Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/46587
Compartilhe esta página
Título: | A novel automated oil spill detection approach based on the q-Exponential distribution and machine learning models |
Autor(es): | NEGREIROS, Ana Cláudia Souza Vidal de |
Palavras-chave: | Engenharia de Produção; Distribuição q-Exponencial; Extração de características; Aprendizado de máquina; Visão computacional; Vazamentos de óleo; Análise de risco |
Data do documento: | 15-Jul-2022 |
Editor: | Universidade Federal de Pernambuco |
Citação: | NEGREIROS, Ana Cláudia Souza Vidal de. A novel automated oil spill detection approach based on the q-Exponential distribution and machine learning models. 2022. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2022. |
Abstract: | Oil spills are among the most undesirable events in coastal environments because they are substantially harmful, with negative environmental, social, and economic consequences. In general, a risk framework for the event involves prevention, monitoring, detection, and damage mitigation. Regarding detection, rapid oil spill identification is essential for problem mitigation, which generally fosters the use of automated procedures. Usually, automated oil spill detection involves radar images, computer vision, and machine learning techniques to classify these images. In this work, we propose a novel image feature extraction method based on the q-Exponential probability distribution, named q-EFE. