓ𝑓(𝑢(𝑥)) ⩽ 𝑉 (𝑥)𝑢(𝑥) for all |𝑥| ⩾ 𝑅,
then 𝑔(𝑥, 𝑢) = 𝑓(𝑢) and 𝑢 is also a solution for Problem (𝐴𝜅), which motivates us to study
the auxiliary Problem (𝐵𝜅). The crucial role here is that working on Problem (𝐵𝜅) we are able
to restore some compactness.

3.2.2 Existence of solutions for the auxiliary Problem (𝐵𝜅)

In this subsection, we examine the existence of nonnegative solutions for the auxiliary
Problem (𝐵𝜅). Next, we shall prove that 𝒥𝜅 verifies the mountain pass geometry stated in the
following lemma:

Lemma 3.2.1. The functional 𝒥𝜅 satisfies the following conditions:

(𝑖) there exist 𝛿, 𝜌 > 0 such that 𝒥𝜅(𝑣) ⩾ 𝛿 if ‖𝑣‖ = 𝜌;

(𝑖𝑖) there exists 𝑒 ∈ 𝐸 such that ‖𝑒‖ > 𝜌 and 𝒥𝜅(𝑒) < 0.

Proof. In view of (𝐻1) and the fact that 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁), using Hölder’s inequality and (3.4),
we reach∫︁

R𝑁
𝐻𝜅(𝑥, 𝑢) d𝑥 ⩽

𝜅𝑞−2*
𝛼,𝜇

2*
𝛼,𝜇

‖𝜆‖ 2𝑁
2𝛼+𝜇

(𝑆−1)
2*

𝛼,𝜇
2

(︂∫︁
R𝑁

(|∇𝑢|2 + 𝑉 (𝑥)|𝑢|2) d𝑥
)︂ 2*

𝛼,𝜇
2
, (3.30)
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which together with (3.27), leads us to

𝒥𝜅(𝑢) ⩾ 1
2‖𝑢‖2 − 𝐶‖𝑢‖22*

𝛼,𝜇 − 𝐶1‖𝑢‖2*
𝛼,𝜇 ,

where 𝐶1 := 𝜅
𝑞−2*

𝛼,𝜇

2*
𝛼,𝜇

‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆
2*

𝛼,𝜇
2 . Therefore, from (3.3), we have that 2*

𝛼,𝜇 > 2. Hence, we
choose 𝜌 small enough such that 𝒥𝜅(𝑢) ⩾ 𝛿 > 0 for all 𝑢 ∈ 𝐸 with ‖𝑢‖ = 𝜌, i.e., (𝑖) holds.

To prove part (𝑖𝑖), we fix 𝜑 ∈ 𝐶∞
0 (R𝑁) ∖ {0}, 𝜑 ⩾ 0 in R𝑁 , supp(𝜑) ⊂ 𝐵̄1(0) and we set

𝒜(𝑡) = Ψ
(︃
𝑡𝜑

‖𝜑‖

)︃
> 0, for 𝑡 > 0,

where
Ψ(𝑢) = 1

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢)

|𝑥|𝛼
d𝑥.

Since 𝐺(·, 𝜑) = 𝐹 (𝜑) in supp(𝜑) ⊂ 𝐵𝑅(0), it follows from (3.26) that

𝒜′(𝑡) =
∫︁
R𝑁

⎛⎝∫︁
R𝑁

𝐺
(︁
𝑦, 𝑡𝜑

‖𝜑‖

)︁
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
⎞⎠ 𝑔

(︁
𝑥, 𝑡𝜑

‖𝜑‖

)︁
|𝑥|𝛼

𝜑

‖𝜑‖
d𝑥

⩾
𝜃

𝑡

1
2

∫︁
supp(𝜑)

⎛⎝∫︁
R𝑁

𝐺
(︁
𝑦, 𝑡𝜑

‖𝜑‖

)︁
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
⎞⎠ 𝐺

(︁
𝑥, 𝑡𝜑

‖𝜑‖

)︁
|𝑥|𝛼

d𝑥

=𝜃
𝑡
𝒜(𝑡), ∀𝑡 > 0. (3.31)

By integrating (3.31) on [1, 𝑠‖𝜑‖] with 𝑠 > 1
‖𝜑‖ , we obtain

ln
(︃

𝒜(𝑠‖𝜑‖)
𝒜(1)

)︃
⩾ ln

(︁
‖𝜑‖𝜃𝑠𝜃

)︁
,

which infers that 𝒜(𝑠‖𝜑‖) ⩾ 𝐴(1)‖𝜑‖𝜃𝑠𝜃. Thus,
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑥, 𝑠𝜑)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑦, 𝑠𝜑)

|𝑥|𝛼
d𝑥 ⩾

∫︁
R𝑁

⎛⎝∫︁
R𝑁

𝐺
(︁
𝑥, 𝜑

‖𝜑‖

)︁
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
⎞⎠ 𝐺

(︁
𝑦, 𝜑

‖𝜑‖

)︁
|𝑥|𝛼

d𝑥‖𝜑‖𝜃𝑠𝜃.

By (3.17), it follows that

−
∫︁
R𝑁
𝐻𝜅(𝑥, 𝑠𝜑) d𝑥 ⩽ −𝑑1𝑠

𝜃
∫︁

supp(𝜑)
𝜑𝜃 d𝑥+ 𝑑2|supp(𝜑)|. (3.32)

Consequently,

𝒥𝜅(𝑠𝜑) ⩽1
2‖𝜑‖2𝑠2 − 1

2‖𝜑‖𝜃𝑠𝜃
∫︁
R𝑁

⎛⎝∫︁
R𝑁

𝐺
(︁
𝑥, 𝜑

‖𝜑‖

)︁
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
⎞⎠ 𝐺

(︁
𝑦, 𝜑

‖𝜑‖

)︁
|𝑥|𝛼

d𝑥

− 𝑑1𝑠
𝜃
∫︁

supp(𝜑)
𝜑𝜃 d𝑥+ 𝑑2|supp(𝜑)|

=:𝐶1𝑠
2 − 𝑠𝜃(𝐶2 + 𝐶3) + 𝑑2|supp(𝜑)|, for 𝑠 > 1

‖𝜑‖
,

which implies that 𝒥𝜅(𝑠𝜑) → −∞, as 𝑠 → ∞, since 𝜃 > 2. Finally, assertion (𝑖𝑖) follows for
𝑒 = 𝑠𝜑 with 𝑠 large enough.
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According to Definition 2.2.3, by applying a version of Mountain Pass Theorem that does
not require the (𝑃𝑆) condition, as in (WILLEM, 1996), we obtain a Palais-Smale sequence
(𝑢𝑛)𝑛 ⊂ 𝐸 such that

𝒥𝜅(𝑢𝑛) → 𝑐𝜅 and 𝒥 ′
𝜅(𝑢𝑛) → 0, (3.33)

where 𝑐𝜅 is the mountain pass level characterized by

0 < 𝑐𝜅 := inf
𝛾∈Γ

max
𝑡∈[0,1]

𝒥𝜅(𝛾(𝑡)) (3.34)

where
Γ𝜅 :=

{︂
𝛾 ∈ 𝐶([0, 1], 𝐸) : 𝛾(0) = 0 and 𝒥𝜅(𝛾(1)) < 0

}︂
.

Now, we introduce the functional ℐ0 : 𝐻1
0 (𝐵1(0)) → R given by

ℐ0(𝑢) = 1
2

∫︁
𝐵1(0)

|∇𝑢|2 d𝑥+ 1
2

∫︁
𝐵1(0)

𝑚|𝑢|2 d𝑥− 1
2

∫︁
𝐵1(0)

(︃∫︁
𝐵1(0)

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

d𝑥,

where 𝑚 = max|𝑥|⩽1 𝑉 (𝑥). Moreover, we denote by 𝑑 the level of the mountain pass value
associated with the functional ℐ0, i.e.,

0 < 𝑑 := inf
𝛾∈Γ0

max
𝑡∈[0,1]

ℐ0(𝛾(𝑡)),

where
Γ0 :=

{︂
𝛾 ∈ 𝐶([0, 1], 𝐻1

0 (𝐵1(0))) : 𝛾(0) = 0 and ℐ0(𝛾(1)) < 0
}︂
.

Here, it is important to emphasize that 𝑑 is independent of the choice of ℓ, 𝑅, 𝜆(𝑥) and
𝜅. Moreover, 𝑐𝜅 ⩽ 𝑑.

Lemma 3.2.2. Assume that conditions (𝑓3) and (3.15) hold. Then,

1
𝜃

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑢 d𝑥−1

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢)

|𝑥|𝛼
d𝑥

=:𝒜1 − 𝒜2 ⩾ 0 (3.35)

and by (3.16) ∫︁
R𝑁

(︂1
𝜃
ℎ𝜅(𝑥, 𝑢)𝑢− 1

2𝐻𝜅(𝑥, 𝑢)
)︂

d𝑥 ⩾ 0. (3.36)

Proof. Initially, note that

𝒜1 − 𝒜2 =
∫︁

{|𝑥|>𝑅}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁1

𝜃
𝑔(𝑥, 𝑢)𝑢− 1

2𝐺(𝑥, 𝑢)
]︁

|𝑥|𝛼
d𝑥

+
∫︁

{|𝑥|⩽𝑅}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁1

𝜃
𝑓(𝑢)𝑢− 1

2𝐹 (𝑢)
]︁

|𝑥|𝛼
d𝑥,
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whence follows from (𝑓3) and 𝐺(·, 𝑡) ⩾ 0 for all 𝑡 ∈ R that

𝒜1 − 𝒜2 ⩾
∫︁

{|𝑥|>𝑅}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁1

𝜃
𝑔(𝑥, 𝑢)𝑢− 1

2𝐺(𝑥, 𝑢)
]︁

|𝑥|𝛼
d𝑥.

On the other hand, defining Ω𝑉 (𝑥) := {ℓ𝑓(𝑢(𝑥)) ⩽ 𝑉 (𝑥)𝑢(𝑥)}, we use (3.26), (3.22)-(3.23)
to deduce ∫︁

{|𝑥|>𝑅}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁1

𝜃
𝑔(𝑥, 𝑢)𝑢− 1

2𝐺(𝑥, 𝑢)
]︁

|𝑥|𝛼
d𝑥

=
∫︁

{|𝑥|>𝑅}∩Ω𝑐
𝑉 (𝑥)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁1

𝜃
𝑔(𝑥, 𝑢)𝑢− 1

2𝐺(𝑥, 𝑢)
]︁

|𝑥|𝛼
d𝑥

+
∫︁

{|𝑥|>𝑅}∩Ω𝑉 (𝑥)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁1

𝜃
𝑔(𝑥, 𝑢)𝑢− 1

2𝐺(𝑥, 𝑢)
]︁

|𝑥|𝛼
d𝑥

⩾
∫︁

{|𝑥|>𝑅}∩Ω𝑐
𝑉 (𝑥)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁1

𝜃
𝑔(𝑥, 𝑢)𝑢− 1

2𝐺(𝑥, 𝑢)
]︁

|𝑥|𝛼
d𝑥

⩾
∫︁

{|𝑥|>𝑅}∩Ω𝑐
𝑉 (𝑥)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃

1
|𝑥|𝛼

1
ℓ

(︂1
𝜃

− 1
4

)︂
𝑉 (𝑥)𝑢2 d𝑥

⩾0,

where we are using the fact that
(︁

1
𝜃

− 1
4

)︁
> 0. Thus, we conclude that (3.35) holds true. The

estimate in (3.36) follows directly from (3.16), and the proof is done.

Lemma 3.2.3. Let (𝑢𝑛)𝑛 be a (𝑃𝑆)𝑐𝜅−sequence for 𝒥𝜅. Then, (𝑢𝑛)𝑛 is bounded in 𝐸 and

there exists 𝑛0 ∈ N such that

‖𝑢𝑛‖2 ⩽
2𝜃
𝜃 − 2(𝑑+ 1), ∀𝑛 ⩾ 𝑛0.

Proof. By using (3.35) and (3.36), we deduce

𝒥𝜅(𝑢𝑛) − 1
𝜃

𝒥 ′
𝜅(𝑢𝑛)𝑢𝑛 ⩾

(︂1
2 − 1

𝜃

)︂
‖𝑢𝑛‖2 = 𝜃 − 2

2𝜃 ‖𝑢𝑛‖2. (3.37)

Note that
−1
𝜃

𝒥 ′
𝜅(𝑢𝑛)𝑢𝑛 ⩽

⃒⃒⃒⃒1
𝜃

𝒥 ′
𝜅(𝑢𝑛)𝑢𝑛

⃒⃒⃒⃒
⩽

1
𝜃

‖𝒥 ′
𝜅(𝑢𝑛)‖‖𝑢𝑛‖. (3.38)

Since (𝑢𝑛)𝑛 is a (𝑃𝑆)𝑐𝜅−sequence for 𝒥𝜅, we see

𝑐𝜅 + ‖𝑢𝑛‖ ⩾
𝜃 − 2

2𝜃 ‖𝑢𝑛‖2,

for 𝑛 sufficiently large. Thus, (𝑢𝑛)𝑛 is bounded in 𝐸. For 𝑛 ∈ N sufficiently large, which jointly
with (3.37) implies that

‖𝑢𝑛‖2 ⩽
2𝜃
𝜃 − 2(𝑐𝜅 + 1) ⩽ 2𝜃

𝜃 − 2(𝑑+ 1)

and the lemma is proved.
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Let (𝑢𝑛)𝑛 be a (𝑃𝑆)𝑐𝜅−sequence for 𝒥𝜅. It follows from Lemma 3.2.3 that (𝑢𝑛)𝑛 is bounded
in 𝐸. Hence we may assume, passing to a subsequence if necessary, as 𝑛 → ∞⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑛 ⇀ 𝑢, weakly in 𝐸,

𝑢𝑛 → 𝑢, strongly in 𝐿𝑝
𝑙𝑜𝑐(R𝑁), 1 < 𝑝 < 2*,

𝑢𝑛(𝑥) → 𝑢(𝑥), a.e. in R𝑁 ,

|𝑢𝑛(𝑥)|, |𝑢(𝑥)| ≤ ℎ(𝑥), for some ℎ ∈ 𝐿𝑝
𝑙𝑜𝑐(R𝑁),

(3.39)

and
‖𝑢𝑛‖2 ⩽

2𝜃
𝜃 − 2(𝑑+ 1) =: 𝐶, ∀𝑛 ⩾ 𝑛0. (3.40)

As a consequence,∫︁
R𝑁

|∇𝑢𝑛|2 d𝑥,
∫︁
R𝑁
𝑉 (𝑥)|𝑢𝑛|2 d𝑥 ⩽ ‖𝑢𝑛‖2 ⩽ 𝐶, ∀𝑛 ⩾ 𝑛0. (3.41)

Combining this with (3.4), we get the estimate(︂∫︁
R𝑁

|𝑢𝑛|2* d𝑥
)︂ 2

2*

⩽ 𝑆−1‖∇𝑢𝑛‖2
2 ⩽ 𝑆−1𝐶 =: 𝐶*, ∀𝑛 ⩾ 𝑛0. (3.42)

Moreover, by (3.27) and (3.41), for all 𝑛 ⩾ 𝑛0, we have that∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢𝑛)

|𝑥|𝛼
d𝑥 ⩽ 𝐶𝐶2*

𝛼,𝜇 . (3.43)

3.2.2.1 Compactness results

In this subsection, we will establish some results that are very significant in this chapter,
in order to verify that the functional 𝒥𝜅 satisfies the (𝑃𝑆)𝑐𝜅−condition. It is important to
mention that in the case 𝛼 = 0, see for instance (ALVES; FIGUEIREDO; YANG, 2016), the
boundedness of the nonlocal term ∫︁

R𝑁

𝐺(𝑦, 𝑢)
|𝑥− 𝑦|𝜇

d𝑦,

over the set
ℬ :=

{︃
𝑢 ∈ 𝐸 : ‖𝑢‖2 ⩽

2𝜃
𝜃 − 2(𝑑+ 1)

}︃
,

plays a very crucial role in the arguments. However, as pointed out in Remark 2.1.15 of Chapter
2, the Stein-Weiss type convolution does not admit such boundedness. Thus, we adapt the
argument by studying the boundedness of the term

𝒦(𝑢)(𝑥) :=
∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦. (3.44)
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Lemma 3.2.4. For all 𝑢 ∈ ℬ, we have that

𝒦(𝑢)(𝑥) :=
∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 ∈ 𝐿∞(R𝑁). (3.45)

In addition, there exists ℓ0 > 0, which is independent of 𝑅, such that

sup𝑢∈ℬ ‖𝒦(𝑢)(𝑥)‖∞

ℓ0
<

1
2 .

Proof. To prove (3.45), we follow some ideas from (DU; GAO; YANG, 2022, Theorem 2.7) and
(DE ALBUQUERQUE; SANTOS, 2023, Lemma 3.3). For 𝑢 ∈ ℬ and 𝑟 > 0, we write

|𝒦(𝑢)(𝑥)| ⩽
∫︁

𝐵𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 +
∫︁

𝐵𝑐
𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦. (3.46)

On the one hand, for 𝑥 ∈ 𝐵𝑐
2𝑟(0) and (3.25), we have |𝑥− 𝑦| > |𝑦| and∫︁

𝐵𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 ⩽
2𝑐0

𝜃

∫︁
𝐵𝑟(0)

|𝑢|𝑝

|𝑦|𝜇+𝛼
d𝑦.

Choosing 𝑘 := 2*

𝑝
, it follows from Hölder’s inequality and Sobolev embedding that

2𝑐0

𝜃

∫︁
𝐵𝑟(0)

|𝑢|𝑝

|𝑦|𝜇+𝛼
d𝑦 ⩽

2𝑐0

𝜃

(︃∫︁
𝐵𝑟(0)

|𝑢|2* d𝑦
)︃ 1

𝑘

⎛⎝∫︁
𝐵𝑟(0)

(︃
1

|𝑦|𝜇+𝛼

)︃ 𝑘
𝑘−1

d𝑦
⎞⎠

𝑘−1
𝑘

⩽𝐶‖𝑢‖𝑝
(︂∫︁ 𝑟

0
|𝑟|𝑁−1−(𝛼+𝜇) 𝑘

𝑘−1 d𝑟
)︂ 𝑘−1

𝑘

⩽𝐶1

(︂∫︁ 𝑟

0
|𝑟|𝑁−1−(𝛼+𝜇) 𝑘

𝑘−1 d𝑟
)︂ 𝑘−1

𝑘

:= 𝐶2 < ∞,

where we have used that 𝑁 − 1 − (𝛼+ 𝜇) 𝑘
𝑘−1 > −1. For 𝑥 ∈ 𝐵2𝑟(0), using the arguments as

above, we observe∫︁
𝐵𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 ⩽
∫︁

𝐵𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝜇+𝛼

d𝑦 +
∫︁

𝐵3𝑟(𝑥)

|𝐺(𝑦, 𝑢)|
|𝑥− 𝑦|𝜇+𝛼

d𝑦

⩽𝐶2 + 𝐶3

(︂∫︁ 3𝑟

0
|𝑟|𝑁−1−(𝛼+𝜇) 𝑘

𝑘−1 d𝑟
)︂ 𝑘−1

𝑘

< ∞.

Hence, for each 𝑥 ∈ R𝑁 , we get ∫︁
𝐵𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 < ∞. (3.47)

On the other hand, we write∫︁
𝐵𝑐

𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 =
∫︁

𝐵𝑐
𝑟(0)∩𝐵𝑟(𝑥)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦+
∫︁

𝐵𝑐
𝑟(0)∩𝐵𝑐

𝑟(𝑥)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 =: ℐ1 +ℐ2.

Arguing as in the preceding estimates, we deduce from (3.25) that

ℐ1 ⩽
1
𝑟𝛼

∫︁
𝐵𝑟(𝑥)

|𝐺(𝑦, 𝑢)|
|𝑥− 𝑦|𝜇

d𝑦 ⩽
2𝑐0

𝜃

1
𝑟𝛼

∫︁
𝐵𝑟(𝑥)

|𝑢|𝑝

|𝑥− 𝑦|𝜇
d𝑦 < ∞.
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Now, choosing 𝑞1 = 2𝑁
2𝑁−2𝛼−𝜇

, 𝑞2 = 2𝑁
𝛼
, 𝑞3 = 2𝑁

𝜇
satisfying 1

𝑞1
+ 1

𝑞2
+ 1

𝑞3
≤ 1, it follows from

Hölder’s inequality that

ℐ2 ⩽

(︃∫︁
𝐵𝑐

𝑟(0)
|𝐺(𝑦, 𝑢)|

2𝑁
2𝑁−2𝛼−𝜇 d𝑦

)︃ 2𝑁−2𝛼−𝜇
2𝑁

(︃∫︁
𝐵𝑐

𝑟(0)

1
|𝑦|2𝑁

d𝑦
)︃ 𝛼

2𝑁
(︃∫︁

𝐵𝑐
𝑟(𝑥)

1
|𝑥− 𝑦|2𝑁

d𝑦
)︃ 𝜇

2𝑁

⩽

(︃∫︁
𝐵𝑐

𝑟(0)
|𝑢|2* d𝑦

)︃ 2𝑁−2𝛼−𝜇
2𝑁

(︃∫︁
𝐵𝑐

𝑟(0)

1
|𝑦|2𝑁

d𝑦
)︃ 𝛼

2𝑁
(︃∫︁

𝐵𝑐
𝑟(𝑥)

1
|𝑥− 𝑦|2𝑁

d𝑦
)︃ 𝜇

2𝑁

< ∞.

Thus, we obtain
∫︁

𝐵𝑐
𝑟(0)

|𝐺(𝑦, 𝑢)|
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 < ∞. (3.48)

Hence, (5.40), , (5.42) imply that 𝒦(𝑢) ∈ 𝐿∞(R𝑁). Hence, there exists 𝐶0 > 0 such that

sup
𝑢∈ℬ

‖𝒦(𝑢)(𝑥)‖∞ ⩽ 𝐶0. (3.49)

Since (3.49) holds, there exists ℓ0 > 0 such that

sup𝑢∈ℬ ‖𝒦(𝑢)(𝑥)‖∞

ℓ0
⩽
𝐶0

ℓ0
<

1
2

and this completes the proof.

Throughout this chapter, we assume ℓ > ℓ0 > 0 in the auxiliary Problem (𝐵𝜅).

Remark 3.2.5. It is important to note that the Lemma 3.2.4 remains true for a bounded

sequence (𝑢𝑛)𝑛 ⊂ 𝐸.

We emphasize here that the next result does not require the assumption that (𝑢𝑛)𝑛 is a
(𝑃𝑆)𝑐−sequence.

Lemma 3.2.6. If 𝑢𝑛 ⇀ 𝑢 in 𝐸, as 𝑛 → ∞, then, passing to a subsequence if necessary, we

have

lim
𝑛→∞

∫︁
𝐵𝑅̄(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
(𝑢𝑛 − 𝑢) d𝑥 = 0, (3.50)

lim
𝑛→∞

∫︁
𝐵𝑅̄(0)

ℎ𝜅(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) d𝑥 = 0, (3.51)

for any 𝑅̄ > 0.

Proof. Firstly, we claim that exists 𝐶 > 0 such that⃦⃦⃦⃦
⃦⃦ ∫︁

R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦

⃦⃦⃦⃦
⃦⃦

2𝑁
𝜇+2𝛼

⩽ 𝐶, ∀𝑛 ∈ N. (3.52)
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In fact, we observe that (𝐺(𝑦, 𝑢𝑛))𝑛 is bounded in 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁), 𝑢𝑛(𝑥) → 𝑢(𝑥) a.e. in R𝑁

and 𝐺 is continuous, thus we infer that

𝐺(𝑦, 𝑢𝑛) ⇀ 𝐺(𝑦, 𝑢), in 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁).

In light of Proposition 1.0.2, we see that the operator

𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁) ∋ ℎ ↦−→
∫︁
R𝑁

ℎ

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦 ∈ 𝐿

2𝑁
𝜇+2𝛼 (R𝑁)

is a linear bounded operator from 𝐿
2𝑁

2𝑁−2𝛼−𝜇 (R𝑁) to 𝐿
2𝑁

𝜇+2𝛼 (R𝑁), which assures us
∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦 ⇀
∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦, in 𝐿
2𝑁

𝜇+2𝛼 (R𝑁).

Thus, there exists 𝐶 > 0 such that (3.52) holds.
For any fixed 𝑅̄ > 0, using Hölder’s inequality with exponents 2𝑁

𝜇+2𝛼
and 2𝑁

2𝑁−2𝛼−𝜇
, it follows

from (3.52) that
∫︁

𝐵𝑅̄(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) d𝑥

⩽
⃦⃦⃦⃦ ∫︁

R𝑁

𝐺(𝑥, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
⃦⃦⃦⃦

2𝑁
𝜇+2𝛼

(︃∫︁
𝐵𝑅̄(0)

⃒⃒⃒
𝑔(𝑥, 𝑢)(𝑢𝑛 − 𝑢)

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶

(︃∫︁
𝐵𝑅̄(0)

⃒⃒⃒
𝑔(𝑥, 𝑢)(𝑢𝑛 − 𝑢)

⃒⃒⃒ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

=: 𝐿̃𝑛. (3.53)

According to the growth condition in (3.25), we have 𝑔(𝑥, 𝑢𝑛) = 𝑓(𝑢𝑛) ⩽ 𝑐0|𝑢𝑛|2*
𝛼,𝜇−2|𝑢𝑛| in

𝐵𝑅̄(0), which combined with Hölder’s inequality, we reach

𝐿̃𝑛 ⩽𝐶𝑐0

(︃∫︁
𝐵𝑅̄(0)

(︁
|𝑢𝑛|2*

𝛼,𝜇−2
)︁ 2𝑁

2𝑁−2𝛼−𝜇
(︁
|𝑢𝑛||𝑢𝑛 − 𝑢|

)︁ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶𝑐0

(︃∫︁
𝐵𝑅̄(0)

|𝑢𝑛|2* d𝑥
)︃ 2*

𝛼,𝜇−2
2*

(︃∫︁
𝐵𝑅̄(0)

(|𝑢𝑛||𝑢𝑛 − 𝑢|) 2*
2 d𝑥

)︃ 2
2*

⩽𝐶
2*

𝛼,𝜇−2
2* 𝐶𝑐0

(︃∫︁
𝐵𝑅̄(0)

(︁
|𝑢𝑛||𝑢𝑛 − 𝑢|

)︁ 2*
2 d𝑥

)︃ 2
2*

→ 0, as 𝑛 → ∞, (3.54)

where we are using (3.39), (3.42), the fact that 1 < 2*

2 < 2* and applying Lebesgue Dominated
Convergence Theorem. It follows from (3.53) and (3.54) that (3.50) holds true.

In order to prove (3.51), we combine the growth condition in (ℎ1), the fact that



96

𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) and Hölder’s inequality to obtain the following estimate∫︁
𝐵𝑟(0)

ℎ𝜅(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) d𝑥 ⩽ 𝜅𝑞−2*
𝛼,𝜇

∫︁
𝐵𝑟(0)

𝜆(𝑥)|𝑢𝑛|2*
𝛼,𝜇−2|𝑢𝑛||𝑢𝑛 − 𝑢| d𝑥

⩽𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇

[︃∫︁
𝐵𝑟(0)

(︁
|𝑢𝑛|2*

𝛼,𝜇−2
)︁ 2𝑁

2𝑁−2𝛼−𝜇
(︁
|𝑢𝑛||𝑢𝑛 − 𝑢|

)︁ 2𝑁
2𝑁−2𝛼−𝜇 d𝑥

]︃ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇

[︃∫︁
𝐵𝑟(0)

|𝑢𝑛|2* d𝑥
]︃ 2*

𝛼,𝜇−2
2*

[︃∫︁
𝐵𝑟(0)

(|𝑢𝑛||𝑢𝑛 − 𝑢|) 2*
2 d𝑥

]︃ 2
2*

⩽𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
𝐶

2*
𝛼,𝜇−2

2*

[︃∫︁
𝐵𝑟(0)

(|𝑢𝑛||𝑢𝑛 − 𝑢|) 2*
2 d𝑥

]︃ 2
2*

→ 0, as 𝑛 → ∞,

where we have used (3.39), 1 < 2*

2 < 2* and applied Lebesgue Dominated Convergence
Theorem. Thus, we see that (3.51) holds. The proof of Lemma is done.

Now, let 𝜂𝑟 ∈ 𝐶∞(R𝑁) be defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜂𝑟(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
0, in 𝐵𝑟(0),

1, in 𝐵𝑐
2𝑟(0),

0 ⩽ 𝜂𝑟(𝑥) ⩽ 1, in R𝑁 ,

|∇𝜂𝑟(𝑥)| ⩽ 𝐶
𝑟
, in R𝑁 ,

(3.55)

for some 𝐶 > 0 independent of 𝑟 with 𝑟 > 𝑅 and we also need the following lemma:

Lemma 3.2.7. Let (𝑢𝑛)𝑛 be a (𝑃𝑆)𝑐𝜅−sequence for 𝒥𝜅. Then,
∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 ⩽
𝐶1

2𝑟𝛼
+ 𝐶2

𝑟

(︃∫︁
{𝑟⩽|𝑥|⩽2𝑟}

|𝑢𝑛|2 d𝑥
)︃ 1

2

(3.56)

+ 4‖𝜆‖ 2𝑁
2𝛼+𝜇

𝜅𝑞−2*
𝛼,𝜇𝐶

2*
𝛼,𝜇−2

2* 𝑆−1
(︂∫︁

R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥+
∫︁
R𝑁
𝑢2

𝑛|∇𝜂𝑟|2 d𝑥
)︂
,

where 𝐶* was defined in (3.42) and 𝜂𝑟 was introduced in (3.55). In addition for each 𝜅 > 0,

consider 𝜀*
0 := 𝜀*

0(𝜅) > 0 such that if ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀*
0, then

4‖𝜆‖ 2𝑁
2𝛼+𝜇

𝜅𝑞−2*
𝛼,𝜇𝐶

2*
𝛼,𝜇−2

2* 𝑆−1 ⩽
1
2 . (3.57)

Consequently, (3.56) becomes

1
2 lim sup

𝑛→∞

∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 ⩽
𝐶1

2𝑟𝛼
+ 𝐶2

𝑟

(︃∫︁
{𝑟⩽|𝑥|⩽2𝑟}

|𝑢|2 d𝑥
)︃ 1

2

+ 𝐶3

𝑟2

∫︁
{𝑟⩽|𝑥|⩽2𝑟}

|𝑢|2 d𝑥

=: 𝐶1

2𝑟𝛼
+ 𝐶2

(︃
ℛ(𝑟)
𝑟2

)︃ 1
2

+ 𝐶3
ℛ(𝑟)
𝑟2 , (3.58)
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where 𝐶1, 𝐶2 and 𝐶3 are positive constants. Therefore, for each 𝜀 > 0, there exists

𝑟 = 𝑟(𝜀) > 𝑅 verifying

lim sup
𝑛→∞

∫︁
𝐵𝑐

2𝑟(0)
(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 < 𝜀, (3.59)

lim sup
𝑛→∞

∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
𝑢𝑛 d𝑥 ⩽ 𝐶1𝜀, (3.60)

lim sup
𝑛→∞

∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
𝑢 d𝑥 ⩽ 𝐶2𝜀, (3.61)

lim sup
𝑛→∞

∫︁
𝐵𝑐

2𝑟(0)
ℎ𝜅(𝑥, 𝑢𝑛)𝑢𝑛 d𝑥 ⩽ 𝐶1,𝑘𝜀, (3.62)

lim sup
𝑛→∞

∫︁
𝐵𝑐

2𝑟(0)
ℎ𝜅(𝑥, 𝑢𝑛)𝑢 d𝑥 ⩽ 𝐶2,𝑘𝜀, (3.63)

whenever (3.57) holds true.

Proof. In view of (3.39), we may assume, passing to a subsequence if necessary, 𝑢𝑛 ⇀ 𝑢

weakly in 𝐸 and the sequence (𝑢𝑛)𝑛 satisfies (3.40), (3.41), (3.42) and (3.43). By (3.55) the
sequence (𝑢𝑛𝜂

2
𝑟)𝑛 is bounded in 𝐸. Hence, 𝒥 ′

𝜆,𝜅(𝑢𝑛)𝑢𝑛𝜂
2
𝑟 = 𝑜𝑛(1), whence it follows that∫︁

R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 ⩽
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
𝑢𝑛𝜂

2
𝑟 d𝑥

+
⃒⃒⃒⃒
−2

∫︁
R𝑁
𝑢𝑛∇𝑢𝑛∇𝜂𝑟 d𝑥

⃒⃒⃒⃒
+
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢𝑛)𝑢𝑛𝜂

2
𝑟 + 𝑜𝑛(1)

:=𝒬1(𝑛, 𝑟) + 𝒬2(𝑛, 𝑟) + 𝒬3,𝜅(𝑛, 𝑟) + 𝑜𝑛(1). (3.64)

To estimate 𝒬1(𝑛, 𝑟), we consider the following two cases:

• If 𝛼 ̸= 0, then from (3.22), (3.41), (3.55) and using Lemma 3.2.4, it follows that

𝒬1(𝑛, 𝑟) ⩽
1
𝑟𝛼

⃒⃒⃒⃒
⃒⃒ ∫︁

{|𝑥|⩾𝑟}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑉 (𝑥)
ℓ0

|𝑢𝑛(𝑥)|2𝜂2
𝑟 d𝑥

⃒⃒⃒⃒
⃒⃒

⩽
1
𝑟𝛼

∫︁
{|𝑥|⩾𝑟}

sup𝑢𝑛∈ℬ ‖𝐾(𝑢𝑛)(𝑥)‖∞

ℓ0
𝑉 (𝑥)|𝑢𝑛|2 d𝑥

⩽
1

2𝑟𝛼

∫︁
R𝑁
𝑉 (𝑥)|𝑢𝑛|2 d𝑥

⩽
1

2𝑟𝛼
𝐶.

• If 𝛼 = 0, then from (3.22), (3.41), (3.55) and using Lemma 3.2.4 again, one has

𝒬1(𝑛, 𝑟) ⩽𝐶
∫︁

{|𝑥|⩾𝑟}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)𝑢𝑛𝜂

2
𝑟 d𝑥

⩽
∫︁

{|𝑥|⩾𝑟}

sup𝑢𝑛∈ℬ ‖𝐾(𝑢𝑛)(𝑥)‖∞

ℓ0
𝑉 (𝑥)|𝑢𝑛|2𝜂2

𝑟 d𝑥

⩽
1
2

∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥.
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Hence, in both cases, (3.64) becomes, respectively
∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 ⩽
1

2𝑟𝛼
𝐶 + 𝒬2(𝑛, 𝑟) + 𝒬3,𝜅(𝑛, 𝑟) + 𝑜𝑛(1), (3.65)

1
2

∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 ⩽ 𝒬2(𝑛, 𝑟) + 𝒬3,𝜅(𝑛, 𝑟) + 𝑜𝑛(1). (3.66)

Next, we will do the proof only for estimate (3.65), because the proof for estimate (3.66) is
similar.

Using once more (3.41) and (3.55), thanks to Hölder’s inequality, we get the following
estimate for 𝒬2(𝑛, 𝑟),

𝒬2(𝑛, 𝑟) ⩽2𝐶
𝑟

(︃∫︁
{𝑟⩽|𝑥|⩽2𝑟}

|𝑢𝑛|2 d𝑥
)︃ 1

2
(︃∫︁

{𝑟⩽|𝑥|⩽2𝑟}
|∇𝑢𝑛|2 d𝑥

)︃ 1
2

⩽2𝐶 1
2
𝐶

𝑟

(︃∫︁
{𝑟⩽|𝑥|⩽2𝑟}

|𝑢𝑛|2 d𝑥
)︃ 1

2

. (3.67)

Thus, since 𝑢𝑛 → 𝑢 in 𝐿2({𝑟 ⩽ |𝑥| ⩽ 2𝑟}), we have

lim sup
𝑛→∞

𝒬2(𝑛, 𝑟) ⩽2𝐶 1
2
𝐶

𝑟

(︃∫︁
{𝑟⩽|𝑥|⩽2𝑟}

𝑢2 d𝑥
)︃ 1

2

=: 𝐶2

(︃
ℛ(𝑟)
𝑟2

)︃ 1
2

. (3.68)

By assumption (ℎ1), thanks to Hölder’s inequality, from (3.4) and (3.42), we get the following

𝒬3,𝜅(𝑛, 𝑟) ⩽𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇

(︂∫︁
R𝑁

(|𝑢𝑛|2*
𝛼,𝜇−2|𝑢𝑛|2𝜂2

𝑟)
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

⩽𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇

(︂∫︁
R𝑁

|𝑢𝑛|2* d𝑥
)︂ 2*

𝛼,𝜇−2
2

(︂∫︁
R𝑁

|𝑢𝑛𝜂𝑟|2
* d𝑥

)︂ 2
2*

⩽𝜅𝑞−2*
𝛼,𝜇𝐶

2*
𝛼,𝜇−2

2*
* ‖𝜆‖ 2𝑁

2𝛼+𝜇

(︂∫︁
R𝑁
𝑢2*

𝑛 𝜂
2*

𝑟 d𝑥
)︂ 2

2*

⩽𝜅𝑞−2*
𝛼,𝜇𝐶

2*
𝛼,𝜇−2

2* ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆−1
∫︁
R𝑁

|𝜂𝑟∇𝑢𝑛 + 𝑢𝑛∇𝜂𝑟|2 d𝑥

⩽𝜅𝑞−2*
𝛼,𝜇𝐶

2*
𝛼,𝜇−2

2* ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆−122
∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥

+ 𝜅𝑞−2*
𝛼,𝜇𝐶

2*
𝛼,𝜇−2

2* ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆−122
∫︁
R𝑁
𝑢2

𝑛|∇𝜂𝑟|2 d𝑥, (3.69)

which together with (3.65) and (3.67) implies that (3.56) holds.
In order to prove (3.58), for each 𝜅 > 0, let 𝜀*

0 = 𝜀*
0(𝜅) > 0 be such that if ‖𝜆‖ 2𝑁

2𝛼+𝜇
⩽ 𝜀*

0,
then (3.57) holds. According to (3.57) and (3.69) we see that

𝒬3,𝜅(𝑛, 𝑟) ⩽1
2

∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥+ 1
2

∫︁
R𝑁
𝑢2

𝑛|∇𝜂𝑟|2 d𝑥

=:12

∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥+ 𝒬4(𝑛, 𝑟). (3.70)
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Noticing that R𝑁 = 𝐵𝑟(0) ∪ {𝑟 ⩽ |𝑥| ⩽ 2𝑟} ∪ 𝐵𝑐
2𝑟(0) and using that ∇𝜂𝑟 = 0 in 𝐵𝑐

2𝑟,
|∇𝜂𝑟(𝑥)| ⩽ 𝐶

𝑟
and since 𝑢𝑛 → 𝑢 in 𝐿2({𝑟 ⩽ |𝑥| ⩽ 2𝑟}), thanks to (3.39), we have that

lim sup
𝑛→∞

𝒬4(𝑛, 𝑟) ⩽
𝐶2

2𝑟2

∫︁
{𝑟⩽|𝑥|⩽2𝑟}

|𝑢|2 d𝑥 =: 𝐶3
ℛ(𝑟)
𝑟2 . (3.71)

Putting together (3.65), (3.70) and (3.71), then (3.58) holds true.
From (3.71), applying Sobolev embedding

𝐶3ℛ(𝑟) ⩽ 𝐶2

2𝑟2

(︃∫︁
{𝑟⩽|𝑥|⩽2𝑟}

|𝑢|2* d𝑥
)︃ 2

2

|{𝑟 ⩽ |𝑥| ⩽ 2𝑟}|
2
𝑁 (3.72)

and since |{𝑟 ⩽ |𝑥| ⩽ 2𝑟}| ⩽ |𝐵2𝑟| = 𝜔𝑁2𝑁𝑟𝑁 , where 𝜔𝑁 is the volume of the unitary ball in
R𝑁 , it follows that

lim
𝑟→∞

𝐶3
ℛ(𝑟)
𝑟2 = 0. (3.73)

Recalling (3.68), from (3.73), we reach

lim
𝑟→∞

𝐶2

(︃
ℛ(𝑟)
𝑟2

)︃ 1
2

= 0. (3.74)

By (3.55), we have 𝜂𝑟 = 1 in 𝐵𝑐
2𝑟(0), implying that

∫︁
𝐵𝑐

2𝑟(0)
(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 ⩽

∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥. (3.75)

This together with (3.58) and (3.73)-(3.75), it follows that for any fixed 𝜀 > 0, we can choose
𝑟(𝜀) > 𝑅 > 0 such that

lim sup
𝑛→∞

∫︁
𝐵𝑐

2𝑟(0)
(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥 < 𝜀,

whenever (3.57) holds true. Therefore, (3.59) follows.
Henceforth, we assume that (3.57) holds. From (3.25) and noticing that 𝑔(· , 𝑡)𝑡 ∈

𝐿
2𝑁

2𝑁−2𝛼−𝜇 , thanks to (3.52) and applying Hölder’s inequality combined with (3.4) there holds

∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
𝑢𝑛 d𝑥 ⩽

⃦⃦⃦⃦
⃦⃦ ∫︁

R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦

⃦⃦⃦⃦
⃦⃦

2𝑁
𝜇+2𝛼

×
(︃∫︁

𝐵𝑐
2𝑟(0)

|𝑔(𝑥, 𝑢𝑛)𝑢𝑛|
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁

⩽𝐶

(︃∫︁
𝐵𝑐

2𝑟(0)
|𝑢𝑛|2* d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶𝑆
2*
2

2𝑁−2𝛼−𝜇
2𝑁

(︃∫︁
𝐵𝑐

2𝑟(0)
|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2 d𝑥

)︃ 2*
2

2𝑁−2𝛼−𝜇
2𝑁

.
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Putting this together with (3.59), we infer that for given 𝜀 > 0, there exists 𝑟(𝜀) > 0 such
that

lim sup
𝑛→∞

∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
𝑢𝑛 d𝑥 ⩽ 𝐶1𝜀.

By a similar arguments, we obtain∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
𝑢 d𝑥 ⩽

⃦⃦⃦⃦
⃦⃦ ∫︁

R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦

⃦⃦⃦⃦
⃦⃦

2𝑁
𝜇+2𝛼

×
(︃∫︁

𝐵𝑐
2𝑟(0)

|𝑔(𝑥, 𝑢𝑛)𝑢|
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁

⩽𝐶

(︃∫︁
𝐵𝑐

2𝑟(0)
(|𝑢𝑛|2*

𝛼,𝜇−1𝑢)
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁

.

On the other hand, applying Hölder’s inequality combined with (3.4), we obtain
(︃∫︁

𝐵𝑐
2𝑟(0)

(|𝑢𝑛|2*
𝛼,𝜇−1𝑢)

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

⩽ 𝐶

(︃∫︁
𝐵𝑐

2𝑟(0)
|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2 d𝑥

)︃ 2*
𝛼,𝜇−1

2

,

where 𝐶 := ‖𝑢‖2*(𝑆−1)
2*

𝛼,𝜇−1
2 . These last two estimates take us

∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)𝑢 d𝑥 ⩽ 𝐶

(︃∫︁
𝐵𝑐

2𝑟(0)
|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2 d𝑥

)︃ 2*
𝛼,𝜇−1

2

.

Thus, (3.60) and (3.61) hold.
To prove (3.62), we will use (3.59). In fact, from (ℎ1), Hölder’s inequality and the light of

(3.4), there holds∫︁
𝐵𝑐

2𝑟(0)
ℎ𝜅(𝑥, 𝑢𝑛)𝑢𝑛 d𝑥 ⩽𝜅𝑞−2*

𝛼,𝜇

∫︁
𝐵𝑐

2𝑟(0)
𝜆(𝑥)|𝑢𝑛|2*

𝛼,𝜇 d𝑥

⩽𝜅𝑞−2*
𝛼,𝜇(𝑆−1)

2*
𝛼,𝜇
2 ‖𝜆‖ 2𝑁

2𝛼+𝜇

(︃∫︁
𝐵𝑐

2𝑟(0)
|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2 d𝑥

)︃ 2*
𝛼,𝜇
2

,

(3.76)

which jointly with (3.59) we conclude that for given 𝜀 > 0, there exists 𝑟(𝜀) > 0 such that

lim sup
𝑛→∞

∫︁
𝐵𝑐

𝑟(0)
ℎ𝜅(𝑥, 𝑢𝑛)𝑢𝑛 d𝑥 ⩽ 𝐶1,𝜅𝜀,

where 𝐶1,𝜅 := ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝜅𝑞−2*
𝛼,𝜇(𝑆−1)

2*
𝛼,𝜇
2 .

Similarly, by (ℎ1) and applying Hölder’s inequality together with (3.4), we see that∫︁
𝐵𝑐

2𝑟(0)
ℎ𝜅(𝑥, 𝑢𝑛)𝑢 d𝑥 ⩽𝜅𝑞−2*

𝛼,𝜇

∫︁
𝐵𝑐

2𝑟(0)
𝜆(𝑥)|𝑢𝑛|2*

𝛼,𝜇−1𝑢 d𝑥

⩽𝐶2,𝜅

(︃∫︁
𝐵𝑐

2𝑟(0)
|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2 d𝑥

)︃ 2*
𝛼,𝜇−1

2

, (3.77)
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where 𝐶2,𝜅 := 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
‖𝑢‖2*(𝑆−1)

2*
𝛼,𝜇−1

2 . Consequently, it follows that (3.63) holds.
This completes the proof of the lemma.

In what follows, we emphasize an important remark that we will use in Subsection 3.4.1
of this chapter during our study of Problem (𝑄). To verify this remark, we will make use
of a result due to Berestycki and Lions, which provides a characterization for the functions
belonging to 𝒟1,2

rad(R𝑁).

Lemma 3.2.8. (BERESTYCKI; LIONS, 1983, Radial Lemma A.III) Let 𝑁 ⩾ 3. Every function 𝑢

in 𝒟1,2
rad(R𝑁) is almost everywhere equal to a function 𝑈(𝑥), continuous for 𝑥 ̸= 0. Furthermore,

there is a constant 𝐶 := 𝐶𝑁 such that for all 𝑢 ∈ 𝒟1,2
rad(R𝑁), we obtain

|𝑈(𝑥)| ⩽ 𝐶
‖∇𝑢‖2

|𝑥|𝑁−2
2
, |𝑥| ⩾ 1.

Remark 3.2.9. If we replace the space 𝒟1,2(R𝑁) by 𝒟1,2
rad(R𝑁), then in view of the Cauchy-

Schwarz inequality, see (LIEB; LOSS, 2001, Theorem 9.8), we can estimate 𝒬1(𝑛, 𝑟) as follows

𝒬1(𝑛, 𝑟) ⩽
[︃∫︁

R𝑁

(︃∫︁
R𝑁

𝑔(𝑦, 𝑢𝑛)𝑢𝑛𝜂
2
𝑟

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)𝑢𝑛𝜂

2
𝑟

|𝑥|𝛼
d𝑥
]︃ 1

2

×
[︃∫︁

R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢𝑛)

|𝑥|𝛼
d𝑥
]︃ 1

2

⩽𝐶
1
2𝐶

2*
𝛼,𝜇
2

[︃∫︁
{|𝑥|⩾𝑟}

(︃∫︁
{|𝑦|⩾𝑟}

𝑔(𝑦, 𝑢𝑛)𝑢𝑛𝜂
2
𝑟

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)𝑢𝑛𝜂

2
𝑟

|𝑥|𝛼
d𝑥
]︃ 1

2

⩽
1
𝑟

𝛼
2
𝐶

1
2𝐶

2*
𝛼,𝜇
2

[︃∫︁
{|𝑥|⩾𝑟}

(︃∫︁
{|𝑦|⩾𝑟}

|𝑢𝑛(𝑦)|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃
𝑉 (𝑥)
ℓ0

|𝑢𝑛|2 d𝑥
]︃ 1

2

, (3.78)

where we use (3.22) and (3.43). On the other hand, we observe that
∫︁

{|𝑦|⩾𝑟}

|𝑢𝑛(𝑦)|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦 =

∫︁
{|𝑦|⩾𝑟}∩{|𝑥−𝑦|>1}

|𝑢𝑛(𝑦)|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦

+
∫︁

{|𝑦|⩾𝑟}∩{|𝑥−𝑦|⩽1}

|𝑢𝑛(𝑦)|2*
𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦 =: 𝒫1(𝑛, 𝑟) + 𝒫2(𝑛, 𝑟).

It follows from Hölder’s inequality and (3.42) that

𝒫1(𝑛, 𝑟) ⩽
(︂∫︁

R𝑁
|𝑢𝑛|2* d𝑦

)︂ 2𝑁−2𝛼−𝜇
2𝑁

(︃∫︁
|𝑦|⩾𝑟

1
|𝑦|2𝑁

d𝑦
)︃ 𝛼

2𝑁
(︃∫︁

{|𝑥−𝑦|>1}

1
|𝑥− 𝑦|2𝑁

d𝑦
)︃ 𝜇

2𝑁

⩽𝐶
2*

𝛼,𝜇
2

(︂
𝜔𝑁−1

𝑁𝑟𝑁

)︂ 𝛼
2𝑁
(︂
𝜔𝑁−1

𝑁

)︂ 𝜇
2𝑁

=:𝐶(𝜔𝑁−1, 𝛼, 𝜇,𝑁) 1
𝑟

𝛼
2
,
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where 𝜔𝑁−1 is the surface area of (𝑁−1)−dimensional unit sphere. Now, to estimate 𝒫2(𝑛, 𝑟),

we will use the Radial Lemma 3.2.8, as follows

𝒫2(𝑛, 𝑟) ⩽(𝐶‖∇𝑢𝑛‖2)2*
𝛼,𝜇

∫︁
{|𝑦|⩾𝑟}∩{|𝑥−𝑦|⩽1}

1
|𝑦|𝑁−2

2 |𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦

⩽
(𝐶‖∇𝑢𝑛‖2)2*

𝛼,𝜇

𝑟
𝑁−2

2 +𝛼

∫︁
{|𝑦|⩾𝑟}∩{|𝑥−𝑦|⩽1}

1
|𝑥− 𝑦|𝜇

d𝑦

⩽
𝐶2*

𝛼,𝜇𝐶
2*

𝛼,𝜇
2

𝑟
𝑁−2

2 +𝛼

∫︁
{|𝑥−𝑦|⩽1}

1
|𝑥− 𝑦|𝜇

d𝑦

⩽𝐶(𝜔𝑁−1, 𝛼, 𝜇,𝑁) 1
𝑟

𝑁−2
2 +𝛼

,

where we used (3.41) and the fact that 𝑁 > 𝜇. By apllying these estimates in (3.78) and

using (3.41), we see that

𝒬1(𝑛, 𝑟) ⩽
1
𝑟

𝛼
2
𝐶

1
2𝐶

2*
𝛼,𝜇
2 𝐶(𝜔𝑁−1, 𝛼, 𝜇,𝑁)

(︃
1
𝑟

𝛼
2

+ 1
𝑟

𝑁−2
2 +𝛼

)︃
1
ℓ0

[︃∫︁
{|𝑥|⩾𝑟}

𝑉 (𝑥)|𝑢𝑛|2 d𝑥
]︃ 1

2

⩽𝐶

(︃
1
𝑟

3𝛼
4

+ 1
𝑟

𝑁−2
4 +𝛼

)︃
,

where 𝐶 := 𝐶
1
2𝐶

2*
𝛼,𝜇
2 𝐶(𝜔𝑁−1, 𝛼, 𝜇,𝑁). In this way, we observe that we obtain the same

result as in Lemma 3.2.7, however, without using Lemma 3.2.4. The argument for 𝒬2(𝑛, 𝑟)

and 𝒬3,𝜅(𝑛, 𝑟) remain the same.

Lemma 3.2.10. Let (𝑢𝑛)𝑛 be a (𝑃𝑆)𝑐𝜅−sequence for 𝒥𝜅. Then, we have

lim
𝑛→∞

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
(𝑢𝑛 − 𝑢) d𝑥 = 0, (3.79)

lim
𝑛→∞

∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) d𝑥 = 0. (3.80)

Proof. In view of Lemma 3.2.7, it is enough to prove that

lim
𝑛→∞

∫︁
𝐵2𝑟(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
(𝑢𝑛 − 𝑢) d𝑥 = 0, (3.81)

lim
𝑛→∞

∫︁
𝐵2𝑟(0)

ℎ𝜅(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) d𝑥 = 0. (3.82)

The proof of (3.81) and (3.82) follows from Lemma 3.2.6 taking 𝑅̄ ⩾ 2𝑟.

Henceforth, we assume that ‖𝜆‖ 2𝑁
2𝛼+𝜇

and 𝜅 satisfy (3.57) for the auxiliary problem (𝐵𝜅).

Lemma 3.2.11. The functional 𝒥𝜅 satisfies the (𝑃𝑆)𝑐𝜅−condition.
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Proof. Let (𝑢𝑛)𝑛 ⊂ 𝐸 be a (𝑃𝑆)𝑐𝜅−sequence for 𝒥𝜅. In view of Lemma 3.2.3, the
sequence (𝑢𝑛)𝑛 is bounded in 𝐸 and, up to a subsequence, 𝑢𝑛 ⇀ 𝑢 weakly in 𝐸. Since
𝒥 ′

𝜅(𝑢𝑛)𝑢𝑛 = 𝒥 ′
𝜅(𝑢𝑛)𝑢 = 𝑜𝑛(1), it follows that

‖𝑢𝑛 − 𝑢‖2 =
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝑛)

|𝑥|𝛼
(𝑢𝑛 − 𝑢) d𝑥

+
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢𝑛)(𝑢𝑛 − 𝑢) d𝑥+ 𝑜𝑛(1),

which jointly with Lemma 3.2.10 implies that 𝒥𝜅 satisfies the (𝑃𝑆)𝑐𝜅−condition.

Lemma 3.2.12. The functional 𝒥𝜅 has a nonnegative critical point 𝑢 ∈ 𝐸 such that

𝒥𝜅(𝑢) = 𝑐𝜅, i.e., 𝑢 is a nonnegative mountain pass solution for Problem (𝐵𝜅).

Proof. In view of Lemmas 3.2.1 and 3.2.11, Problem (𝐵𝜅) admits a nontrivial solution of
mountain pass type. By using 𝑢− := max{−𝑢, 0} as test function in (3.29), we deduce from
(3.13) and (3.19) that

0 =
∫︁
R𝑁

(∇𝑢∇𝑢− + 𝑉 (𝑥)𝑢𝑢−) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢− d𝑥

−
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢− d𝑥

=
∫︁
R𝑁

(|∇𝑢−|2 + 𝑉 (𝑥)|𝑢−|2) d𝑥−
∫︁

{𝑢>0}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢− d𝑥

−
∫︁

{𝑢<0}

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢− d𝑥−

∫︁
{𝑢<0}

ℎ𝜅(𝑥, 𝑢)𝑢− d𝑥

−
∫︁

{𝑢>0}
ℎ𝜅(𝑥, 𝑢)𝑢− d𝑥

=‖𝑢−‖,

i.e., the nontrivial weak solution 𝑢 is nonnegative.

3.2.3 𝐿∞−estimates

By virtue of (3.57) in Lemma 3.2.7 and thanks to Lemma 3.2.12, the auxiliary Problem
(𝐵𝜅) admits a solution 𝑢 := 𝑢𝜆,𝜅 for all 𝜆 ∈ 𝐿

2𝑁
2𝛼+𝜇 (R𝑁) and 𝜅 > 0 with ‖𝜆‖ 2𝑁

2𝛼+𝜇
⩽ 𝜀*

0 :=

𝜀*
0(𝜅). In what follows, we deduce a uniform estimate for the norm of the solution 𝑢𝜆,𝜅 of

Problem (𝐵𝜅). Precisely, we prove the following result:

Lemma 3.2.13. Let 𝑢𝜆,𝜅 be the critical point of 𝒥𝜅 obtained in Lemma 3.2.12. Then, there

exists a constant 𝑀 (which depends only on 𝑁, 𝜃, 𝜇, 𝛼, 𝑝,𝑚 and independent of ℓ, ‖𝜆‖ 2𝑁
2𝛼+𝜇

,
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𝜅 and 𝑅) such that

‖𝑢𝜆,𝜅‖2 ⩽
2𝜃
𝜃 − 2𝑑 =: 𝑀, ∀𝜆 ∈ 𝐿

2𝑁
2𝛼+𝜇 (R𝑁)

with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀*
0. In particular, by (3.4) we have that

‖𝑢𝜆,𝜅‖2
2* ⩽ 𝑆−1𝑀 < 𝑆−1𝐶, ∀𝜆 ∈ 𝐿

2𝑁
2𝛼+𝜇 (R𝑁)

with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀*
0.

Proof. In view of estimate (3.37) and recalling that 𝑐𝜅 ⩽ 𝑑, we have that

𝑑 ⩾ 𝑐𝜅 = 𝒥𝜅(𝑢𝜆,𝜅) − 1
𝜃

𝒥 ′
𝜅(𝑢𝜆,𝜅)𝑢𝜆,𝜅 ⩾

𝜃 − 2
2𝜃 ‖𝑢𝜆,𝜅‖2

and the proof is finished.

The next Lemma plays a crucial role in our arguments, since it establishes an important
estimate involving the 𝐿∞−norm of the solution of the auxiliary Problem (𝐵𝜅). For this
purpose, we shall use Moser’s iteration method.

Lemma 3.2.14. Let 𝑢𝜆,𝑘 be the solution of (𝐵𝜅) obtained in Lemma 3.2.12. Then, there

exist 𝐶1 > 0 and 𝑀1 > 0 (which depends only on 𝑁 , 𝜃, 𝜇, 𝛼, 𝑝, 𝑚 and independent of ℓ,

‖𝜆‖ 2𝑁
2𝛼+𝜇

, 𝜅 and 𝑅 ) such that if 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀*
0, then

‖𝑢𝜆,𝜅‖∞ ⩽ (1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)𝐶1𝑀1‖𝑢𝜆,𝑘‖2* ,

where 𝜀*
0 was established in (3.57).

Proof. In what follows we will explore the ideas from the proof of Lemma 2.2.11 from Chapter
2. For the sake of simplicity, we denote 𝑢 = 𝑢𝜆,𝜅. For 𝐿 > 0, we define 𝜑𝐿 = 𝑢𝑢

2(𝛽−1)
𝐿 and

𝑤𝐿 = 𝑢𝑢
(𝛽−1)
𝐿 , where 𝑢𝐿 = min {𝑢, 𝐿}. By taking 𝜑𝐿 = 𝑢𝑢

2(𝛽−1)
𝐿 as test function in (3.29),

where 𝛽 > 1 will be chosen later, we have
∫︁
R𝑁

∇𝑢∇(𝑢𝑢2(𝛽−1)
𝐿 ) d𝑥+

∫︁
R𝑁
𝑉 (𝑥)|𝑢|2𝑢2(𝛽−1)

𝐿 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

−
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥 = 0,
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which implies∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥 = − 2(𝛽 − 1)

∫︁
R𝑁
𝑢

2(𝛽−1)−1
𝐿 𝑢∇𝑢∇𝑢𝐿 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

+
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

−
∫︁
R𝑁
𝑉 (𝑥)|𝑢|2𝑢2(𝛽−1)

𝐿 d𝑥. (3.83)

Since

2(𝛽 − 1)
∫︁
R𝑁
𝑢

2(𝛽−1)−1
𝐿 𝑢∇𝑢∇𝑢𝐿 d𝑥 = 2(𝛽 − 1)

∫︁
{𝑢⩽𝐿}

𝑢
2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥 ⩾ 0, (3.84)

it follows from (3.83) that∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥 ⩽

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

+
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥. (3.85)

Note that (︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽ 𝑆−1
∫︁
R𝑁

|∇𝑤𝐿|2 d𝑥 = 𝑆−1
∫︁
R𝑁

∇(𝑢𝑢(𝛽−1)
𝐿 ) d𝑥.

Thus,(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽𝑆−1
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥+ 𝑆−1(𝛽 − 1)2

∫︁
R𝑁

|𝑢|2𝑢2(𝛽−2)
𝐿 |∇𝑢𝐿|2 d𝑥

⩽𝑆−1𝛽2
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥+ 𝑆−1𝛽2

∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥

=2𝑆−1𝛽2
∫︁
R𝑁
𝑢

2(𝛽−1)
𝐿 |∇𝑢|2 d𝑥, (3.86)

where we have used ∇𝑢𝐿 = 0 in {𝑢 > 𝐿}, 𝑢 = 𝑢𝐿 in {𝑢 ⩽ 𝐿} and 𝛽 > 1. According to
(3.85) and (3.86), we obtain

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽2𝑆−1𝛽2
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥 (3.87)

+ 2𝑆−1𝛽2
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥. (3.88)

Next, we estimate the right-hand side of (3.87). By combining (3.25), Proposition 1.0.2 and
Hölder’s inequality with Lemma 3.2.13, we deduce
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥 ⩽ 𝐶2

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

,

(3.89)
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where 𝐶2 := 𝐶(𝑁, 𝜃, 𝛼, 𝜇, 𝑐0)(𝑆𝑀)
2*

𝛼,𝜇
2 , which jointly with (3.87) yields that

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽𝐶22𝑆−1𝛽2
(︂∫︁

R𝑁
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

+ 𝐶22𝑆−1𝛽2
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

=:𝐶22𝑆−1𝛽2 (𝐼1 + 𝐼2) . (3.90)

In the sequence, we estimate 𝐼1 and 𝐼2. Recalling that

(𝑎+ 𝑏)𝑝1 < 𝑎𝑝1 + 𝑏𝑝1 , ∀𝑎, 𝑏 > 0, 𝑝1 ∈ (0, 1), (3.91)

for any 𝐾 > 0, we have
(︂∫︁

R𝑁
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

<

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2*
𝛼,𝜇−2|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁

+
(︃∫︁

{|𝑢|>𝐾}
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

=:𝐼1
1 + 𝐼2

1 . (3.92)

Note that

𝐼1
1 ⩽ 𝐾2*

𝛼,𝜇−2
(︃∫︁

{|𝑢|⩽𝐾}
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︃ 2𝑁−2𝛼−𝜇

2𝑁

(3.93)

and using Hölder’s inequality with exponents 2*
𝛼,𝜇

2*
𝛼,𝜇−2 and 2*

𝛼,𝜇

2 one deduce

𝐼2
1 ⩽

(︃∫︁
{|𝑢|>𝐾}

|𝑢|2*d𝑥
)︃ 2*

𝛼,𝜇−2
2* (︂∫︁

R𝑁
|𝑤𝐿|2*d𝑥

)︂ 2
2*

. (3.94)

Now, we estimate the right-hand side of (3.88). By (ℎ1), we get

𝐼2 =
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥 ⩽ 𝑘𝑞−2*
𝛼,𝜇

∫︁
R𝑁
𝜆(𝑥)|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 d𝑥. (3.95)

Since 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁), it follows from Hölder’s inequality

𝐼2 ⩽ 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

. (3.96)

For any 𝐾 > 0, we obtain

𝐼2 ⩽𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇

(︃∫︁
{|𝑢|>𝐾}

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

(3.97)

+ 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

= : 𝐼1
2 + 𝐼2

2 . (3.98)
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Arguing as in (3.93) and (3.94), we reach

𝐼1
2 ⩽ 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

𝐾2*
𝛼,𝜇−2

(︃∫︁
{|𝑢|⩽𝐾}

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︃ 2𝑁−2𝛼−𝜇
2𝑁

(3.99)

and

𝐼2
2 ⩽ 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

(︃∫︁
{|𝑢|>𝐾}

|𝑢|2*d𝑥
)︃ 2*

𝛼,𝜇−2
2* (︂∫︁

R𝑁
|𝑤𝐿|2*d𝑥

)︂ 2
2*

. (3.100)

Denote 𝐶 := 2𝑆𝐶2 in (3.90). In view of (3.90)–(3.100) we derive(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽𝐶𝛽2(1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

+ 𝐶𝛽2(1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2* (︂∫︁
R𝑁

|𝑤𝐿|2*d𝑥
)︂ 2

2*

.

(3.101)

Since 𝑢 ∈ 𝐿2*(R𝑁), we may fix 𝐾 > 0 such that
(︃∫︁

{|𝑢|>𝐾}
|𝑢|2*d𝑥

)︃ 2*
𝛼,𝜇−2

2*

⩽
1

2𝐶𝛽2(1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
) . (3.102)

Taking into account (3.101) and (3.102) we get(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽2𝐶𝛽2(1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)
(︂∫︁

R𝑁
(|𝑢|2𝑢2(𝛽−1)

𝐿 )
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

.

(3.103)

Claim. 𝑢 ∈ 𝐿2*𝛽(R𝑁), for 𝛽 = 2*
𝛼,𝜇

2 .

In fact, since 𝑢𝐿 ⩽ |𝑢| and recalling 𝑤𝐿 = 𝑢𝑢
(𝛽−1)
𝐿 , it follows from (3.103) that(︃∫︁

R𝑁
(|𝑢|𝑢

2*
𝛼,𝜇−2

2
𝐿 )2*d𝑥

)︃ 2
2*

⩽ 2𝐶𝛽2(1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)
(︂∫︁

R𝑁
|𝑢|2*d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

< ∞.

(3.104)

By taking the limit as 𝐿 → ∞ we conclude that∫︁
R𝑁

|𝑢|2* 2*
𝛼,𝜇
2 d𝑥 < ∞,

which proves the claim.

Now, using that 𝑢𝐿 ⩽ |𝑢| and passing to the limit as 𝐿 → ∞ in (3.103), we obtain

‖𝑢‖2𝛽
2*𝛽 ⩽𝐶𝛽2(1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

)
(︃∫︁

R𝑁
|𝑢|2𝛽 2*

2*
𝛼,𝜇 d𝑥

)︃ 2*
𝛼,𝜇
2*

2𝛽
2𝛽

(3.105)

=𝐶𝛽2(1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)‖𝑢‖2𝛽

𝑞*
𝛼,𝜇𝛽,
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or equivalently,

‖𝑢‖2*𝛽 ⩽ [𝐶 1
2 (1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

) 1
2 ]

1
𝛽 𝛽

1
𝛽 ‖𝑢‖𝑞*

𝛼,𝜇𝛽, (3.106)

where 𝑞*
𝛼,𝜇 := 22*

2*
𝛼,𝜇

.
The next step is using inequality (3.106) to obtain the desired 𝐿∞–estimate, through an

iterative process. For this purpose, following a similar approach as in steps 1, 2, and 3 of
Lemma 2.2.11 in (2.68)-(2.70), we follow three steps.

First step. If 𝛽 = 𝛾1 := 2*

𝑞*
𝛼,𝜇

, then (3.106) becomes

‖𝑢‖2*𝛾1 ⩽ [𝐶 1
2 (1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

) 1
2 ]

1
𝛾1 𝛾

1
𝛾1
1 ‖𝑢‖2* , 2*𝛾1 = 𝛾2

1𝑞
*
𝛼,𝜇, (3.107)

that is, 𝑢𝛾2
1 ∈ 𝐿𝑞*

𝛼,𝜇(R𝑁).

Second step. If 𝛽 = 𝛾2 := 𝛾2
1 , then 𝑞*

𝛼,𝜇𝛾2 = 𝑞*
𝛼,𝜇𝛾

2
1 = 2*𝛾1 and (3.106) becomes

‖𝑢‖2*𝛾2 ⩽ [𝐶 1
2 (1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

) 1
2 ]

1
𝛾2 𝛾

1
𝛾2
2 ‖𝑢‖𝑞*

𝛼,𝜇𝛾2 ,

i.e.,
‖𝑢‖2*𝛾2 ⩽ [𝐶 1

2 (1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
) 1

2 ]
1

𝛾2 (𝛾2)
1

𝛾2 ‖𝑢‖2*𝛾1 ,

which jointly with (3.107) yields that

‖𝑢‖2*𝛾2 ⩽ [𝐶 1
2 (1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

) 1
2 ]

1
𝛾1

+ 1
𝛾2 (𝛾1)

1
𝛾1 (𝛾2)

1
𝛾2 ‖𝑢‖2* . (3.108)

Since 2*𝛾2 = 2*𝛾2
1 = 2*𝛾1𝛾1 = 𝑞*

𝛼,𝜇𝛾
3
1 , it follows that 𝑢𝛾3

1 ∈ 𝐿𝑞*
𝛼,𝜇(R𝑁).

Third step. If 𝛽 = 𝛾3 := 𝛾3
1 , then 𝑞*

𝛼,𝜇𝛾3 = 𝑞*
𝛼,𝜇𝛾

3
1 = 2*𝛾2 and (3.106) becomes

‖𝑢‖2*𝛾3 ⩽ [𝐶 1
2 (1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

) 1
2 ]

1
𝛾3 𝛾

1
𝛾3
3 ‖𝑢‖𝑞*

𝛼,𝜇𝛾3 ,

i.e.,
‖𝑢‖2*𝛾3 ⩽ [𝐶 1

2 (1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
) 1

2 ]
1

𝛾3 (𝛾3)
1

𝛾3 ‖𝑢‖2*𝛾2 ,

which jointly with (3.108) yields that

‖𝑢‖2*𝛾3 ⩽ [𝐶 1
2 (1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

) 1
2 ]

1
𝛾1

+ 1
𝛾2

+ 1
𝛾3 (𝛾1)

1
𝛾1 (𝛾2)

1
𝛾2 (𝛾3)

1
𝛾3 ‖𝑢‖2* .

Since 2*𝛾3 = 2*𝛾3
1 = (2*𝛾1𝛾1)𝛾1 = 𝑞*

𝛼,𝜇𝛾
3
1 , it follows that 𝑢𝛾4

1 ∈ 𝐿𝑞*
𝛼,𝜇(R𝑁).

Inductively, if we consider 𝛽 = 𝛾𝑚 := 𝛾𝑚
1 , then 𝑞*

𝛼,𝜇𝛾𝑚+1 = 2*𝛾𝑚 and (3.106) becomes

‖𝑢‖2*𝛾𝑚 ⩽ [𝐶 1
2 (1 + 𝜅𝑞−2*

𝛼,𝜇‖𝜆‖ 2𝑁
2𝛼+𝜇

) 1
2 ]

1
𝛾1

+ 1
𝛾2

+···+ 1
𝛾𝑚 𝛾

1
𝛾1
1 𝛾

1
𝛾2
2 · · · 𝛾

1
𝛾𝑚
𝑚 ‖𝑢‖2* , (3.109)
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and we deduce that 𝑢𝛾
(𝑚+1)
1 ∈ 𝐿𝑞*

𝛼,𝜇(R𝑁) for all 𝑚 ∈ N. Recalling that 𝛾1 = 2*

𝑞*
𝛼,𝜇

> 1, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
𝑚→∞

2*𝛾𝑚 = 2* lim
𝑚→∞

𝛾𝑚
1 = 2* lim

𝑚→∞
𝛽𝑚 = ∞,

∞∑︁
𝑗=1

1
𝛾𝑗

=
∞∑︁

𝑗=1

(︃
1
𝛾1

)︃𝑗

= 1
𝛾1 − 1 ,

∞∑︁
𝑗=1

𝑗

𝛾𝑗

=
∞∑︁

𝑗=1

𝑗

𝛾𝑗
1

= 𝛾1

(𝛾1 − 1)2 ,

𝛾
1

𝛾1
1 𝛾

1
𝛾2
2 · · · 𝛾

1
𝛾𝑚
𝑚 = 𝛾

1
𝛾1
1 𝛾

2
𝛾2

1
1 · · · 𝛾

𝑚
𝛾𝑚

1
1 ⩽ 𝛾

∑︀∞
𝑗=1

𝑗

𝛾
𝑗
1

= 𝛾1
(𝛾1−1)2

1 .

By taking the limit as 𝑚 → ∞ in (3.109), leads to

‖𝑢‖∞ ⩽ (1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)𝐶1𝑀1‖𝑢‖2* , (3.110)

for all 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀*
0, where 𝐶1 := 1

2(𝛾1−1) , 𝑀1 := 𝐶
1

2(𝛾1−1)𝛾
𝛾1

(𝛾1−1)2
1 and

𝑢𝜆,𝑘 := 𝑢. This finishes the proof.

At this point, in view of (3.110) and Lemma 3.2.13, we are able to find suitable values of
‖𝜆‖ 2𝑁

2𝛼+𝜇
and 𝜅 such that the following inequality holds true

‖𝑢𝜆,𝑘‖∞ ⩽ (1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)𝐶1𝑀1(𝑆𝑀) 1

2 ⩽ 𝜅.

In fact, we shall verify that

(1 + 𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
)𝐶1𝑀1(𝑆𝑀) 1

2 ⩽ 𝜅,

or equivalently,

𝜅𝑞−2*
𝛼,𝜇‖𝜆‖ 2𝑁

2𝛼+𝜇
⩽

(︃
𝜅

𝑀1(𝑆𝑀) 1
2

)︃ 1
𝐶1

− 1.

Consider 𝜅 > 0 such that (︃
𝜅

𝑀1(𝑆𝑀) 1
2

)︃ 1
𝐶1

− 1 > 0

and fix 𝜀**
0 > 0 satisfying

‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀**
0 ⩽ min

⎧⎨⎩
⎡⎣(︃ 𝜅

𝑀1(𝑆𝑀) 1
2

)︃ 1
𝐶1

− 1
⎤⎦ 1
𝜅𝑞−2*

𝛼,𝜇
, 𝜀*

0

⎫⎬⎭ .
Thus, taking 𝜅0 > 𝑀1(𝑆𝑀) 1

2 , we obtain 𝜀**
0 > 0, such that

‖𝑢𝜆,𝑘0‖∞ ⩽ 𝜅0, (3.111)

for all 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀**
0 . Therefore, by (3.111), it follows from definition

of ℎ𝜅0 that
ℎ𝜅0(𝑢𝜆,𝜅0) = 𝜆(𝑥)|𝑢𝜆,𝜅0|𝑞−2𝑢𝜆,𝜅0 . (3.112)
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Remark 3.2.15. Let 𝑢 ∈ 𝐸 be the nonnegative solution obtained in Lemma 3.2.12. In view

of Lemma 3.2.14 and regularity theory (see for instance (TOLKSDORF, 1984, Theorem 1)),

we have that 𝑢 ∈ 𝐶1,𝛾
loc (R𝑁), for some 𝛾 ∈ (0, 1). Therefore, in light of Strong Maximum

Principle, we conclude that 𝑢 is positive.

Proof of Theorem 3.1.2. In light of Lemma 3.2.12, for each 𝜅 > 0, there exists 𝜀*
0 :=

𝜀*
0(𝜅) > 0 such that for all 𝜆 ∈ 𝐿

2𝑁
2𝛼+𝜇 (R𝑁) with ‖𝜆‖ 2𝑁

2𝛼+𝜇
⩽ 𝜀**

0 , the auxiliary Problem (𝐵𝜅)
admits a solution 𝑢𝜆,𝜅 in 𝐸. Thereby, in order to prove the existence of solution for the original
Problem (𝑃 ), given that (3.111) holds true, it is sufficient to prove that there exist 𝑅 > 1

and 𝜀0 ∈ (0, 𝜀**
0 ] such that following inequality holds:

𝑓(𝑢𝜆,𝜅0) ⩽ 𝑉 (𝑥)
ℓ0

𝑢𝜆,𝜅0 , ∀ |𝑥| ⩾ 𝑅 and ∀𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁)

with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0.

Lemma 3.2.16. For each 𝑅 > 1, let 𝑢𝜆,𝜅0 be a solution for the auxiliary Problem (𝐵𝜅0), such

that 𝒥𝜅0(𝑢𝜆,𝜅0) = 𝑐𝜅0 . Then, there exists 𝜀0 ∈ (0, 𝜀**
0 ] such that

𝑢𝜆,𝜅0 ⩽
𝑅𝑁−2

|𝑥|𝑁−2

⃦⃦⃦
𝑢𝜆,𝜅0

⃦⃦⃦
∞

⩽
𝑅𝑁−2

|𝑥|𝑁−2𝜅0, ∀ |𝑥| ⩾ 𝑅 and ∀𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁)

with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0.

Proof. For the sake of simplicity, we denote 𝑢 = 𝑢𝜆,𝜅0 . Let 𝑣 be the 𝐶∞(R𝑁∖{0}) function

𝑣(𝑥) =
𝑅𝑁−2

⃦⃦⃦
𝑢
⃦⃦⃦

∞
|𝑥|𝑁−2 , 𝑥 ̸= 0.

Since 1/|𝑥|𝑁−2 is harmonic, it follows that Δ𝑣(𝑥) = 0 in R𝑁∖{0}. Note that

𝑢(𝑥) ⩽
⃦⃦⃦
𝑢
⃦⃦⃦

∞
⩽

𝑅𝑁−2

|𝑥|𝑁−2

⃦⃦⃦
𝑢
⃦⃦⃦

∞
, ∀ |𝑥| ⩽ 𝑅.

Let us introduce the function 𝑤 ∈ 𝒟1,2(R𝑁) defined by

𝑤(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(𝑢− 𝑣)+(𝑥), if |𝑥| ⩾ 𝑅,

0, if |𝑥| ⩽ 𝑅.

(3.113)

By using 𝑤 as test function we obtain
∫︁
R𝑁

(∇𝑢∇𝑤 + 𝑉 (𝑥)𝑢𝑤) d𝑥 =
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑤 d𝑥

+
∫︁
R𝑁
ℎ𝜆̃,𝜅0

(𝑥, 𝑢)𝑤 d𝑥. (3.114)
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Now, by the definition of 𝑤 and according to (3.22) and Lemma 3.2.4, it follows from 𝑅𝛼 ⩾ 1

the following estimate
∫︁

𝐵𝑐
𝑅(0)

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑤 d𝑥−

∫︁
𝐵𝑐

𝑅(0)
𝑉 (𝑥)𝑢𝑤 d𝑥

⩽
1
𝑅𝛼

∫︁
𝐵𝑐

𝑅(0)

𝒦(𝑢)(𝑥)
ℓ0

𝑉 (𝑥)𝑢𝑤 d𝑥−
∫︁

𝐵𝑐
𝑅(0)

𝑉 (𝑥)𝑢𝑤 d𝑥

⩽
∫︁

𝐵𝑐
𝑅(0)

(︃
𝒦(𝑢)(𝑥)

ℓ0
− 1

)︃
𝑉 (𝑥)𝑢𝑤 d𝑥 ⩽ 0. (3.115)

On the other hand, using the definition of 𝑤 again, we obtain
∫︁
R𝑁

|∇𝑤|2 d𝑥 =
∫︁
R𝑁

∇𝑢∇𝑤 d𝑥−
∫︁
R𝑁

∇𝑣∇𝑤 d𝑥.

Since Δ𝑣 = 0 in 𝐵𝑐
𝑅(0) and 𝑤 = 0 in 𝜕𝐵𝑅(0), there holds

∫︁
R𝑁

∇𝑣∇𝑤 d𝑥 = 0.

Moreover, by (ℎ1), we have |ℎ𝜅0(𝑥, 𝑢)| ⩽ 𝜆(𝑥)𝜅𝑞−2*
𝛼,𝜇

0 |𝑢|2*−2𝑢. Using Hölder’s inequality twice,
we get the following estimate

∫︁
R𝑁
ℎ𝜅0(𝑥, 𝑢)𝑤 d𝑥 ⩽𝜅

𝑞−2*
𝛼,𝜇

0 ‖𝜆‖ 2𝑁
2𝛼+𝜇

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇−2|𝑢|𝑤)

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝜅
𝑞−2*

𝛼,𝜇

0 ‖𝜆‖ 2𝑁
2𝛼+𝜇

(︂∫︁
R𝑁

|𝑢|2* d𝑥
)︂ 2*

𝛼,𝜇−2
2*

(︂∫︁
R𝑁

|𝑢𝑤|
2*
2 d𝑥

)︂ 2
2*

=:𝐼. (3.116)

Thanks to Young’s inequality 2𝑎1𝑏1 ⩽ 𝑎2
1 + 𝑎2

2 and invoking Sobolev embedding together with
Lemma 3.2.13, it follows from (3.91) that

𝐼 ⩽𝜅
𝑞−2*

𝛼,𝜇

0 ‖𝜆‖ 2𝑁
2𝛼+𝜇

(︂∫︁
R𝑁

|𝑢|2* d𝑥
)︂ 2*

𝛼,𝜇−2
2* 1

2

(︂∫︁
R𝑁

|𝑢|2* d𝑥+
∫︁
R𝑁

|𝑤|2* d𝑥
)︂ 2

2*

⩽
1
2𝜅

𝑞−2*
𝛼,𝜇

0 ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆
2*

𝛼,𝜇−2
2 𝑀

2*
𝛼,𝜇−2

2

(︂
𝑆

2*
2 𝑀

2*
2 + 𝑆

2*
2 ‖∇𝑤‖

2*
2

2

)︂ 2
2*

⩽
1
2𝜅

𝑞−2*
𝛼,𝜇

0 ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆
2*

𝛼,𝜇−2
2 𝑀

2*
𝛼,𝜇−2

2
(︁
𝑆𝑀 + 𝑆‖∇𝑤‖2

2

)︁
. (3.117)

Combining (3.114)-(3.117), we see that

‖∇𝑤‖2
2 ⩽

∫︁
𝐵𝑐

𝑅(0)

(︃
𝒦(𝑢)(𝑥)

ℓ0
− 1

)︃
𝑉 (𝑥)𝑢𝑤 d𝑥

+ 1
2𝜅

𝑞−2*
𝛼,𝜇

0 ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆
2*

𝛼,𝜇−2
2 𝑀

2*
𝛼,𝜇−2

2
(︁
𝑆𝑀 + 𝑆‖∇𝑤‖2

2

)︁
,



112

whence it follows that

‖∇𝑤‖2
2−

1
2𝜅

𝑞−2*
𝛼,𝜇

0 ‖𝜆‖ 2𝑁
2𝛼+𝜇

𝑆
2*

𝛼,𝜇−2
2 𝑀

2*
𝛼,𝜇−2

2
(︁
𝑆𝑀 + 𝑆‖∇𝑤‖2

2

)︁
⩽
∫︁

𝐵𝑐
𝑅(0)

(︃
𝒦(𝑢)(𝑥)

ℓ0
− 1

)︃
𝑉 (𝑥)𝑢𝑤 d𝑥 ⩽ 0. (3.118)

Now, let 𝜀0 > 0 be such that

0 < 𝜀0 ⩽ min
{︃
𝜀**

0 ,
2

𝜅
𝑞−2*

𝛼,𝜇

0 𝑆
2*−2

2 𝑀
2*−2

2

}︃
. (3.119)

We claim that ‖∇𝑤‖2 = 0. In fact, suppose by contradiction that ‖∇𝑤‖2 ̸= 0, for some
𝜆0 ∈ 𝐿

2𝑁
2𝛼+𝜇 (R𝑁) with ‖𝜆0‖ 2𝑁

2𝛼+𝜇
⩽ 𝜀0. Thus, we may rewrite (3.118) as follows

‖∇𝑤‖2
2

[︃
1 − 1

2‖𝜆0‖ 2𝑁
2𝛼+𝜇

𝜅
𝑞−2*

𝛼,𝜇

0 𝑆
2*

𝛼,𝜇−2
2 𝑀

2*
𝛼,𝜇−2

2

(︃
𝑆𝑀

‖∇𝑤‖2
2

+ 𝑆

)︃]︃

⩽
∫︁

𝐵𝑐
𝑅(0)

(︃
𝒦(𝑢)(𝑥)

ℓ0
− 1

)︃
𝑉 (𝑥)𝑢𝑤 d𝑥 < 0. (3.120)

In view of (3.119) there holds

1 − 1
2‖𝜆0‖ 2𝑁

2𝛼+𝜇
𝜅

𝑞−2*
𝛼,𝜇

0 𝑆
2*

𝛼,𝜇−2
2 𝑀

2*
𝛼,𝜇−2

2

(︃
𝑆𝑀

‖∇𝑤‖2
2

+ 𝑆

)︃
> 0,

which jointly with (3.120) leads to a contradiction. Showing that 𝑤 ≡ 0. Recalling the
definition of the 𝑤 function in (3.113), we obtain |𝑢| ⩽ 𝑣 in |𝑥| ⩾ 𝑅. This joined with
(3.111), implies that

𝑢𝜆,𝜅0 ⩽
𝑅𝑁−2

|𝑥|𝑁−2

⃦⃦⃦
𝑢𝜆,𝜅0

⃦⃦⃦
∞

⩽
𝑅𝑁−2

|𝑥|𝑁−2𝜅0, ∀ |𝑥| ⩾ 𝑅 and ∀𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) (3.121)

with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0. This ends the proof of lemma.

We note that (3.121) ensures

𝑢𝑞−2
𝜆,𝜅0 ⩽

𝑅(𝑁−2)(𝑞−2)

|𝑥|(𝑁−2)(𝑞−2)

⃦⃦⃦
𝑢𝜆,𝜅0

⃦⃦⃦𝑞−2

∞
⩽

𝑅(𝑁−2)(𝑞−2)

|𝑥|(𝑁−2)(𝑞−2)𝜅
𝑞−2
0 , ∀ |𝑥| ⩾ 𝑅. (3.122)

Furthermore, by fixing 𝜅0 as in (3.111), there holds

‖𝑢𝜆,𝜅0‖ ⩽ 𝜅0, ∀𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) (3.123)

with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0. By means of (3.2), (3.122) and (3.123), we obtain

𝑓(𝑢𝜆,𝜅0) ⩽𝑐0|𝑢𝜆,𝜅0 |𝑞−2𝑢𝜆̃,𝜅0

⩽𝑐0
𝑅(𝑁−2)(𝑞−2)

|𝑥|(𝑁−2)(𝑞−2)

⃦⃦⃦
𝑢𝜆,𝜅0

⃦⃦⃦𝑞−2

∞
𝑢𝜆,𝜅0

⩽𝑐0𝜅
𝑞−2
0

𝑅(𝑁−2)(𝑞−2)

|𝑥|(𝑁−2)(𝑞−2)𝑢𝜆,𝜅0 , ∀ |𝑥| ⩾ 𝑅. (3.124)
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Now, by fixing 𝑅 > 1, it follows from (𝑉1) that

𝑅(𝑁−2)(𝑞−2)

|𝑥|(𝑁−2)(𝑞−2) ⩽
𝑉 (𝑥)
Λ(𝑅) , ∀ |𝑥| ⩾ 𝑅,

which jointly with (3.124) implies that

𝑓(𝑢𝜆,𝜅0) ⩽ ℓ0𝑐0𝜅
𝑞−2
0

𝑉 (𝑥)
Λ(𝑅)ℓ0

𝑢𝜆,𝜅0 , ∀ |𝑥| ⩾ 𝑅. (3.125)

Thus, if Λ(𝑅) ⩾ Λ0 := 𝑐0ℓ0𝜅
𝑞−2
0 , then we conclude that

𝑓(𝑢𝜆,𝜅0) ⩽ 𝑉 (𝑥)
ℓ0

𝑢𝜆,𝜅0 , ∀ |𝑥| ⩾ 𝑅 and ∀𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) (3.126)

with ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0. Consequently, by (3.13), (3.18), (3.19), (3.123), (3.126) and since 𝑢𝜆,𝜅0

is a critical point of 𝒥𝜅0 , we reach

0 = 𝒥 ′
𝜅0(𝑢𝜆,𝜅0)𝜑 =

∫︁
R𝑁

∇𝑢𝜆,𝜅0∇𝜑 d𝑥+
∫︁
R𝑁
𝑉 (𝑥)𝑢𝜆,𝜅0𝜑 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢𝜆,𝜅0)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢𝜆,𝜅0)

|𝑥|𝛼
𝜑 d𝑥−

∫︁
R𝑁
ℎ𝜅0(𝑥, 𝑢𝜆,𝜅0)𝜑 d𝑥

=
∫︁
R𝑁

∇𝑢𝜆,𝜅0∇𝜑 d𝑥+
∫︁
R𝑁
𝑉 (𝑥)𝑢𝜆,𝜅0𝜑 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝜆,𝜅0)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝜆,𝜅0)

|𝑥|𝛼
𝜑 d𝑥−

∫︁
R𝑁
𝜆(𝑥)|𝑢𝜆,𝜅0 |𝑞−1𝜑 d𝑥,

for all 𝜑 ∈ 𝐸. Therefore, we conclude that 𝑢𝜆,𝜅0 is a solution of Problem (𝑃 ), which finishes
the proof of Theorem 3.1.2.

Proof of the Corollary 3.1.3. Now, by applying the same ideas from the previous sections,
we reconsider Problems (𝐴𝜅)-(𝐵𝜅) with 𝛼 = 0, 𝜆(𝑥) ≡ 𝜆, and 𝑞 ⩾ 2*. Additionally, we
assume that 𝜇 satisfies 0 < 𝜇 < 𝑁+2

2 , and in the truncation (3.13), we replace 2*
𝛼,𝜇 with 2*

and apply the growth condition given in (ℎ1), |ℎ𝜅(𝑥, 𝑡)| ⩽ 𝜆𝜅𝑞−2*
𝑡2

*−1. We emphasize that
the functional 𝒥𝜅 still verifies, with natural modifications, Lemmas 3.2.1, 3.2.2, 3.2.3, 3.2.4,
3.2.6, 3.2.7, 3.2.10, 3.2.11 and 3.2.12. Thus, arguing as Lemma 3.2.13, we obtain that there
exists 𝐶* > 0 such that 𝑢𝜆,𝜅 is solution of auxiliary Problem (𝐵𝜅) i.e., 𝑢𝜆,𝜅 is a solution of

−Δ𝑢+ 𝑉 (𝑥)𝑢 = 𝒦(𝑢)𝑔(𝑥, 𝑢) + ℎ𝜅(𝑥, 𝑢), in R𝑁 ,

satisfying ‖𝑢𝜆,𝜅‖2* ⩽ 𝐶*, where 𝒦(𝑢) :=
∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑥− 𝑦|𝜇

d𝑦. Moreover, by Lemma 3.2.4, there
exists 𝐶1 such that ‖𝒦(𝑢𝜆,𝜅)‖∞ ⩽ 𝐶1. Now, arguing as Lemma 3.2.14, we will show that
𝑢𝜆,𝜅 belongs to 𝐿∞(R𝑁) and we will obtain a convenient 𝐿∞−estimate for 𝑢𝜆,𝜅. In fact, in
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view of ‖𝒦(𝑢𝜆,𝜅)‖∞ ⩽ 𝐶1, |𝑔(𝑥, 𝑢𝜆,𝜅)| ⩽ 𝑐0|𝑢𝜆,𝜅|2*−1, |ℎ𝜅(𝑥, 𝑢𝜆,𝜅)| ⩽ 𝜆𝜅𝑞−2*
𝑢2*−1

𝜆,𝜅 , from of
(3.87)-(3.88) in Lemma 3.2.14 with 𝛼 = 0, we obtain

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽2𝑆−1𝛽2
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

+ 2𝑆−1𝛽2
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥

⩽2𝑆−1𝛽2
(︂
𝐶1𝑐0

∫︁
R𝑁

|𝑢|2*
𝑢

2(𝛽−1)
𝐿 d𝑥+ 𝜆𝜅𝑞−2*

∫︁
R𝑁

|𝑢|2*
𝑢

2(𝛽−1)
𝐿 d𝑥

)︂
⩽𝐶𝛽2

(︁
1 + 𝜆𝜅𝑞−2*)︁ ∫︁

R𝑁
|𝑢|2*

𝑢
2(𝛽−1)
𝐿 d𝑥.

Adapting the proof in Lemma 3.2.14, we obtain constants 𝐶1 and 𝑀̂1 such that

‖𝑢𝜆,𝜅‖∞ ⩽
(︁
1 + 𝜆𝜅𝑞−2*)︁𝐶1

𝑀̂1, (3.127)

and fixing 𝜅0 > 𝑀̂1, we can obtain 𝜆0 > 0 such that ‖𝑢𝜆,𝜅0‖∞ ⩽ 𝜅, for all 𝜆 ∈ [0, 𝜆0).
Therefore, it follows from definition of ℎ𝜅0 that

ℎ𝜅0(𝑢𝜆,𝜅0) = 𝜆|𝑢𝜆,𝜅0|𝑞−2𝑢𝜆,𝜅0 .

Finally, the proof of Theorem 3.1.3 follows through adaptations of the arguments in Subsection
2.3.

3.3 THE SUPERCRITICAL NONLOCAL PERTURBATION

In this section, we aim to prove Theorem 3.1.4. Thus, we will study the existence of
solutions for the following equation involving Stein-Weiss term in R𝑁 with supercritical
nonlocal term

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛼

+ 𝜆

𝑞

(︃∫︁
R𝑁

|𝑢|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑞−2𝑢

|𝑥|𝛼
, (𝑃𝜆)

where 2*
𝛼,𝜇 ⩽ 𝑞, 𝜆 ⩾ 0 is a parameter and 𝑓 satisfies (𝑓1) − (𝑓3).

To avoid the repetition, we will only mention the results which are potentially different
from the case considered in Theorem 3.1.2. We start by noting that for any 𝑢 ∈ 𝒟1,2(R𝑁), it
follows by Proposition 1.0.2 that

∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑦)|𝑞|𝑢(𝑥)|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦d𝑥 < ∞, if 𝑞 = 2*

𝛼,𝜇,
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i.e., we cannot apply variational methods directly because the functional ℱ̃ : 𝐸 → R,

associated with problem (𝑃𝜆)

ℱ̃(𝑢) =1
2

∫︁
R𝑁

(|∇𝑢|2 + 𝑉 (𝑥)|𝑢|2) d𝑥− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

d𝑥

− 𝜆

2𝑞

∫︁
R𝑁

(︃∫︁
R𝑁

|𝑢(𝑦)|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢(𝑥)|𝑞

|𝑥|𝛼
d𝑥,

is not well defined on 𝐸 unless 𝑞 = 2*
𝛼,𝜇.

3.3.1 The auxiliary Problems (𝐴𝜆,𝜅) and (𝐵̃𝜆,𝜅)

In order to apply variational methods, we will need to consider the following truncation in
the nonlocal term, namely, given 𝜅 ∈ N, we define the function ℎ𝜅 : R → R by

ℎ𝜅(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

𝑡𝑞−1, if 0 ⩽ 𝑡 ⩽ 𝜅,

𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇−1, if 𝑡 ⩾ 𝜅.

(3.128)

It is not hard to check that ℎ𝜅 admits the following properties:

|ℎ𝜅(𝑡)| ⩽ 𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇−1, ∀ 𝑡 ⩾ 0, (ℎ′

1)

Moreover, denoting 𝐻𝜅(𝑡) =
∫︀ 𝑡

0 ℎ𝜅(𝜏) d𝜏 , there holds

𝐻𝜅(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,
𝑡𝑞

𝑞
, if 0 ⩽ 𝑡 ⩽ 𝜅,

1
2*

𝛼,𝜇
𝜅𝑞−2*

𝛼,𝜇𝑡2
*
𝛼,𝜇 +

(︃
1
𝑞

− 1
2*

𝛼,𝜇

)︃
𝜅𝑞, if 𝑡 ⩾ 𝜅.

(3.129)

and
|𝐻𝜅(𝑡)| ⩽ 1

2*
𝛼,𝜇

𝑘𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇 , ∀ 𝑡 ⩾ 0. (𝐻 ′

1)

By using (3.128), (3.129) and the fact that 𝑞 ⩾ 2*
𝛼,𝜇 > 𝜃, one may check that

ℎ𝜅(𝑡)𝑡− 𝜃𝐻𝜅(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑡 ⩽ 0,

𝑡𝑞
(︃
𝑞 − 𝜃

𝑞

)︃
, if 0 ⩽ 𝑡 ⩽ 𝜅,

𝜅𝑞−2*
𝛼,𝜇𝑡2

*
𝛼,𝜇

(︂
1 − 𝜃

2*
𝛼,𝜇

)︂
+ 𝜃𝜅𝑞

(︃
1

2*
𝛼,𝜇

− 1
𝑞

)︃
, if 𝑡 ⩾ 𝜅,

⩾0, (3.130)
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which ensures the following Ambrosetti-Rabinowitz type condition

ℎ𝜅(𝑡)𝑡− 𝜃𝐻𝜅(𝑡) ⩾ 0, ∀ 𝑡 ∈ R. (3.131)

Thus, we have the following auxiliary problem in R𝑁

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛼

+ 𝜆

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢)
|𝑥|𝛼

. (𝐴𝜆,𝜅)

The energy functional ℐ̃𝜆,𝜅 : 𝐸 → R associated with Problem (𝐴𝜆,𝜅) is given by

ℐ̃𝜆,𝜅(𝑢) =1
2

∫︁
R𝑁

(|∇𝑢|2 + 𝑉 (𝑥)|𝑢|2) d𝑥− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

d𝑥

− 𝜆

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐻𝜅(𝑢)
|𝑥|𝛼

d𝑥

and in view of assumption (𝐻 ′
1), ℐ̃𝜆,𝜅 is well defined. It is evident that if 𝑢 is a solution of

Problem (𝐴𝜆,𝜅) and satisfies the estimate |𝑢(𝑥)| ⩽ 𝜅 for all 𝑥 ∈ R𝑁 , then 𝑢 is a solution of
the original problem (𝑃𝜆).

We also need to introduce truncation (3.18), explored in Subsection 3.2.1. Hence, we
introduce another auxiliary problem in R𝑁 , namely,

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
+ 𝜆

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢)
|𝑥|𝛼

. (𝐵̃𝜆,𝜅)

Thus, we say that a function 𝑢 ∈ 𝐸 is a weak solution of the auxiliary Problem (𝐵̃𝜆,𝜅), if
satisfies∫︁

R𝑁
(∇𝑢∇𝜑+ 𝑉 (𝑥)𝑢𝜑) d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝜑 d𝑥

− 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐻𝜅(𝑢)
|𝑥|𝛼

𝜑 d𝑥 = 0, (3.132)

for all 𝜑 ∈ 𝐸. The energy functional associated with Problem (𝐵̃𝜆,𝜅) is given by

𝒥𝜆,𝜅(𝑢) = 1
2

∫︁
R𝑁

(|∇𝑢|2 + 𝑉 (𝑥)|𝑢|2) d𝑥− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢)

|𝑥|𝛼
d𝑥

− 𝜆

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐻𝜅(𝑢)
|𝑥|𝛼

d𝑥.

In view of our assumptions one may conclude that 𝒥𝜆,𝜅 is well defined, belongs to 𝐶1(𝐸,R)

and its derivative given by

𝒥 ′
𝜆,𝜅(𝑢)𝜑 =

∫︁
R𝑁

(∇𝑢∇𝜑+ 𝑉 (𝑥)𝑢𝜑) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝜑 d𝑥

− 𝜆
∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢)
|𝑥|𝛼

𝜑 d𝑥.
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Thus, weak solutions of (𝐵̃𝜆,𝜅) are precisely the critical points of 𝒥𝜆,𝜅.
It is also worth mentioning here that the auxiliary Problem (𝐵̃𝜆,𝜅) is strongly related to

Problem (𝐴𝜆,𝜅). In fact, if 𝑢 is a solution of (𝐵̃𝜆,𝜅) which verifies ℓ𝑓(𝑢(𝑥)) ⩽ 𝑉 (𝑥)𝑢(𝑥) for
all |𝑥| ⩾ 𝑅, then 𝑔(𝑥, 𝑢) = 𝑓(𝑢) and 𝑢 is also a solution for Problem (𝐴𝜆,𝜅), which motivates
us to study the auxiliary Problem (𝐵̃𝜆,𝜅). The crucial role here is that working on Problem
(𝐵̃𝜆,𝜅) we are able to restore some compactness.

3.3.2 Existence of solutions for the auxiliary Problem (𝐵̃𝜆,𝜅)

Next, using the same arguments explored in proof of Lemma 3.2.1, we can show that 𝒥𝜆,𝜅

verifies the mountain pass geometry. Consequently, there is a (𝑃𝑆)𝑐𝜆,𝜅
−sequence (𝑢𝑛)𝑛 ⊂ 𝐸

such that
𝒥𝜆,𝜅(𝑢𝑛) → 𝑐𝜆,𝜅 and 𝒥 ′

𝜆,𝜅(𝑢𝑛) → 0,

where 𝑐𝜆,𝜅 is the mountain pass level characterized by

0 < 𝑐𝜆,𝜅 := inf
𝛾∈Γ̃

max
𝑡∈[0,1]

𝒥𝜆,𝜅(𝛾(𝑡)) (3.133)

where
Γ̃ :=

{︂
𝛾 ∈ 𝐶([0, 1], 𝐸) : 𝛾(0) = 0 and 𝒥𝜆,𝜅(𝛾(1)) < 0

}︂
.

Now, we introduce the functional 𝐼0 : 𝐻1
0 (𝐵1(0)) → R given by

ℐ̃0(𝑢) = 1
2

∫︁
𝐵1(0)

|∇𝑢|2 d𝑥+ 1
2

∫︁
𝐵1(0)

𝑚|𝑢|2 d𝑥− 1
2

∫︁
𝐵1(0)

(︃∫︁
𝐵1(0)

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛼

d𝑥,

where 𝑚 = max|𝑥|⩽1 𝑉 (𝑥). Denote by 𝑑 the level of the mountain pass value defined by

𝑑 := inf
𝑢∈𝐻1

0 (𝐵1(0))
max
𝑡⩾0

ℐ0(𝑡𝑢) ⩾ 𝑐𝜆,𝜅.

Analogously to Lemma 3.2.2, we have the following result.

Lemma 3.3.1. Assume that conditions (𝑓3) and (3.130) hold. Then,

1
𝜃

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑢 d𝑥− 1

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢)

|𝑥|𝛼
d𝑥 ⩾ 0

(3.134)

and

1
𝜃

∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢)
|𝑥|𝛼

𝑢 d𝑥− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐻𝜅(𝑢)
|𝑥|𝛼

d𝑥 ⩾ 0.

(3.135)
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Proof. The inequality in (3.134) has already been proved in Lemma 3.2.2. Now, by (3.130),
we have that (3.135) holds true.

Arguing as in the proof Lemma 3.2.3, it follows that (𝑢𝑛)𝑛 is bounded in 𝐸 with

‖𝑢𝑛‖2 ⩽
2𝜃
𝜃 − 2(𝑑+ 1) =: 𝐶, ∀𝑛 ∈ N

and by (3.4), we get the estimate
(︂∫︁

R𝑁
|𝑢𝑛|2* d𝑥

)︂ 2
2*

⩽ 𝑆−1‖∇𝑢𝑛‖2
2 ⩽ 𝑆−1𝐶 =: 𝐶*, ∀𝑛 ∈ N. (3.136)

Moreover, the functional 𝒥𝜆,𝜅 still verifies, with natural modifications, Lemmas 3.2.6, 3.2.7,
3.2.10, 3.2.11, 3.2.14 and 3.2.16. Indeed, in Lemma 3.2.6, we replace (3.51) by

lim
𝑛→∞

∫︁
𝐵𝑅̄(0)

(︃∫︁
R𝑁

𝐻𝜅(𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢𝑛)

|𝑥|𝛼
(𝑢𝑛 − 𝑢) d𝑥 = 0.

This limit is proved by arguing as in the proof of (3.50) in Lemma 3.2.6, given that there
exists 𝐶 > 0 such that⃦⃦⃦⃦

⃦⃦ ∫︁
R𝑁

𝐻𝜅(𝑢𝑛(𝑦))
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦

⃦⃦⃦⃦
⃦⃦

2𝑁
𝜇+2𝛼

⩽ 𝐶, ∀𝑛 ∈ N. (3.137)

Now, (3.80) of Lemma 3.2.10 we replace by

lim
𝑛→∞

∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢𝑛)

|𝑥|𝛼
(𝑢𝑛 − 𝑢) d𝑥 = 0

and (3.64) in Lemma 3.2.7 is true with

𝒬3,𝜆,𝜅(𝑛, 𝑟) := 𝜆

⃒⃒⃒⃒
⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢𝑛)

|𝑥|𝛼
𝑢𝑛𝜂

2
𝑟 d𝑥

⃒⃒⃒⃒
⃒⃒,

where we define 𝜂𝑟 in (3.55).
To derive estimates analogous to (3.69), (3.76) and (3.77), we use the assumption (𝐻 ′

1) and
(ℎ′

1) instead of (ℎ1), as follows, respectively. Utilizing (3.52) and applying Hölder’s inequality,
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in combination with (3.4) and (3.136), we obtain the following

𝒬3,𝜆,𝜅(𝑛, 𝑟) ⩽𝜆

⃦⃦⃦⃦
⃦⃦ ∫︁

R𝑁

𝐻𝜅(𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦

⃦⃦⃦⃦
⃦⃦

2𝑁
𝜇+2𝛼

(︂∫︁
R𝑁

|ℎ𝜅(𝑢𝑛)𝑢𝑛𝜂
2
𝑟 |

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶𝜅𝑞−2*
𝛼,𝜇𝜆

(︂∫︁
R𝑁

(|𝑢𝑛|2*
𝛼,𝜇−2|𝑢𝑛|2𝜂2

𝑟)
2𝑁

2𝑁−2𝛼−𝜇 d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

⩽𝐶𝜅𝑞−2*
𝛼,𝜇𝜆𝐶

2*
𝛼,𝜇−2

2*

(︂∫︁
R𝑁
𝑢2*

𝑛 𝜂
2*

𝑟 d𝑥
)︂ 2

2*

⩽𝐶𝜅𝑞−2*
𝛼,𝜇𝜆𝐶

2*
𝛼,𝜇−2

2* 𝑆−1
∫︁
R𝑁

|𝜂𝑟∇𝑢𝑛 + 𝑢𝑛∇𝜂𝑟|2 d𝑥

⩽𝐶𝜅𝑞−2*
𝛼,𝜇𝜆𝐶

2*
𝛼,𝜇−2

2* 𝑆−122
∫︁
R𝑁
𝜂2

𝑟(|∇𝑢𝑛|2 + 𝑉 (𝑥)|𝑢𝑛|2) d𝑥

+ 𝐶𝜅𝑞−2*
𝛼,𝜇𝜆𝐶

2*
𝛼,𝜇−2

2* 𝑆−122
∫︁
R𝑁
𝑢2

𝑛|∇𝜂𝑟|2 d𝑥

=:𝒬1
3,𝜆,𝜅(𝑛, 𝑟) + 𝒬2

3,𝜆,𝜅(𝑛, 𝑟).

To estimate 𝒬1
3,𝜆,𝜅(𝑛, 𝑟) and 𝒬2

3,𝜆,𝜅(𝑛, 𝑟), we argue as in the proof of the Lemma 3.2.7. Then,
similarly, for each 𝜅 > 0, we may obtain 𝜆*

0 = 𝜆*
0(𝜅) > 0 such that

4𝜆𝐶𝜅2(𝑞−2*
𝛼,𝜇)𝐶

2*
𝛼,𝜇−2

2* 𝑆−1 ⩽
1
2 , ∀𝜆 ∈ [0, 𝜆*

0]. (3.138)

The limits on (3.62) and (3.63) are replaced by the following limits

lim sup
𝑛→∞

𝜆
∫︁

𝐵𝑐
2𝑟(0)

(︃∫︁
R𝑁

𝐻𝜅(𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢𝑛)

|𝑥|𝛼
𝑢𝑛 d𝑥 ⩽ 𝐶𝜆,𝜅𝜀,

lim sup
𝑛→∞

𝜆
∫︁

𝐵𝑐
2𝑟(0)

(︃∫︁
R𝑁

𝐻𝜅(𝑢𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢𝑛)

|𝑥|𝛼
𝑢 d𝑥 ⩽ 𝐶𝜆,𝜅𝜀

and which are verified in a similar way to the limits in (3.60) and (3.61).
By adapting the arguments explored in the proof of Lemmas 3.2.11 and 3.2.12, we see

that the functional 𝒥𝜆,𝜅 satisfies the (𝑃𝑆)𝑐𝜆,𝜅
−condition and consequently, the functional has

a nonnegative critical point 𝑢𝜆,𝜅 ∈ 𝐸 such that 𝒥𝜆,𝜅(𝑢𝜆,𝜅) = 𝑐𝜆,𝜅, i.e., 𝑢𝜆,𝜅 is a nonnegative
mountain pass solution for Problem (𝐵̃𝜆,𝜅).

Arguing as in the proof of Lemma 3.2.13, we can obtain similar estimates involving the
norm of the solution of the auxiliary Problem (𝐵̃𝜆,𝜅). Then, there exist constants 𝑀̃ (which
depends only on 𝑁, 𝜃, 𝜇, 𝛼, 𝑝,𝑚 and independent of ℓ, 𝜆, 𝑘 and 𝑅) and 𝜆̃*

0 := 𝜆̃*
0(𝜅) > 0 such

that
‖𝑢𝜆,𝜅‖2 ⩽

2𝜃
𝜃 − 2𝑑 =: 𝑀̃ and ‖𝑢𝜆,𝜅‖2

2* ⩽ 𝑆−1𝑀̃, ∀𝜆 ∈ [0, 𝜆̃*
0]. (3.139)

In order to obtain the 𝐿∞–estimate for the solution 𝑢𝜆,𝜅 of auxiliary Problem (𝐵̃𝜆,𝜅), we will
make the following adaptations to the proof of Lemma 3.2.14. We start by replacing estimate
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(3.88) by
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽2𝑆−1𝛽2
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑢𝑢

2(𝛽−1)
𝐿 d𝑥 (3.140)

+ 2𝑆−1𝛽2
∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢)
|𝑥|𝛼

𝑢𝑢
2(𝛽−1)
𝐿 d𝑥. (3.141)

To estimate the right-hand side of (3.140), we combine (3.25), Proposition 1.0.2, the Hölder’s
inequality and (3.139), as follows, for all 𝜆 ∈ [0, 𝜆̃*

0],∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
𝑔(𝑥, 𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥 ⩽ 𝐶2

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

and similarly, we estimate (3.141) using (𝐻 ′
1)-(ℎ′

1), as seen
∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
ℎ𝜅(𝑢)𝑢𝑢2(𝛽−1)

𝐿 d𝑥 ⩽

⩽𝐶2𝜅
2(𝑞−2*

𝛼,𝜇)𝜆
(︂∫︁

R𝑁
(|𝑢|2*

𝛼,𝜇𝑢
2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

,

where 𝐶2 := 2𝑐2
0

𝜃
𝐶(𝑁,𝛼, 𝜇)(𝑆−1𝑀̃)

2*
𝛼,𝜇
2 and 𝐶2 := 𝑞

2*
𝛼,𝜇
𝐶(𝑁,𝛼, 𝜇)(𝑆−1𝑀̃)

2*
𝛼,𝜇
2 , which jointly

with (3.140)-(3.141) and setting 𝐶 := 2𝑆max
{︁
𝐶2, 𝐶2

}︁
, yields that

(︂∫︁
R𝑁

|𝑤𝐿|2* d𝑥
)︂ 2

2*

⩽𝐶𝛽2(1 + 𝜅2(𝑞−2*
𝛼,𝜇)𝜆)

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇𝑢

2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

.

By combining with (3.92)-(3.94), we derive
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽(1 + 𝜅2(𝑞−2*
𝛼,𝜇)𝜆)𝐶𝛽2

(︂∫︁
R𝑁

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

+ (1 + 𝜅2(𝑞−2*
𝛼,𝜇)𝜆)𝐶𝛽2

(︃∫︁
{|𝑢|>𝐾}

|𝑢|2*d𝑥
)︃ 2*

𝛼,𝜇−2
2* (︂∫︁

R𝑁
|𝑤𝐿|2*d𝑥

)︂ 2
2*

.

(3.142)

Let 𝐾 > 0 be sufficiently large such that

(1 + 𝜅2(𝑞−2*
𝛼,𝜇)𝜆)

(︃∫︁
{|𝑢|>𝐾}

|𝑢|2*d𝑥
)︃ 2*

𝛼,𝜇−2
2*

⩽
1

2𝐶𝛽2 . (3.143)

Next, combining (3.143) with (3.142), one has
(︂∫︁

R𝑁
|𝑤𝐿|2* d𝑥

)︂ 2
2*

⩽(1 + 𝜅2(𝑞−2*
𝛼,𝜇)𝜆)𝐶𝛽2

(︂∫︁
R𝑁

(|𝑢|2𝑢2(𝛽−1)
𝐿 )

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

. (3.144)

Claim. 𝑢 ∈ 𝐿2*𝛽(R𝑁) for 𝛽 = 2*
𝛼,𝜇

2 , i.e.,
∫︁
R𝑁

|𝑢|2* 2*
𝛼,𝜇
2 d𝑥 < ∞.
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In fact, since 𝑢𝐿 ⩽ |𝑢| and recalling 𝑤𝐿 = 𝑢𝑢
(𝛽−1)
𝐿 , it follows from (3.144) that(︃∫︁

R𝑁
(|𝑢|𝑢

2*
𝛼,𝜇−2

2
𝐿 )2*d𝑥

)︃ 2
2*

⩽(1 + 𝜅2(𝑞−2*
𝛼,𝜇)𝜆)𝐶𝛽2

(︂∫︁
R𝑁

|𝑢|2*d𝑥
)︂ 2𝑁−2𝛼−𝜇

2𝑁

⩽𝐶(𝑁, 𝛽, 𝑆,𝑀, 𝛼, 𝜇, 𝜅, 𝜆) < ∞.

By Fatou’s lemma, taking the limit as 𝐿 → ∞, we conclude that∫︁
R𝑁

|𝑢|2* 2*
𝛼,𝜇
2 d𝑥 < ∞,

which proves the claim. Now, using 𝑢𝐿 ⩽ |𝑢| again and by passing to the limit as 𝐿 → ∞ in
(3.144) and arguing as in (3.105), we obtain

‖𝑢‖2* 𝛽 ⩽ [𝐶 1
2 (1 + 𝜅2(𝑞−2*

𝛼,𝜇)𝜆) 1
2 ]

1
𝛽 𝛽

1
𝛽 ‖𝑢‖𝑞*

𝛼,𝜇𝛽, ∀𝜆 ∈ [0, 𝜆̃*
0], (3.145)

where 𝑞*
𝛼,𝜇 := 22*

2*
𝛼,𝜇

.
By following steps 1, 2 and 3 in (3.107)-(3.111) of Lemma 3.2.14 and applying inequality

(3.145), we obtain the desired 𝐿∞−estimate. The resulting estimate is as follows:

‖𝑢𝜆,𝑘‖∞ ⩽ (1 + 𝜅2(𝑞−2*
𝛼,𝜇)𝜆)

1
2(𝛾1−1)𝑀1‖𝑢𝜆,𝑘‖2* , ∀𝜆 ∈ [0, 𝜆̃*

0],

where 𝑀1 = 𝐶
1

2(𝛾1−1 )
𝛾

𝛾1
(𝛾1−1)2
1 .

Finally, arguing as in (3.111) and by (3.139), fixing 𝜅̃0 > 𝑀1(𝑆𝑀̃) 1
2 , we may obtain

𝜆̃**
0 ∈ (0, 𝜆̃*

0], such that

‖𝑢𝜆,𝜅̃0‖∞ ⩽ (1 + 𝜅̃
𝑞−2*

𝛼,𝜇

0 𝜆)
1

𝛾1−1𝑀1(𝑆𝑀̃) 1
2 ⩽ 𝜅̃0, ∀𝜆 ∈ [0, 𝜆̃**

0 ). (3.146)

By applying the reasoning from Remark 3.2.15, we conclude that for any 𝜆 ∈ [0, 𝜆̃**
0 ], 𝑢𝜆,𝜅̃0 is

positive solution for the problem (𝐵𝜆,𝜅̃0). Furthermore, by the definition of ℎ𝜆,𝜅̃0 , we have(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢)
|𝑥|𝛼

= 𝜆

𝑞

(︃∫︁
R𝑁

|𝑢|𝑞

|𝑦|𝛼|𝑥− 𝑦|𝜇
d𝑦
)︃

|𝑢|𝑞−2𝑢

|𝑥|𝛼
, 𝑥 ∈ R𝑁 . (3.147)

Proof of Theorem 3.1.4. Next, using the same arguments explored in Section 3.2, we can
show the existence of solution for the original Problem (𝑃𝜆). Thus, given that (3.147) holds
true, it is sufficient to prove that there exist 𝑅 > 1 and 𝜆0 ∈ (0, 𝜆̃**

0 ] such that following
inequality holds:

𝑓(𝑢𝜆,𝜅̃0) ⩽ 𝑉 (𝑥)
ℓ0

𝑢𝜆,𝜅̃0 , ∀ |𝑥| ⩾ 𝑅 and ∀𝜆 ∈ [0, 𝜆0),

where from now on we will fix 𝜅̃0 as in (3.146). We start with the following result similar to
Lemma 3.2.16.
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Lemma 3.3.2. For each 𝑅 > 1 and 𝜆 > 0, let 𝑢𝜆,𝜅̃0 be a solution for the auxiliary Problem

(𝐵̃𝜆,𝜅̃0), such that 𝒥𝜆̃,𝜅0
(𝑢𝜆,𝜅̃0) = 𝑐𝜆,𝜅̃0 . Then, there exists 𝜆0 ∈ (0, 𝜆̃**

0 ] such that

𝑢𝜆,𝜅̃0 ⩽
𝑅𝑁−2

|𝑥|𝑁−2

⃦⃦⃦
𝑢𝜆,𝜅̃0

⃦⃦⃦
∞

⩽
𝑅𝑁−2

|𝑥|𝑁−2 𝜅̃0, ∀ |𝑥| ⩾ 𝑅 and ∀𝜆 ∈ [0, 𝜆0).

Proof. For the sake of simplicity, we denote 𝑢 = 𝑢𝜆,𝜅̃0 . By using 𝑤, the same function defined
in (3.113), as test function in (3.132), we obtain∫︁

R𝑁
(∇𝑢∇𝑤 + 𝑉 (𝑥)𝑢𝑤) d𝑥 =

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑤 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
ℎ𝜅(𝑢)
|𝑥|𝛼

𝑤 d𝑥. (3.148)

By (ℎ′
1) and using Hölder’s inequality twice, from (3.137) we obtain the following estimate
∫︁
R𝑁

(︃∫︁
R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦
)︃
ℎ𝜅(𝑢)𝑤 d𝑥 ⩽

⃦⃦⃦⃦
⃦⃦ ∫︁

R𝑁

𝐻𝜅(𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼

d𝑦

⃦⃦⃦⃦
⃦⃦

2𝑁
𝜇+2𝛼

×
(︂∫︁

R𝑁
|ℎ𝜅(𝑢)𝑤|

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶𝜅𝑞−2*
𝛼,𝜇𝜆

(︂∫︁
R𝑁

(|𝑢|2*
𝛼,𝜇−2𝑢𝑤)

2𝑁
2𝑁−2𝛼−𝜇 d𝑥

)︂ 2𝑁−2𝛼−𝜇
2𝑁

⩽𝐶𝜅𝑞−2*
𝛼,𝜇𝜆

(︂∫︁
R𝑁

|𝑢|2* d𝑥
)︂ 2*

𝛼,𝜇−2
2*

(︂∫︁
R𝑁

|𝑢𝑤|
2*
2 d𝑥

)︂ 2
2*

=:𝐼.

According to Young’s inequality 2𝑎1𝑏1 ⩽ 𝑎2
1+𝑎2

2, and applying the Sobolev embedding theorem
along with (3.139), it follows from (3.91) that

𝐼 ⩽𝐶𝜆𝜅
𝑞−2*

𝛼,𝜇

0

(︂∫︁
R𝑁

|𝑢|2* d𝑥
)︂ 2*−2

2* 1
2

(︂∫︁
R𝑁

|𝑢|2* d𝑥+
∫︁
R𝑁

|𝑤|2* d𝑥
)︂ 2

2*

⩽
1
2𝐶𝜆𝜅

𝑞−2*
𝛼,𝜇

0 (𝑆−1)
2*−2

2 𝑀̃
2*−2

2

(︂
(𝑆−1) 2*

2 𝑀̃
2*
2 + (𝑆−1) 2*

2 ‖∇𝑤‖
2*
2

2

)︂ 2
2*

⩽
1
2𝐶𝜆𝜅

𝑞−2*
𝛼,𝜇

0 (𝑆−1)
2*−2

2 𝑀̃
2*−2

2
(︁
𝑆−1𝑀̃ + 𝑆−1‖∇𝑤‖2

2

)︁
.

Now, arguing with the proof of Lemma 3.2.16, we reach the estimate

‖∇𝑤‖2
2−

1
2𝐶𝜆𝜅

𝑞−2*
𝛼,𝜇

0 (𝑆−1)
2*−2

2 𝑀̃
2*−2

2
(︁
𝑆−1𝑀̃ + 𝑆−1‖∇𝑤‖2

2

)︁
⩽
∫︁

𝐵𝑐
𝑅(0)

(︃
𝒦(𝑢)(𝑥)

ℓ0
− 1

)︃
𝑉 (𝑥)𝑢𝑤 d𝑥 ⩽ 0,

which is similar to estimate (3.115). Follow the result arguing as in (3.119)-(3.120).

Finally, in order to conclude the proof of Theorem 3.1.4, it is enough to argue as in
(3.122)-(3.126).
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3.4 THE UPPER CRITICAL STEIN-WEISS CASE WITH SUPERCRITICAL LOCAL AND
NONLOCAL PERTURBATIONS

In the proof of Theorem 3.1.5, we will only prove item (𝜓1), because the proof of item
(𝜓2) is verified in an analogous way. Thus, we study the existence of solutions for the following
equation involving Stein-Weiss type critical nonlinearity in R𝑁 with supercritical term (𝜓1),
i.e.,

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛼

+ 𝜆(𝑥)|𝑢|𝑞−2𝑢, (𝑄)

where 𝐹 (𝑢) = |𝑢|2
*
𝛼,𝜇

2*
𝛼,𝜇

, 𝑓(𝑢) = |𝑢|2*
𝛼,𝜇−2𝑢, 𝑞 ⩾ 2*

𝛼,𝜇, 𝜆(𝑥) ⩾ 0 and the potential 𝑉 (𝑥) is a
radial function, i.e., 𝑉 (|𝑥|) = 𝑉 (𝑥), for all 𝑥 ∈ R𝑁 satisfying (𝑉2).

We focus on the results which are potentially different from the case involving the function
𝑓 with subcritical growth. We start by noting that due to the presence of 𝑉 (|𝑥|), we replace
the space 𝒟1,2(R𝑁) by 𝒟1,2

rad(R𝑁) and consider

𝐸rad :=

⎧⎨⎩𝑢 ∈ 𝒟1,2
rad(R𝑁) :

∫︁
R𝑁
𝑉 (𝑥)|𝑢|2 d𝑥 < ∞

⎫⎬⎭.
Associated with (𝑄), we consider the energy functional ℐ : 𝐸rad → R defined by

ℐ(𝑢) =1
2

∫︁
R𝑁

(|∇𝑢|2 + 𝑉 (𝑥)|𝑢|2) d𝑥− 1
2(2*

𝛼,𝜇)2

∫︁
R𝑁

∫︁
R𝑁

|𝑢(𝑦)|2*
𝛼,𝜇 |𝑢(𝑥)|2*

𝛼,𝜇

|𝑦|𝛼|𝑥− 𝑦|𝜇|𝑥|𝛼
d𝑦d𝑥

− 1
𝑞

∫︁
R𝑁
𝜆(𝑥)|𝑢|𝑞 d𝑥.

3.4.1 The auxiliary Problems (𝐴𝜅) and (𝐵̂𝜅)

Next, arguing with Subsection 3.2.1, we begin to consider functions (3.15)-(3.18) and the
respective auxiliary problems associated with each function,

−Δ𝑢+ 𝑉 (𝑥)𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢(𝑦))
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢(𝑥))

|𝑥|𝛼
+ ℎ𝜅(𝑥, 𝑢), in R𝑁 (𝐴𝜅)

and
−Δ𝑢+ 𝑉 (𝑥)𝑢 =

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
+ ℎ𝜅(𝑥, 𝑢), in R𝑁 (𝐵̂𝜅)

where 𝐹 (𝑢) = |𝑢|2
*
𝛼,𝜇

2*
𝛼,𝜇

, 𝑓(𝑢) = |𝑢|2*
𝛼,𝜇−2𝑢, 𝑞 ⩾ 2*

𝛼,𝜇. The energy functional associated with
problem (𝐵̂𝜅) is given by

𝒥𝜅(𝑢) = 1
2‖𝑢‖2 − 1

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑥, 𝑢)

|𝑥|𝛼
d𝑥−

∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢) d𝑥. (3.149)
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In view of our assumptions one may conclude that 𝒥𝜅 is well defined, belongs to 𝐶1(𝐸,R)

and its derivative is given by

𝒥 ′
𝜅(𝑢)𝑣 =

∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑉 (𝑥)𝑢𝑣) d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑥, 𝑢)

|𝑥|𝛼
𝑣 d𝑥

−
∫︁
R𝑁
ℎ𝜅(𝑥, 𝑢)𝑣 d𝑥.

Thus, weak solutions of (𝐵̂𝜅) are precisely the critical points of 𝒥𝜅.

3.4.2 Existence of solutions for the auxiliary Problem (𝐵̂𝜅)

The functional ℐ still verifies, with natural modifications, Lemmas 3.2.1, 3.2.2, 3.2.3,
3.2.6, 3.2.11 and 3.2.12. For modification to Lemma 3.2.7, see Remark 3.2.9. Thus, (𝐵̂𝜅) has
a nonnegative solution in 𝐸rad.

Following a similar reasoning as in the proofs of Lemmas 3.2.13 and 3.2.14, we can obtain
analogous estimates involving the norm of 𝑢𝜆,𝜅 and the 𝐿∞−estimate for 𝑢𝜆,𝜅. Then, by fixing
𝜅0 > 0, we can determine 𝜀0 := 𝜀0(𝜅) such that for all 𝜆 ∈ 𝐿

2𝑁
2𝛼+𝜇 (R𝑁) with ‖𝜆‖ 2𝑁

2𝛼+𝜇
⩽ 𝜀0,

we conclude
‖𝑢𝜆,𝜅0‖2 ⩽𝑀 and ‖𝑢𝜆,𝜅0‖∞ ⩽ 𝜅0, (3.150)

for some 𝑀 > 0.

Arguing with Remark 3.2.15, we conclude that for all 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) satisfying ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽

𝜀0, 𝑢𝜆,𝜅0 is a positive solution for the Problem (𝐵̂𝜅0). Moreover, by (3.150) and using the
definition of ℎ𝜅0 , we have

ℎ𝜅0(𝑢𝜆,𝜅0) = 𝜆(𝑥)|𝑢𝜆,𝜅0 |𝑞−2𝑢𝜆,𝜅0 . (3.151)

Proof of Theorem 3.1.5. To prove the existence of a solution for the original Problem (𝑄),
in light of (3.151), it is sufficient to show that there exists 𝑅 > 1 such that the following
inequality holds:

𝑓(𝑢𝜆,𝜅0) ⩽ 𝑉 (𝑥)
ℓ0

𝑢𝜆,𝜅0 , ∀ |𝑥| ⩾ 𝑅,

whenever ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0 for all 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁).

Fixing 𝑅 > 1, by hypothesis (𝑉2), we have

1
|𝑥|( 𝑁−2

2 )(2*
𝛼,𝜇−2)

⩽
𝑉 (𝑥)
𝑊 (𝑅) , ∀ |𝑥| ⩾ 𝑅. (3.152)
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In light of the Lemma 3.2.8 and (3.150), for all 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) satisfying ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0, we
deduce

|𝑢𝜆,𝜅0(𝑥)| ⩽ 𝐶
‖∇𝑢𝜆,𝜅0‖2

|𝑥|𝑁−2
2

⩽ 𝐶
𝑀

1
2

|𝑥|𝑁−2
2

=: 𝐶

|𝑥|𝑁−2
2
, ∀ |𝑥| ⩾ 𝑅.

This implies that

𝑓(𝑢𝜆,𝜅0(𝑥)) = |𝑢𝜆,𝜅0(𝑥)|2*
𝛼,𝜇−2𝑢𝜆,𝜅0 ⩽

𝐶2*
𝛼,𝜇−2

|𝑥|
(𝑁−2)

2 (2*
𝛼,𝜇−2)

𝑢𝜆,𝜅0(𝑥),

which jointly with (3.152), we see that

𝑓(𝑢𝜆,𝜅0(𝑥)) ⩽ ℓ0𝐶
2*

𝛼,𝜇−2𝑉 (𝑥)
ℓ0𝑊 (𝑅) 𝑢𝜆,𝜅0(𝑥), ∀|𝑥| ⩾ 𝑅,

for all 𝜆 ∈ 𝐿
2𝑁

2𝛼+𝜇 (R𝑁) satisfying ‖𝜆‖ 2𝑁
2𝛼+𝜇

⩽ 𝜀0. Thus, if 𝑊 (𝑅) ⩾ 𝑊0 := ℓ0𝐶
2*

𝛼,𝜇−2, then we
can infer that

𝑓(𝑢𝜆,𝜅0) ⩽ 𝑉 (𝑥)
ℓ0

𝑢𝜆,𝜅0 , ∀ |𝑥| ⩾ 𝑅

implying that ℐ ′(𝑢) = 0 in 𝐸rad. Now, using the principle of symmetric criticality due to Palais
(WILLEM, 1996, Theorem 1.28), we conclude that ℐ ′(𝑢) = 0 in 𝐸, thus finishing the proof of
Theorem 3.1.5.
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4 ON LINEARLY COUPLED SYSTEMS OF SCHRÖDINGER EQUATIONS

WITH DOUBLE WEIGHTED NONLOCAL INTERACTION PART AND

POTENTIAL VANISHING AT INFINITY

The main objective of this chapter is to study the following class of coupled systems with
the presence of the doubly weighted nonlocal interaction⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ𝑢1 + 𝑉1(𝑥)𝑢1 =
(︃∫︁

R𝑁

𝐹1(𝑢1)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓1(𝑢1)
|𝑥|𝛼

+ 𝜆(𝑥)𝑢2, in R𝑁

−Δ𝑢2 + 𝑉2(𝑥)𝑢2 =
(︃∫︁

R𝑁

𝐹2(𝑢2)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓2(𝑢2)
|𝑥|𝛼

+ 𝜆(𝑥)𝑢1, in R𝑁 ,

(𝑆)

where 𝑁 ≥ 3, 0 < 𝜇 < 𝑁 , 𝛼 ≥ 0, 0 < 2𝛼 + 𝜇 < min{𝑁+2
2 , 4} and 𝐹𝑖 is the primitive of

function 𝑓𝑖. We consider continuous functions 𝑉1(𝑥), 𝑉2(𝑥) that may decay to zero at infinity
and are related with the coupling function by

0 < 𝜆(𝑥) ⩽ 𝛿min{𝑉1(𝑥), 𝑉2(𝑥)}, 𝛿 ∈
(︂

0, 1
2

)︂
, ∀𝑥 ∈ R𝑁 ,

where 𝑉𝑖 and 𝑓𝑖 satisfy hypotheses similar to (𝑓1)-(𝑓3) of Problem (𝑃 ) in Chapter 3. In the
next section, we will specify the assumptions on 𝑉𝑖(𝑥) and 𝑓𝑖.

The System (𝑆) was motivated by work (DE ALBUQUERQUE; SANTOS, 2023) which
corresponds to Problem (𝑃 ) with 𝜓 ≡ 0.

4.1 ASSUMPTIONS AND MAIN RESULTS

Inspired by (ALVES; FIGUEIREDO; YANG, 2016; DE ALBUQUERQUE; SILVA; SOUSA, 2022; DE

ALBUQUERQUE; SANTOS, 2023), we will study System (𝑆), considering the following hypotheses
about 𝑓𝑖 and 𝑉𝑖(𝑥). We assume that 𝑓𝑖 : R → R a nonnegative continuous function and
satisfies the the hypothesis for 𝑖 = 1, 2:

lim
𝑡→0+

𝑡𝑓𝑖(𝑡)
𝑡𝑞𝑖

< +∞, (𝑓𝑖,1)

for 𝑞𝑖 ≥ 2*
𝛼,𝜇 = 2𝑁−2𝛼−𝜇

𝑁−2 and

lim
𝑡→+∞

𝑡𝑓𝑖(𝑡)
𝑡𝑝𝑖

= 0, (𝑓𝑖,2)

for 𝑝𝑖 ∈ (1, 2(𝑁−𝛼−𝜇)
𝑁−2 ). We also assume that 𝑓𝑖 verifies the Ambrosetti-Rabinowitz type

condition, i.e., there exists 𝜃𝑖 > 2, such that

0 < 𝜃𝑖𝐹𝑖(𝑡) := 𝜃𝑖

∫︁ 𝑡

0
𝑓𝑖(𝜏)d𝜏 ≤ 2𝑓𝑖(𝑡)𝑡, ∀𝑡 > 0. (𝑓𝑖,3)
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Henceforth, we will assume that 𝜃𝑖 < 4. Since we are looking for positive solutions, we suppose
that 𝑓𝑖(𝑡) = 0, for all 𝑡 ≤ 0.

By considering that 0 < 2𝛼 + 𝜇 < min{𝑁+2
2 , 4}, one may conclude that the interval

(1, 2(𝑁−𝛼−𝜇)
𝑁−2 ) is nonempty. In view of (𝑓𝑖,1) and the fact that 2(𝑁−𝛼−𝜇)

𝑁−2 < 2*
𝛼,𝜇 < 2* there

holds
lim
𝑡→0

𝑡𝑓𝑖(𝑡)
𝑡2

*
𝛼,𝜇

= 0 and lim
𝑡→0

𝑡𝑓𝑖(𝑡)
𝑡𝑝𝑖

= 0. (4.1)

Thus, it follows from (𝑓𝑖,1), (𝑓𝑖,2) and (4.1) that there exists 𝑐0 > 0 such that

|𝑡𝑓𝑖(𝑡)| ≤ 𝑐0|𝑡|2
*
𝛼,𝜇 , |𝑡𝑓𝑖(𝑡)| ≤ 𝑐0|𝑡|𝑞𝑖 and |𝑡𝑓𝑖(𝑡)| ≤ 𝑐0|𝑡|𝑝𝑖 , ∀𝑡 ∈ R. (4.2)

Regarding to the potential 𝑉𝑖(𝑥), we assume that it is a positive continuous function and its
related with the coupling function 𝜆(𝑥) through the following assumption:

0 < 𝜆(𝑥) ⩽ 𝛿min {𝑉1(𝑥), 𝑉2(𝑥)} , 𝛿 ∈
(︂

0, 1
2

)︂
, ∀𝑥 ∈ R𝑁 , (𝑉𝑖,1)

where 𝑉𝑖(𝑥) satisfies

Λ𝑖(𝑅) = 1
𝑅(𝑞𝑖−2)(𝑁−2) inf

|𝑥|≥𝑅
|𝑥|(𝑞𝑖−2)(𝑁−2)𝑉𝑖(𝑥). (𝑉𝑖,2)

We introduce the notation
𝑚𝑖 = max

{|𝑥|⩽1}
𝑉𝑖(𝑥).

Due to the presence of 𝑉𝑖(𝑥) in System (𝑆), we introduce the subspace of 𝒟1,2(R𝑁)

𝒟1,2
𝑉𝑖

(R𝑁) :=

⎧⎨⎩𝑢 ∈ 𝒟1,2(R𝑁) :
∫︁
R𝑁
𝑉𝑖(𝑥)|𝑢|2 d𝑥 < ∞

⎫⎬⎭,
which is a Hilbert space when endowed with the inner product and norm

⟨𝑢, 𝑣⟩𝑉𝑖
:=
∫︁
R𝑁

(∇𝑢∇𝑣 + 𝑉𝑖(𝑥)𝑢𝑣) d𝑥 and ‖𝑢‖𝒟1,2
𝑉𝑖

= ⟨𝑢, 𝑢⟩
1
2
𝑉𝑖
.

We set the product space 𝒟 := 𝒟1,2
𝑉1 (R𝑁) × 𝒟1,2

𝑉2 (R𝑁) is a Hilbert space when endowed with
the inner product and norm

⟨(𝑢1, 𝑢2), (𝑣1, 𝑣2)⟩ = ⟨𝑢1, 𝑣1⟩𝑉1 + ⟨𝑢2, 𝑣2⟩𝑉2 and ‖(𝑢1, 𝑢2)‖2 =
2∑︁

𝑖=1
‖𝑢𝑖‖2

𝒟1,2
𝑉𝑖

.

Definition 4.1.1. A pair (𝑢1, 𝑢2) in 𝒟 is said to be a weak solution for System (𝑆) if it

satisfies

⟨(𝑢1, 𝑢2), (𝑣1, 𝑣2)⟩ −
∫︁
R𝑁
𝜆(𝑥)(𝑢1𝑣2 + 𝑢2𝑣1) d𝑥

−
2∑︁

𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹𝑖(𝑢𝑖)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓𝑖(𝑢𝑖)
|𝑥|𝛼

𝑣𝑖 d𝑥 = 0,

for all (𝑣1, 𝑣2) ∈ 𝒟. A weak solution (𝑢1, 𝑢2) is called vector solution if 𝑢1 ̸= 0 and 𝑢2 ̸= 0.
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The energy functional ℐ : 𝒟 → R associated to System (𝑆) is given by

ℐ(𝑢1, 𝑢2) = 1
2‖(𝑢1, 𝑢2)‖2 −

∫︁
R𝑁
𝜆(𝑥)𝑢1𝑢2 d𝑥

− 1
2

2∑︁
𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹𝑖(𝑢𝑖)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹𝑖(𝑢𝑖)
|𝑥|𝛼

d𝑥. (4.3)

Given the assumptions on 𝑓𝑖 and by reasoning similar to Remark 3.1.7 of Chapter 3, we may
infer from Remark 4.1.6 below that ℐ is well defined and belongs to 𝐶1(𝒟,R). Moreover,
critical points of ℐ are weak solutions to system (𝑆) and vice-versa.

Regarding to System (𝑆), we have the following theorem.

Theorem 4.1.2. Suppose that 𝑁 ≥ 3, 0 < 𝜇 < 𝑁 , 𝛼 ≥ 0, 0 < 2𝛼 + 𝜇 < min{𝑁+2
2 , 4} and

that 𝑓 satisfies (𝑓1) − (𝑓3). Then, there exists a constant Λ𝑖
0 = Λ𝑖

0(𝑚𝑖, 𝜃𝑖, 𝛼, 𝜇, 𝑝𝑖, 𝑐0) such

that if Λ𝑖(𝑅) > Λ𝑖
0 for some 𝑅 > 1, System (𝑆) has a positive solution.

Now we list some remarks on this chapter.

Remark 4.1.3. Note that if (𝑢1, 𝑢2) ∈ 𝒟∖{(0, 0)} is a solution for System (𝑆), then (𝑢1, 𝑢2)

is vectorial (see Definition (4.1.1)). In fact, if 𝑢1 = 0, then it follows from the first equation

of (𝑆) that 𝑢2 = 0 when 𝜆(𝑥) > 0.

Remark 4.1.4. In order to obtain positive vector solutions, we consider a strictly positive

coupling function 𝜆(𝑥) in R𝑁 .

Remark 4.1.5. Our main contribution in this chapter is to complete the study done by

the authors in (DE ALBUQUERQUE; SANTOS, 2023; ALVES; FIGUEIREDO; YANG, 2016), in the

following aspects:

(1) If 𝜆 = 0, 𝑓1 = 𝑓2 and 𝑢1 = 𝑢2, then System (𝑆) boils down to the class of scalar

equations of Chapter 3, Problem (𝑃 ) when 𝜓 ≡ 0;

(2) If 𝛼 = 0, 0 < 𝜇 < min{𝑁+2
2 , 4}, 𝑁 ⩾ 3, 𝑞 ⩾ 2*

0,𝜇 := 2*
𝜇 = 2𝑁 − 𝜇

𝑁 − 2 , then our results

complete the picture of (ALVES; FIGUEIREDO; YANG, 2016);

(3) If 𝛼 ̸= 0, 𝑞 ⩾ 2*
𝛼,𝜇, then our results complement (DE ALBUQUERQUE; SANTOS, 2023);

(4) As far as we know, this is the first work considering coupled Schrödinger systems with

Stein-Weiss type nonlinearities involving potential with decay to zero at infinity.
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Remark 4.1.6. According to (𝑉𝑖,1) and Young’s inequality, we deduce
∫︁
R𝑁
𝜆(𝑥)𝑢1𝑢2 d𝑥 ⩽

𝛿

2

∫︁
R𝑁

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2
1 d𝑥+ 𝛿

2

∫︁
R𝑁

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2
2 d𝑥

⩽
𝛿

2

∫︁
R𝑁
𝑉1(𝑥)𝑢2

1 d𝑥+ 𝛿

2

∫︁
R𝑁
𝑉2(𝑥)𝑢2

2 d𝑥

⩽
𝛿

2‖(𝑢1, 𝑢2)‖2.

With this, the coupling term is related with the norm by

(1 + 𝛿)‖(𝑢1, 𝑢2)‖2 ≥ ‖(𝑢1, 𝑢2)‖2 − 2
∫︁
R𝑁
𝜆(𝑥)𝑢1𝑢2 d𝑥 ≥ (1 − 𝛿) ‖(𝑢1, 𝑢2)‖2, (4.4)

for 𝛿 ∈
(︁
0, 1

2

)︁
.

Our approach to showing the existence of a vector solution for (𝑆) is through variational
methods combined with penalization technique and 𝐿∞−estimates.

This chapter is organized as follows: In the forthcoming section in order to overcome the
lack of compactness, we introduce a penalized system and we obtain solution for this auxiliary
problem. Moreover, in Subsection 4.2.2 we study 𝐿∞−estimates and positivity of such solution.
Finally, we show that the solution of the auxiliary System (𝐴𝑆) is in fact a solution for System
(𝑆).

4.2 THE AUXILIARY SYSTEM (𝐴𝑆)

Associated with System (𝑆), we define the energy functional ℐ in (4.3). However, similar to
the challenge faced in Chapter 3, we encounter a lack of compactness, specifically in ensuring
that the energy functional satisfies the Palais-Smale condition. To address this, we also employ
the penalization method. To avoid repetition, we will emphasize only the results that differ
from those of Problem (𝐴𝜅). We start by adapting the functions (3.18)-(3.19) from Section
3.2 to this specific context, resulting in the following auxiliary system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ𝑢1 + 𝑉1(𝑥)𝑢1 =
(︃∫︁

R𝑁

𝐺1(𝑦, 𝑢1)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔1(𝑥, 𝑢1)

|𝑥|𝛼
+ 𝜆(𝑥)𝑢2, in R𝑁 ,

−Δ𝑢2 + 𝑉2(𝑥)𝑢2 =
(︃∫︁

R𝑁

𝐺2(𝑦, 𝑢2)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔2(𝑥, 𝑢2)

|𝑥|𝛼
+ 𝜆(𝑥)𝑢1, in R𝑁 ,

(𝐴𝑆)

where 𝐺𝑖 and 𝑔𝑖 satisfy (3.20)–(3.28).
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We say that a function (𝑢1, 𝑢2) ∈ 𝒟 is a weak solution of the auxiliary System (𝐴𝑆), if
satisfies

⟨(𝑢1, 𝑢2), (𝑣1, 𝑣2)⟩ −
∫︁
R𝑁
𝜆(𝑥)(𝑢1𝑣2 + 𝑢2𝑣1) d𝑥

−
2∑︁

𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
𝑣𝑖 d𝑥 = 0, (4.5)

for all (𝑣1, 𝑣2) ∈ 𝒟. The energy functional associated with System (𝐴𝑆) is given by

𝒥 (𝑢1, 𝑢2) = 1
2‖(𝑢1, 𝑢2)‖2 −

∫︁
R𝑁
𝜆(𝑥)𝑢1𝑢2 d𝑥

− 1
2

2∑︁
𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
d𝑥. (4.6)

In view of our assumptions one may conclude that 𝒥 is well defined, belongs to 𝐶1(𝒟,R).
Thus, weak solutions of (𝐴𝑆) are precisely the critical points of 𝒥 .

It is also worth mentioning here that the auxiliary System (𝐴𝑆) is strongly related to
System (𝑆). In fact, if (𝑢1, 𝑢2) is a solution of (𝐴𝑆) verifying 𝑓𝑖(𝑢𝑖(𝑥)) ⩽ 𝑉𝑖(𝑥)𝑢𝑖(𝑥) for all
|𝑥| ⩾ 𝑅, then 𝑔𝑖(𝑥, 𝑢𝑖) = 𝑓𝑖(𝑢𝑖) and (𝑢1, 𝑢2) is also a solution for System (𝑆). This motivates
us to study the System (𝐴𝑆).

4.2.1 Existence of solutions for the auxiliary System (𝐴𝑆)

In what follows we will explore some ideas from Chapter 3. We begin by observing that
using the ideas from the proof of Lemma 3.2.1, we may prove that 𝒥 verifies the mountain
pass geometry stated in the following lemma.

Lemma 4.2.1. The functional 𝒥 satisfies the following conditions:

(𝑖) there exist 𝜏, 𝜂 > 0 such that 𝒥 (𝑢1, 𝑢2) ≥ 𝜂 > 0, for all (𝑢1, 𝑢2) ∈ 𝒟 satisfying

‖(𝑢1, 𝑢2)‖ = 𝜏 ;

(𝑖𝑖) there exists (𝑢̃1, 𝑢̃2) ∈ 𝒟 with ‖(𝑢̃, 𝑣)‖ > 𝜏 such that 𝒥 (𝑢̃1, 𝑢̃2) < 0.

Proof. By using Remark 4.1.6 and similar ideas to Lemma 3.2.1 one may conclude that 𝒥

verifies (𝑖) − (𝑖𝑖).

We will represent the mountain pass level by

0 < 𝑐 := inf
𝛾∈Γ

max
𝑡∈[0,1]

𝒥 (𝛾(𝑡)) where Γ :=
{︂
𝛾 ∈ 𝐶([0, 1], 𝐸) : 𝛾(0) = 0 and 𝒥 (𝛾(1)) < 0

}︂
.
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Now, we introduce the functional ℐ0 : 𝐻1
0 (𝐵1(0)) ×𝐻1

0 (𝐵1(0)) → R given by

ℐ0(𝑢1, 𝑢2) =
2∑︁

𝑖=1

1
2

⎡⎣ ∫︁
𝐵1(0)

|∇𝑢𝑖|2 d𝑥+ 1
2

∫︁
𝐵1(0)

𝑚𝑖|𝑢𝑖|2 d𝑥

∫︁
𝐵1(0)

(︃∫︁
𝐵1(0)

𝐹𝑖(𝑢𝑖)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹𝑖(𝑢𝑖)
|𝑥|𝛼

d𝑥
⎤⎦−

∫︁
R𝑁
𝜆(𝑥)𝑢1𝑢2 d𝑥,

where𝑚𝑖 = max|𝑥|⩽1 𝑉 (𝑥). Moreover, we denote by 𝑑 the level of the mountain pass associated
with the functional ℐ0, i.e.,

0 < 𝑑 := inf
𝛾∈Γ0

max
𝑡∈[0,1]

ℐ0(𝛾(𝑡)),

where
Γ0 :=

{︂
𝛾 ∈ 𝐶([0, 1], 𝐻1

0 (𝐵1(0))) : 𝛾(0) = 0 and ℐ0(𝛾(1)) < 0
}︂
.

Here, it is important to emphasize that 𝑑 is independent of the choice of ℓ and 𝑅. Moreover,
𝑐 ⩽ 𝑑. In view of Lemma 3.2.2 in Chapter 3,

1
𝜃𝑖

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢)

|𝑥|𝛼
𝑢 d𝑥−1

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺𝑖(𝑥, 𝑢)

|𝑥|𝛼
d𝑥 ⩾ 0.

Thus, by Lemma 4.1.6 and following Lemma 3.2.3, (𝑢1,𝑛, 𝑢2,𝑛)𝑛 is bounded in 𝒟 and there
exists 𝑛0 ∈ N such

‖(𝑢1,𝑛, 𝑢2,𝑛)‖2 ⩽
4𝜃
𝜃 − 2(𝑑+ 1), ∀𝑛 ⩾ 𝑛0,

where 2 < 𝜃 =: min{𝜃1, 𝜃2}. In what follows,

ℬ𝑖 :=
{︃
𝑢 ∈ 𝒟1,2

𝑉𝑖
(R𝑁) : ‖𝑢‖2

𝒟1,2
𝑉𝑖

⩽
2𝜃
𝜃 − 2(𝑑+ 1)

}︃
,

and
𝒦𝑖(𝑢)(𝑥) :=

∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦. (4.7)

Analogous to Lemma 3.2.4, for all 𝑢 ∈ ℬ𝑖, we have that

𝒦𝑖(𝑢)(𝑥) :=
∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦 ∈ 𝐿∞(R𝑁). (4.8)

In addition, there exists ℓ0 > 0, which is independent of 𝑅, such that
sup𝑢∈ℬ𝑖

‖𝒦𝑖(𝑢)(𝑥)‖∞

ℓ0
< 𝐶(𝛿), (4.9)

where 0 < 𝐶(𝛿) < 1 − 𝛿.
From now on, we assume ℓ > ℓ0 > 0 in the auxiliary System (𝐴𝑆). Similarly, to the result

of Lemma 3.2.6, we may obtain

lim
𝑛→∞

2∑︁
𝑖=1

∫︁
𝐵𝑅̄(0)

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖,𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖,𝑛)

|𝑥|𝛼
(𝑢𝑖,𝑛 − 𝑢𝑖) d𝑥 = 0, (4.10)
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where 𝑅̄ > 0. Moreover, it follows from Sobolev compact embedding that∫︁
𝐵𝑅̄(0)

𝜆(𝑥) [𝑢2,𝑛(𝑢1,𝑛 − 𝑢1) + 𝑢1,𝑛(𝑢2,𝑛 − 𝑢2)] d𝑥 = 𝑜𝑛(1). (4.11)

Lemma 4.2.2. The functional 𝒥 satisfies the (𝑃𝑆)𝑐−condition.

Proof. In what follows, we will explore some ideas from (DE ALBUQUERQUE; SANTOS, 2023).
From (DE ALBUQUERQUE; SANTOS, 2023, Lemma 3.4 and Lemma 3.5), for each 𝜀 > 0, there
exists 𝑟 = 𝑟(𝜀) > 𝑅 verifying

lim sup
𝑛→∞

2∑︁
𝑖=1

∫︁
𝐵𝑐

2𝑟(0)
(|∇𝑢𝑖,𝑛|2 + 𝑉𝑖(𝑥)|𝑢𝑖,𝑛|2) d𝑥 < 𝜀, (4.12)

lim sup
𝑛→∞

2∑︁
𝑖=1

∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖,𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖,𝑛)

|𝑥|𝛼
𝑢𝑖,𝑛 d𝑥 ⩽ 𝐶1𝜀, (4.13)

lim sup
𝑛→∞

2∑︁
𝑖=1

∫︁
𝐵𝑐

2𝑟(0)

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖,𝑛)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖,𝑛)

|𝑥|𝛼
𝑢𝑖 d𝑥 ⩽ 𝐶2𝜀. (4.14)

By (𝑉𝑖,1) and Höder’s inequality, we see⃒⃒⃒⃒
⃒
∫︁

𝐵𝑐
𝑅̄

(0)
𝜆(𝑥)𝑢2,𝑛(𝑢1,𝑛 − 𝑢1) d𝑥

⃒⃒⃒⃒
⃒ ⩽ 𝛿

2∑︁
𝑖=1

[︃∫︁
𝐵𝑐

𝑅̄
(0)

(|∇𝑢𝑖,𝑛|2 + 𝑉𝑖(𝑥)|𝑢𝑖,𝑛|2) d𝑥
]︃ 1

2

‖𝑢1,𝑛 − 𝑢1‖𝒟1,2
𝑉1

and∫︁
𝐵𝑐

𝑅̄
(0)
𝜆(𝑥)𝑢1,𝑛 (𝑢2,𝑛 − 𝑢2) d𝑥 ⩽ 𝛿

2∑︁
𝑖=1

[︃∫︁
𝐵𝑐

𝑅̄
(0)

(|∇𝑢𝑖,𝑛|2 + 𝑉𝑖(𝑥)|𝑢𝑖,𝑛|2) d𝑥
]︃ 1

2

‖𝑢2,𝑛 − 𝑢2‖𝒟1,2
𝑉2
.

By using (4.12) and the fact that (𝑢1,𝑛, 𝑢2,𝑛)𝑛 is a bounded in 𝒟 we obtain∫︁
𝐵𝑐

𝑅̄
(0)
𝜆(𝑥) [𝑢2,𝑛(𝑢1,𝑛 − 𝑢1) + 𝑢1,𝑛(𝑢2,𝑛 − 𝑢2)] d𝑥 = 𝑜𝑛(1),

which together with (4.11), it follows that∫︁
R𝑁
𝜆(𝑥) [𝑢2,𝑛(𝑢1,𝑛 − 𝑢1) + 𝑢1,𝑛(𝑢2,𝑛 − 𝑢2)] d𝑥 = 𝑜𝑛(1).

Therefore, in view of (4.10), (4.11), (4.13), (4.14) and arguing as in (DE ALBUQUERQUE;

SANTOS, 2023, Lemma 3.5), we deduce that 𝒥 satisfies the (𝑃𝑆)𝑐−condition.

Lemma 4.2.3. The functional 𝒥 has a nonnegative critical point (𝑢1, 𝑢2) ∈ 𝒟 such that

𝒥 (𝑢1, 𝑢2) = 𝑐, i.e., (𝑢1, 𝑢2) is a nonnegative mountain pass solution for System (𝐴𝑆).

Proof. In view of Lemmas 4.2.1 and 4.2.2, System (𝐴𝑆) admits a nontrivial solution of
mountain pass type. Let us write 𝑢𝑖 := 𝑢+

𝑖 + 𝑢−
𝑖 . We deduce from (𝑉𝑖,1) that∫︁

R𝑁
𝜆(𝑥)(𝑢1𝑢

−
2 + 𝑢2𝑢

−
1 ) d𝑥 ⩽ 2

∫︁
R𝑁
𝜆(𝑥)𝑢−

1 𝑢
−
2 d𝑥 ⩽ 𝛿‖(𝑢−

1 , 𝑢
−
2 )‖2.

By using (𝑢−
1 , 𝑢

−
2 ) as test function in (4.5), it follows from the fact 𝑓(𝑡) = 0 for all 𝑡 ⩽ 0 that

‖(𝑢−
1 , 𝑢

−
2 )‖ ⩽ 0, i.e., the nontrivial weak solution (𝑢1, 𝑢2) is nonnegative.
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4.2.2 𝐿∞−estimates

In what follows, we deduce a uniform estimate for the norm of the solution of System
(𝐴𝑆), obtained in Lemma 4.2.3. Similar to Lemmas 3.2.13 and 3.2.14, we have the following
results.

Lemma 4.2.4. Let (𝑢1, 𝑢2) be the critical point of 𝒥 . Then, there exists a constant 𝑀 (which

depends only on 𝑁, 𝜃𝑖, 𝜇, 𝛼, 𝑝𝑖,𝑚𝑖 and independent of ℓ and 𝑅) such that

‖(𝑢1, 𝑢2)‖2 ⩽
4𝜃
𝜃 − 2𝑑 =: 𝑀.

Lemma 4.2.5. Let pair (𝑢1, 𝑢2) be the solution of (𝐴𝑆). Then, there exists a constant 𝑀0,

(which depends only on 𝑁 , 𝜃𝑖, 𝜇, 𝛼, 𝑝𝑖, 𝑚𝑖 independent of ℓ and 𝑅 ) such that

‖(𝑢1, 𝑢2)‖∞ ⩽𝑀1‖(𝑢1, 𝑢2)‖2* .

Proof. In what follows, we will explore arguments for the proof of Lemma 3.2.14. For 𝐿 > 0,
we define 𝜑𝑖,𝐿 = 𝑢𝑖𝑢

2(𝛽−1)
𝑖,𝐿 and 𝑤𝑖,𝐿 = 𝑢𝑖𝑢

(𝛽−1)
𝑖,𝐿 , where 𝑢𝑖,𝐿 = min {𝑢𝑖, 𝐿}. By taking

𝜑𝑖,𝐿 = 𝑢𝑖𝑢
2(𝛽−1)
𝑖,𝐿 as test function in definition, where 𝛽 > 1 will be chosen later, we have

2∑︁
𝑖=1

∫︁
R𝑁

∇𝑢𝑖∇(𝑢𝑖𝑢
2(𝛽−1)
𝑖,𝐿 ) d𝑥+

2∑︁
𝑖=1

∫︁
R𝑁
𝑉𝑖(𝑥)𝑢2

𝑖𝑢
2(𝛽−1)
𝑖,𝐿 d𝑥

−
∫︁
R𝑁
𝜆(𝑥)(𝑢1𝑢2𝑢

2(𝛽−1)
2,𝐿 + 𝑢2𝑢1𝑢

2(𝛽−1)
1,𝐿 ) d𝑥

−
2∑︁

𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
𝑢𝑖𝑢

2(𝛽−1)
𝑖,𝐿 d𝑥 = 0,

which implies
2∑︁

𝑖=1

∫︁
R𝑁
𝑢

2(𝛽−1)
𝑖,𝐿 |∇𝑢𝑖|2 d𝑥 = − 2(𝛽 − 1)

2∑︁
𝑖=1

∫︁
R𝑁
𝑢

2(𝛽−1)−1
𝑖,𝐿 𝑢𝑖∇𝑢𝑖∇𝑢𝑖,𝐿 d𝑥

+
2∑︁

𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
𝑢𝑖𝑢

2(𝛽−1)
𝑖,𝐿 d𝑥

+
∫︁
R𝑁
𝜆(𝑥)(𝑢1𝑢2𝑢

2(𝛽−1)
2,𝐿 + 𝑢2𝑢1𝑢

2(𝛽−1)
1,𝐿 ) d𝑥

−
2∑︁

𝑖=1

∫︁
R𝑁
𝑉𝑖(𝑥)𝑢2

𝑖𝑢
2(𝛽−1)
𝑖,𝐿 d𝑥. (4.15)

Since

2(𝛽 − 1)
∫︁
R𝑁
𝑢

2(𝛽−1)−1
𝑖,𝐿 𝑢𝑖∇𝑢𝑖∇𝑢𝑖,𝐿 d𝑥 = 2(𝛽 − 1)

∫︁
{𝑢𝑖≤𝐿}

𝑢
2(𝛽−1)
𝑖,𝐿 |∇𝑢𝑖|2 d𝑥 ≥ 0,
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it follows from (4.15) that

2∑︁
𝑖=1

∫︁
R𝑁
𝑢

2(𝛽−1)
𝑖,𝐿 |∇𝑢𝑖|2 d𝑥 =

2∑︁
𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
𝑢𝑖𝑢

2(𝛽−1)
𝑖,𝐿 d𝑥

+
∫︁
R𝑁
𝜆(𝑥)(𝑢1𝑢2𝑢

2(𝛽−1)
2,𝐿 + 𝑢2𝑢1𝑢

2(𝛽−1)
1,𝐿 ) d𝑥

−
2∑︁

𝑖=1

∫︁
R𝑁
𝑉𝑖(𝑥)𝑢2

𝑖𝑢
2(𝛽−1)
𝑖,𝐿 d𝑥. (4.16)

Note that
‖𝑤𝑖,𝐿‖2

2* ≤ 𝐶
∫︁
R𝑁

|∇𝑤𝑖,𝐿|2 d𝑥,

where 𝐶 := 𝑆−1 and 𝑆 denotes the constant of the embedding 𝒟1,2(R𝑁) →˓ 𝐿2*(R𝑁). Thus,

‖𝑤𝑖,𝐿‖2
2* ⩽𝐶

∫︁
R𝑁
𝑢

2(𝛽−1)
𝑖,𝐿 |∇𝑢𝑖|2 d𝑥+ 𝐶(𝛽 − 1)2

∫︁
R𝑁

|𝑢𝑖|2𝑢2(𝛽−2)
𝑖,𝐿 |∇𝑢𝑖,𝐿|2 d𝑥

⩽𝐶𝛽2
∫︁
R𝑁
𝑢

2(𝛽−1)
𝑖,𝐿 |∇𝑢𝑖|2 d𝑥+ 𝐶𝛽2

∫︁
R𝑁
𝑢

2(𝛽−1)
𝑖,𝐿 |∇𝑢𝑖|2 d𝑥

⩽𝐶𝛽2
∫︁
R𝑁
𝑢

2(𝛽−1)
𝑖,𝐿 |∇𝑢𝑖|2 d𝑥, (4.17)

where we have used that ∇𝑢𝑖,𝐿 = 0 in {𝑢𝑖 > 𝐿}, 𝑢𝑖 = 𝑢𝑖,𝐿 in {𝑢𝑖 ≤ 𝐿} and 𝛽 > 1. By using
assumption (𝑉𝑖,1), we have

∫︁
R𝑁
𝜆(𝑥)𝑢2𝑢1𝑢

2(𝛽−1)
1,𝐿 d𝑥 ⩽

𝛿

2

∫︁
R𝑁

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2
1𝑢

2(𝛽−1)
2,𝐿 d𝑥

+ 𝛿

2

∫︁
R𝑁

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2
2𝑢

2(𝛽−1)
1,𝐿 d𝑥

⩽
𝛿

2

∫︁
R𝑁
𝑉1(𝑥)𝑢2

1𝑢
2(𝛽−1)
2,𝐿 d𝑥

+ 𝛿

2

∫︁
R𝑁

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2
2𝑢

2(𝛽−1)
1,𝐿 d𝑥.

Now, note that
∫︁
R𝑁

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2
2𝑢

2(𝛽−1)
1,𝐿 d𝑥 ⩽

∫︁
{𝑢1⩽𝑢2}

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2
2𝑢

2(𝛽−1)
2,𝐿 d𝑥

+
∫︁

{𝑢1>𝑢2}
min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2

2𝑢
2(𝛽−1)
1,𝐿 d𝑥

⩽
∫︁
R𝑁
𝑉2(𝑥)𝑢2

2𝑢
2(𝛽−1)
2,𝐿 d𝑥

+
∫︁
R𝑁
𝑉1(𝑥)𝑢2

1𝑢
2(𝛽−1)
1,𝐿 d𝑥.

Hence,
∫︁
R𝑁
𝜆(𝑥)𝑢2𝑢1𝑢

2(𝛽−1)
1,𝐿 d𝑥 ⩽ 𝛿

∫︁
R𝑁
𝑉1(𝑥)𝑢2

1𝑢
2(𝛽−1)
2,𝐿 d𝑥+ 𝛿

2

∫︁
R𝑁
𝑉2(𝑥)𝑢2

2𝑢
2(𝛽−1)
1,𝐿 d𝑥. (4.18)
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Analogously, we deduce
∫︁
R𝑁
𝜆(𝑥)𝑢1𝑢2𝑢

2(𝛽−1)
2,𝐿 d𝑥 ⩽ 𝛿

∫︁
R𝑁
𝑉2(𝑥)𝑢2

2𝑢
2(𝛽−1)
2,𝐿 d𝑥+ 𝛿

2

∫︁
R𝑁
𝑉1(𝑥)𝑢2

1𝑢
2(𝛽−1)
1,𝐿 d𝑥. (4.19)

Thus, (4.18) and (4.19) imply that

2
∫︁
R𝑁
𝜆(𝑥)(𝑢1𝑢2𝑢

2(𝛽−1)
2,𝐿 + 𝑢2𝑢1𝑢

2(𝛽−1)
1,𝐿 ) d𝑥 ⩽ 3𝛿

2∑︁
𝑖=1

∫︁
R𝑁
𝑉𝑖(𝑥)𝑢2

𝑖𝑢
2(𝛽−1)
𝑖,𝐿 d𝑥,

which jointly with (4.16)-(4.17) implies

2∑︁
𝑖=1

‖𝑤𝑖,𝐿‖2
2* ≤ 𝐶𝛽2

2∑︁
𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
𝑢𝑖𝑢

2(𝛽−1)
𝑖,𝐿 d𝑥. (4.20)

Finally, arguing as in estimates (3.87)-(3.110) of Lemma 3.2.14 (see also (DE ALBUQUERQUE;

SANTOS, 2023, Lemma 4.2)), we see that exists 𝑀1 > 0 such that

‖(𝑢1, 𝑢2)‖∞ ⩽𝑀1‖(𝑢1, 𝑢2)‖2* .

Therefore, the result follows.

Remark 4.2.6. Let (𝑢1, 𝑢2) ∈ 𝒟 be the nonnegative solution obtained in Lemma 4.2.3. In

view of Lemma 4.2.5 and regularity theory (see for instance (TOLKSDORF, 1984, Theorem 1)),

we have that (𝑢1, 𝑢2) ∈ 𝐶1,𝛾
loc (R𝑁) × 𝐶1,𝛾

loc (R𝑁), for some 𝛾 ∈ (0, 1). Therefore, in light of

Strong Maximum Principle, we conclude that (𝑢1, 𝑢2) is positive.

Proof of Theorem 4.1.2. In light of Lemma 4.2.3, the auxiliary System (𝐴𝑆) admits a
solution (𝑢1, 𝑢2) in 𝒟. Thereby, in order to prove the existence of solution for the original
System (𝑆), it is sufficient to prove that there exists 𝑅 > 1 such that following inequality
holds:

𝑓𝑖(𝑢𝑖) ⩽
𝑉𝑖(𝑥)
ℓ0

𝑢𝑖, ∀ |𝑥| ⩾ 𝑅.

Lemma 4.2.7. For each 𝑅 > 1, let (𝑢1, 𝑢2) be a solution for the auxiliary System (𝐴𝑆), such

that 𝒥 (𝑢1, 𝑢2) = 𝑐. Then,

𝑢𝑖 ⩽
𝑅𝑁−2

|𝑥|𝑁−2

⃦⃦⃦
(𝑢1, 𝑢2)

⃦⃦⃦
∞

⩽
𝑅𝑁−2

|𝑥|𝑁−2𝑀1, ∀ |𝑥| ⩾ 𝑅.

Proof. Let 𝑣 be the 𝐶∞(R𝑁∖{0}) function

𝑣(𝑥) =
𝑅𝑁−2

⃦⃦⃦
(𝑢1, 𝑢2)

⃦⃦⃦
∞

|𝑥|𝑁−2 , 𝑥 ̸= 0. (4.21)
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Since 1/|𝑥|𝑁−2 is harmonic, it follows that Δ𝑣(𝑥) = 0 in R𝑁∖{0}. Note that

𝑢𝑖(𝑥) ⩽
⃦⃦⃦
(𝑢1, 𝑢2)

⃦⃦⃦
∞

⩽
𝑅𝑁−2

|𝑥|𝑁−2

⃦⃦⃦
(𝑢1, 𝑢2)

⃦⃦⃦
∞
, ∀ |𝑥| ⩽ 𝑅.

Let us introduce the function 𝑤𝑖 ∈ 𝒟1,2(R𝑁) defined by

𝑤𝑖(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(𝑢𝑖 − 𝑣)+(𝑥), if |𝑥| ⩾ 𝑅,

0, if |𝑥| ⩽ 𝑅.

(4.22)

Now, note that ∫︁
R𝑁
𝑉𝑖(𝑥)𝑤2

𝑖 d𝑥 ⩽
∫︁
R𝑁
𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥 ⩽

∫︁
R𝑁
𝑉𝑖(𝑥)𝑢2

𝑖 d𝑥 < ∞. (4.23)

By using (𝑤1, 𝑤2) as test function we obtain
2∑︁

𝑖=1

[︂∫︁
R𝑁

(∇𝑢𝑖∇𝑤𝑖 + 𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖) d𝑥
]︂

=
2∑︁

𝑖=1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
𝑤𝑖 d𝑥

+
∫︁
R𝑁
𝜆(𝑥)(𝑢2𝑤1 + 𝑢1𝑤2) d𝑥. (4.24)

We recall as mentioned in Section 4.2.1, 𝐺𝑖 and 𝑔𝑖 satisfy (3.20)–(3.28) of Chapter 3. Thus,
from (3.22), 𝑔𝑖(𝑥, 𝑡) ⩽ 𝑉𝑖(𝑥)

ℓ0
𝑡. By the definition of 𝑤𝑖 and (4.7), it follows from 𝑅𝛼 > 1 the

following estimate
2∑︁

𝑖=1

[︃∫︁
𝐵𝑐

𝑅(0)

(︃∫︁
R𝑁

𝐺𝑖(𝑦, 𝑢𝑖)
|𝑦|𝛼|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔𝑖(𝑥, 𝑢𝑖)

|𝑥|𝛼
𝑤𝑖 d𝑥−

∫︁
𝐵𝑐

𝑅(0)
𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥

]︃

⩽
2∑︁

𝑖=1

[︃
1
𝑅𝛼

∫︁
𝐵𝑐

𝑅(0)

𝒦𝑖(𝑢𝑖)(𝑥)
ℓ0

𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥−
∫︁

𝐵𝑐
𝑅(0)

𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥
]︃

⩽
2∑︁

𝑖=1

∫︁
𝐵𝑐

𝑅(0)

(︃
𝒦𝑖(𝑢𝑖)(𝑥)

ℓ0
− 1

)︃
𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥. (4.25)

On the other hand, from (𝑉𝑖,1), we achieved the following estimate∫︁
R𝑁
𝜆(𝑥)𝑢2𝑤1 d𝑥 ⩽𝛿

∫︁
R𝑁

min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2𝑤1 d𝑥

=𝛿
∫︁

{|𝑥|⩾𝑅}∩{𝑢1⩽𝑢2}
min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2𝑤1 d𝑥

+ 𝛿
∫︁

{|𝑥|⩾𝑅}∩{𝑢1⩾𝑢2}
min{𝑉1(𝑥), 𝑉2(𝑥)}𝑢2𝑤1 d𝑥

⩽𝛿
∫︁
R𝑁
𝑉1(𝑥)𝑢1𝑤1 d𝑥

+ 𝛿
∫︁
R𝑁
𝑉2(𝑥)𝑢2𝑤2 d𝑥. (4.26)

Similarly, we also get the following∫︁
R𝑁
𝜆(𝑥)𝑢1𝑤2 d𝑥 ⩽ 𝛿

∫︁
R𝑁
𝑉1(𝑥)𝑢1𝑤1 d𝑥+ 𝛿

∫︁
R𝑁
𝑉2(𝑥)𝑢2𝑤2 d𝑥,
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which together with (4.26), implies that
∫︁
R𝑁
𝜆(𝑥)(𝑢2𝑤1 + 𝑢1𝑤2) d𝑥 ⩽ 2𝛿

2∑︁
𝑖=1

∫︁
R𝑁
𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥. (4.27)

On the other hand, using the definition of 𝑤𝑖 again, we obtain
∫︁
R𝑁

|∇𝑤𝑖|2 d𝑥 =
∫︁
R𝑁

∇𝑢𝑖∇𝑤𝑖 d𝑥−
∫︁
R𝑁

∇𝑣∇𝑤𝑖 d𝑥. (4.28)

Since Δ𝑣 = 0 in 𝐵𝑐
𝑅(0) and 𝑤𝑖 = 0 in 𝜕𝐵𝑅(0), there holds

∫︁
R𝑁

∇𝑣∇𝑤𝑖 d𝑥 = 0. (4.29)

Combining (4.24)-(4.29) with (4.9), we see that

2∑︁
𝑖=1

‖∇𝑤𝑖‖2
2 ⩽

2∑︁
𝑖=1

∫︁
𝐵𝑐

𝑅(0)

(︃
𝒦𝑖(𝑢𝑖)(𝑥)

ℓ0
− 1

)︃
𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥

+ 2𝛿
2∑︁

𝑖=1

∫︁
R𝑁
𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥

=
2∑︁

𝑖=1

∫︁
𝐵𝑐

𝑅(0)

(︃
𝒦𝑖(𝑢𝑖)(𝑥)

ℓ0
− 1 + 2𝛿

)︃
𝑉𝑖(𝑥)𝑢𝑖𝑤𝑖 d𝑥 < 0.

Showing that 𝑤𝑖 ≡ 0. Recalling the definition of the 𝑤𝑖 function in (4.22), we obtain |𝑢𝑖| ⩽ 𝑣

in |𝑥| ⩾ 𝑅, which finishes the proof of lemma.

In view of (4.2) we obtain

𝑓𝑖(𝑢) ≤ 𝑐0|𝑢|𝑞𝑖−2𝑢 ≤ 𝑐0𝑀
𝑞𝑖−2
1

𝑅(𝑁−2)(𝑞𝑖−2)

|𝑥|(𝑁−2)(𝑞𝑖−2)𝑢, ∀ |𝑥| ≥ 𝑅.

Now fix 𝑅 > 1 such that Λ𝑖(𝑅) > 0. Thus, we have that

𝑓𝑖(𝑢) ≤ 𝑐0|𝑢|𝑞𝑖−2𝑢 ≤ ℓ0𝑐0𝑀
𝑞𝑖−2
1

𝑉𝑖(𝑥)
𝒱𝑖(𝑅)ℓ0

𝑢, ∀ |𝑥| ≥ 𝑅.

Set the number Λ𝑖
0 = 𝑐0ℓ0𝑀

𝑞𝑖−2
1 . Let 𝑅 > 1 be such that Λ𝑖(𝑅) > Λ𝑖

0. Thus, we conclude
that

𝑓𝑖(𝑢) ≤ 𝑉𝑖(𝑥)
ℓ0

𝑢, ∀ |𝑥| ≥ 𝑅.

Therefore, the proof of the Theorem 4.1.2 is finished.
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5 N-LAPLACIAN COUPLED SYSTEMS INVOLVING DOUBLE WEIGHTED

NONLOCAL INTERACTION PART IN R𝑁 : EXISTENCE OF SOLUTIONS

AND REGULARITY

The aim of this chapter is to study the following class of coupled system involving Stein-
Weiss type nonlinearities⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δ𝑁𝑢+ |𝑢|𝑁−2𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

+ 𝜆𝑝|𝑢|𝑝−2𝑢|𝑣|𝑞, in R𝑁 ,

−Δ𝑁𝑣 + |𝑣|𝑁−2𝑣 =
(︃∫︁

R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

+ 𝜆𝑞|𝑢|𝑝|𝑣|𝑞−2𝑣, in R𝑁 ,

(𝑆𝜆)

where 𝑁 ⩾ 2, 0 < 𝜇 < 𝑁 , 𝜆 > 0, 𝛽 ⩾ 0, 0 < 2𝛽 + 𝜇 < 𝑁 , 𝑝 > 𝑁
2 , 𝑞 >

𝑁
2 , 𝑝 + 𝑞 > 𝑁 ,

Δ𝑁𝑢 = div(|∇𝑢|𝑁−2∇𝑢) is the 𝑁 -Laplacian operator, 𝑓(𝑠), 𝑔(𝑠) have critical growth of
Trudinger-Moser type, 𝐹 (𝑠), 𝐺(𝑠) are the primitives of 𝑓(𝑠), 𝑔(𝑠) respectively.

From a mathematical point of view, the cases involving 𝑁−Laplacian (for 𝑁 ⩾ 3) is
particularly very interesting as the corresponding Sobolev embedding yields 𝑊 1,𝑁(R𝑁) ⊂

𝐿𝑞(R𝑁) for all 𝑞 ⩾ 𝑁 , but 𝑊 1,𝑁(R𝑁) ̸⊂ 𝐿∞(R𝑁). In these cases, the Pohozaev-Trudinger-
Moser inequality (CAO, 1992) (see (MOSER, 1971; POHOZAEV, 1965) for bounded domain
case) can be treated as a substitute of Sobolev inequality which helps us to establish the sharp
maximal growth on functions in 𝑊 1,𝑁(R𝑁) as follows.

Proposition 5.0.1. (Pohozaev-Trudinger-Moser inequality, (CAO, 1992)) If 𝛼 > 0,

𝑁 ⩾ 2 and 𝑢 ∈ 𝑊 1,𝑁(R𝑁), then∫︁
R𝑁

(exp(𝛼|𝑢|
𝑁

𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑢)) d𝑥 < ∞,

where

𝑆𝑁−2(𝛼, 𝑢) =
𝑁−2∑︁
𝑚=0

𝛼𝑚|𝑢|
𝑚𝑁
𝑁−1

𝑚! .

Moreover, if ‖∇𝑢‖𝑁
𝑁 ⩽ 1 , ‖𝑢‖𝑁 ⩽ 𝑀 < ∞ and 𝛼 < 𝛼𝑁 = 𝑁𝜔

1
𝑁−1
𝑁−1, where 𝜔𝑁−1

is the surface area of (𝑁 − 1)-dimensional unit sphere, then there exists a constant 𝐶 =

𝐶(𝛼,𝑀,𝑁) > 0 such that∫︁
R𝑁

(exp(𝛼|𝑢|
𝑁

𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑢)) d𝑥 ⩽ 𝐶.

In the sense of the Pohozaev-Trudinger-Moser inequality, we say that a function ℎ : R → R

has 𝛼0− critical exponential growth at +∞, if there exists 𝛼0 > 0 such that

lim
𝑠→+∞

ℎ(𝑠)
exp(𝛼|𝑢|

𝑁
𝑁−1 )−𝑆𝑁−2(𝛼, 𝑢)

=

⎧⎪⎪⎨⎪⎪⎩
0, if 𝛼 > 𝛼0,

+∞, if 𝛼 < 𝛼0.
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This definition of criticality was introduced by Adimurthi and Yadava (ADIMURTHI; YADAVA,
1990), see also (FIGUEIREDO; MIYAGAKI OLIMPIO; RUF, 1995). There are a few works considering
Stein-Weiss term and a nonlinearity with critical exponential growth, see for example (ALVES;

SHEN, 2023) and (YUAN et al., 2023). For works considering Choquard type equations and
nonlinearities with critical exponential growth, we refer the readers to (ALVES et al., 2016b;
YANG, 2018; ALBUQUERQUE; FERREIRA; SEVERO, 2021; QIN; TANG, 2021; SHEN; RADULESCU;

YANG, 2022) and references therein.

5.1 ASSUMPTIONS AND MAIN RESULTS

Throughout the chapter, in order to deal with the coupling terms in System (𝑆𝜆), we use
the following hypotheses for 𝑝, 𝑞 and 𝑁 :

𝑁 > 2, 𝑝, 𝑞 >
𝑁

2 and 𝑝+ 𝑞 > 𝑁. (5.1)

We consider the following assumptions on the functions 𝑓, 𝑔 : R → R:

(𝑎) 𝑓 and 𝑔 are continuous, 𝑓(𝑠) = 𝑔(𝑠) = 0 if 𝑠 ⩽ 0 and 𝑓(𝑠) > 0, 𝑔(𝑠) > 0 if 𝑠 > 0. Also

lim
𝑠→0+

𝑓(𝑠)
𝑠

2𝑁−2𝛽−𝜇
2 −1

= lim
𝑠→0+

𝑔(𝑠)
𝑠

2𝑁−2𝛽−𝜇
2 −1

= 0;

(𝑏) 𝑓 and 𝑔 have 𝛼0− critical exponential growth at +∞;

(𝑐) lim inf
|𝑠|→∞

𝐹 (𝑠)

𝑒𝛼0𝑠
𝑁

𝑁−1
= lim inf

|𝑠|→∞

𝐺(𝑠)

𝑒𝛼0𝑠
𝑁

𝑁−1
= 𝛽0 > 0;

(𝑑) there exist 𝑠0,𝑀0 > 0 and 𝑚0 ∈ (0, 1] such that

0 < 𝑠𝑚0𝐹 (𝑠) ⩽𝑀0𝑓(𝑠), ∀ 𝑠 ⩾ 𝑠0;

(𝑒) the functions 𝑠 ↦→ 𝑓(𝑠)/𝑠𝑁−1 and 𝑠 ↦→ 𝑔(𝑠)/𝑠𝑁−1 are increasing for 𝑠 > 0;

(𝑓) there exists 𝜃 ∈
(︂
𝑁, 𝑝 + 𝑞

]︂
such that 0 < 𝜃𝐹 (𝑠) ⩽ 𝑓(𝑠)𝑠 and 0 < 𝜃𝐺(𝑠) ⩽ 𝑔(𝑠)𝑠, for

all 𝑠 > 0.

In addition to the challenges posed by the nonlocal and critical growth behavior of the
nonlinearity, we outline several technical difficulties encountered in studying Systems (𝑆𝜆).

(𝑖) The nonlocal term is not periodic for 𝛽 ̸= 0. For this reason, the standard approach
based on Lions’ vanishing-nonvanishing argument is not applicable anymore;
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(𝑖𝑖) Since the system is not linear, showing the solution of System (𝑆𝜆) to be vectorial is
not obvious and requires a careful treatment;

(𝑖𝑖𝑖) For 𝑁 > 2, due to the lack of Hilbert space structure, a variant of Palais principle of
symmetric criticality is needed, see Appendix for details;

(𝑖𝑣) For the critical exponential growth in the general case 𝑁 ⩾ 2, even some obvious results
require some careful analysis throughout the chapter. Needless to mention Lemma 5.2.11
as an example.

In order to present the main results of this chapter, we now introduce the normed space
suitable to study System (𝑆𝜆). In fact, we denote by 𝑊 1,𝑁(R𝑁) the usual Sobolev space,
endowed with the standard scalar product ⟨·, ·⟩ and the induced norm ‖ · ‖ as follows

⟨𝑢, 𝑣⟩ =
∫︁
R𝑁

(|∇𝑢|𝑁−2∇𝑢∇𝑣 + |𝑢|𝑁−2𝑢𝑣) d𝑥, ‖𝑢‖𝑁 =
∫︁
R𝑁

(︁
|∇𝑢|𝑁 + |𝑢|𝑁

)︁
d𝑥.

We introduce the product space W𝑁 := 𝑊 1,𝑁(R𝑁) × 𝑊 1,𝑁(R𝑁) for 𝑁 ⩾ 2 endowed with
the standard inner product and norm

⟨(𝑢, 𝑣), (𝜑, 𝜓)⟩ = ⟨𝑢, 𝜑⟩ + ⟨𝑣, 𝜓⟩, ‖(𝑢, 𝑣)‖𝑁 = ‖𝑢‖𝑁 + ‖𝑣‖𝑁 .

One of the major difficulties is that Lions’ vanishing argument is not applicable, due to the
non-periodic characteristic of Stein-Weiss term. To overcome this hurdle, we restrict ourselves
on radial Sobolev space

𝑊 1,𝑁
rad (R𝑁) =

{︁
𝑢 ∈ 𝑊 1,𝑁(R𝑁) : 𝑢(𝑥) = 𝑢(|𝑥|)

}︁
and the radial product space W𝑁

rad := 𝑊 1,𝑁
rad (R𝑁) × 𝑊 1,𝑁

rad (R𝑁), endowed with the norm
induced by 𝑊 1,𝑁(R𝑁) and W𝑁 respectively. Using a variant as discussed in (KOBAYASHI;

OTANI, 2014) of symmetric criticality principle of Palais (see (WILLEM, 1996)), the critical
points of 𝒥𝜆 restricted to W𝑁

rad turn out to be the critical points of 𝒥𝜆 in W𝑁 . The details
and applicability of symmetric criticality principle of Palais can be seen in the Appendix A of
this thesis.

Definition 5.1.1. A pair (𝑢, 𝑣) ∈ W𝑁 is said to be a weak solution for System (𝑆𝜆) if it
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satisfies

⟨(𝑢, 𝑣), (𝜑, 𝜓)⟩ − 𝜆𝑝
∫︁
R𝑁

|𝑢|𝑝−2𝑢|𝑣|𝑞𝜑 d𝑥− 𝜆𝑞
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞−2𝑣𝜓 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝜑 d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝜓 d𝑥

=0,

for all (𝜑, 𝜓) ∈ W𝑁 . A weak solution (𝑢, 𝑣) is called vector solution if 𝑢 ̸= 0 and 𝑣 ̸= 0.

The energy functional 𝒥𝜆 : W𝑁 → R associated to System (𝑆𝜆) is given by

𝒥𝜆(𝑢, 𝑣) = 1
𝑁

‖(𝑢, 𝑣)‖𝑁 − 𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛽

d𝑥− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣)
|𝑥|𝛽

d𝑥. (5.2)

In view of the 𝛼0−critical growth assumption on 𝑓 and 𝑔, Proposition 1.0.2 and Proposition
5.0.1, 𝒥𝜆 is well defined and belongs to 𝐶1(W𝑁 ,R). Moreover, critical points of 𝒥𝜆 are weak
solutions to System (𝑆𝜆) and vice-versa, see Section 5.2 for more details.

The main results of this chapter can be stated as follows.

Theorem 5.1.2. Suppose that 𝑓 and 𝑔 satisfy assumptions (𝑎) − (𝑓). Then System (𝑆𝜆) has

a nonnegative solution (𝑢𝜆, 𝑣𝜆), which is vectorial if 𝜆 > 𝜆0, for some 𝜆0 > 0. In addition,

(𝑢𝜆, 𝑣𝜆) ∈ [𝐿∞(R𝑁) ∩ 𝐶1,𝛾(R𝑁)]2, for some 𝛾 ∈ (0, 1) and (𝑢𝜆, 𝑣𝜆) is positive.

Remark 5.1.3. The main contributions of this chapter are the following:

(𝑖) The results of this chapter complete the picture of (DE ALBUQUERQUE et al., 2019) in any

dimension 𝑁 > 2. We complement and extend some works which consider Choquard

type problems with critical exponential growth, for example (CHEN; TANG, 2022);

(𝑖𝑖) Even for scalar case (when 𝜆 = 0) the results of this chapter are new and complement

(ALVES; SHEN, 2023) for dimensions 𝑁 > 2;

(𝑖𝑖𝑖) This chapter presents an alternative to the standard arguments based on Lions’

vanishing-nonvanishing and shifted sequences argument (not applicable if 𝛽 ̸= 0) by

utilizing a variant of Palais principle of symmetric criticality.

Remark 5.1.4. A solution (𝑢, 𝑣) ∈ W𝑁
rad of (𝑆𝜆) is said to be a radial ground state solution if

satisfies 𝒥𝜆(𝑢, 𝑣) ⩽ 𝒥𝜆(𝑤, 𝑧), for any other nontrivial solution (𝑤, 𝑧) ∈ W𝑁
rad. By considering

this notion, we point out that all solution obtained in Theorem 5.1.2 is radial ground state

solution.
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Remark 5.1.5. Note that if 𝑁 = 2, 0 < 𝜆 < 1 and (𝑢, 𝑣) ∈ W2∖{(0, 0)} is a solution for

System (𝑆𝜆), then (𝑢, 𝑣) is vectorial, i.e., 𝑢 ̸= 0 and 𝑣 ̸= 0. In fact, if 𝑢 = 0, then it follows

from the first equation of (𝑆𝜆) that 𝑣 = 0. This conclusion is no longer trivial to System (𝑆𝜆)
with 𝑁 > 2. In this case we will consider the coupling parameter 𝜆 > 0 sufficiently large to

prove that the nontrivial solution obtained is vectorial, see Subsection 5.2.5.1.

The remainder of this chapter is organized as follows: In the forthcoming section we
introduce the variational framework and the energy levels associated to System (𝑆𝜆). Next,
we devoted to the proof of Theorem 5.1.2 and it is divided into several subsections, which
are guided in the following order: Mountains pass level, Nehari manifold, level comparison,
estimate of the minimax level, compactness results, regularity and finally the existence of a
vectorial radial ground state solution for System (𝑆𝜆).

5.2 VARIATIONAL FRAMEWORK AND ENERGY LEVELS

We begin this section by proving that the energy functional (5.2) is well defined. In view
of assumptions (𝑎) and (𝑏), for any 𝜖 > 0, 𝑟 ⩾ 1 and 𝛼 > 𝛼0, there exists a constant
𝐶(𝜖, 𝑟, 𝛼) > 0 such that

|𝑓(𝑠)| ⩽ 𝜖|𝑠|
2𝑁−2𝛽−𝜇

2 −1 + 𝐶(𝜖, 𝑟, 𝛼)|𝑠|𝑟−1
[︁
exp(𝛼𝑠

𝑁
𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑠)

]︁
,

|𝑔(𝑠)| ⩽ 𝜖|𝑠|
2𝑁−2𝛽−𝜇

2 −1 + 𝐶(𝜖, 𝑟, 𝛼)|𝑠|𝑟−1
[︁
exp(𝛼𝑠

𝑁
𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑠)

]︁ (5.3)

and
|𝐹 (𝑠)| ⩽ 𝜖|𝑠|

2𝑁−2𝛽−𝜇
2 + 𝐶(𝜖, 𝑟, 𝛼)|𝑠|𝑟

[︁
exp(𝛼𝑠

𝑁
𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑠)

]︁
,

|𝐺(𝑠)| ⩽ 𝜖|𝑠|
2𝑁−2𝛽−𝜇

2 + 𝐶(𝜖, 𝑟, 𝛼)|𝑠|𝑟
[︁
exp(𝛼𝑠

𝑁
𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑠)

]︁
.

(5.4)

Thus, for any 𝑢 in 𝑊 1,𝑁(R𝑁), it follows from (5.4) that

‖𝐹 (𝑢)‖ 2𝑁
2𝑁−2𝛽−𝜇

⩽𝜖𝐶‖𝑢‖
2𝑁−2𝛽−𝜇

2
𝑁

+ 𝐶(𝜖, 𝑟, 𝛼)‖|𝑢|𝑟(exp(𝛼𝑢
𝑁

𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑢))‖ 2𝑁
2𝑁−2𝛽−𝜇

. (5.5)

For any 𝑟 ⩾ 1 and 𝛼 > 0, we have that

[︁
exp(𝛼𝑠

𝑁
𝑁−1 ) − 𝑆𝑁−2(𝛼, 𝑢)

]︁𝑟
⩽ exp(𝑟𝛼𝑠

𝑁
𝑁−1 ) − 𝑆𝑁−2(𝑟𝛼, 𝑠), ∀𝑠 ∈ R. (5.6)
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Applying Hölder’s inequality with 1
𝑛

+ 1
𝑚

= 1, Sobolev embedding and using (5.6) we deduce∫︁
R𝑁

|𝑢|
2𝑁𝑟

2𝑁−2𝛽−𝜇

[︁
exp

(︁
𝛼𝑢

𝑁
𝑁−1

)︁
− 𝑆𝑁−2 (𝛼, 𝑢)

]︁ 2𝑁
2𝑁−2𝛽−𝜇 d𝑥

⩽
(︂∫︁

R𝑁
|𝑢|

2𝑁𝑟𝑚
2𝑁−2𝛽−𝜇 d𝑥

)︂ 1
𝑚

{︃∫︁
R𝑁

[︁
exp

(︁
𝛼𝑢

𝑁
𝑁−1

)︁
− 𝑆𝑁−2 (𝛼, 𝑢)

]︁ 2𝑁𝑛
2𝑁−2𝛽−𝜇 d𝑥

}︃ 1
𝑛

⩽𝐶1‖𝑢‖
2𝑁𝑟

2𝑁−2𝛽−𝜇

⎧⎨⎩
∫︁
R𝑁

⎡⎣ exp
⎛⎝2𝑁𝛼𝑛‖𝑢‖

𝑁
𝑁−1

2𝑁 − 2𝛽 − 𝜇

(︃
|𝑢|
‖𝑢‖

)︃ 𝑁
𝑁−1

⎞⎠
− 𝑆𝑁−2

⎛⎝2𝑁𝛼𝑛‖𝑢‖
𝑁

𝑁−1

2𝑁 − 2𝛽 − 𝜇
,

|𝑢|
‖𝑢‖

⎞⎠⎤⎦ d𝑥

⎫⎬⎭
1
𝑛

. (5.7)

Now, choosing ‖(𝑢, 𝑣)‖ <
(︁

2𝑁−2𝛽−𝜇
2𝑁𝑛

𝛼𝑁

𝛼

)︁𝑁−1
𝑁 , Proposition 5.0.1 together with (5.7), we obtain{︃∫︁

R𝑁
|𝑢|

2𝑁𝑟
2𝑁−2𝛽−𝜇

[︁
exp

(︁
𝛼𝑢

𝑁
𝑁−1

)︁
− 𝑆𝑁−2 (𝛼, 𝑢)

]︁ 2𝑁𝑛
2𝑁−2𝛽−𝜇 d𝑥

}︃ 2𝑁−2𝛽−𝜇
2𝑁

⩽ 𝐶2‖𝑢‖𝑟,

which jointly with (5.5) imply that

‖𝐹 (𝑢)‖2
2𝑁

2𝑁−2𝛽−𝜇
⩽ 4𝜖2𝐶2‖𝑢‖2𝑁−2𝛽−𝜇 + 4𝐶2

2𝐶
2(𝜖, 𝑟, 𝛼)‖𝑢‖2𝑟.

Gathering the last estimate with Proposition 1.0.2 and defining

𝐶 := 𝐶(𝑁, 𝛽, 𝜇) max
{︁
4𝜖2𝐶2, 4𝐶2

2𝐶
2(𝜖, 𝑟, 𝛼)

}︁
,

we may infer∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑦))𝐹 (𝑢(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 ⩽𝐶(𝑁, 𝛽,𝑁)‖𝐹 (𝑢)‖2
2𝑁

2𝑁−2𝛽−𝜇

⩽𝐶‖(𝑢, 𝑣)‖2𝑁−2𝛽−𝜇 + 𝐶‖(𝑢, 𝑣)‖2𝑟 < +∞. (5.8)

Following the same lines, we obtain∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑣(𝑦))𝐺(𝑣(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 ⩽𝐶(𝑁, 𝛽,𝑁)‖𝐹 (𝑢)‖2
2𝑁

2𝑁−2𝛽−𝜇

⩽𝐶‖(𝑢, 𝑣)‖2𝑁−2𝛽−𝜇 + 𝐶‖(𝑢, 𝑣)‖2𝑟 < +∞. (5.9)

From (5.4), arguing in a similar way to the previous lines, we deduce∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑦))𝑓(𝑢(𝑥))𝑢(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 < +∞,
∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑣(𝑦))𝑔(𝑣(𝑥))𝑣(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 < +∞.

Therefore, one may conclude that the energy functional 𝒥𝜆 introduced in (5.2) is well defined
on W𝑁 , belongs to 𝐶1(W𝑁 ,R) and its derivative is given by

𝒥 ′
𝜆(𝑢, 𝑣)(𝜑, 𝜓) =⟨(𝑢, 𝑣), (𝜑, 𝜓)⟩ − 𝜆𝑝

∫︁
R𝑁

|𝑢|𝑝−2𝑢|𝑣|𝑞𝜑 d𝑥− 𝜆𝑞
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞−2𝑣𝜓 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝜑 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝜓 d𝑥,
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for all (𝜑, 𝜓) ∈ W𝑁 . Therefore, critical points of 𝒥𝜆 are weak solutions to System (𝑆𝜆) and
vice-versa.

In the next section, in addition to obtaining the existence of a solution, we will compare
the following energy and minimax levels:

𝑐𝜆 := inf
(𝑢,𝑣)∈𝒮𝜆

𝒥𝜆(𝑢, 𝑣);

𝑚𝜆 := inf
𝛾∈Γ𝜆

max
𝑡∈[0,1]

𝒥𝜆(𝛾(𝑡));

𝑐𝒩𝜆
:= inf

(𝑢,𝑣)∈𝒩𝜆

𝒥𝜆(𝑢, 𝑣);

𝑑𝜆 := inf
(𝑢,𝑣)∈W𝑁

rad∖{(0,0)}
max
𝑡⩾0

𝒥𝜆(𝑡(𝑢, 𝑣)),

(5.10)

where
𝒮𝜆 :=

{︁
(𝑢, 𝑣) ∈ W𝑁

rad∖{(0, 0)} : (𝑢, 𝑣) is a solution of (𝑆𝜆)
}︁

;

Γ𝜆 :=
{︁
𝛾 ∈ 𝐶([0, 1];W𝑁

rad) : 𝛾(0) = (0, 0), 𝒥𝜆(𝛾(1)) < 0
}︁

;

𝒩𝜆 :=
{︁
(𝑢, 𝑣) ∈ W𝑁

rad ∖ {(0, 0)} : 𝒥 ′
𝜆(𝑢, 𝑣)(𝑢, 𝑣) = 0

}︁
.

5.2.1 Mountain pass level

Next, we will show that the energy functional 𝒥𝜆 satisfies the geometric requirement of
the Mountain Pass Theorem stated in the following lemma.

Lemma 5.2.1. The functional 𝒥𝜆 satisfies the following conditions:

(𝑖) there exist 𝜉, 𝛿 > 0 such that 𝒥𝜆(𝑢, 𝑣) ⩾ 𝛿 > 0, for all (𝑢, 𝑣) ∈ W𝑁 satisfying

‖(𝑢, 𝑣)‖ = 𝜉;

(𝑖𝑖) there exists (𝑢̃, 𝑣) ∈ W𝑁 with ‖(𝑢̃, 𝑣)‖ > 𝜉 such that 𝒥𝜆(𝑢̃, 𝑣) < 0.

Proof. In view of (5.1), Hölder’s inequality and Sobolev embedding, there holds∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥 ⩽
(︂∫︁

R𝑁
|𝑢|2𝑝 d𝑥

)︂ 1
2
(︂∫︁

R𝑁
|𝑣|2𝑞 d𝑥

)︂ 1
2
⩽ 𝐶‖𝑢‖𝑝‖𝑣‖𝑞. (5.11)

Thus, ∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥 ⩽ 𝐶‖(𝑢, 𝑣)‖𝑝+𝑞. (5.12)

By combining (5.8), (5.9), (5.12) with (5.2) and since ‖(𝑢, 𝑣)‖ <
(︁

2𝑁−2𝛽−𝜇
2𝑁𝑛

𝛼𝑁

𝛼

)︁𝑁−1
𝑁 , it follows

that

𝒥𝜆(𝑢, 𝑣) ⩾ 1
𝑁

‖(𝑢, 𝑣)‖𝑁 − 𝜆𝐶‖(𝑢, 𝑣)‖𝑝+𝑞 − 𝐶‖(𝑢, 𝑣)‖2𝑁−2𝛽−𝜇 − 𝐶‖(𝑢, 𝑣)‖2𝑟.
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Denoting 𝐶𝜆,𝑝,𝑞 = max
{︁

𝜆𝐶
𝑝+𝑞

, 𝐶
}︁

and considering ‖(𝑢, 𝑣)‖ = 𝜉, we obtain

𝒥𝜆(𝑢, 𝑣) ⩾𝜉𝑁
[︂ 1
𝑁

−
(︁
1 + 𝜉2𝑁−(𝑝+𝑞)−2𝛽−𝜇 + 𝜉2𝑟−(𝑝+𝑞)

)︁
𝐶𝜆,𝑝,𝑞𝜉

𝑝+𝑞−𝑁
]︂
.

Thus, since that 𝑝 + 𝑞 > 𝑁 , 𝑁 − 2𝛽 − 𝜇 > 0 and 𝑟 > 𝑁 , we may choose 0 < 𝜉 <(︁
2𝑁−2𝛽−𝜇

2𝑁𝑛
𝛼𝑁

𝛼

)︁𝑁−1
𝑁 sufficiently small such that

1/𝑁 −
(︁
1 + 𝜉2𝑁−(𝑝+𝑞)−2𝛽−𝜇 + 𝜉2𝑟−(𝑝+𝑞)

)︁
𝐶𝜆,𝑝,𝑞𝜉

𝑝+𝑞−𝑁 > 0.

Therefore, if ‖(𝑢, 𝑣)‖ = 𝜉, then 𝒥𝜆(𝑢, 𝑣) ⩾ 𝛿, where

𝛿 := 𝜉𝑁
[︁
1/𝑁 −

(︁
1 + 𝜉2𝑁−(𝑝+𝑞)−2𝛽−𝜇 + 𝜉2𝑟−(𝑝+𝑞)

)︁
𝐶𝜆,𝑝,𝑞𝜉

𝑝+𝑞−𝑁
]︁
> 0,

which finishes the proof of item (𝑖).
Regarding to (𝑖𝑖), let us take a fixed positive function (𝑢0, 𝑣0) ∈ W𝑁 . By (𝑑), we have

0 ⩽ lim
𝑠→+∞

𝐹 (𝑠)
𝑓(𝑠)𝑠 ⩽ lim

𝑠→+∞

𝑀0

𝑠𝑚0+1 = 0 and 0 ⩽ lim
𝑠→+∞

𝐺(𝑠)
𝑔(𝑠)𝑠 ⩽ lim

𝑠→+∞

𝑀0

𝑠𝑚0+1 = 0.

Hence, for every 𝜖 > 0, there exists 𝑠𝜖 > 0 such that

𝐹 (𝑠) ⩽ 𝜖𝑠𝑓(𝑠) and 𝐺(𝑠) ⩽ 𝜖𝑠𝑔(𝑠), ∀𝑠 ⩾ 𝑠𝜖. (5.13)

Choosing 𝜖 = 1/𝑟 > 0 in (5.13) such that 𝑟 > 𝑁 , leads to

𝑟𝐹 (𝑠) ⩽ 𝑠𝑓(𝑠) and 𝑟𝐺(𝑠) ⩽ 𝑠𝑔(𝑠), ∀𝑠 ⩾ 𝑠𝜖 =: 𝑠. (5.14)

Consequently, by (5.14) there are positive constants 𝑎1 and 𝑏1 such that

𝐹 (𝑠) ⩾ 𝑎1𝑠
𝑟 and 𝐺(𝑠) ⩾ 𝑏1𝑠

𝑟, ∀𝑠 ⩾ 𝑠. (5.15)

Now, for 𝑡 sufficiently large, using (5.15) with 𝑠 = 𝑡𝑠𝑖, 𝑖 = 1, 2, we may infer for all 𝑠𝑖 > 0

that the following estimates hold

𝐹 (𝑡𝑠1)𝐹 (𝑡𝑠2) ⩾ 𝑎2
1𝑡

2𝑟𝑠𝑟
1𝑠

𝑟
2 and 𝐺(𝑡𝑠1)𝐺(𝑡𝑠2) ⩾ 𝑏2

1𝑡
2𝑟𝑠𝑟

1𝑠
𝑟
2. (5.16)

By Proposition 1.0.2, since that 𝑟 > 𝑁 , the estimates hold true
∫︁
R𝑁

∫︁
R𝑁

𝑢𝑟
0(𝑦)𝑢𝑟

0(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 ⩽ 𝐶(𝑁, 𝛽, 𝜇)‖𝑢0‖2𝑟
2𝑁𝑟

2𝑁−2𝛽−𝜇
< +∞

and
∫︁
R𝑁

∫︁
R𝑁

𝑣𝑟
0(𝑦)𝑣𝑟

0(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 ⩽ 𝐶(𝑁, 𝛽, 𝜇)‖𝑣0‖2𝑟
2𝑁𝑟

2𝑁−2𝛽−𝜇
< +∞.
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From this and (5.16), we obtain∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑡𝑢0(𝑦))𝐹 (𝑡𝑢0(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 ⩾ 𝑎2
1𝑡

2𝑟
∫︁
R𝑁

∫︁
R𝑁

𝑢𝑟
0(𝑦)𝑢𝑟

0(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥

and ∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑡𝑣0(𝑦))𝐺(𝑡𝑣0(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 ⩾ 𝑏2
1𝑡

2𝑟
∫︁
R𝑁

∫︁
R𝑁

𝑣𝑟
0(𝑦)𝑣𝑟

0(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥.

Hence,

𝒥𝜆(𝑡𝑢0, 𝑡𝑣0)

⩽
𝑡𝑁

𝑁
‖(𝑢0, 𝑣0)‖𝑁 − 𝑎2

1𝑡
2𝑟

2

∫︁
R𝑁

∫︁
R𝑁

𝑢𝑟
0(𝑦)𝑢𝑟

0(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥

− 𝑏2
1𝑡

2𝑟

2

∫︁
R𝑁

∫︁
R𝑁

𝑣𝑟
0(𝑦)𝑣𝑟

0(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 =: 𝑘1𝑡
𝑁 − 𝑘2𝑡

2𝑟 − 𝑘3𝑡
2𝑟, with 𝑘1, 𝑘2, 𝑘3 > 0.

Thus, 𝒥𝜆(𝑡𝑢0, 𝑡𝑣0) → −∞, as 𝑡 → +∞, since that 𝑟 > 𝑁 . Therefore, there exists
(𝑢̃, 𝑣) := 𝑡(𝑢0, 𝑣0) ∈ W𝑁 with ‖(𝑢̃, 𝑣)‖ > 𝜉 and 𝒥𝜆(𝑢̃, 𝑣) < 0, we conclude the proof of
item (𝑖𝑖).

Henceforth, for the sake of simplicity, we denote 𝒥𝜆 = 𝒥𝜆|W𝑁
rad

: W𝑁
rad → R. In view of

Definition 2.2.3, Lemma 5.2.1 and Mountain Pass Theorem (WILLEM, 1996), there exists a
Palais-Smale sequence (𝑢𝑛, 𝑣𝑛)𝑛 ⊂ W𝑁

rad such that

𝒥𝜆(𝑢𝑛, 𝑣𝑛) → 𝑚𝜆 and 𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛) → 0, (5.17)

i.e., (𝑢𝑛, 𝑣𝑛)𝑛 is a (𝑃𝑆)𝑚𝜆
sequence for 𝒥𝜆. Moreover, Lemma 5.2.1 ensures that 𝑚𝜆 > 0.

5.2.2 Nehari manifold

Next, we shall discuss some properties on the Nehari manifold associated our main System
(𝑆𝜆), which is defined as follows

𝒩𝜆 =
{︁
(𝑢, 𝑣) ∈ W𝑁

rad ∖ {(0, 0)} : 𝒥 ′
𝜆(𝑢, 𝑣)(𝑢, 𝑣) = 0

}︁
.

Notice that if (𝑢, 𝑣) ∈ 𝒩𝜆, then

‖(𝑢, 𝑣)‖𝑁 =
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣 d𝑥+ 𝜆(𝑝+ 𝑞)
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥. (5.18)

We first show that the number 𝑐𝒩𝜆
= inf

(𝑢,𝑣)∈𝒩𝜆

𝒥𝜆(𝑢, 𝑣) is well defined by proving that 𝒥𝜆 is
bounded from below on 𝒩𝜆 and the set 𝒩𝜆 is non-empty.
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Lemma 5.2.2. The functional 𝒥𝜆 is bounded from below on 𝒩𝜆.

Proof. In view of assumption (𝑒), we have that

𝑓(𝑠)𝑠−𝑁𝐹 (𝑠) > 0 and 𝑔(𝑠)𝑠−𝑁𝐺(𝑠) > 0, ∀𝑠 > 0, (5.19)

which implies that
1
𝑁
𝑓(𝑠)𝑠− 1

2𝐹 (𝑠) > 0 and 1
𝑁
𝑔(𝑠)𝑠− 1

2𝐺(𝑠) > 0, ∀𝑠 > 0. (5.20)

Therefore, (5.18) and (5.20) lead to

𝒥𝜆(𝑢, 𝑣) = 1
𝑁

‖(𝑢, 𝑣)‖𝑁 − 𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛽

d𝑥− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣)
|𝑥|𝛽

d𝑥

=𝜆
(︂
𝑝+ 𝑞

𝑁
− 1

)︂ ∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃ [︂ 1

𝑁
𝑓(𝑢)𝑢− 1

2𝐹 (𝑢)
]︂

|𝑥|𝛽
d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃ [︁ 1

𝑁
𝑔(𝑢)𝑢− 1

2𝐺(𝑢)
]︁

|𝑥|𝛽
d𝑥 ⩾ 0,

which finishes the proof.

Lemma 5.2.3. For any (𝑢, 𝑣) ∈ W𝑁
rad ∖ {(0, 0)}, there exists a unique 𝑡0 > 0, depending on

(𝑢, 𝑣), such that

(𝑡0𝑢, 𝑡0𝑣) ∈ 𝒩𝜆 and max
𝑡⩾0

𝒥𝜆(𝑡(𝑢, 𝑣)) = 𝒥𝜆(𝑡0(𝑢, 𝑣)).

Proof. First, we note that (5.19) ensures
𝐹 (𝑠)
𝑠𝑁

,
𝐺(𝑠)
𝑠𝑁

, are increasing for 𝑠 > 0

and, consequently, 𝐹 (𝑠) and 𝐺(𝑠) are also increasing for 𝑠 > 0. Hence, for all 𝑠1, 𝑠2, 𝑡1, 𝑡2 ∈

(0,+∞), if 𝑡1 < 𝑡2, then
𝐹 (𝑡1𝑠1)
𝑡𝑁1 𝑠1

𝑓(𝑡1𝑠2)
𝑡𝑁−1
1 𝑠2

𝑠2
2𝑡

𝑁
1 𝑠1 ⩽

𝐹 (𝑡2𝑠1)
𝑡𝑁2 𝑠1

𝑓(𝑡2𝑠2)
𝑡𝑁−1
2 𝑠2

𝑠2
2𝑡

𝑁
2 𝑠1

and
𝐺(𝑡1𝑠1)
𝑡𝑁1 𝑠1

𝑔(𝑡1𝑠2)
𝑡𝑁−1
1 𝑠2

𝑠2
2𝑡

𝑁
1 𝑠1 ⩽

𝐺(𝑡2𝑠1)
𝑡𝑁2 𝑠1

𝑔(𝑡2𝑠2)
𝑡𝑁−1
2 𝑠2

𝑠2
2𝑡

𝑁
2 𝑠1.

Hence, the functions ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
𝑡𝑁−1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑡𝑢)
|𝑥|𝛽

𝑢 d𝑥,

1
𝑡𝑁−1

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑡𝑣)
|𝑥|𝛽

𝑣d𝑥
(5.21)
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are increasing for 𝑡 > 0.

Let (𝑢, 𝑣) ∈ W𝑁
rad ∖ {(0, 0)} be fixed and consider the function 𝜙 : [0,+∞) → R defined

by 𝜙(𝑡) = 𝒥𝜆(𝑡(𝑢, 𝑣)). Notice that 𝜙′(𝑡)𝑡 = 𝒥 ′
𝜆(𝑡(𝑢, 𝑣))𝑡(𝑢, 𝑣). Thus, 𝜙′(𝑡) = 0 if only if

𝒥 ′
𝜆(𝑡(𝑢, 𝑣))𝑡(𝑢, 𝑣) = 0, implying that

‖(𝑢, 𝑣)‖𝑁 − 𝜆(𝑝+ 𝑞)𝑡𝑝+𝑞−𝑁
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

= 1
𝑡𝑁−1

⎡⎣ ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑡𝑢)
|𝑥|𝛽

𝑢 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑡𝑣)
|𝑥|𝛽

𝑣 d𝑥
⎤⎦. (5.22)

Therefore, 𝑡0 is a positive critical point of 𝜙 if and only if (𝑡0𝑢, 𝑡0𝑣) ∈ 𝒩𝜆. Moreover, note
that (5.21) ensures that the right-hand side of (5.22) is an increasing function on 𝑡 > 0. From

(5.8), (5.9) and (5.11), follows by the definition of 𝜙 that

𝜙(𝑡) ⩾𝑡𝑁‖(𝑢, 𝑣)‖𝑁

⎡⎣ 1
𝑁

− 𝜆𝐶𝑡𝑝+𝑞−𝑁‖(𝑢, 𝑣)‖𝑝+𝑞−𝑁 − 𝐶𝑡𝑁−2𝛽−𝜇‖(𝑢, 𝑣)‖𝑁−2𝛽−𝜇

− 𝐶𝑡2𝑟−𝑁‖(𝑢, 𝑣)‖2𝑟−𝑁

⎤⎦ > 0,

provided 𝑡 > 0 is sufficiently small. On the other hand, arguing as in the proof of Lemma
5.2.1 (𝑖𝑖), one may check that 𝜙(𝑡) ⩽ 𝑘1

𝑁
𝑡𝑁 − 𝑘2𝑡

2𝑟 − 𝑘3𝑡
2𝑟, where 𝑘1, 𝑘2, 𝑘3 are positive

constants. Hence, since 𝑟 > 𝑁 , we have 𝜙(𝑡) < 0 for 𝑡 > 0 sufficiently large. Consequently, 𝜙
has maximum points in (0,+∞). Suppose that there exist 𝑡1, 𝑡2 > 0 with 𝑡1 < 𝑡2 such that
𝜙′(𝑡1) = 𝜙′(𝑡2) = 0. In view of (5.22), we have that

1
𝑡𝑁−1
1

⎡⎣ ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡1𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑡1𝑢)
|𝑥|𝛽

𝑢 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡1𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑡1𝑣)
|𝑥|𝛽

𝑣 d𝑥
⎤⎦

− 1
𝑡𝑁−1
2

⎡⎣ ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡2𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑡2𝑢)
|𝑥|𝛽

𝑢 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡2𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑡2𝑣)
|𝑥|𝛽

𝑣 d𝑥
⎤⎦ = 0.

Therefore, since the right-hand side of (5.22) is an increasing function on 𝑡 > 0, it follows
that 𝑢 = 𝑣 = 0, which is impossible and the proof is complete.
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5.2.3 Comparing levels

As a consequence of Lemma 5.2.3, the set 𝒩𝜆 ̸= ∅. Moreover, combining Lemma 5.2.2
with Lemma 5.2.3 and recalling the definition of 𝑑𝜆 in (5.10), we may conclude that

𝑐𝒩𝜆
= inf

(𝑢,𝑣)∈𝒩𝜆

𝒥𝜆(𝑢, 𝑣) ⩽ inf
(𝑢,𝑣)∈W𝑁

rad∖{(0,0)}
max
𝑡⩾0

𝒥𝜆(𝑡(𝑢, 𝑣)) = 𝑑𝜆. (5.23)

The next lemma is crucial to achieve the objective of this section.

Lemma 5.2.4. For any (𝑢, 𝑣) ∈ 𝒩𝜆, there holds

max
𝑡⩾0

𝒥𝜆(𝑡(𝑢, 𝑣)) ⩽ 𝒥𝜆(𝑢, 𝑣). (5.24)

In addition, we have

𝑑𝜆 = 𝑐𝒩𝜆
and 𝑚𝜆 ⩽ 𝑐𝒩𝜆

, (5.25)

where 𝑚𝜆 was defined in (5.10).

Proof. Firstly, we will verify that for any (𝑢, 𝑣) ∈ 𝒩𝜆, (5.24) holds true. According to (5.18),
we may write

𝒥𝜆(𝑢, 𝑣) − 𝒥𝜆(𝑡(𝑢, 𝑣))

=1 − 𝑡𝑁

𝑁
‖(𝑢, 𝑣)‖𝑁 + 𝜆(𝑡𝑝+𝑞 − 1)

∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

+ 1
2

[︃∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑡𝑢)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛽

d𝑥
]︃

+ 1
2

[︃∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑡𝑣)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣)
|𝑥|𝛽

d𝑥
]︃

=1 − 𝑡𝑁

𝑁

⎡⎣ ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣 d𝑥
⎤⎦

+
(︃

1 − 𝑡𝑁

𝑁
(𝑝+ 𝑞) + 𝑡𝑝+𝑞 − 1

)︃
𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

+ 1
2

[︃∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑡𝑢)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛽

d𝑥
]︃

+ 1
2

[︃∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑡𝑣)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣)
|𝑥|𝛽

d𝑥
]︃
.
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On the other hand, note that
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢 d𝑥+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣 d𝑥

=1
2

[︃ ∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑦))𝑓(𝑢(𝑥))𝑢(𝑥) + 𝐹 (𝑢(𝑥))𝑓(𝑢(𝑦))𝑢(𝑦)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥

+
∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑣(𝑦))𝑔(𝑣(𝑥))𝑣(𝑥) +𝐺(𝑣(𝑥))𝑔(𝑣(𝑦))𝑣(𝑦)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥
]︃
.

These last two estimates take us

𝒥𝜆(𝑢, 𝑣) − 𝒥𝜆(𝑡(𝑢, 𝑣))

=1 − 𝑡𝑁

2𝑁

∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑦))𝑓(𝑢(𝑥))𝑢(𝑥) + 𝐹 (𝑢(𝑥))𝑓(𝑢(𝑦))𝑢(𝑦)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥

+ 1
2

[︃∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑡𝑢)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢) d𝑦
|𝑦|𝛽|𝑥− 𝑦|𝜇

)︃
𝐹 (𝑢)
|𝑥|𝛽

d𝑥
]︃

+ 1 − 𝑡𝑁

2𝑁

∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑣(𝑦))𝑔(𝑣(𝑥))𝑣(𝑥) +𝐺(𝑣(𝑥))𝑔(𝑣(𝑦))𝑣(𝑦)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥

+ 1
2

[︃∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑡𝑣)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣)
|𝑥|𝛽

d𝑥
]︃

+
(︃

1 − 𝑡𝑁

𝑁
(𝑝+ 𝑞) + 𝑡𝑝+𝑞 − 1

)︃
𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥. (5.26)

Now, for all 𝑡1, 𝑡2, 𝑠1, 𝑠2 ∈ (0,+∞) we define

ℎ1(𝑡, 𝑡1, 𝑡2) := 1 − 𝑡𝑁

2𝑁 [𝐹 (𝑡2)𝑓(𝑡1)𝑡1 + 𝐹 (𝑡1)𝑓(𝑡2)𝑡2] + 1
2 [𝐹 (𝑡𝑡2)𝐹 (𝑡𝑡1) − 𝐹 (𝑡2)𝐹 (𝑡1)] ,

ℎ2(𝑡, 𝑠1, 𝑠2) := 1 − 𝑡𝑁

2𝑁 [𝐺(𝑠2)𝑔(𝑠1)𝑠1 +𝐺(𝑠1)𝑔(𝑠2)𝑠2] + 1
2 [𝐺(𝑡𝑠2)𝐺(𝑡𝑠1) −𝐺(𝑠2)𝐺(𝑠1)] ,

ℎ3(𝑡, 𝑡1, 𝑠1) :=
(︃

1 − 𝑡𝑁

𝑁
(𝑝+ 𝑞) + 𝑡𝑝+𝑞 − 1

)︃
𝜆𝑡𝑝1𝑠

𝑞
1.

Thus, to prove (5.24) it is sufficient to verify that

ℎ1(𝑡, 𝑡1, 𝑡2), ℎ2(𝑡, 𝑠1, 𝑠2), ℎ3(𝑡, 𝑡1, 𝑠1) ⩾ 0, ∀𝑡 ∈ (0,+∞). (5.27)

Following (ALVES; SHEN, 2023, Lemma 5.1), one may prove that ℎ1(𝑡, 𝑡1, 𝑡2), ℎ2(𝑡, 𝑠1, 𝑠2) ⩾ 0,

for all 𝑡 ∈ (0,+∞). Now, a direct computation shows that

𝜕

𝜕𝑡
ℎ3(𝑡, 𝑡1, 𝑠1) =(𝑝+ 𝑞)

(︁
𝑡𝑝+𝑞−1 − 𝑡𝑁−1

)︁
𝜆𝑡𝑝1𝑠

𝑞
1⎧⎪⎪⎨⎪⎪⎩

⩾ 0, if 𝑡 ∈ [1,+∞),

< 0, if 𝑡 ∈ (0, 1].
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Consequently, we reach that ℎ3(𝑡, 𝑡1, 𝑠1) is decreasing on 𝑡 ∈ (0, 1) and increasing on
𝑡 ∈ (1,+∞), implying that

ℎ3(𝑡, 𝑡1, 𝑠1) ⩾ min
𝑡>0

ℎ(𝑡, 𝑡1, 𝑠1) = ℎ(1, 𝑡1, 𝑠1) = 0.

Thus, combining (5.26) with (5.27) we obtain (5.24). Therefore, (5.23) and (5.24) imply
𝑑𝜆 = 𝑐𝒩𝜆

.

Finally, observe that for any (𝑢, 𝑣) ∈ W𝑁
rad, there holds 𝒥𝜆(𝑡(𝑢, 𝑣)) → −∞, as 𝑡 → +∞.

Let 𝑇 > 0 be such that 𝒥𝜆(𝑇 (𝑢, 𝑣)) < 0. Hence, the path 𝛾(𝑡) = 𝑡𝑇 (𝑢, 𝑣) belongs to Γ. Now
using (5.24) and the definition of mountain pass level, for any (𝑢, 𝑣) ∈ 𝒩𝜆, we have

𝑚𝜆 ⩽ max
𝑡∈[0,1]

𝒥𝜆(𝑡𝑇 (𝑢, 𝑣)) ⩽ max
𝑠⩾0

𝒥𝜆(𝑠(𝑢, 𝑣)) = 𝒥𝜆(𝑢, 𝑣).

Therefore, 𝑚𝜆 ⩽ 𝑐𝒩𝜆
, which finishes the proof.

Let (𝑢0, 𝑣0) be a mountain pass solution for System (𝑆𝜆) (see Subsection 5.2.5.1). Thus

𝑐𝜆 = inf
(𝑢,𝑣)∈𝒮𝜆

𝒥𝜆(𝑢, 𝑣) ⩽ 𝒥𝜆(𝑢0, 𝑣0) = 𝑚𝜆.

Therefore
𝑐𝜆 ⩽ 𝑚𝜆. (5.28)

Since 𝒮𝜆 ⊂ 𝒩𝜆, there holds 𝑐𝒩𝜆
⩽ 𝑐𝜆. Combining (5.23), (5.25) and (5.28), we conclude that

𝑑𝜆 = 𝑐𝒩𝜆
⩽ 𝑐𝜆 ⩽ 𝑚𝜆 ⩽ 𝑐𝒩𝜆

⩽ 𝑑𝜆

which implies that 𝑐𝜆 = 𝑚𝜆 = 𝑑𝜆.

5.2.4 Estimate of the minimax level

In this section we establish a suitable upper bound to the mountain pass minimax level,
which is very crucial to obtain compactness results in the next section.

Lemma 5.2.5. The energy level 𝑐𝒩𝜆
satisfies

𝑐𝒩𝜆
< 𝐶(𝛼0, 𝛼𝑁 , 𝛽, 𝜇) := 1

𝑁

(︃
2𝑁 − 2𝛽 − 𝜇

2𝑁
𝛼𝑁

𝛼0

)︃𝑁−1

.

Proof. The technique to show the estimate on minimax level involves the celebrated idea of
analysis of Moser functions given by J. Moser (MOSER, 1971). For some fixed 𝜌 > 0, consider
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the following Moser sequence supported in 𝐵𝜌 defined as

𝑢𝑛 = 1

𝜔
1
𝑁
𝑁−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log(𝑛)
𝑁−1

𝑁 , 0 ⩽ |𝑥| ⩽ 𝜌
𝑛
,

log(𝜌/|𝑥|)
log(𝑛) 1

𝑁

, 𝜌
𝑛
⩽ |𝑥| ⩽ 𝜌,

0, |𝑥| ⩾ 𝜌.

From direct computations, we have

‖𝑢𝑛‖𝑁 =
∫︁
R𝑁

|∇𝑢𝑛|𝑁 d𝑥+
∫︁
R𝑁

|𝑢𝑛|𝑁 d𝑥 = 1 +𝑂

(︃
1

log(𝑛)

)︃

and thus ‖𝑢𝑛‖ =
[︁
1 +𝑂

(︁
1

log(𝑛)

)︁]︁ 1
𝑁 .

By setting 𝑢𝑛 = 𝑢𝑛

‖𝑢𝑛‖ , we have ‖𝑢𝑛‖ ⩽ 1 and

𝑢𝑛 = (log(𝑛))𝑁−1
𝑁 /𝜔

1
𝑁
𝑁−1[︁

1 +𝑂
(︁

1
log(𝑛)

)︁]︁ 1
𝑁

≡ (log(𝑛))𝑁−1
𝑁

𝜔
1
𝑁
𝑁−1

+ 𝑎𝑛, 0 ⩽ |𝑥| ⩽ 𝜌

𝑛
, (5.29)

where (𝑎𝑛)𝑛 is a bounded sequence of non-negative real numbers. It suffices to show that
there exists (𝑢, 𝑣) ∈ W𝑁

rad ∖ {(0, 0)} such that 𝑐𝒩𝜆
⩽ max𝑡⩾0 𝒥𝜆(𝑡𝑢, 𝑡𝑣) < 𝐶(𝛼0, 𝛼𝑁 , 𝛽, 𝜇).

We claim that there exists 𝑛 ∈ N such that

max
𝑡⩾0

𝒥𝜆(𝑡𝑢𝑛, 0) < 𝐶(𝛼0, 𝛼𝑁 , 𝛽, 𝜇). (5.30)

Suppose, by contradiction, that for any 𝑛 ∈ N there exists 𝑡𝑛 > 0, such that

max
𝑡∈[0,∞)

𝒥𝜆(𝑡𝑢𝑛, 0) = 𝒥𝜆(𝑡𝑛𝑢𝑛, 0) ⩾ 𝐶(𝛼0, 𝛼𝑛, 𝛽, 𝜇). (5.31)

Hence, 𝑡𝑛 satisfies 𝑑
𝑑𝑡

(𝒥𝜆(𝑡𝑢𝑛, 0))|𝑡=𝑡𝑛 = 0. Since ‖𝑢𝑛‖𝑁 ⩽ 1, there holds

𝑡𝑁𝑛 ⩾
∫︁

𝐵𝜌/𝑛(0)

(︃∫︁
𝐵𝜌/𝑛(0)

𝐹 (𝑡𝑛𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑡𝑛𝑢𝑛)

|𝑥|𝛽
𝑡𝑛𝑢𝑛 d𝑥. (5.32)

It follows from (5.31) and the fact that 𝐹 (𝑠) ⩾ 0 for all 𝑠 ∈ R, that

𝑁𝐶(𝛼0, 𝛼𝑛, 𝛽, 𝜇) ⩽ 𝑁𝒥𝜆(𝑡𝑛𝑢𝑛, 0) ⩽ 𝑡𝑁𝑛 ‖𝑢𝑛‖𝑁 ,

i.e.,

𝑡𝑁𝑛 ⩾

(︃
2𝑁 − 2𝛽 − 𝜇

2𝑁
𝛼𝑁

𝛼0

)︃𝑁−1

. (5.33)
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On the other hand, it follows from assumptions (𝑐) and (𝑑) that for each 𝜖 ∈ (0, 𝛽0), there
exists 𝑅𝜖 > 0 such that

𝐹 (𝑠)𝑓(𝑠)𝑠 ⩾𝑀−1
0 (𝛽0 − 𝜖)𝑠𝑚0+1𝑒2𝛼0𝑠

𝑁
𝑁−1

, ∀𝑠 ⩾ 𝑅𝜖. (5.34)

Gathering the estimates (5.29), (5.32), (5.33) and (5.34), we obtain

𝑡𝑁𝑛 ⩾
∫︁

𝐵𝜌/𝑛(0)

∫︁
𝐵𝜌/𝑛(0)

𝐹 (𝑡𝑛𝑢𝑛(𝑦))𝑓(𝑡𝑛𝑢𝑛(𝑥))𝑡𝑛𝑢𝑛(𝑥)
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥

⩾
∫︁

𝐵𝜌/𝑛(0)

∫︁
𝐵𝜌/𝑛(0)

𝑀−1
0 (𝛽0 − 𝜖)(𝑡𝑛𝑢𝑛)𝑚0+1𝑒2𝛼0(𝑡𝑛𝑢𝑛)

𝑁
𝑁−1

|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽
d𝑦d𝑥

⩾
(𝛽0 − 𝜖)𝑡𝑚0+1

𝑛

𝑀0

⎛⎜⎝ log(𝑛)

𝜔
1

𝑁−1
𝑁−1

+ 𝑎𝑛

⎞⎟⎠
𝑚0+1

exp

⎛⎜⎝2𝛼0𝑡
𝑁

𝑁−1
𝑛 log(𝑛)

𝜔
1

𝑁−1
𝑁−1

+ 2𝛼0𝑡
𝑁

𝑁−1
𝑛 𝑎𝑛

⎞⎟⎠
×
∫︁

𝐵𝜌/𝑛(0)

∫︁
𝐵𝜌/𝑛(0)

d𝑦d𝑥
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

⩾
(𝛽0 − 𝜖)𝑡𝑚0+1

𝑛

𝑀0

⎛⎜⎝ log(𝑛)

𝜔
1

𝑁−1
𝑁−1

+ 𝑎𝑛

⎞⎟⎠
𝑚0+1

exp

⎛⎜⎝2𝛼0𝑡
𝑁

𝑁−1
𝑛 log(𝑛)

𝜔
1

𝑁−1
𝑁−1

+ 2𝛼0𝑡
𝑁

𝑁−1
𝑛 𝑎𝑛

⎞⎟⎠
× 𝐶𝑁,𝛽,𝜇

(︂
𝜌

𝑛

)︂2𝑁−2𝛽−𝜇

=𝐶𝑁,𝛽,𝜇(𝛽0 − 𝜖)𝜌2𝑁−2𝛽−𝜇

𝑀0𝑡
−(𝑚0+1)
𝑛

⎛⎜⎝ log(𝑛)

𝜔
1

𝑁−1
𝑁−1

+ 𝑎𝑛

⎞⎟⎠
𝑚0+1

× exp

⎡⎢⎣log(𝑛)

⎛⎜⎝2𝛼0𝑡
𝑁

𝑁−1
𝑛

𝜔
1

𝑁−1
𝑁−1

− (2𝑁 − 2𝛽 − 𝜇)

⎞⎟⎠+ 2𝛼0𝑡
𝑁

𝑁−1
𝑛 𝑎𝑛

⎤⎥⎦, (5.35)

where we used that 𝑛−(2𝑁−2𝛽−𝜇) = exp
[︁
log(𝑛−(2𝑁−2𝛽−𝜇))

]︁
= exp [−(2𝑁 − 2𝛽 − 𝜇) log(𝑛)].

Note that ⎛⎜⎝ log(𝑛)

𝜔
1

𝑁−1
𝑁−1

+ 𝑎𝑛

⎞⎟⎠
𝑚0+1

⩾

⎛⎜⎝ log(𝑛)

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1

=

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1

log(𝑛)𝑚0+1

=

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1

exp ((𝑚0 + 1) log(log(𝑛))) ,

which together with the estimate (5.35), we get

𝑡𝑁𝑛 ⩾
𝐶𝑁,𝛽,𝜇𝜌

2𝑁−2𝛽−𝜇(𝛽0 − 𝜖)
𝑀0𝑡

−(𝑚0+1)
𝑛

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1

exp[(𝑚0 + 1) log(log(𝑛))]

× exp

⎡⎢⎣log(𝑛)

⎛⎜⎝2𝛼0𝑡
𝑁

𝑁−1
𝑛

𝜔
1

𝑁−1
𝑁−1

− (2𝑁 − 2𝛽 − 𝜇)

⎞⎟⎠+ 2𝛼0𝑡
𝑁

𝑁−1
𝑛 𝑎𝑛

⎤⎥⎦ . (5.36)
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Since (𝑚0 + 1) log(log(𝑛)) + 2𝛼0𝑡
𝑁

𝑁−1
𝑛 𝑎𝑛 > 0 and 𝑁 − 1 −𝑚0 > 0, we infer

𝑡(𝑁−1)−𝑚0
𝑛 ⩾

𝐶𝑁,𝛽,𝜇𝜌
2𝑁−2𝛽−𝜇(𝛽0 − 𝜖)
𝑀0

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1

× exp

⎡⎢⎣log(𝑛)
⎛⎝2𝛼0𝑡

𝑁
𝑁−1
𝑛

𝜔
1

𝑁−1
𝑁−1

− (2𝑁 − 2𝛽 − 𝜇)
⎞⎠
⎤⎥⎦ .

Consequently, we deduce

((𝑁 − 1) −𝑚0)
log(𝑡𝑛)

𝑡
𝑁

𝑁−1
𝑛

⩾
1

𝑡
𝑁

𝑁−1
𝑛

log

⎡⎢⎣𝐶𝑁,𝛽,𝜇𝜌
2𝑁−2𝛽−𝜇(𝛽0 − 𝜖)
𝑀0

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1⎤⎥⎦

+ log(𝑛)

⎛⎜⎝ 2𝛼0

𝜔
𝑁

𝑁−1
𝑁−1

− 2𝑁 − 2𝛽 − 𝜇

𝑡
𝑁

𝑁−1
𝑛

⎞⎟⎠ , (5.37)

which implies that (𝑡𝑛)𝑛 is bounded. Therefore, up to a subsequence, 𝑡𝑛 → 𝑡, as 𝑛 → ∞.

Claim. 𝑡
𝑁

𝑁−1
𝑛 → 2𝑁 − 2𝛽 − 𝜇

2𝑁
𝛼𝑁

𝛼0
, as 𝑛 → ∞.

Indeed, otherwise, in view of (5.33), there would be 𝛿 > 0, such that 𝑡
𝑁

𝑁−1
𝑛 −(︁

2𝑁−2𝛽−𝜇
2𝑁

𝛼𝑁

𝛼0

)︁
⩾ 𝛿. Applying this in (5.37) and remembering that 𝛼𝑁 = 𝑁𝜔

1
𝑁−1
𝑁−1, we obtain

((𝑁 − 1) −𝑚0) log(𝑡𝑛)

⩾ log

⎡⎢⎣𝐶𝑁,𝛽,𝜇𝜌
2𝑁−2𝛽−𝜇(𝛽0 − 𝜖)
𝑀0

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1⎤⎥⎦+

⎡⎣2𝛼0𝑡
𝑁

𝑁−1
𝑛

𝜔
𝑁

𝑁−1
𝑁−1

− (2𝑁 − 2𝛽 − 𝜇)
⎤⎦ log(𝑛)

⩾ log

⎡⎢⎣𝐶𝑁,𝛽,𝜇𝜌
2𝑁−2𝛽−𝜇(𝛽0 − 𝜖)
𝑀0

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1⎤⎥⎦

+
⎡⎣2𝛼0

(︁
𝛿 + 2𝑁−2𝛽−𝜇

2𝑁
𝛼𝑁

𝛼0

)︁
𝜔

1
𝑁−1
𝑁−1

− (2𝑁 − 2𝛽 − 𝜇)
⎤⎦ log(𝑛)

= log

⎡⎢⎣𝐶𝑁,𝛽,𝜇𝜌
2𝑁−2𝛽−𝜇(𝛽0 − 𝜖)
𝑀0

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1⎤⎥⎦+ 2𝛼0𝛿

𝜔
1

𝑁−1
𝑁−1

log(𝑛)

⩾
2𝛼0𝛿

𝜔
1

𝑁−1
𝑁−1

log(𝑛) = log(𝑛𝛿𝑁 ), 𝛿𝑁 := 2𝛼0𝛿

𝜔
1

𝑁−1
𝑁−1

,

which leads to 𝑡(𝑁−1)−𝑚0
𝑛 ⩾ 𝑛𝛿𝑁 , where (𝑁 − 1) −𝑚0 > 0. Hence, we obtain a contradiction

with the fact that (𝑡𝑛)𝑛 is a bounded sequence. The claim is proved.

According to (5.36), we may write

𝑡𝑁𝑛 ⩾ 𝐶𝑁,𝛽,𝜇𝜌
2𝑁−2𝛽−𝜇𝑀−1

0 (𝛽0 − 𝜖)𝑡𝑚0+1
𝑛

⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1

exp (log(log(𝑛))) ,
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which jointly with the last claim, imply that

(︃
2𝑁 − 2𝛽 − 𝜇

2𝑁
𝛼𝑁

𝛼0

)︃𝑁−1

⩾𝐶

(︃
2𝑁 − 2𝛽 − 𝜇

2𝑁
𝛼𝑁

𝛼0

)︃𝑁−1
𝑁

(𝑚0+1)
⎛⎜⎝ 1

𝜔
1

𝑁−1
𝑁−1

⎞⎟⎠
𝑚0+1

exp (log(log(𝑛)))

→ ∞, as 𝑛 → ∞,

where 𝐶 := 𝐶𝑁,𝛽,𝜇𝜌
2𝑁−2𝛽−𝜇𝑀−1

0 (𝛽 − 𝜖), which is a contradiction. Therefore, (5.30) is valid
and this completes the proof.

The next lemma establishes the existence of 𝑐 > 0 such that 𝑐 < 𝐶(𝛼0, 𝛼𝑁 , 𝛽, 𝜇) :=
1
𝑁

(︁
2𝑁−2𝛽−𝜇

2𝑁
𝛼𝑁

𝛼0

)︁𝑁−1
and a (𝑃𝑆)𝑐−sequence for 𝒥𝜆. The proof follows standard arguments

explored, for example, in (CHEN; LIU, 2018, Lemma 2.10).

Lemma 5.2.6. There exist a constant 𝑐 ∈ (0, 𝑐𝒩𝜆
] and a sequence (𝑢𝑛, 𝑣𝑛)𝑛 ⊂ W𝑁

rad satisfying

𝒥𝜆(𝑢𝑛, 𝑣𝑛) → 𝑐 and 𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛) → 0.

Proof. Initially we choose (𝑢𝑘, 𝑣𝑘)𝑘 ∈ 𝒩𝜆 such that

𝑐𝒩𝜆
⩽ 𝒥𝜆(𝑢𝑘, 𝑣𝑘) < 𝑐𝒩𝜆

+ 1
𝑘
, 𝑘 ∈ N. (5.38)

Once 𝒥𝜆(𝑡𝑢𝑘, 𝑡𝑣𝑘) < 0 for large enough 𝑡 > 0, it follows from Lemma 5.0.1 and Mountain
Pass Theorem that there exist (𝑢𝑘,𝑛, 𝑣𝑘,𝑛)𝑛 ⊂ W𝑁

rad and 𝑐𝑘 ∈ [𝛿, sup𝑡⩾0 𝒥𝜆(𝑡𝑢𝑘, 𝑡𝑣𝑘)] such that

𝒥𝜆(𝑢𝑘,𝑛, 𝑣𝑘,𝑛) → 𝑐𝑘, 𝒥 ′
𝜆(𝑢𝑘,𝑛, 𝑣𝑘,𝑛) → 0, 𝑘 ∈ N, (5.39)

where 𝛿 > 0 is given in Lemma 5.2.1. By (5.24), we have 𝒥𝜆(𝑡𝑢𝑘, 𝑡𝑣𝑘) ⩽ 𝒥𝜆(𝑢𝑘, 𝑣𝑘) for all
𝑡 ⩾ 0, i.e., 𝒥𝜆(𝑢𝑘, 𝑣𝑘) = sup𝑡⩾0 𝒥𝜆(𝑡𝑢𝑘, 𝑡𝑣𝑘). Hence, from (5.38) and (5.39), for all 𝑘 ∈ N,

we obtain
𝒥𝜆(𝑢𝑘,𝑛, 𝑣𝑘,𝑛) → 𝑐𝑘 ∈

[︂
𝛿, 𝑐𝒩𝜆

+ 1
𝑘

)︂
, 𝒥 ′

𝜆(𝑢𝑘,𝑛, 𝑣𝑘,𝑛) → 0.

Now, let (𝑛𝑘)𝑘 ⊂ N be a sequence such that

𝒥𝜆(𝑢𝑘,𝑛𝑘
, 𝑣𝑘,𝑛𝑘

) ∈
[︂
𝛿, 𝑐𝒩𝜆

+ 1
𝑘

)︂
, 𝒥 ′

𝜆(𝑢𝑘,𝑛𝑘
, 𝑣𝑘,𝑛𝑘

) < 1
𝑘
, 𝑘 ∈ N.

Define (𝑢𝑘, 𝑣𝑘) := (𝑣𝑘,𝑛𝑘
, 𝑣𝑘,𝑛𝑘

). Therefore, passing to a subsequence if necessary, we reach

𝒥𝜆(𝑢𝑛, 𝑣𝑛) → 𝑐 ∈ [𝛿, 𝑐𝒩𝜆
] and 𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛) → 0

and the lemma is proved.
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5.2.5 Compactness results

In this section we will establish compactness results which play a very important role to
verify that the functional satisfies the (𝑃𝑆)𝑐−condition. It is important to emphasize that in
the case 𝛽 = 0, the boundedness of the nonlocal term

∫︁
R𝑁

𝐹 (𝑢)
|𝑥− 𝑦|𝜇

d𝑦, ∀𝑥 ∈ R𝑁

is strongly used to prove that the functional satisfies the (𝑃𝑆)𝑐− condition, see for instance
(ALVES; YANG, 2014; ALVES et al., 2016b; ALVES; YANG, 2016). However, as emphasized in
Remark 2.1.15 in Chapter 2, due to the presence of the double weight 1

|𝑥|𝛽 and 1
|𝑦|𝛽 , the

convolution
1

|𝑥|𝛽
∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦

does not inherit such property in R𝑁 . But, removing the term 1
|𝑥|𝛽 , it is possible to prove

boundedness of ∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦.

This boundedness is one of the tools to show the following convergences:
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥,

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣0)
|𝑥|𝛽

d𝑥.

For more details see Lemma 5.2.9.

Lemma 5.2.7. For any 𝑢 ∈ 𝑊 1,𝑁(R𝑁), we have that
∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦,
∫︁
R𝑁

𝐺(𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 ∈ 𝐿∞(R𝑁).

Proof. We follow some ideas of Lemma 3.44 in Chapter 4. For 𝑢 ∈ 𝑊 1,𝑁(R𝑁) and 𝑅 > 0,
we write

∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 ⩽
∫︁

𝐵𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 +
∫︁

𝐵𝑐
𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦. (5.40)

On the one hand, for 𝑥 ∈ 𝐵𝑐
2𝑅(0), we have |𝑥− 𝑦| > |𝑦| and

∫︁
𝐵𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 ⩽
∫︁

𝐵𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝜇+𝛽

d𝑦.
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Now, let 𝑝1, 𝑘 > 0 be such that 𝛽 + 𝜇 < 𝑝1 < 𝑁 and 𝑘 := 𝑁
𝑁−𝑝1

. Since 𝑘 > 1, it
follows from Sobolev embedding that 𝐹 ∈ 𝐿𝑘(𝐵𝑅(0)). Hence, by Hölder’s inequality and
since 𝑁 − 1 − (𝛼 + 𝜇) 𝑘

𝑘−1 > −1, we obtain

∫︁
𝐵𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝜇+𝛽

d𝑦 ⩽

(︃∫︁
𝐵𝑅(0)

|𝐹 (𝑢)|𝑘 d𝑦
)︃ 1

𝑘

⎡⎣∫︁
𝐵𝑅(0)

(︃
1

|𝑦|𝜇+𝛽

)︃ 𝑘
𝑘−1

d𝑦
⎤⎦

𝑘−1
𝑘

⩽ ‖𝐹 (𝑢)‖𝐿𝑘(𝐵𝑅(0))

(︃∫︁ 𝑅

0
|𝑟|𝑁−1−(𝛽+𝜇) 𝑘

𝑘−1 d𝑟
)︃ 𝑘−1

𝑘

:= 𝐶2 < +∞.

For 𝑥 ∈ 𝐵2𝑅(0), using similar arguments, we deduce∫︁
𝐵𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 ⩽
∫︁

𝐵𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝜇+𝛽

d𝑦 +
∫︁

𝐵3𝑅(𝑥)

|𝐹 (𝑢)|
|𝑥− 𝑦|𝜇+𝛽

d𝑦

⩽𝐶2 + 𝐶3

(︃∫︁ 3𝑅

0
|𝑟|𝑁−1−(𝛼+𝜇) 𝑘

𝑘−1 d𝑟
)︃ 𝑘−1

𝑘

< +∞.

Hence, for each 𝑥 ∈ R𝑁 , we conclude that∫︁
𝐵𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 < +∞. (5.41)

On the other hand, we write∫︁
𝐵𝑐

𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 =
∫︁

𝐵𝑐
𝑅(0)∩𝐵𝑅(𝑥)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 +
∫︁

𝐵𝑐
𝑅(0)∩𝐵𝑐

𝑅(𝑥)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦

=: ℐ1 + ℐ2.

Arguing as in the preceding estimates, we deduce

ℐ1 =
∫︁

𝐵𝑐
𝑅(0)∩𝐵𝑅(𝑥)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 ⩽
1
𝑅𝛽

∫︁
𝐵𝑐

𝑅(0)∩𝐵𝑅(𝑥)

|𝐹 (𝑢)|
|𝑥− 𝑦|𝜇

d𝑦

⩽
1
𝑅𝛽

∫︁
𝐵𝑅(𝑥)

|𝐹 (𝑢)|
|𝑥− 𝑦|𝜇

d𝑦 < +∞.

Now, choosing 𝑞1 = 2𝑁
2𝑁−2𝛽−𝜇

, 𝑞2 = 2𝑁
𝛽
, 𝑞3 = 2𝑁

𝜇
satisfying 1

𝑞1
+ 1

𝑞2
+ 1

𝑞3
⩽ 1, it follows from

Hölder’s inequality that

ℐ2 ⩽

(︃∫︁
𝐵𝑐

𝑅(0)
|𝐹 (𝑢)|

2𝑁
2𝑁−2𝛽−𝜇 d𝑦

)︃ 2𝑁−2𝛽−𝜇
2𝑁

×
(︃∫︁

𝐵𝑐
𝑅(0)

1
|𝑦|2𝑁

d𝑦
)︃ 𝛽

2𝑁
(︃∫︁

𝐵𝑐
𝑅(𝑥)

1
|𝑥− 𝑦|2𝑁

d𝑦
)︃ 𝜇

2𝑁

< +∞.

Thus, we obtain ∫︁
𝐵𝑐

𝑅(0)

|𝐹 (𝑢)|
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 < +∞. (5.42)

Therefore, (5.40) jointly with (5.41) and (5.42) imply that the Lemma is proved.
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Lemma 5.2.8. The (𝑃𝑆)𝑐 sequence (𝑢𝑛, 𝑣𝑛)𝑛 of 𝒥𝜆 is bounded in W𝑁
rad.

Proof. Let (𝑢𝑛, 𝑣𝑛)𝑛 ⊂ W𝑁
rad be a (𝑃𝑆)𝑐−sequence for 𝒥𝜆, with 𝑐 < 𝐶(𝛼0, 𝛼𝑁 , 𝛽, 𝜇), i.e.

𝒥𝜆(𝑢𝑛, 𝑣𝑛) = 𝑐+ 𝑜𝑛(1) and 𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛) = 𝑜𝑛(1). (5.43)

We deduce from (𝑎) and (𝑓) that

𝒥𝜆(𝑢𝑛, 𝑣𝑛) − 1
𝜃

𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛)

⩾
(︂ 1
𝑁

− 1
𝜃

)︂
‖(𝑢𝑛, 𝑣𝑛)‖𝑁 +

(︂
𝑝+ 𝑞

𝜃
− 1

)︂
𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃ [︂1

𝜃
𝑓(𝑢𝑛)𝑢𝑛 − 1

2𝐹 (𝑢𝑛)
]︂

|𝑥|𝛽
d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑦 − 𝑥|𝜇

d𝑦
)︃ [︂1

𝜃
𝑔(𝑣𝑛)𝑣𝑛 − 1

2𝐺(𝑣𝑛)
]︂

|𝑥|𝛽
d𝑥

⩾
(︂ 1
𝑁

− 1
𝜃

)︂
‖(𝑢𝑛, 𝑣𝑛)‖𝑁 .

From 𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛) = 𝑜𝑛(1), for 𝑛 sufficiently large, we have −1

𝜃
𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) ⩽ ‖(𝑢𝑛, 𝑣𝑛)‖.
In this way, from last estimate and using the fact that 𝒥𝜆(𝑢𝑛, 𝑣𝑛) = 𝑐+ 𝑜𝑛(1), we see

𝑜𝑛(1) + 𝑐+ ‖(𝑢𝑛, 𝑣𝑛)‖ ⩾

(︃
𝜃 −𝑁

𝜃𝑁

)︃
‖(𝑢𝑛, 𝑣𝑛)‖𝑁 ,

for 𝑛 sufficiently large. Therefore, (𝑢𝑛, 𝑣𝑛)𝑛 is bounded in W𝑁
rad.

In view of the preceding results, if (𝑢𝑛, 𝑣𝑛)𝑛 ⊂ W𝑁
rad is a (𝑃𝑆)𝑐−sequence for 𝒥𝜆, then

(𝑢𝑛, 𝑣𝑛)𝑛 is bounded and it follows from (5.43) that⃒⃒⃒⃒
⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 d𝑥

⃒⃒⃒⃒
⃒⃒

−

⃒⃒⃒⃒
⃒⃒‖(𝑢𝑛, 𝑣𝑛)‖𝑁 − (𝑝+ 𝑞)𝜆

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥

⃒⃒⃒⃒
⃒⃒ ⩽ |𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛)| = 𝑜𝑛(1)

which implies that⃒⃒⃒⃒
⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 d𝑥

⃒⃒⃒⃒
⃒⃒

⩽
⃒⃒⃒⃒
‖(𝑢𝑛, 𝑣𝑛)‖𝑁 − (𝑝+ 𝑞)𝜆

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥
⃒⃒⃒⃒
+ 𝑜𝑛(1).

Putting this together with the boundedness of (𝑢𝑛, 𝑣𝑛)𝑛 in W𝑁
rad, there exists constant 𝐾 > 0

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup
𝑛∈N

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥 ⩽ 𝐾,

sup
𝑛∈N

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 d𝑥 ⩽ 𝐾,

(5.44)
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which jointly with (5.19) implies that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup
𝑛∈N

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥 ⩽ 𝐾̂,

sup
𝑛∈N

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

d𝑥 ⩽ 𝐾̂.

(5.45)

Moreover, we may assume, passing to a subsequence if necessary, that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢𝑛, 𝑣𝑛) ⇀ (𝑢0, 𝑣0), weakly in W𝑁
rad,

(𝑢𝑛, 𝑣𝑛) → (𝑢0, 𝑣0), strongly in 𝐿𝑝(R𝑁) × 𝐿𝑝(R𝑁), 𝑝 > 𝑁,

(𝑢𝑛, 𝑣𝑛) → (𝑢0, 𝑣0), a.e. 𝑥 ∈ R𝑁 ,

|𝑢𝑛| ⩽ ℎ, |𝑢0| ⩽ ℎ, a.e. 𝑥 ∈ R𝑁 , for some ℎ ∈ 𝐿𝑝(R𝑁),

|𝑣𝑛| ⩽ ℎ̃, |𝑣0| ⩽ ℎ̃, a.e. 𝑥 ∈ R𝑁 , for some ℎ̃ ∈ 𝐿𝑝(R𝑁).

(5.46)

Gathering (5.44), (5.46) and Fatou’s Lemma, one has⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢0)
|𝑥|𝛽

𝑢0 d𝑥 ⩽ 𝐾,∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣0)
|𝑥|𝛽

𝑣0 d𝑥 ⩽ 𝐾.

(5.47)

In view of assumption (𝑑), for given 𝜖 > 0, there exists 𝑠 := 𝑠(𝜖) > 0 such that

𝐹 (𝑠) ⩽ 𝜖𝑠𝑓(𝑠) and 𝐺(𝑠) ⩽ 𝜖𝑠𝑔(𝑠), ∀𝑠 ⩾ 𝑠, (5.48)

which jointly with (5.44) and (5.47), imply that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup
𝑛∈N

∫︁
{|𝑢𝑛|⩾𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥 ⩽ 𝐾𝜖,∫︁
{|𝑢0|⩾𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥 ⩽ 𝐾𝜖,

(5.49)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup
𝑛∈N

∫︁
{|𝑣𝑛|⩾𝑠}

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

d𝑥 ⩽ 𝐾𝜖,∫︁
{|𝑣0|⩾𝑠}

(︃∫︁
R𝑁

𝐺(𝑣0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣0)
|𝑥|𝛽

d𝑥 ⩽ 𝐾𝜖.

(5.50)

Finally, we are in condition to prove the following compactness result:

Lemma 5.2.9. Let (𝑢𝑛, 𝑣𝑛)𝑛 be a (𝑃𝑆)𝑐−sequence for 𝒥𝜆 such that 𝑐 < 𝐶(𝛼0, 𝛼𝑁 , 𝛽, 𝜇).

Then, up to a subsequence, we have∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥 (5.51)

and ∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣0)
|𝑥|𝛽

d𝑥. (5.52)
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Proof. We follow the ideas from (ALVES; SHEN, 2023, Lemma 4.6). Let us prove (5.51). For
the sake of convenience, we will split the domain of integration in the following way⃒⃒⃒⃒

⃒⃒ ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥

⃒⃒⃒⃒
⃒⃒

⩽
∫︁

{|𝑢𝑛|⩾𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

+
∫︁

{|𝑢0|⩾𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥

+
∫︁

{|𝑢0|=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

+

⃒⃒⃒⃒
⃒⃒ ∫︁

{|𝑢0|̸=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

−
∫︁

{|𝑢0|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥

⃒⃒⃒⃒
⃒⃒,

which together with (5.50), becomes⃒⃒⃒⃒
⃒
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥
⃒⃒⃒⃒
⃒

⩽2𝐾𝜖+
∫︁

{|𝑢0|=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

+

⃒⃒⃒⃒
⃒⃒ ∫︁

{|𝑢0|̸=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

−
∫︁

{|𝑢0|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥

⃒⃒⃒⃒
⃒⃒. (5.53)

It follows from (5.3) and (5.4) that for given 𝜖 > 0, there exists 𝐶(𝑠) > 0 such that

|𝑓(𝑠)| ⩽ 𝐶(𝑠)|𝑠|
2𝑁−2𝛽−𝜇

2 −1 and |𝐹 (𝑠)| ⩽ 𝐶(𝑠)|𝑠|
2𝑁−2𝛽−𝜇

2 , ∀|𝑠| ⩽ 𝑠. (5.54)

In order to prove (5.51) we will prove the following claims:

Claim 1. lim sup
𝑛→∞

∫︁
{|𝑢0|=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥 < 𝐶𝜖.

Claim 2. There holds
∫︁

{|𝑢0|̸=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

→
∫︁

{|𝑢0|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥.
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Proof of Claim 1. In view of (5.45) and thanks to the Cauchy-Schwarz type inequality in
(LIEB; LOSS, 2001, Theorem 9.8), it follows from Proposition 1.16 that

∫︁
{|𝑢0|=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

⩽𝐾̂
1
2𝐶(𝑁, 𝛽, 𝜇) 1

2

(︃∫︁
{|𝑢0|=𝑠}

⃒⃒⃒
𝐹 (𝑢𝑛)𝜒{|𝑢𝑛|<𝑠}

⃒⃒⃒ 2𝑁
2𝑁−2𝛽−𝜇 d𝑦

)︃ 2𝑁−2𝛽−𝜇
2𝑁

. (5.55)

On the other hand, by (5.46) we note that |𝑢𝑛|𝑁 → |𝑢0|𝑁 in 𝐿1({|𝑢0| = 𝑠}). Hence, it follows
from (5.54) that

|𝐹 (𝑢𝑛)𝜒|𝑢𝑛|<𝑠}|
2𝑁

2𝑁−2𝛽−𝜇 ⩽ 𝐶
2𝑁

2𝑁−2𝛽−𝜇 (𝑠)|𝑢𝑛|𝑁 → 𝐶
2𝑁

2𝑁−2𝛽−𝜇 (𝑠)|𝑢0|𝑁 .

Therefore, the Lebesgue’s Dominated Convergence Theorem implies that
∫︁

{|𝑢0|=𝑠}

⃒⃒⃒
𝐹 (𝑢𝑛)𝜒{|𝑢𝑛|<𝑠}

⃒⃒⃒ 2𝑁
2𝑁−2𝛽+𝜇 d𝑦 →

∫︁
{|𝑢0|=𝑠}

⃒⃒⃒
𝐹 (𝑢0)𝜒{|𝑢0|<𝑠}

⃒⃒⃒ 2𝑁
2𝑁−2𝛽+𝜇 d𝑦,

which together with (5.48) and (5.55), finishes the proof of Claim 1.

Proof of Claim 2. For the sake of simplicity we define

Θ𝑛 :=
∫︁

{|𝑢0|̸=𝑠}∩{|𝑢𝑛|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

=
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)𝜒{|𝑢0|̸=𝑠}∩{|𝑢𝑛|<𝑠}

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥 =
∫︁
R𝑁

𝜉𝑛𝐹 (𝑢𝑛

|𝑥|𝛽
d𝑥 (5.56)

and

Θ0 :=
∫︁

{|𝑢0|<𝑠}

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢0)
|𝑥|𝛽

d𝑥 =
∫︁
R𝑁

𝜉0𝐹 (𝑢0

|𝑥|𝛽
d𝑥, (5.57)

where

𝜉𝑛 :=
∫︁
R𝑁

𝐹 (𝑢𝑛)𝜒{|𝑢0|̸=𝑠}∩{|𝑢𝑛|<𝑠}

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦 and 𝜉0 :=

∫︁
R𝑁

𝐹 (𝑢0)𝜒{|𝑢0|<𝑠}

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦.

To prove Θ𝑛 → Θ0, we need following claim:

Claim 2(i). The sequence (𝜉𝑛)𝑛 is uniformly bounded and 𝜉𝑛 → 𝜉0, a.e. in R𝑁 .

Proof of Claim 2(i). Let 𝑅 ⩾ 1 be an arbitrary constant. Thus, from (5.54) and Hölder’s
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inequality, we derive that

|𝜉𝑛| ⩽𝐶(𝑠)
⎛⎝∫︁

R𝑁

|𝑢𝑛|
𝑁(2𝑁−2𝛽−𝜇)

2(𝑁−𝛽−𝜇)

|𝑦|
𝑁𝛽

𝑁−𝛽−𝜇

d𝑦
⎞⎠

𝑁−𝛽−𝜇
𝑁

⎛⎝∫︁
|𝑥−𝑦|<𝑅

d𝑦
|𝑥− 𝑦|

𝑁𝜇
𝛽+𝜇

⎞⎠
𝛽+𝜇

𝑁

+ 𝐶(𝑠)
⎛⎝∫︁

{|𝑥−𝑦|⩾𝑅}∩{|𝑦|<1}

|𝑢𝑛| 2𝑁−2𝛽−𝜇
2

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦
⎞⎠

+ 𝐶(𝑠)
⎛⎝∫︁

{|𝑥−𝑦|⩾𝑅}∩{|𝑦|⩾1}

|𝑢𝑛| 2𝑁−2𝛽−𝜇
2

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦
⎞⎠

= : 𝐶(𝑠) (𝒜ℬ + 𝒞 + 𝒟) . (5.58)

It is not hard to see that ℬ ⩽ 𝐶(𝜔𝑁−1, 𝑅, 𝛽, 𝜇). Now, since |𝑦| ⩾ 𝑅 ⩾ 1, from Hölder’s
inequality we reach

𝒜 ⩽
∫︁

|𝑦|⩾𝑅
|𝑢𝑛|

𝑁(2𝑁−2𝛽−𝜇)
2(𝑁−𝛽−𝜇) d𝑦 +

∫︁
|𝑦|<𝑅

|𝑢𝑛|
𝑁(2𝑁−2𝛽−𝜇)

2(𝑁−𝛽−𝜇)

|𝑦|
𝑁𝛽

𝑁−𝛽−𝜇

d𝑦

⩽
∫︁
R𝑁

|𝑢𝑛|
𝑁(2𝑁−2𝛽−𝜇)

2(𝑁−𝛽−𝜇) d𝑦

+
(︂∫︁

R𝑁
|𝑢𝑛|

𝑁(2𝑁−2𝛽−𝜇)(𝑁−𝜇)
2(𝑁−𝛽−𝜇)(𝑁−2𝛽−𝜇) d𝑦

)︂𝑁−2𝛽−𝜇
𝑁−𝜇

⎛⎝∫︁
|𝑦|⩽𝑅

1

|𝑦|
𝑁(𝑁−𝜇)

2(𝑁−𝛽−𝜇)
d𝑦
⎞⎠

2𝛽
𝑁−𝜇

⩽
∫︁
R𝑁

|𝑢𝑛|
𝑁(2𝑁−2𝛽−𝜇)

2(𝑁−𝛽−𝜇) d𝑦

+ 𝐶(𝜔𝑁−1, 𝛽, 𝜇,𝑅)
(︂∫︁

R𝑁
|𝑢𝑛|

(2𝑁−2𝛽−𝜇)(𝑁−𝜇)
(2−𝛽−𝜇)(𝑁−2𝛽−𝜇) d𝑦

)︂𝑁−2𝛽−𝜇
𝑁−𝜇

. (5.59)

One can observe that 𝑁(2𝑁−2𝛽−𝜇)
2(𝑁−𝛽−𝜇) > 𝑁 , 𝑁(2𝑁−2𝛽−𝜇)(𝑁−𝜇)

2(𝑁−𝛽−𝜇)(𝑁−2𝛽−𝜇) > 𝑁 and 𝑁(𝑁−𝜇)
2(𝑁−𝛽−𝜇) < 𝑁 . Next, we

have

𝒞 ⩽

⎛⎝∫︁
|𝑦|<1

|𝑢𝑛|
2𝑁(2𝑁−2𝛽−𝜇)

2(2𝑁−𝜇)

|𝑦|
2𝑁𝛽

(2𝑁−𝜇)
d𝑦
⎞⎠

(2𝑁−𝜇)
2𝑁 (︃∫︁

|𝑥−𝑦|⩾𝑅

d𝑦
|𝑥− 𝑦|2𝑁

)︃ 𝜇
2𝑁

⩽𝐶(𝜔𝑁−1, 𝑅)
⎛⎝∫︁

|𝑦|<1

|𝑢𝑛|
2𝑁(2𝑁−2𝛽−𝜇)

2(2𝑁−𝜇)

|𝑦|
2𝑁𝛽

2𝑁−𝜇

d𝑦
⎞⎠

2𝑁−𝜇
2𝑁

⩽𝐶(𝜔𝑁−1, 𝑅)
⎛⎝∫︁

|𝑦|<1

d𝑦

|𝑦|
𝑁(𝑁+2𝛽)

2𝑁−𝜇

⎞⎠
𝛽(2𝑁−𝜇)
𝑁(𝑁+2𝛽) (︂∫︁

R𝑁
|𝑢𝑛|

(2𝑁−2𝛽−𝜇)(𝑁+2𝛽)
(2𝑁−𝜇) d𝑦

)︂ (2𝑁−𝜇)
2(𝑁+2𝛽)

⩽𝐶2
𝜔𝑁−1,𝑅,𝛽,𝜇

(︂∫︁
R𝑁

|𝑢𝑛|
(2𝑁−2𝛽−𝜇)(𝑁+2𝛽)

(2𝑁−𝜇) d𝑦
)︂ (2𝑁−𝜇)

2(𝑁+2𝛽)
, (5.60)

where we used that 𝑁(𝑁+2𝛽)
2𝑁−𝜇

< 𝑁 and (2𝑁−2𝛽−𝜇)(𝑁+2𝛽)
(2𝑁−𝜇) > 𝑁 .

In order to estimate 𝒟, we consider the following cases:
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(𝑖) If 𝜇 ⩽ 2𝛽, then 8𝛽 − 𝜇 > 0 and observing that 2𝑁(2𝑁−2𝛽−𝜇)
4𝑁−4𝛽−3𝜇

> 𝑁 , then Hölder’s
inequality leads to

𝒟 ⩽
(︂∫︁

R𝑁
|𝑢𝑛|

2𝑁(2𝑁−2𝛽−𝜇)
4𝑁−4𝛽−3𝜇 d𝑦

)︂ 4𝑁−4𝛽−3𝜇
4𝑁

(︃∫︁
|𝑥−𝑦|⩾𝑅

d𝑦
|𝑥− 𝑦| 8𝑁

7

)︃ 7𝜇
8𝑁

⎛⎝∫︁
|𝑦|⩾1

d𝑦
|𝑦|

8𝑁𝛽
8𝛽−𝜇

⎞⎠
8𝛽−𝜇

8𝑁

⩽𝐶3
𝜔𝑁−1,𝛽,𝜇,𝑅

(︂∫︁
R𝑁

|𝑢𝑛|
2𝑁(2𝑁−2𝛽−𝜇)

4𝑁−4𝛽−3𝜇 d𝑦
)︂ 4𝑁−4𝛽−3𝜇

4𝑁

.

(𝑖𝑖) If 𝜇 > 2𝛽, then 2𝑁(2𝑁−2𝛽−𝜇)
4𝑁−2𝛽−3𝜇

> 𝑁 , 4𝑁𝜇
2𝛽+3𝜇

> 𝑁 and using Hölder’s inequality again, we
obtain

𝒟 ⩽
∫︁

{|𝑥−𝑦|⩾𝑅}

|𝑢𝑛| 2𝑁−2𝛽−𝜇
2

|𝑥− 𝑦|𝜇
d𝑦

⩽
(︂∫︁

R𝑁
|𝑢𝑛|

2𝑁(2𝑁−2𝛽−𝜇)
4𝑁−2𝛽−3𝜇 d𝑦

)︂ 4𝑁−2𝛽−3𝜇
4𝑁

⎛⎝∫︁
|𝑥−𝑦|⩾𝑅

d𝑦
|𝑥− 𝑦|

4𝑁𝜇
2𝛽+3𝜇

d𝑦
⎞⎠

2𝛽+3𝜇
4𝑁

⩽𝐶4
𝜔𝑁−1,𝛽,𝜇,𝑅

(︂∫︁
R𝑁

|𝑢𝑛|
2𝑁(2𝑁−2𝛽−𝜇)

4𝑁−2𝛽−3𝜇 d𝑦
)︂ 4𝑁−2𝛽−3𝜇

4𝑁

.

Consequently, 𝒟 is uniformly bounded as (‖𝑢𝑛‖)𝑛 is bounded. In a similar way, from (5.59)
and (5.60), 𝒜 and 𝒞 are uniformly bounded. Therefore, from (5.58), we conclude that (𝜉𝑛)𝑛

is uniformly bounded. The proof of the fact 𝜉𝑛 → 𝜉0 a.e. in R𝑁 , can be explored following the
ideas given in (ALVES; SHEN, 2023, Lemma 4.6), where it also makes use of Lemma 5.2.7.

Now, by (5.56) and (5.57), we see that

|Θ𝑛 − Θ0| =
⃒⃒⃒⃒
⃒
∫︁

|𝑢𝑛|⩾𝑠
|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛) d𝑥+

∫︁
|𝑢𝑛|<𝑠

|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛) d𝑥

−
∫︁

|𝑢0|⩾𝑠
|𝑥|−𝛽𝜉0𝐹 (𝑢0) d𝑥−

∫︁
|𝑢0|<𝑠

|𝑥|−𝛽𝜉0𝐹 (𝑢0) d𝑥
⃒⃒⃒⃒
⃒

and using (5.50), we obtain

lim
𝑛→∞

|Θ𝑛 − Θ0|

⩽ lim
𝑛→∞

⃒⃒⃒⃒
⃒
∫︁

|𝑢𝑛|⩾𝑠
|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛) d𝑥−

∫︁
|𝑢0|⩾𝑠

|𝑥|−𝛽𝜉0𝐹 (𝑢0) d𝑥
⃒⃒⃒⃒
⃒

+ lim
𝑛→∞

⃒⃒⃒⃒
⃒
∫︁

|𝑢𝑛|<𝑠
|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛) d𝑥−

∫︁
|𝑢0|<𝑠

|𝑥|−𝛽𝜉0𝐹 (𝑢0) d𝑥
⃒⃒⃒⃒
⃒ . (5.61)

Thus, to finish Claim 2, we shall prove that the limit on the right-hand side of the above
equation goes to zero. In fact, we may write⃒⃒⃒⃒

⃒
∫︁

|𝑢𝑛|<𝑠
|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛) d𝑥−

∫︁
|𝑢0|<𝑠

|𝑥|−𝛽𝜉𝑛𝐹 (𝑢0) d𝑥
⃒⃒⃒⃒
⃒

=
⃒⃒⃒⃒
⃒
∫︁
R𝑁

|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛)𝜒{|𝑢𝑛|<𝑠} d𝑥−
∫︁
R𝑁

|𝑥|−𝛽𝜉𝑛𝐹 (𝑢0)𝜒{|𝑢0|<𝑠} d𝑥
⃒⃒⃒⃒
⃒,
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and by (5.54), we see

|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛)𝜒{|𝑢𝑛|<𝑠} =|𝑥|−𝛽
∫︁
R𝑁

𝐹 (𝑢𝑛)𝜒{|𝑢0|̸=𝑠}∩{|𝑢𝑛|<𝑠}

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦𝐹 (𝑢𝑛)𝜒{|𝑢𝑛|<𝑠}

⩽|𝑥|−𝛽
∫︁
R𝑁

|𝑢𝑛| 2𝑁−2𝛽−𝜇
2

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦|𝑢𝑛|

2𝑁−2𝛽−𝜇
2 =: 𝑣𝑛.

By using (1.16), we have that
∫︁
R𝑁
𝑣𝑛 d𝑥 < +∞ and using Claim 2(𝑖), we get

∫︁
R𝑁
𝑣𝑛 d𝑥 →∫︁

R𝑁
𝑣0 d𝑥, as 𝑛 → ∞, where

𝑣0 := |𝑥|−𝛽
∫︁
R𝑁

|𝑢0|
2𝑁−2𝛽−𝜇

2

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦|𝑢0|

2𝑁−2𝛽−𝜇
2 .

Now, from Claim 2(i) and in light of Lebesgue’s Dominated Convergence Theorem, we infer
that

lim
𝑛→∞

∫︁
R𝑁

|𝑥|−𝛽𝜉𝑛𝐹 (𝑢𝑛)𝜒{|𝑢𝑛|<𝑠} d𝑥 =
∫︁
R𝑁

|𝑥|−𝛽𝜉0𝐹 (𝑢0)𝜒{|𝑢0|<𝑠} d𝑥. (5.62)

Finally, applying (5.62) in (5.61) and taking 𝑠 large enough, we get Θ𝑛 → Θ0 and consequently
using (5.50), Claim 1 and Claim 2 in (5.53), we obtain the required result. The proof of (5.52)
follows analogously.

Lemma 5.2.10. Suppose (𝑢𝑛, 𝑣𝑛)𝑛 be a (𝑃𝑆)𝑐−sequence for 𝒥𝜆 such that 𝑐 <

𝐶(𝛼0, 𝛼𝑁 , 𝛽, 𝜇). Then, up to a subsequence, we have∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜑 d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢0)
|𝑥|𝛽

𝜑 d𝑥 (5.63)

and∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝜓 d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣0)
|𝑥|𝛽

𝜓 d𝑥. (5.64)

for all (𝜑, 𝜓) ∈ 𝐶∞
0,rad(R𝑁) × 𝐶∞

0,rad(R𝑁).

Proof. Define Ω := supp 𝜑 ∩ supp 𝜓. Thus, we have⃒⃒⃒⃒
⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜑 d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢0)
|𝑥|𝛽

𝜑 d𝑥

⃒⃒⃒⃒
⃒⃒

=

⃒⃒⃒⃒
⃒⃒ ∫︁

Ω

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜑 d𝑥−
∫︁

Ω

(︃∫︁
R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢0)
|𝑥|𝛽

𝜑 d𝑥

⃒⃒⃒⃒
⃒⃒

⩽
∫︁

|𝑢𝑛|⩾𝑠

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜑

⃒⃒⃒⃒
⃒⃒ d𝑥+

∫︁
|𝑢0|⩾𝑠

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢0)
|𝑥|𝛽

𝜑

⃒⃒⃒⃒
⃒⃒ d𝑥

+
∫︁

Ω∩|𝑢𝑛|<𝑠

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜑

⃒⃒⃒⃒
⃒⃒ d𝑥

−
∫︁

Ω∩|𝑢0|<𝑠

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢0)
|𝑥|𝛽

𝜑

⃒⃒⃒⃒
⃒⃒ d𝑥.
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For all 𝜖 > 0, take 𝑠 := 𝑠𝜖 = 𝜖−1(𝐾 + 1)|𝜑|∞, where 𝐾 is the constant defined in (5.44).
Then from (5.44), one can observe that

∫︁
|𝑢𝑛|⩾𝑠

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜑

⃒⃒⃒⃒
⃒⃒ d𝑥

⩽
𝜖

𝐾 + 1

∫︁
|𝑢𝑛|⩾𝑠

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛

⃒⃒⃒⃒
⃒⃒ d𝑥 < 𝜖.

Therefore, (5.63) follows, arguing as in the final part of the proof in (ALVES; SHEN, 2023,
Lemma 4.6). Similarly, we may check the convergence in (5.64).

In order to prove the next compactness result, we introduce a technical lemma. The idea
of the proof is similar as in (DO Ó, 1996, Lemma 4).

Lemma 5.2.11. Let (𝑢𝑛, 𝑣𝑛)𝑛 be a (𝑃𝑆)𝑐−sequence for 𝒥𝜆. Then, there exists (𝑢, 𝑣) ∈ W𝑁
rad,

such that (∇𝑢𝑛,∇𝑣𝑛) → (∇𝑢,∇𝑣) a.e. in R𝑁 . Moreover,

(|∇𝑢𝑛|𝑁−2∇𝑢𝑛, |∇𝑣𝑛|𝑁−2∇𝑣𝑛) ⇀ (|∇𝑢|𝑁−2∇𝑢, |∇𝑣|𝑁−2∇𝑣), (5.65)

weakly in (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 × (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 , as 𝑛 → +∞.

Proof. It follows from Lemma 5.2.8 that the sequence (𝑢𝑛, 𝑣𝑛)𝑛 is bounded in W𝑁
rad.

Consequently, the sequence

(|∇𝑢𝑛|𝑁−2∇𝑢𝑛, |∇𝑣𝑛|𝑁−2∇𝑣𝑛)𝑛 is bounded in (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 × (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 .

Therefore, up to a sebsequence,

(|∇𝑢𝑛|𝑁−2∇𝑢𝑛, |∇𝑣𝑛|𝑁−2∇𝑣𝑛) ⇀ (𝑈, 𝑉 ) weakly in (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 × (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 ,

as 𝑛 → ∞, for some (𝑈, 𝑉 ) ∈ (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 × (𝐿
𝑁

𝑁−1 (R𝑁))𝑁 . Moreover, in view of the
boundedness of the sequence (|∇𝑢𝑛|𝑁 + |𝑢𝑛|𝑁 , |∇𝑣𝑛|𝑁 + |𝑣𝑛|𝑁)𝑛 in 𝐿1(R𝑁) ×𝐿1(R𝑁), there
exist measures (nonnegative) 𝜇1 and 𝜇2 satisfying

(|∇𝑢𝑛|𝑁 + |𝑢𝑛|𝑁 , |∇𝑣𝑛|𝑁 + |𝑣𝑛|𝑁) → (𝜇1, 𝜇2) in 𝒟′(𝐾) × 𝒟′(𝐾),

up to a subsequence, as 𝑛 → +∞ for any compact subset 𝐾 ⊂ R𝑁 . We show that
(𝑈, 𝑉 ) = (|∇𝑢|𝑁−2∇𝑢, |∇𝑣|𝑁−2∇𝑣). For any fixed 𝜈 > 0 we define the energy concentration
set

𝑋𝜈 :=
{︂
𝑥 ∈ R𝑁 : lim

𝑙→0
lim

𝑘→+∞

∫︁
𝐵𝑙

(︁
|∇𝑤𝑘|𝑁 + |𝑤𝑘|𝑁

)︁
𝑑𝑥 ≥ 𝜈

}︂
.
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It is not hard to see that 𝑋𝜈 is a finite set. Suppose 𝑋𝜈 = {𝑥1, 𝑥2, ..., 𝑥𝑛}. In order to show
(5.65), we prove two claims.

Claim 1. If 𝜎 > 0 is sufficiently small, then

lim
𝑛→∞

∫︁
Ω

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥 =
∫︁

Ω

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢 d𝑥, (5.66)

lim
𝑛→∞

∫︁
Ω

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 d𝑥 =
∫︁

Ω

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣 d𝑥, (5.67)

for any Ω ⊂⊂ R𝑁 ∖𝑋𝜎.

Proof of Claim 1. We just give the proof of (5.66). Proof of (5.67) is similar. Take 𝑥0 ∈ Ω

arbitrarily such that 𝜇1(𝐵𝑟0(𝑥0)) < 𝜎, where 𝑟0 > 0. Also, consider a function 𝜑 ∈ 𝒟(R𝑁)

such that 0 ≤ 𝜑 ≤ 1 for 𝑥 ∈ R𝑁 , 𝜑 ≡ 1 in 𝐵𝑟0/2(𝑥0) and 𝜑 ≡ 0 in R𝑁 ∖ (𝐵𝑟0(𝑥0)). Then,

lim
𝑛→∞

∫︁
𝐵𝑟0 (𝑥0)

(|∇𝑢𝑛|𝑁 + |𝑢𝑛|𝑁)𝜑 d𝑥 =
∫︁

𝐵𝑟0 (𝑥0)
𝜑 d𝜇1 ≤ 𝜇1(𝐵𝑟0(𝑥0)) < 𝜎,

and consequently for 𝜖 > 0 sufficiently small, we have
∫︁

𝐵𝑟0 (𝑥0)
(|∇𝑢𝑛|𝑁 + |𝑢𝑛|𝑁)𝜑 d𝑥 ≤ 𝜎(1 − 𝜖), 𝑛 → ∞. (5.68)

Using assumptions (𝑎), (𝑏) and (5.68), we obtain
∫︁

𝐵𝑟0/2(𝑥0)
|𝑓(𝑢𝑛)|𝑞 d𝑥 ⩽ 𝐶

∫︁
𝐵𝑟0/2(𝑥0)

exp
(︁
𝛼𝑞|𝑢𝑛|

𝑁
𝑁−1

)︁
d𝑥

≤ 𝐶
∫︁

𝐵𝑟0/2(𝑥0)
exp

⎡⎢⎢⎢⎢⎣𝛼𝑞𝜎 1
𝑁−1 (1 − 𝜖)

1
𝑁−1

⎛⎜⎜⎜⎝ |𝑢𝑛|𝑁∫︁
𝐵𝑟0/2

(|∇𝑢𝑛|𝑁 + |𝑢𝑛|𝑁) d𝑥

⎞⎟⎟⎟⎠
1

𝑁−1
⎤⎥⎥⎥⎥⎦ d𝑥.

If we choose 𝑞 > 1 sufficiently close to 1 such that 𝛼𝑞𝜎 1
𝑁−1 (1 − 𝜖)

1
𝑁−1 < (1 − 𝛽

𝑁
)𝛼𝑁

𝛼0
, then

from Proposition 5.0.1, it follows
∫︁

𝐵𝑟0/2(𝑥0)
|𝑓(𝑢𝑛)|𝑞d𝑥 ≤ 𝐶. (5.69)
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Next,
∫︁

𝐵𝑟0/2(𝑥0)

⃒⃒⃒⃒
⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 −
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢

⃒⃒⃒⃒
⃒ d𝑥

=
∫︁

𝐵𝑟0/2(𝑥0)

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 −
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢

+
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢−
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢

⃒⃒⃒⃒
⃒⃒ d𝑥

≤
∫︁

𝐵𝑟0/2(𝑥0)

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

|𝑢𝑛 − 𝑢| d𝑥

+
∫︁

𝐵𝑟0/2(𝑥0)

⃒⃒⃒⃒
⃒⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢−
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢

⃒⃒⃒⃒
⃒⃒ d𝑥

=: ℱ1 + ℱ2.

Using Cauchy-Schwarz type inequality in (LIEB; LOSS, 2001, Theorem 9.8) in ℱ1, we deduce
∫︁

𝐵𝑟0/2(𝑥0)

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

|𝑢𝑛 − 𝑢| d𝑥

≤
(︃∫︁

𝐵𝑟0/2(𝑥0)

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥
)︃ 1

2

×
(︃∫︁

𝐵𝑟0/2(𝑥0)

(︃∫︁
R𝑁

𝑓(𝑢𝑛)(𝑢𝑛 − 𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

|𝑢𝑛 − 𝑢| d𝑥
)︃ 1

2

.

In view of (5.8) and the boundedness of (‖𝑢𝑛‖)𝑛, we conclude that the first term in the
right-hand side of the above inequality is bounded. Next, using (5.69) together with Hölder’s
inequality with exponents 𝑝′, 𝑝′′ (bigger than one but sufficiently close to 1), we obtain

∫︁
R𝑁

(︃∫︁
R𝑁

𝑓(𝑢𝑛)(𝑢𝑛 − 𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)(𝑢𝑛 − 𝑢)𝜒𝐵𝑟0/2(𝑥0)

|𝑥|𝛽
d𝑥

≤ 𝐶𝛽,𝜇

(︂∫︁
R𝑁

|𝑓(𝑢𝑛)(𝑢𝑛 − 𝑢)𝜒𝐵𝑟0/2(𝑥0)|
2𝑁

2𝑁−2𝛽−𝜇 d𝑥
)︂ 2𝑁−2𝛽−𝜇

2

≤ 𝐶𝛽,𝜇𝐶

(︃∫︁
𝐵𝑟0/2(𝑥0)

|𝑢𝑛 − 𝑢|
2𝑁𝑝′′

2𝑁−2𝛽−𝜇 d𝑥
)︃ 2𝑁−2𝛽−𝜇

2𝑝′′

.

Using compactness of the Sobolev embedding, it can be deduced that ℱ1 → 0 as 𝑛 → ∞.
The estimate ℱ2 → 0 as 𝑛 → ∞ follows from Lemma 5.2.10 by taking 𝜑 = 𝜒𝐵𝑟0/2(𝑥0)𝑢

and using density argument.

Claim 2. Let Ω𝜖0 = {𝑥 ∈ R𝑁 : ‖𝑥 − 𝑥𝑗‖ ≥ 𝜖0, 𝑗 = 1, 2, ..., 𝑛} and 𝐵(𝑥𝑖, 𝜖0) ∩ 𝐵(𝑥𝑗, 𝜖0) = ∅
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if 𝑖 ̸= 𝑗 where 𝜖0 > 0 is fixed small enough. Then,
∫︁

Ω𝜖0

(︁
|∇𝑢𝑛|𝑁−2∇𝑢𝑛 − |∇𝑢|𝑁−2∇𝑢

)︁
(∇𝑢𝑛 − ∇𝑢) d𝑥

+
∫︁

Ω𝜖0

(︁
|∇𝑣𝑛|𝑁−2∇𝑣𝑛 − |∇𝑣|𝑁−2∇𝑣

)︁
(∇𝑣𝑛 − ∇𝑣) d𝑥 → 0, as 𝑛 → ∞.

Although the proof of this assertion can be adopted from (DO Ó, 1996), due to presence
of Stein-Weiss term, we have added the proof here to make it precise. Consider the functions
𝜓1

𝜖 , 𝜓
2
𝜖 as in (DO Ó, 1996, Lemma 4). Using (𝜑, 𝜓) = (𝜓1

𝜖𝑢𝑛, 𝜓
2
𝜖 𝑣𝑛) in 𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛)(𝜑, 𝜓) → 0,
we have
∫︁
R𝑁

(︂
|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇(𝜓1

𝜖𝑢𝑛) + |𝑢𝑛|𝑁−2𝑢𝑛(𝜓1
𝜖𝑢𝑛)

)︂
d𝑥+

∫︁
R𝑁

(︂
|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇(𝜓2

𝜖 𝑣𝑛)

+ |𝑣𝑛|𝑁−2𝑣𝑛(𝜓2
𝜖 𝑣𝑛)

)︂
d𝑥− 𝜆𝑝

∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜓1
𝜖𝑢𝑛) d𝑥− 𝜆𝑞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓2
𝜖 𝑣𝑛) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜑 d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝜓 d𝑥 → 0,

as 𝑛 → ∞, whence it follows that
∫︁
R𝑁

|∇𝑢𝑛|𝑁𝜓1
𝜖 d𝑥+

∫︁
R𝑁

(︂
𝑢𝑛|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇𝜓1

𝜖 + |𝑢𝑛|𝑁𝜓1
𝜖

)︂
d𝑥+

∫︁
R𝑁

|∇𝑣𝑛|𝑁𝜓2
𝜖 d𝑥

+
∫︁
R𝑁

(︂
𝑣𝑛|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇𝜓2

𝜖 + |𝑣𝑛|𝑁𝜓2
𝜖 d𝑥

)︂
− 𝜆𝑝

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞𝜓1
𝜖 d𝑥− 𝜆𝑞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞𝜓2
𝜖 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛𝜓
1
𝜖 d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛𝜓
2
𝜖 d𝑥

≤ 𝜖𝑛‖𝜓1
𝜖𝑢𝑛‖𝑊 1,𝑁 (R𝑁 ) + 𝜖𝑛‖𝜓2

𝜖 𝑣𝑛‖𝑊 1,𝑁 (R𝑁 ), (5.70)

where 𝜖𝑛 → 0 as 𝑛 → ∞. Again using (𝜑, 𝜓) = (𝜓1
𝜖𝑢, 𝜓

2
𝜖 𝑣) in 𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛)(𝜑, 𝜓) → 0, we see
that
∫︁
R𝑁

(︂
|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇(𝜓1

𝜖𝑢) + |𝑢𝑛|𝑁−2𝑢𝑛(𝜓1
𝜖𝑢)

)︂
d𝑥

+
∫︁
R𝑁

(︂
|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇(𝜓2

𝜖 𝑣) + |𝑣𝑛|𝑁−2𝑣𝑛(𝜓2
𝜖 𝑣)

)︂
d𝑥

− 𝜆𝑝
∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜓1
𝜖𝑢) d𝑥− 𝜆𝑞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓2
𝜖 𝑣) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝑢𝜓1
𝜖 ) d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝑣𝜓2
𝜖 ) d𝑥

→ 0.
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Therefore,

−
∫︁
R𝑁

(︁
|∇𝑢|𝑁−2𝜓1

𝜖 ∇𝑢𝑛∇𝑢+ |∇𝑢𝑛|𝑁−2𝑢∇𝑢𝑛∇𝜓1
𝜖

)︁
d𝑥−

∫︁
R2

|𝑢𝑛|𝑁−2𝑢𝑛(𝜓1
𝜖𝑢) d𝑥

−
∫︁
R𝑁

(︁
|∇𝑣|𝑁−2𝜓2

𝜖 ∇𝑣𝑛∇𝑣 + |∇𝑣𝑛|𝑁−2𝑣∇𝑣𝑛∇𝜓2
𝜖

)︁
d𝑥−

∫︁
R2

|𝑣𝑛|𝑁−2𝑣𝑛(𝜓2
𝜖 𝑣) d𝑥

+ 𝜆𝑝
∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜓1
𝜖𝑢) d𝑥+ 𝜆𝑞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓2
𝜖 𝑣) d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝑢𝜓1
𝜖 ) d𝑥+

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝑣𝜓2
𝜖 ) d𝑥

≤ 𝜖𝑛‖𝜓1
𝜖𝑢‖𝑊 1,𝑁 (R𝑁 ) + 𝜖𝑛‖𝜓2

𝜖 𝑣‖𝑊 1,𝑁 (R𝑁 ). (5.71)

Now using the strictly convex behavior of the function 𝐶 : R𝑁 × R𝑁 → R given by
𝐶(𝑢, 𝑣) = |𝑢|𝑁 + |𝑣|𝑁 , we get

0 ≤
(︁
|∇𝑢𝑛|𝑁−2∇𝑢𝑛 − |∇𝑢|𝑁−2∇𝑢

)︁
(∇𝑢𝑛−∇𝑢)+

(︁
|∇𝑣𝑛|𝑁−2∇𝑣𝑛 − |∇𝑣|𝑁−2∇𝑣

)︁
(∇𝑣𝑛−∇𝑣)

and as a consequence, we deduce

0 ≤
∫︁

Ω𝜖0

(︁
|∇𝑢𝑛|𝑁−2∇𝑢𝑛 − |∇𝑢|𝑁−2∇𝑢

)︁
(∇𝑢𝑛 − ∇𝑢)𝜓1

𝜖 d𝑥

+
∫︁

Ω𝜖0

(︁
|∇𝑣𝑛|𝑁−2∇𝑣𝑛 − |∇𝑣|𝑁−2∇𝑣

)︁
(∇𝑣𝑛 − ∇𝑣)𝜓2

𝜖 d𝑥

≤
∫︁
R𝑁

(︁
|∇𝑢𝑛|𝑁−2∇𝑢𝑛 − |∇𝑢|𝑁−2∇𝑢

)︁
(∇𝑢𝑛 − ∇𝑢)𝜓1

𝜖 d𝑥

+
∫︁
R𝑁

(︁
|∇𝑣𝑛|𝑁−2∇𝑣𝑛 − |∇𝑣|𝑁−2∇𝑣

)︁
(∇𝑣𝑛 − ∇𝑣)𝜓2

𝜖 d𝑥,

which leads us to

0 ≤
∫︁
R𝑁

(︁
|∇𝑢𝑛|𝑁𝜓1

𝜖 − |∇𝑢𝑛|𝑁−2∇𝑢𝑛∇𝑢𝜓1
𝜖 − |∇𝑢|𝑁−2∇𝑢𝑛∇𝑢𝜓1

𝜖 + |∇𝑢|𝑁𝜓1
𝜖

)︁
d𝑥

+
∫︁
R𝑁

(︁
|∇𝑣𝑛|𝑁𝜓2

𝜖 − |∇𝑣𝑛|𝑁−2∇𝑣𝑛∇𝑣𝜓2
𝜖 − |∇𝑣|𝑁−2∇𝑣𝑛∇𝑣𝜓2

𝜖 + |∇𝑣|𝑁𝜓2
𝜖

)︁
d𝑥. (5.72)
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Next, combining (5.70), (5.71) and (5.72), we obtain

0 ≤
∫︁
R𝑁

(︁
𝑢𝑛|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇𝜓1

𝜖 + |𝑢𝑛|𝑁𝜓1
𝜖

)︁
d𝑥−

∫︁
R𝑁

(︁
𝑣𝑛|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇𝜓2

𝜖 + |𝑣𝑛|𝑁𝜓2
𝜖

)︁
d𝑥

+ 𝜆𝑝
∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞𝜓1
𝜖 d𝑥+ 𝜆𝑞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞𝜓2
𝜖 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝑢𝑛𝜓
1
𝜖 ) d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝑣𝑛𝜓
2
𝜖 ) d𝑥

+ 𝜖𝑛‖𝜓1
𝜖𝑢𝑛‖𝑊 1,𝑁 (R𝑁 ) + 𝜖𝑛‖𝜓2

𝜖 𝑣𝑛‖𝑊 1,𝑁 (R𝑁 )

+
∫︁
R𝑁

|∇𝑢𝑛|𝑁−2𝑢∇𝑢𝑛∇𝜓1
𝜖 d𝑥+

∫︁
𝑅𝑁

|𝑢𝑛|𝑁−2𝑢𝑛(𝜓1
𝜖𝑢) d𝑥+

∫︁
R𝑁

|∇𝑣𝑛|𝑁−2𝑣∇𝑣𝑛∇𝜓2
𝜖 d𝑥

+
∫︁

𝑅𝑁
|𝑣𝑛|𝑁−2𝑣𝑛(𝜓2

𝜖 𝑣) d𝑥− 𝜆𝑝
∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜓1
𝜖𝑢) d𝑥

− 𝜆𝑞
∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓2
𝜖 𝑣) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝑢𝜓1
𝜖 ) d𝑥−

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝑣𝜓2
𝜖 ) d𝑥

+ 𝜖𝑛‖𝜓1
𝜖𝑢‖𝑊 1,𝑁 (R𝑁 ) + 𝜖𝑛‖𝜓2

𝜖 𝑣‖𝑊 1,𝑁 (R𝑁 )

+
∫︁
R𝑁

(︁
|∇𝑢|𝑁𝜓1

𝜖 + |∇𝑣|𝑁𝜓2
𝜖 − |∇𝑢|𝑁−2∇𝑢𝑛∇𝑢𝜓1

𝜖 − |∇𝑣|𝑁−2∇𝑣𝑛∇𝑣𝜓1
𝜖

)︁
d𝑥,

from which, equivalently, we may write

0 ≤
∫︁
R𝑁

|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇𝜓1
𝜖 (𝑢− 𝑢𝑛) d𝑥+

∫︁
R𝑁

|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇𝜓2
𝜖 (𝑣 − 𝑣𝑛) d𝑥

−
∫︁
R𝑁

|𝑢𝑛|𝑁𝜓1
𝜖 d𝑥

−
∫︁
R𝑁

|𝑣𝑛|𝑁𝜓2
𝜖 d𝑥+ 𝜆𝑝

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞𝜓1
𝜖 d𝑥+ 𝜆𝑞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞𝜓2
𝜖 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝑢𝑛 − 𝑢)𝜓1
𝜖 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝑣𝑛 − 𝑣)𝜓2
𝜖 d𝑥

+ 𝜖𝑛‖𝜓1
𝜖𝑢𝑛‖𝑊 1,𝑁 (R𝑁 ) + 𝜖𝑛‖𝜓2

𝜖 𝑣𝑛‖𝑊 1,𝑁 (R𝑁 ) +
∫︁
R𝑁

|𝑢𝑛|𝑁−2𝑢𝑛(𝜓1
𝜖𝑢) +

∫︁
R𝑁

|𝑣𝑛|𝑁−2𝑣𝑛(𝜓2
𝜖 𝑣)

− 𝜆𝑝
∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜓1
𝜖𝑢) d𝑥− 𝜆𝑞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓2
𝜖 𝑣) d𝑥

+ 𝜖𝑛‖𝜓1
𝜖𝑢‖𝑊 1,𝑁 (R𝑁 ) + 𝜖𝑛‖𝜓2

𝜖 𝑣‖𝑊 1,𝑁 (R𝑁 )

+
∫︁
R𝑁

(︁
|∇𝑢|𝑁−2𝜓1

𝜖 ∇𝑢(∇𝑢− ∇𝑢𝑛) + |∇𝑣|𝑁−2𝜓2
𝜖 ∇𝑣(∇𝑣 − ∇𝑣𝑛)

)︁
d𝑥. (5.73)

Now, we estimate each term on right-hand side of the inequality (5.73) separately. Following
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the estimates (24) and (25) from (DO Ó, 1996, Lemma 4), we can conclude that

lim sup
𝑛→∞

∫︁
R𝑁

|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇𝜓1
𝜖 (𝑢− 𝑢𝑛) d𝑥 ≤ 0,

lim sup
𝑛→∞

∫︁
R𝑁

|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇𝜓2
𝜖 (𝑣 − 𝑣𝑛) d𝑥 ≤ 0,∫︁

R𝑁
𝜓1

𝜖 |∇𝑢|𝑁−2|∇𝑢|(∇𝑢− ∇𝑢𝑛) d𝑥 → 0,∫︁
R𝑁
𝜓2

𝜖 |∇𝑣|𝑁−2|∇𝑣|(∇𝑣 − ∇𝑣𝑛) d𝑥 → 0, 𝑛 → ∞.

(5.74)

Moreover, from Lemma 5.2.10, we have∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝑢𝑛 − 𝑢)𝜓1
𝜖 d𝑥 → 0, (5.75)

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝑣𝑛 − 𝑣)𝜓2
𝜖 d𝑥 → 0. (5.76)

Finally, using all the estimates (5.74), (5.75) and (5.76) in (5.73), we conclude that Claim
2 is true. Thus, (∇𝑢𝑛,∇𝑣𝑛) → (∇𝑢,∇𝑣), a.e. in R𝑁 . Using this fact and boundedness of
{|∇𝑢𝑛|𝑁−2∇𝑢𝑛, |∇𝑣𝑛|𝑁−2∇𝑣𝑛} in (𝐿

𝑁
𝑁−1 (R𝑁))𝑁 × (𝐿

𝑁
𝑁−1 (R𝑁))𝑁 , up to a subsequence, we

get (5.65) and this completes the proof of Lemma 5.2.11.

Lemma 5.2.12. Under the same conditions of Lemma 5.2.10, we have∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢 d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢 d𝑥,

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣 d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣 d𝑥,

for all (𝑢, 𝑣) ∈ W𝑁
rad.

Proof. For any given 𝜀 > 0, noting that if (𝑢, 𝑣) ∈ W𝑁
rad, then we may choose (𝜑𝜀, 𝜓𝜀) ∈

[𝐶∞
0,rad(R𝑁) × 𝐶∞

0,rad(R𝑁)] ∩ W𝑁
rad such that

‖(𝜑𝜀, 𝜓𝜀) − (𝑢, 𝑣)‖ < 𝜀. (5.77)

Thus, since 𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛)(𝜑𝜀, 𝜓𝜀) = 𝑜𝑛(1) and 𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛)(𝑢, 𝑣) = 𝑜𝑛(1), we have

𝑜𝑛(1) =𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛) ((𝜑𝜀, 𝜓𝜀) − (𝑢, 𝑣))

=
∫︁
R𝑁

|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇(𝜑𝜀 − 𝑢) d𝑥+
∫︁
R𝑁

|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇(𝜓𝜀 − 𝑣) d𝑥

− 𝜆𝑝
∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜑𝜀 − 𝑢) d𝑥− 𝜆𝑞
∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓𝜀 − 𝑣) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝜑𝜀 − 𝑢) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝜓𝜀 − 𝑣) d𝑥. (5.78)
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Combining the Cauchy-Schwarz inequality with the Hölder’s inequality, we derive
∫︁
R𝑁

|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇(𝜑𝜀 − 𝑢) d𝑥 ⩽
(︂∫︁

R𝑁
|∇𝑢𝑛|𝑁 d𝑥

)︂𝑁−1
𝑁
(︂∫︁

R𝑁
|∇(𝜑𝜀 − 𝑢)|𝑁 d𝑥

)︂ 1
𝑁

⩽‖𝑢𝑛‖𝑁−1‖𝜑𝜀 − 𝑢‖,∫︁
R𝑁

|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇(𝜓𝜀 − 𝑣) d𝑥 ⩽
(︂∫︁

R𝑁
|∇𝑣𝑛|𝑁 d𝑥

)︂𝑁−1
𝑁
(︂∫︁

R𝑁
|∇(𝜓𝜀 − 𝑣)|𝑁 d𝑥

)︂ 1
𝑁

⩽‖𝑣𝑛‖𝑁−1‖𝜓𝜀 − 𝑣‖.

(5.79)

Using Hölder’s inequality once more, we see that
∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜑𝜀 − 𝑢) d𝑥 ⩽
(︂∫︁

R𝑁
|𝑢𝑛|𝑝+𝑞 d𝑥

)︂ 𝑝−1
𝑝+𝑞

(︂∫︁
R𝑁

|𝑣𝑛|𝑝+𝑞 d𝑥
)︂ 𝑞

𝑝+𝑞

×
(︂∫︁

R𝑁
(𝜑𝜀 − 𝑢)𝑝+𝑞 d𝑥

)︂ 1
𝑝+𝑞

,∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓𝜀 − 𝑣) d𝑥 ⩽
(︂∫︁

R𝑁
|𝑢𝑛|𝑝+𝑞 d𝑥

)︂ 𝑝
𝑝+𝑞

(︂∫︁
R𝑁

|𝑣𝑛|𝑝+𝑞 d𝑥
)︂ 𝑞−1

𝑝+𝑞

×
(︂∫︁

R𝑁
(𝜓𝜀 − 𝑣)𝑝+𝑞 d𝑥

)︂ 1
𝑝+𝑞

.

(5.80)

Once that (‖(𝑢𝑛, 𝑣𝑛)‖)𝑛 is bounded, there exists 𝐶 > 0, such that ‖(𝑢𝑛, 𝑣𝑛)‖ ⩽ 𝐶 for all
𝑛 ∈ N. In particular, we have ‖𝑢𝑛‖ ⩽ 𝐶, ‖𝑣𝑛‖ ⩽ 𝐶, ‖𝑢𝑛‖𝑝+𝑞 ⩽ 𝐶, ‖𝑣𝑛‖𝑝+𝑞 ⩽ 𝐶, for all
𝑛 ∈ N. Since the Sobolev embedding 𝑊 1,𝑁

rad (R𝑁) →˓ 𝐿𝑠(R𝑁) is continuous, (5.79) and (5.80)
become

∫︁
R𝑁

|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇(𝜑𝜀 − 𝑢) d𝑥 ⩽ 𝐶𝑁−1‖𝜑𝜀 − 𝑢‖,∫︁
R𝑁

|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇(𝜓𝜀 − 𝑣) d𝑥 ⩽ 𝐶𝑁−1‖𝜓𝜀 − 𝑣‖,∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞(𝜑𝜀 − 𝑢) d𝑥 ⩽ 𝐶𝑝+𝑞−1‖𝜑𝜀 − 𝑢‖,∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛(𝜓𝜀 − 𝑣) d𝑥 ⩽ 𝐶𝑝+𝑞−1‖𝜓𝜀 − 𝑣‖,

which together with (5.77) and (5.78), imply that

𝑜𝑛(1) ⩽𝜀(2𝐶𝑁−1 + 2𝜆𝐶𝑝+𝑞−1) −
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝜑𝜀 − 𝑢) d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝜓𝜀 − 𝑣) d𝑥,

i.e., ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝜑𝜀 − 𝑢) d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

(𝜓𝜀 − 𝑣) d𝑥 ⩽ 𝜀𝐶(𝑁, 𝜆, 𝑝, 𝑞) + 𝑜𝑛(1),
(5.81)
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where 𝐶(𝑁, 𝜆, 𝑝, 𝑞) = 2(𝐶𝑁−1 + 𝜆𝐶𝑝+𝑞−1).

Claim. For any given 𝜀 > 0, there exists 𝐶(𝑁, 𝜆, 𝑝, 𝑞) > 0, such that
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

(𝜑𝜀 − 𝑢) d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

(𝜓𝜀 − 𝑣) d𝑥 ⩽ 𝐶(𝑁, 𝜆, 𝑝, 𝑞)𝜀. (5.82)

Indeed, for any 𝜑, 𝜓 ∈ 𝐶∞
0,rad(R𝑁) and by (5.46), it follows from of Lebesgue’s Dominated

Convergence Theorem that∫︁
R𝑁

|𝑢𝑛|𝑝−2𝑢𝑛|𝑣𝑛|𝑞𝜑 d𝑥 →
∫︁
R𝑁

|𝑢|𝑝−2𝑢|𝑣|𝑞𝜑 d𝑥,∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞−2𝑣𝑛𝜓 d𝑥 →
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞−2𝑣𝜓 d𝑥,∫︁
R𝑁

|𝑢𝑛|𝑁−2𝑢𝑛𝜑 d𝑥 →
∫︁
R𝑁

|𝑢|𝑁−2𝑢𝜑 d𝑥,∫︁
R𝑁

|𝑣𝑛|𝑁−2𝑣𝑛𝜓 d𝑥 →
∫︁
R𝑁

|𝑣|𝑁−2𝑣𝜓 d𝑥,

(5.83)

and by Lemma 5.2.11, we see that∫︁
R𝑁

|∇𝑢𝑛|𝑁−2∇𝑢𝑛∇𝜑 d𝑥 →
∫︁
R𝑁

|∇𝑢|𝑁−2∇𝑢∇𝜑 d𝑥,∫︁
R𝑁

|∇𝑣𝑛|𝑁−2∇𝑣𝑛∇𝜓 d𝑥 →
∫︁
R𝑁

|∇𝑣|𝑁−2∇𝑣∇𝜓 d𝑥,
(5.84)

which together with (5.83) and Lemma 5.2.10, imply that

𝒥 ′
𝜆(𝑢, 𝑣)(𝜙, 𝜓) = 0, ∀(𝜙, 𝜓) ∈ 𝐶∞

0,rad(R𝑁) × 𝐶∞
0,rad(R𝑁).

Arguing as in the proof of (5.81), we conclude that Claim is true.
By Lemma 5.2.10, (5.81) and (5.82), we reach⃒⃒⃒⃒

⃒⃒ ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢 d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢 d𝑥

⃒⃒⃒⃒
⃒⃒

⩽

⃒⃒⃒⃒
⃒⃒ ∫︁

R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝜙𝜀 d𝑥

−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝜙𝜀 d𝑥

⃒⃒⃒⃒
⃒⃒

+
⃒⃒⃒⃒
⃒
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

(𝜙𝜀 − 𝑢) d𝑥
⃒⃒⃒⃒
⃒

+
⃒⃒⃒⃒
⃒
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

(𝜙𝜀 − 𝑢) d𝑥
⃒⃒⃒⃒
⃒ < 2𝐶(𝑁, 𝜆, 𝑝, 𝑞)𝜀+ 𝑜𝑛(1).
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Similarly, we have⃒⃒⃒⃒
⃒
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣 d𝑥−
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣 d𝑥
⃒⃒⃒⃒
⃒

< 2𝐶(𝑁, 𝜆, 𝑝, 𝑞)𝜀+ 𝑜𝑛(1),

which finishes the proof.

In particular, arguing as in the proof of Lemma 5.2.12, we conclude that if 𝑢 ̸= 0 and
𝑣 = 0, then∫︁

R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢 d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢 d𝑥,

or if 𝑣 ̸= 0 and 𝑢 = 0, then∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣 d𝑥 →
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣 d𝑥.

In view of these last two limits, it follows from (BRÉZIS, 2011, Theorem 4.9), up to subsequence
that, if 𝑢 ̸= 0 and 𝑣 = 0, then(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 →
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢, (5.85)

a.e. in R𝑁 , or if 𝑣 ̸= 0 and 𝑢 = 0, then(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 →
(︃∫︁

R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣, (5.86)

a.e. in R𝑁 . To prove (5.85), we observe that⃒⃒⃒⃒
⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 −
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢

⃒⃒⃒⃒
⃒

⩽

⃒⃒⃒⃒
⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢(𝑢𝑛 − 𝑢)
𝑢

⃒⃒⃒⃒
⃒

+
⃒⃒⃒⃒
⃒
(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢−
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢

⃒⃒⃒⃒
⃒

→ 0, a.e. in R𝑁 ,

where we are using (5.46) and (5.85). Similarly, (5.86) is verified.
Now if 𝑢 ̸= 0 and 𝑣 ̸= 0, then we have that(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 →
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

𝑢, (5.87)

a.e. in R𝑁 and(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 →
(︃∫︁

R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

𝑣, (5.88)
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a.e. in R𝑁 .
It follows from Lemma 5.2.1 that the energy functional 𝒥𝜆 restricted to W𝑁

rad satisfies
the mountain pass geometry. Therefore, there exists a (𝑃𝑆)𝑚𝜆

−sequence (𝑢𝑛, 𝑣𝑛)𝑛 in W𝑁
rad

satisfying (5.17), which is bounded as proved in Lemma 5.2.8. Hence, there exists (𝑢0, 𝑣0) ∈

W𝑁
rad such that, up to a subsequence, (𝑢𝑛, 𝑣𝑛) ⇀ (𝑢0, 𝑣0) weakly in W𝑁

rad, (𝑢𝑛, 𝑣𝑛) → (𝑢0, 𝑣0)

in 𝐿𝑞(R𝑁) for all 𝑞 > 𝑁 . Moreover, combining the boundedness of (𝑢𝑛, 𝑣𝑛)𝑛 with the fact
that 𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛) = 𝑜𝑛(1), we deduce 𝒥 ′
𝜆(𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) = 𝑜𝑛(1). The next Lemma proves that

the weak limit is a critical point of 𝒥𝜆 constrained to W𝑁
rad.

Lemma 5.2.13. Let (𝑢𝑛, 𝑣𝑛)𝑛 be a (𝑃𝑆)𝑐−sequence for 𝒥𝜆. Then, there exists (𝑢, 𝑣) ∈

W𝑁
rad ∖ {(0, 0)}, such that 𝒥 ′

𝜆(𝑢, 𝑣) = 0.

Proof. In view of (𝑢𝑛, 𝑣𝑛)𝑛 is a sequence (𝑃𝑆)𝑐, then (𝑢𝑛, 𝑣𝑛)𝑛 is bounded in W𝑁
rad. Thus,

we may assume, passing to a subsequence if necessary, there exists (𝑢, 𝑣) ∈ W𝑁
rad such

that (𝑢𝑛, 𝑣𝑛) ⇀ (𝑢, 𝑣) in W𝑁
rad, (𝑢𝑛, 𝑣𝑛) → (𝑢, 𝑣) in 𝐿𝑝(R𝑁) × 𝐿𝑝(R𝑁) with 𝑝 > 𝑁 and

(𝑢𝑛, 𝑣𝑛) → (𝑢, 𝑣), a.e. in R𝑁 , see (5.46). Hence, for any (𝜑, 𝜓) ∈ 𝐶∞
0,rad(R𝑁) × 𝐶∞

0,rad(R𝑁),
it follows from of Lebesgue’s Dominated Convergence Theorem that (5.83) and (5.84) hold,
implying that

𝒥 ′
𝜆(𝑢, 𝑣)(𝜙, 𝜓) = 0, ∀(𝜙, 𝜓) ∈ 𝐶∞

0,rad(R𝑁) × 𝐶∞
0,rad(R𝑁).

By density arguments one may conclude that 𝒥 ′
𝜆(𝑢, 𝑣)(𝜙, 𝜓) = 0, for all (𝜙, 𝜓) ∈ W𝑁

rad.

Now, we claim that (𝑢, 𝑣) ̸= (0, 0). Let us assume by contradiction that (𝑢, 𝑣) = (0, 0).
From (5.1) and (5.46), we note that

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 → 0 and |𝑢𝑛|𝑝|𝑣𝑛|𝑞 ⩽ 1
2
(︁
|ℎ|2𝑝 + |ℎ̃|2𝑞

)︁
=: ℎ1, a.e. in R𝑁 ,

where ℎ1 ∈ 𝐿1(R𝑁). Hence, it follows from of Lebesgue’s Dominated Convergence Theorem
that ∫︁

R𝑁
|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥 = 𝑜𝑛(1). (5.89)

It follows from Lemma 5.2.9 that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥 = 𝑜𝑛(1),∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 d𝑥 = 𝑜𝑛(1).
(5.90)
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Now, we claim that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥 = 𝑜𝑛(1),∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣𝑛)
|𝑥|𝛽

𝑣𝑛 d𝑥 = 𝑜𝑛(1).
(5.91)

Indeed, in view of Cauchy-Schwarz type inequality in (LIEB; LOSS, 2001, Theorem 9.8), we
have that ⃒⃒⃒⃒

⃒⃒ ∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥

⃒⃒⃒⃒
⃒⃒

⩽

[︃∫︁
R𝑁

(︃∫︁
R𝑁

𝑓(𝑢𝑛)𝑢𝑛

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦
)︃
𝑓(𝑢𝑛)𝑢𝑛

|𝑥|𝛽
d𝑥
]︃ 1

2

×
[︃∫︁

R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥
]︃ 1

2

.

Thus, in order to conclude (5.91), it is sufficient to prove that there exists a constant 𝐶 > 0

such that ∫︁
R𝑁

(︃∫︁
R𝑁

𝑓(𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

𝑢𝑛 d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥 < 𝐶, ∀𝑛 ∈ N. (5.92)

In fact, since 𝑐 = 𝒥𝜆(𝑢𝑛, 𝑣𝑛) + 𝑜𝑛(1), it follows from (5.89) and (5.90) that

lim sup
𝑛→∞

(︁
‖∇𝑣𝑛‖𝑁

𝑁 + ‖∇𝑢𝑛‖𝑁
𝑁

)︁
⩽ lim sup

𝑛→∞

(︂
‖(𝑢𝑛, 𝑣𝑛)‖𝑁 −𝑁𝜆

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥+𝑁𝜆
∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥
)︂

⩽𝑁 lim sup
𝑛→∞

𝒥𝜆(𝑢𝑛, 𝑣𝑛) +𝑁𝜆 lim sup
𝑛→∞

∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥

+ 𝑁

2 lim sup
𝑛→∞

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

+ 𝑁

2 lim sup
𝑛→∞

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

d𝑥

=𝑁𝑐. (5.93)

By virtue of Lemma 5.2.5, one has

lim sup
𝑛→∞

(︁
‖∇𝑣𝑛‖𝑁

𝑁 + ‖∇𝑢𝑛‖𝑁
𝑁

)︁
⩽ 𝑁𝑚𝜆 ⩽

(︃
2𝑁 − 2𝛽 − 𝜇

2𝑁
𝛼𝑁

𝛼0

)︃𝑁−1

.

Hence, there exist 𝛿 ∈ (0, 1) and 𝑛0 ∈ N such that(︁
‖∇𝑣𝑛‖𝑁

𝑁 + ‖∇𝑢𝑛‖𝑁
𝑁

)︁ 1
𝑁−1 ⩽

(︃
2𝑁 − 2𝛽 − 𝜇

2𝑁
𝛼𝑁

𝛼0

)︃
(1 − 𝛿), ∀𝑛 ⩾ 𝑛0. (5.94)

Using Proposition 1.0.2, we see∫︁
R𝑁

(︃∫︁
R𝑁

𝑓(𝑢𝑛)𝑢𝑛

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦
)︃
𝑓(𝑢𝑛)𝑢𝑛

|𝑥|𝛽
d𝑥 ⩽𝐶(𝑁, 𝛽, 𝜇)‖𝑓(𝑢𝑛)𝑢𝑛‖2

2𝑁
2𝑁−2𝛽−𝜇

. (5.95)
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On the other hand, by (5.3), for any 𝜖 > 0, 𝑟 > 1 and 𝛼 > 𝛼0, applying Hölder’s inequality
and using (5.6) to derive

‖𝑓(𝑢𝑛)𝑢𝑛‖2
2𝑁

2𝑁−2𝛽−𝜇
⩽ 𝜖𝐶‖𝑢𝑛‖2𝑁−2𝛽−𝜇

𝑁

+ 𝐶𝐶(𝜖, 𝑟, 𝛼)
{︃∫︁

R𝑁
|𝑢𝑛|

2𝑁𝑟
2𝑁−2𝛽−𝜇

[︁
exp

(︁
𝛼𝑢

𝑁
𝑁−1

)︁
− 𝑆𝑁−2 (𝛼, 𝑢)

]︁ 2𝑁
2𝑁−2𝛽−𝜇 d𝑥

}︃ 2𝑁−2𝛽−𝜇
𝑁

⩽𝜖𝐶‖𝑢𝑛‖2𝑁−2𝛽−𝜇
𝑁 + 𝐶𝐶(𝜖, 𝑟, 𝛼)

⎧⎨⎩
∫︁
R𝑁

[︂
exp

(︂
𝛼𝑢

𝑁
𝑁−1
𝑛

)︂
− 𝑆𝑁−2 (𝛼, 𝑢𝑛)

]︂ 2𝑁𝑡′
2𝑁−2𝛽−𝜇

d𝑥

⎫⎬⎭
2𝑁−2𝛽−𝜇

𝑁𝑡′

×
(︂∫︁

R𝑁
|𝑢𝑛|

2𝑁𝑟𝑡
2𝑁−2𝛽−𝜇

)︂ 2𝑁−2𝛽−𝜇
𝑁𝑡

⩽𝜖𝐶‖𝑢𝑛‖2𝑁−2𝛽−𝜇
𝑁 +

⎧⎨⎩
∫︁
R𝑁

⎡⎣ exp
⎛⎝ 2𝑁𝛼𝑡′

2𝑁 − 2𝛽 − 𝜇
‖∇𝑢𝑛‖

𝑁
𝑁−1
𝑁

(︃
|𝑢𝑛|

‖∇𝑢𝑛‖𝑁

)︃ 𝑁
𝑁−1

⎞⎠

− 𝑆𝑁−2

(︃
2𝑁𝛼𝑡′

2𝑁 − 2𝛽 − 𝜇
‖∇𝑢𝑛‖

𝑁
𝑁−1
𝑁 ,

|𝑢𝑛|
‖∇𝑢𝑛‖𝑁

)︃⎤⎦ d𝑥

⎫⎬⎭
2𝑁−2𝛽−𝜇

𝑁𝑡′

× 𝐶1

(︂∫︁
R𝑁

|𝑢𝑛|
2𝑁𝑟𝑡

2𝑁−2𝛽−𝜇

)︂ 2𝑁−2𝛽−𝜇
𝑁𝑡

, (5.96)

where 𝑡 > 1 and 1
𝑡

+ 1
𝑡′ = 1. From (5.94) and choosing 𝑡 sufficiently close to 1 and choosing

𝛼 sufficiently close to 𝛼0, we may infer

2𝑁𝛼𝑡′

2𝑁 − 2𝛽 − 𝜇

(︁
‖∇𝑣𝑛‖𝑁

𝑁 + ‖∇𝑢𝑛‖𝑁
𝑁

)︁ 1
𝑁−1 ⩽ 𝛼𝑡′

(︂
𝛼𝑁

𝛼0

)︂
(1 − 𝛿) < 𝛼𝑁 , ∀𝑛 ⩾ 𝑛0.

Next, let us recall the Gagliardo-Nirenberg inequality

‖𝑢‖𝑞
𝑞 ⩽ 𝐶‖𝑢‖𝑁

𝑁‖∇𝑢‖
𝑞−𝑁

𝑞

𝑁 , ∀𝑞 > 𝑁 and 𝑢 ∈ 𝑊 1,𝑁(R𝑁). (5.97)

In view of Proposition 5.0.1, (5.97) and choosing 𝑟 ⩾ 2𝑁−2𝛽−𝜇
2 , we have

(︂∫︁
R𝑁

|𝑢𝑛|
2𝑁𝑟𝑡

2𝑁−2𝛽−𝜇

)︂ 2𝑁−2𝛽−𝜇
𝑁𝑡

⎧⎨⎩
∫︁
R𝑁

⎡⎣ exp
⎛⎝ 2𝑁𝛼𝑡′

2𝑁 − 2𝛽 − 𝜇
‖∇𝑢𝑛‖

𝑁
𝑁−1
𝑁

(︃
|𝑢𝑛|

‖∇𝑢𝑛‖𝑁

)︃ 𝑁
𝑁−1

⎞⎠

− 𝑆𝑁−2

(︃
2𝑁𝛼𝑡′

2𝑁 − 2𝛽 − 𝜇
‖∇𝑢𝑛‖

𝑁
𝑁−1
𝑁 ,

|𝑢𝑛|
‖∇𝑢𝑛‖𝑁

)︃⎤⎦ d𝑥

⎫⎬⎭
2𝑁−2𝛽−𝜇

𝑁𝑡′

⩽𝐶‖𝑢𝑛‖
2𝑁−2𝛽−𝜇

𝑡
𝑁 ‖∇𝑢𝑛‖2𝑟− 2𝑁−2𝛽−𝜇

𝑡
𝑁

(︃
‖𝑢𝑛‖𝑁

‖∇𝑢𝑛‖𝑁

)︃ 2𝑁−2𝛽−𝜇
𝑡′

=𝐶‖𝑢𝑛‖2𝑁−2𝛽−𝜇
𝑁 ‖∇𝑢𝑛‖2𝑟−(2𝑁−2𝛽−𝜇)

𝑁 ,

which jointly with (5.96), implies that

‖𝑓(𝑢𝑛)𝑢𝑛‖2
2𝑁

2𝑁−2𝛽−𝜇
⩽ 𝜖𝐶‖𝑢𝑛‖2𝑁−2𝛽−𝜇

𝑁 + 𝐶1𝐶‖𝑢𝑛‖2𝑁−2𝛽−𝜇
𝑁 ‖∇𝑢𝑛‖2𝑟−(2𝑁−2𝛽−𝜇)

𝑁 .
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Gathering the last estimate with (5.95) and noticing that ‖𝑢𝑛‖𝑁 , ‖∇𝑢𝑛‖𝑁 ⩽ ‖(𝑢𝑛, 𝑣𝑛)‖, we
may infer∫︁

R𝑁

(︃∫︁
R𝑁

𝑓(𝑢𝑛)𝑢𝑛

|𝑦|𝛽|𝑥− 𝑦|𝜇
d𝑦
)︃
𝑓(𝑢𝑛)
|𝑥|𝛽

𝑢𝑛 d𝑥 ⩽𝐶(𝑁, 𝛽, 𝜇)‖𝑓(𝑢𝑛)𝑢𝑛‖2
2𝑁

2𝑁−2𝛽−𝜇
< 𝐶.

Therefore, (5.92) is true and consequently we obtain (5.91).
Next, applying (5.89) and (5.91) in 𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛) = 𝑜𝑛(1), yields that

lim sup
𝑛→∞

‖(𝑢𝑛, 𝑣𝑛)‖𝑁 = 0. (5.98)

From 𝑐 = 𝒥𝜆(𝑢𝑛, 𝑣𝑛) + 𝑜𝑛(1) and by using (5.89) and (5.90), it follows that

0 < 𝑁𝑐 = 𝑁 lim sup
𝑛→∞

𝒥𝜆(𝑢𝑛, 𝑣𝑛) = lim sup
𝑛→∞

‖(𝑢𝑛, 𝑣𝑛)‖𝑁 ,

which jointly with (5.98) leads to a contradiction. Therefore, there exists (𝑢, 𝑣) ∈

W𝑁
rad∖{(0, 0)} such that 𝒥 ′

𝜆(𝑢, 𝑣) = 0.

Lemma 5.2.14. Let (𝑢𝑛, 𝑣𝑛)𝑛 ⊂ W𝑁
rad be a (𝑃𝑆)𝑐−sequence for 𝒥𝜆. Then, there exists

(𝑢, 𝑣) ∈ W𝑁
rad∖{(0, 0)} such that 𝒥𝜆

′(𝑢, 𝑣) = 0 and 𝒥𝜆(𝑢, 𝑣) = 𝑐𝒩𝜆
. In addition, (𝑢𝑛, 𝑣𝑛) →

(𝑢, 𝑣) strongly in W𝑁
rad.

Proof. For the same reasons as in Lemma 5.2.13, we may assume, passing to a subsequence
if necessary, there exists (𝑢, 𝑣) ∈ W𝑁

rad such that (𝑢𝑛, 𝑣𝑛) ⇀ (𝑢, 𝑣) in W𝑁
rad, (𝑢𝑛, 𝑣𝑛) → (𝑢, 𝑣)

in 𝐿𝑝(R𝑁) ×𝐿𝑝(R𝑁) with 𝑝 > 𝑁 and (𝑢𝑛, 𝑣𝑛) → (𝑢, 𝑣), a.e. in R𝑁 . Similarly to the proof of
Lemma 5.2.13, one has 𝒥 ′

𝜆(𝑢, 𝑣) = 0. Since 𝑐𝒩𝜆
> 0, we split the proof into two cases.

Case 1. (𝑢, 𝑣) = (0, 0). Similar to the proof of Lemma 5.2.13.
Case 2. (𝑢, 𝑣) ̸= (0, 0). Since (𝑢, 𝑣) ̸= (0, 0), it follows from Lemma 5.2.3 that there exists a
unique 𝑡(𝑢,𝑣) > 0, depending on (𝑢, 𝑣), such that

(𝑡(𝑢,𝑣)𝑢, 𝑡(𝑢,𝑣)𝑣) ∈ 𝒩𝜆 and max
𝑡⩾0

𝒥𝜆(𝑡(𝑢, 𝑣)) = 𝒥𝜆(𝑡(𝑢,𝑣)(𝑢, 𝑣)). (5.99)

On the other hand, in view of (5.46), Lemma 5.2.9 and (BRÉZIS, 2011, Theorem 4.9), one
may deduce, up to a subsequence, that(︃∫︁

R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

→
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛽

, a.e. in R𝑁 , (5.100)

and (︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

→
(︃∫︁

R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣)
|𝑥|𝛽

, a.e. in R𝑁 . (5.101)
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Since 𝒥 ′(𝑢, 𝑣)(𝑢, 𝑣) = 0 and according to (5.20), (5.85), (5.86), (5.87), (5.88), (5.99), (5.100)
and (5.101), it follows from Fatou’s Lemma that

𝑚𝜆 ⩽ 𝑐𝒩𝜆
⩽𝒥𝜆(𝑢, 𝑣) − 1

𝑁
𝒥 ′

𝜆(𝑢, 𝑣)(𝑢, 𝑣) = 𝑝+ 𝑞

𝑁
𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥− 𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃ [︂ 1

𝑁
𝑓(𝑢)𝑢− 1

2𝐹 (𝑢)
]︂

|𝑥|𝛽
d𝑥

+
∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃ [︂ 1

𝑁
𝑔(𝑣)𝑣 − 1

2𝐺(𝑣)
]︂

|𝑥|𝛽
d𝑥

⩽ lim inf
𝑛→∞

(︂
𝑝+ 𝑞

𝑁
𝜆
∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥− 𝜆
∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥
)︂

+ lim inf
𝑛→∞

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃ [︂ 1

𝑁
𝑓(𝑢𝑛)𝑢𝑛 − 1

2𝐹 (𝑢𝑛)
]︂

|𝑥|𝛽
d𝑥

+ lim inf
𝑛→∞

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃ [︂ 1

𝑁
𝑔(𝑣𝑛)𝑣𝑛 − 1

2𝐺(𝑣𝑛)
]︂

|𝑥|𝛽
d𝑥

= lim inf
𝑛→∞

[︂
𝒥𝜆(𝑢𝑛, 𝑣𝑛) − 1

𝑁
𝒥 ′

𝜆(𝑢𝑛, 𝑣𝑛)(𝑢𝑛, 𝑣𝑛)
]︂

= 𝑐 ⩽ 𝑚𝜆 ⩽ 𝑐𝒩𝜆
,

which implies that 𝒥𝜆(𝑢, 𝑣) = 𝑐𝒩𝜆
. Combining this with Fatou’s Lemma and Lemma 5.13, we

see that

1
𝑁

‖(𝑢, 𝑣)‖𝑁 ⩽ lim inf
𝑛→+∞

1
𝑁

‖(𝑢𝑛, 𝑣𝑛)‖𝑁 ⩽ lim sup
𝑛→+∞

1
𝑁

‖(𝑢𝑛, 𝑣𝑛)‖𝑁

⩽ lim sup
𝑛→∞

⎡⎣𝒥𝜆(𝑢𝑛, 𝑣𝑛) + 𝜆
∫︁
R𝑁

|𝑢𝑛|𝑝|𝑣𝑛|𝑞 d𝑥+ 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢𝑛)
|𝑥|𝛽

d𝑥

+ 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣𝑛)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣𝑛)
|𝑥|𝛽

d𝑥
⎤⎦

=𝑐𝒩𝜆

+ 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛽

d𝑥+ 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣)
|𝑥|𝛽

d𝑥

= 1
𝑁

‖(𝑢, 𝑣)‖𝑁 ,

i.e., lim𝑛→∞ ‖(𝑢𝑛, 𝑣𝑛)‖𝑁 = ‖(𝑢, 𝑣)‖𝑁 . Putting this together with the fact that (𝑢𝑛, 𝑣𝑛) ⇀

(𝑢, 𝑣) and W𝑁
rad is uniformly convex, it follows that (𝑢𝑛, 𝑣𝑛) → (𝑢, 𝑣) in W𝑁

rad. It finishes the
proof of the Lemma.

In view of Proposition A.0.1, one has that if (𝑢, 𝑣) is a critical point of 𝒥𝜆 restricted
to W𝑁

rad, then (𝑢, 𝑣) is a critical point of 𝒥𝜆 on W𝑁 . Therefore, Lemma 5.2.14 ensures the
existence of a nontrivial solution for System (𝑆𝜆). It follows from assumption (𝑎) and (5.19)
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that 𝐹 (|𝑠|) ⩾ 𝐹 (𝑠) for all 𝑠 ∈ R. Hence, 𝒥𝜆(|𝑢|, |𝑣|) ⩽ 𝒥𝜆(𝑢, 𝑣), for (𝑢, 𝑣) ∈ W𝑁
rad. Let

(𝑢, 𝑣) ∈ 𝒩𝜆 be the ground state obtained in Lemma 5.2.14. By using Lemma 5.2.3, there
exists 𝑡0 such that (𝑡0|𝑢|, 𝑡0|𝑣|) ∈ 𝒩𝜆. Thus, from (5.24) we deduce

𝑐𝒩𝜆
⩽ 𝒥𝜆(𝑡0|𝑢|, 𝑡0|𝑣|) ⩽ 𝒥𝜆(𝑡0𝑢, 𝑡0𝑣) ⩽ max

𝑡>0
𝒥𝜆(𝑡𝑢, 𝑡𝑣) = 𝒥𝜆(𝑢, 𝑣) = 𝑐𝒩𝜆

,

which implies that 𝒥𝜆(𝑡0|𝑢|, 𝑡0|𝑣|) = 𝑐𝒩𝜆
. Therefore, we may suppose that (𝑢, 𝑣) is a

nonnegative solution (or radial ground state solution) for System (𝑆𝜆).
Next, we will check that if (𝑢, 𝑣) is a solution of System (𝑆𝜆), then (𝑢, 𝑣) belongs to

[𝐿∞(R𝑁) ∩ 𝐶1,𝛾(R𝑁)]2, for some 𝛾 ∈ (0, 1).

Lemma 5.2.15. Let (𝑢, 𝑣) be a solution of System (𝑆𝜆). Then, (𝑢, 𝑣) ∈ [𝐿∞(R𝑁) ∩

𝐶1,𝛾(R𝑁)]2, for some 𝛾 ∈ (0, 1).

Proof. We have the following two claims:
Claim 1. If 𝑢 and 𝑣 satisfy

−Δ𝑁𝑢+ |𝑢|𝑁−2𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

+ 𝜆𝑝|𝑢|𝑝−2𝑢|𝑣|𝑞, in R𝑁 , (5.102)

then, 𝑢 ∈ 𝐿∞(R𝑁).

Claim 2. If 𝑢 and 𝑣 satisfy

−Δ𝑁𝑣 + |𝑣|𝑁−2𝑣 =
(︃∫︁

R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

+ 𝜆𝑞|𝑢|𝑝|𝑣|𝑞−2𝑣, in R𝑁 ,

then, 𝑣 ∈ 𝐿∞(R𝑁).

Proof of the Claim 1. We follow (ALVES; SHEN, 2023, Theorem 1.6). By setting 𝑠 = 𝑟 =

𝑟 = 2𝑁
2𝑁−2𝛽−𝜇

and 𝑡 = 𝑠 = 2𝑁
2𝛽+𝜇

, it is not hard to see that

1 + 1
𝑠

= 1
𝑟

+ 2𝛽 + 𝜇

𝑁
and 𝛽

𝑁
<

1
𝑠
<
𝛽 + 𝜇

𝑁
.

Since 𝐹 (𝑢) ∈ 𝐿𝑟(R𝑁), it follows from Proposition 1.0.2 that

1
|𝑥|𝛽

∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦 ∈ 𝐿𝑠(R𝑁). (5.103)

Now, note that if 𝑝 ⩾ 2𝑁
𝑁−2𝛽−𝜇

, then [(𝑁−2)+𝑁−2𝛽−𝜇]𝑝
2 ⩾ 𝑁 . Hence, it follows from

Proposition 5.0.1, (5.4) and Hölder’s inequality that∫︁
R𝑁

|𝑓(𝑢)|𝑝 d𝑥 ⩽𝐶𝜀𝑝
∫︁
R𝑁

|𝑢|
((𝑁−2)+𝑁−2𝛽−𝜇)𝑝

2 d𝑥

+ 𝐶𝐶(𝛼, 𝑟, 𝜖)𝑝
∫︁
R𝑁

|𝑢|(𝑟−1)𝑝
[︁
exp

(︁
𝛼𝑢

𝑁
𝑁−1

)︁
− 𝑆𝑁−2 (𝛼, 𝑢)

]︁𝑝
d𝑥 < +∞,
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i.e.,
𝑓(𝑢) ∈ 𝐿𝑝(R𝑁), ∀𝑝 ⩾

2𝑁
𝑁 − 2𝛽 − 𝜇

. (5.104)

We claim that there exists 𝜖0 > 0 such that

ℎ(𝑥) := 1
|𝑥|𝛽

∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦𝑓(𝑢) + 𝜆𝑝|𝑢|𝑝−2𝑢|𝑣|𝑞 ∈ 𝐿𝑡(R𝑁), ∀𝑡 ∈ ((1 − 𝜖0)𝑠, 𝑠).

(5.105)
In fact, let 𝜖0 > 0 be such that

(1 − 𝜖)𝑠
𝜖

> max
{︃

2𝑁
𝑁 − 2𝛽 − 𝜇

, 𝑝+ 𝑞

}︃
, ∀𝜖 ∈ (0, 𝜖0). (5.106)

Note that (1 − 𝜖)𝑠 ∈ ((1 − 𝜖0)𝑠, 𝑠). One may deduce
∫︁
R𝑁

|ℎ|(1−𝜖)𝑠 d𝑥 ⩽𝐶(𝜖, 𝑠)
∫︁
R𝑁

⃒⃒⃒⃒ 1
|𝑥|𝛽

∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
⃒⃒⃒⃒(1−𝜖)𝑠

|𝑓(𝑢)|(1−𝜖)𝑠 d𝑥

+ 𝐶(𝜖, 𝑠)𝜆(1−𝜖)𝑠𝑝(1−𝜖)𝑠
∫︁
R𝑁

(|𝑢|(𝑝−1)(1−𝜖)𝑠|𝑣|(𝑞−1)(1−𝜖)𝑠𝑣(1−𝜖)𝑠) d𝑥

= : 𝐶(𝜖, 𝑠)𝒜1 + 𝐶(𝜖, 𝑠)𝜆(1−𝜖)𝑠𝑝(1−𝜖)𝑠𝒜2. (5.107)

In view of (5.103), (5.104), (5.106) and Hölder’s inequality, we obtain

𝒜1 ⩽

⎛⎜⎝∫︁
R𝑁

⃒⃒⃒⃒
⃒⃒ 1
|𝑥|𝛽

∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦

⃒⃒⃒⃒
⃒⃒
𝑠

d𝑥

⎞⎟⎠
1−𝜖 (︂∫︁

R𝑁
|𝑓(𝑢)|

(1−𝜖)𝑠
𝜖 d𝑥

)︂𝜖

< +∞. (5.108)

Moreover, using (5.1), (5.106) and Hölder’s inequality, we have

𝒜2 ⩽
(︂∫︁

R𝑁
|𝑢|2𝑝

(1−𝜖)𝑠
𝜖 d𝑥

)︂ 𝜖(𝑝−1)
2𝑝

(︂∫︁
R𝑁

|𝑣|2(𝑞−1) (1−𝜖)𝑠
𝜖 d𝑥

)︂ 𝜖
2

×
(︂∫︁

R𝑁
|𝑣|2𝑝

(1−𝜖)𝑠
𝜖 d𝑥

)︂ 𝜖
2𝑝

< +∞. (5.109)

Therefore, (5.107), (5.108), (5.109) imply that (5.105) holds.
Finally, in light of standard regularity theory, we conclude that 𝑢 ∈ 𝑊 2,𝑡(R𝑁), 𝑡 ∈

((1 − 𝜖0)𝑠, 𝑠). Since that 1
𝑡

− 2
𝑁
< 0 for 𝜖0 sufficiently small, it follows from (BRÉZIS, 2011,

Corollary 9.13) that 𝑊 2,𝑡(R𝑁) ⊂ 𝐿∞(R𝑁), which finishes the proof of Claim 1. Analogously
one may check the proof of Claim 2.

Since the solution (𝑢, 𝑣) ∈ 𝐿∞(R𝑁) × 𝐿∞(R𝑁) and 𝑡 > 𝑁 , we can apply (BRÉZIS,
2011, Corollary 9.13) with 𝑚 = 2, 𝑘 = 1, 𝛾 = 𝜃 and 𝑝 = 𝑡, to conclude that
(𝑢, 𝑣) ∈ 𝐶1,𝛾(R𝑁) × 𝐶1,𝛾(R𝑁).
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5.2.5.1 Vectorial ground state

It is important to emphasize that unlike to the linearly coupled case (see Remark 5.1.5),
the solution of System (𝑆𝜆) could be semitrivial, i.e., of type (𝑢, 0) or (0, 𝑣). Now we will
prove that for 𝜆 sufficiently large the nontrivial solution obtained in Lemma 5.2.14 can not be
semitrivial.

Lemma 5.2.16. There exists 𝜆0 > 0 such that if 𝜆 > 𝜆0, then System (𝑆𝜆) admits a solution

(𝑢, 𝑣) which is vectorial, i.e., 𝑢 ̸= 0 and 𝑣 ̸= 0.

Proof. We begin by studying the following equation

−Δ𝑁𝑢+ |𝑢|𝑁−2𝑢 =
(︃∫︁

R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝑓(𝑢)
|𝑥|𝛽

, in R𝑁 . (𝑆1
0)

Associated to equation (𝑆1
0), we have the energy functional 𝒥 1

0 : 𝑊 1,𝑁(R𝑁) → R

𝒥 1
0 (𝑢) = 1

𝑁
‖𝑢‖𝑁 − 1

2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢)
|𝑥|𝛽

d𝑥.

Recalling the proof of Lemma 5.2.1, it is not hard to check that the functional 𝒥 1
0 has the

mountain pass geometry. We introduce the mountain pass level as

𝑚1
0 := inf

𝛾∈Γ
max
𝑡∈[0,1]

𝒥0(𝛾(𝑡)), where Γ :=
{︁
𝛾 ∈ 𝐶([0, 1];𝑊 1,𝑁

rad (R𝑁)) : 𝛾(0) = 0, 𝒥 1
0 (𝛾(1)) < 0

}︁
and the Nehari energy level for equation (𝑆1

0) given by

𝑐1
𝒩 1

0
:= inf

𝑢∈𝒩 1
0

𝒥 1
0 (𝑢) and 𝒩 1

0 :=
{︁
𝑢 ∈ 𝑊 1,𝑁

rad (R𝑁) ∖ {0}; (𝒥 1
0 )′(𝑢)𝑢 = 0

}︁
.

Using similar arguments from the previous sections one may deduce that 𝑚1
0 = 𝑐1

𝒩 1
0
. Note that

the same arguments used in this work holds true for (𝑆1
0). Thus, let 𝑢0 ∈ 𝒩 1

0 be a nonnegative
solution for (𝑆1

0) at Nehari level, i.e., (𝒥 1
0 )′(𝑢0) = 0 and 𝒥 1

0 (𝑢0) = 𝑐1
𝒩 1

0
. Furthermore, when

𝜆 = 0, the equation in (5.102) becomes equation (𝑆1
0). Hence, for 𝜆 = 0, we may argue in

a similar way to the proof of Lemma 5.2.15 to conclude that 𝑢0 ∈ 𝐿∞(R𝑁) ∩ 𝐶1,𝛾(R𝑁). In
light of Strong Maximum Principle, we conclude that 𝑢0 is a positive ground state solution for
(𝑆1

0). By similar arguments used in the proof of Lemma 5.2.3, for any 𝑢0 ∈ 𝒩 1
0 , we deduce

that

𝒥 1
0 (𝑡𝑢0) is increasing for 𝑡 ∈ (0, 1),

𝒥 1
0 (𝑡𝑢0) is decreasing for 𝑡 ∈ (1,+∞),

𝒥 1
0 (𝑡𝑢0) → −∞, as 𝑡 → +∞.
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Consequently, we have that 𝒥 1
0 (𝑢0) = max𝑡⩾0 𝒥 1

0 (𝑡𝑢0). Analogously, we can introduce 𝒥 2
0 ,

𝑚2
0, 𝒩 2

0 , 𝑐2
0 and conclude that there exists a positive solution 𝑣0 ∈ 𝒩 2

0 at Nehari level for the
equation

−Δ𝑁𝑣 + |𝑣|𝑁−2𝑣 =
(︃∫︁

R𝑁

𝐺(𝑣)
|𝑦|𝛽|𝑦 − 𝑥|𝜇

d𝑦
)︃
𝑔(𝑣)
|𝑥|𝛽

in R𝑁 .

In view of Lemma 5.2.3, there exists 𝑡0 > 0, depending on (𝑢0, 𝑣0), such that (𝑡0𝑢0, 𝑡0𝑣0) ∈ 𝒩𝜆.
Moreover, since 𝑝+ 𝑞 > 𝑁 , we obtain the following estimate

𝑐𝒩𝜆
⩽max

𝑡⩾0
𝒥𝜆(𝑡𝑢0, 𝑡𝑣0)

⩽max
𝑡⩾0

⎧⎨⎩ 1
𝑁
𝑡𝑁‖(𝑢0, 𝑣0)‖𝑁 − 𝜆𝑡𝑝+𝑞

∫︁
R𝑁

|𝑢0|𝑝|𝑣0|𝑞 d𝑥

− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑡𝑢0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑡𝑢0)

|𝑥|𝛽
d𝑥

− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑡𝑣0)
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑡𝑣0)

|𝑥|𝛽
d𝑥

⎫⎬⎭
⩽max

𝑡⩾0

⎧⎨⎩ 1
𝑁
𝑡𝑁‖(𝑢0, 𝑣0)‖𝑁 − 𝜆𝑡𝑝+𝑞

∫︁
R𝑁

|𝑢0|𝑝|𝑣0|𝑞 d𝑥

⎫⎬⎭
= 1

(𝑝+ 𝑞)
𝑝+𝑞

𝑝+𝑞−𝑁

(︂
𝑝+ 𝑞

𝑁
− 1

)︂⎡⎣ ‖(𝑢0, 𝑣0)‖
𝜆

1
𝑝+𝑞 (

∫︀
R𝑁 |𝑢0|𝑝|𝑣0|𝑞 d𝑥)

1
𝑝+𝑞

⎤⎦
𝑁(𝑝+𝑞)

(𝑝+𝑞−𝑁)

→ 0, as 𝜆 → +∞.

Therefore, there exists 𝜆0 > 0, such that

𝑐𝒩𝜆
< min

{︁
𝑐1

𝒩 1
0
, 𝑐2

𝒩 2
0

}︁
, ∀𝜆 ⩾ 𝜆0. (5.110)

Now, let (𝑢, 𝑣) be a solution (radial ground state solution) for System (𝑆𝜆) at Nehari level,
with 𝜆 ⩾ 𝜆0 (see Lemma 5.2.14). Suppose, by contradiction, that this solution is semitrivial,
for instance, (𝑢, 0). Since (𝒥 1

0 )′(𝑢)𝑢 = 𝒥 ′
𝜆(𝑢, 0)(𝑢, 0) = 0, it follows that 𝑢 ∈ 𝒩 1

0 . Hence,

min
{︁
𝑐1

𝒩 1
0
, 𝑐2

𝒩 2
0

}︁
⩽ 𝑐1

𝒩 1
0
⩽ 𝒥 1

0 (𝑢) = 𝒥𝜆(𝑢, 0) = 𝑐𝒩𝜆
,

which contradicts (5.110). Therefore, the solution is vectorial.

Proof of Theorem 5.1.2. Since (𝑢, 𝑣) is a nonnegative solution for System (𝑆𝜆) and in view
of Lemmas 5.2.15 and 5.2.16, it follows from Strong Maximum Principle that (𝑢, 𝑣) is positive,
which finishes the proof of Theorem 5.1.2.
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APPENDIX A – PRINCIPLE OF SYMMETRIC CRITICALITY

In this appendix, we present, for 𝑁 > 2, due to the lack of Hilbert space structure, a
variant of Palais principle of symmetric criticality. This results is related to Chapter 5.

Let 𝑂(𝑁) denotes the group of orthogonal linear transformations of R𝑁 . Let 𝐺 be a
subgroup of 𝑂(𝑁).

The action of 𝐺 over a real Banach space (𝑋, ‖ · ‖𝑋) is said to be an isometry on 𝑋 if
‖𝑔𝑢‖𝑋 = ‖𝑢‖𝑋 , for all 𝑔 ∈ 𝐺, for all 𝑢 ∈ 𝑋.

Let us denote the class of all 𝐺−invariant 𝐶1 functional on 𝑋 by

𝐶1
𝐺(𝑋) :=

{︁
𝐽 ∈ 𝐶1 : 𝐽(𝑔𝑢) = 𝐽(𝑢), for all 𝑔 ∈ 𝐺 and 𝑢 ∈ 𝑋

}︁
.

The linear subspace of 𝐺−symmetric (or invariant) points of 𝑋 and 𝑋* are defined as common
fixed points of 𝐺

𝐹𝑖𝑥(𝐺) := {𝑢 ∈ 𝑋 : 𝑔𝑢 = 𝑢,∀𝑔 ∈ 𝐺} ,

𝐹 𝑖𝑥(𝐺)* := {𝑣 ∈ 𝑋* : 𝑔𝑣* = 𝑣*,∀𝑔 ∈ 𝐺} .

Consider the following principle:

(𝑃 ) : Let 𝑋 be a Banach space and 𝐺 an isometric action on 𝑋. If
(︂
𝐽
⃒⃒⃒
𝐹 𝑖𝑥(𝐺)

)︂′
𝑢 = 0 for

all 𝐽 ∈ 𝐶1
𝐺(𝑋), then 𝐽 ′(𝑢) = 0 and 𝑢 ∈ 𝐹𝑖𝑥(𝐺).

Proposition A.0.1. For a uniformly convex Banach space 𝑋 the principle (𝑃 ) holds true.

Proof. In light of (PALAIS, 1979, Proposition 4.2), it is enough to show that (𝐹𝑖𝑥(𝐺))⊥ ∩

𝐹𝑖𝑥(𝐺)* = {0}. Let 𝐹 be a duality map from 𝑋 to 𝑋*. It is not hard to see that 𝐹 is surjective
as𝑋 is reflexive and from uniform convexity of𝑋, one can conclude that 𝐹 is strictly monotone
and hence 𝐹 is injective (see (CIORANESCU, 1990)). Thus, 𝐹−1 is a single valued map in 𝑋*,
i.e., 𝐹−1(𝑥*) ∈ 𝐹𝑖𝑥(𝐺) for all 𝑥* ∈ 𝐹𝑖𝑥(𝐺)*. Now, if 𝑥* ∈ (𝐹𝑖𝑥(𝐺))⊥ ∩ 𝐹𝑖𝑥(𝐺)*, then the
facts that 𝑥* ∈ (𝐹𝑖𝑥(𝐺))⊥ and 𝐹−1(𝑥*) ∈ 𝐹𝑖𝑥(𝐺) imply that 𝑥* = 0. This completes the
proof.

Let us recall that the energy functional 𝒥𝜆 : W𝑁 → R associated to System (𝑆𝜆) is
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𝐶1(W𝑁 ,R) and it is defined as

𝒥𝜆(𝑢, 𝑣) = 1
𝑁

‖(𝑢, 𝑣)‖𝑁 − 𝜆
∫︁
R𝑁

|𝑢|𝑝|𝑣|𝑞 d𝑥

− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐹 (𝑢(𝑦))
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐹 (𝑢(𝑥))

|𝑥|𝛽
d𝑥

− 1
2

∫︁
R𝑁

(︃∫︁
R𝑁

𝐺(𝑣(𝑦))
|𝑦|𝛽|𝑥− 𝑦|𝜇

d𝑦
)︃
𝐺(𝑣(𝑥))

|𝑥|𝛽
d𝑥.

It is well known that the space W𝑁 is reflexive and strictly convex. In what follows, we define
the action of 𝐺 on W𝑁 as

𝑔(𝑢, 𝑣)(𝑥) := (𝑢(𝑔−1𝑥), 𝑣(𝑔−1𝑥)). (1.1)

Note that this action is a continuous map

𝐺×𝑋 → 𝑋

[𝑔, 𝑢] ↦→ 𝑔𝑢

satisfying

(𝑖) 1 · 𝑢 = 𝑢,

(𝑖𝑖) (𝑔ℎ)𝑢 = 𝑔(ℎ𝑢),

(𝑖𝑖𝑖) 𝑢 ↦→ 𝑔𝑢 is linear.

Moreover, the action of 𝐺 is isometric and 𝐹𝑖𝑥(𝐺) = W𝑁
rad. Next, we verify that 𝒥𝜆 ∈

𝐶1
𝐺(W𝑁), i.e., 𝒥𝜆(𝑔(𝑢, 𝑣)) = 𝒥𝜆(𝑢, 𝑣) for every 𝑔 ∈ 𝐺. Initially, we will prove that
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑔𝑢(𝑦))𝐹 (𝑔𝑢(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 =
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑦))𝐹 (𝑢(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥, ∀𝑔 ∈ 𝐺 (1.2)

and
∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑔𝑢(𝑦))𝐺(𝑔𝑢(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 =
∫︁
R𝑁

∫︁
R𝑁

𝐺(𝑢(𝑦))𝐺(𝑢(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥, ∀𝑔 ∈ 𝐺. (1.3)

In fact, from the definition (1.1) we have
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑔𝑢(𝑦))𝐹 (𝑔𝑢(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥 =
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑔−1𝑦))𝐹 (𝑢(𝑔−1𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑥. (1.4)

Let us consider the change of variables, 𝑧1 = 𝑔−1𝑥 and 𝑧2 = 𝑔−1𝑦, or yet, 𝑔𝑧1 = 𝑥 and
𝑔𝑧2 = 𝑦. Since that 𝑔−1 ∈ 𝑂(𝑁) (i.e., | det 𝑔−1| = 1), we have 𝑑𝑧1 = d𝑥 and 𝑑𝑧2 = d𝑦,
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which jointly with (1.4) imply that
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑔𝑢(𝑦))𝐹 (𝑔𝑢(𝑥))
|𝑦|𝛽|𝑥− 𝑦|𝜇|𝑥|𝛽

d𝑦d𝑦 =
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑧2))𝐹 (𝑢(𝑧1))
|𝑔𝑧2|𝛽|𝑔𝑧1 − 𝑔𝑧2|𝜇|𝑔𝑧1|𝛽

d𝑧2d𝑧1

=
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑧2))𝐹 (𝑢(𝑧1))
|𝑧2|𝛽|𝑔(𝑧1 − 𝑧2)|𝜇|𝑧1|𝛽

d𝑧2d𝑧1

=
∫︁
R𝑁

∫︁
R𝑁

𝐹 (𝑢(𝑧2))𝐹 (𝑢(𝑧1))
|𝑧2|𝛽|𝑧1 − 𝑧2|𝜇|𝑧1|𝛽

d𝑧2d𝑧1,

where we used the fact that 𝑔 is an isometry in R𝑁 , i.e., |𝑔𝑥| = |𝑥|, for all 𝑥 ∈ R𝑁 . This
proves the equality in (1.2). Analogously, it turns out that (1.3) is also true. In a similar way,
it is verified

‖(𝑔𝑢, 𝑔𝑣)‖𝑁 =
∫︁
R𝑁

(|∇(𝑔𝑢(𝑥))|𝑁 + |𝑔𝑢(𝑥)|𝑁) d𝑥+
∫︁
R𝑁

(|∇(𝑔𝑣(𝑥))|𝑁 + |𝑔𝑣(𝑥)|𝑁) d𝑥

=
∫︁
R𝑁

(|∇𝑢(𝑥)|𝑁 + |𝑣(𝑥)|𝑁) d𝑥+
∫︁
R𝑁

(|∇𝑣(𝑥)|𝑁 + |𝑣(𝑥)|𝑁) d𝑥

= ‖(𝑢, 𝑣)‖𝑁

and ∫︁
R𝑁

|𝑔𝑢(𝑥)|𝑝|𝑔𝑣(𝑥)|𝑞 d𝑥 =
∫︁
R𝑁

|𝑢(𝑥)|𝑝|𝑣(𝑥)|𝑞 d𝑥.

Thus, 𝒥𝜆 is 𝐺−invariant functional. Therefore, it follows from Proposition A.0.1 that the
critical points of 𝒥𝜆 restricted to W𝑁

rad are critical points of 𝒥𝜆 in W𝑁 .
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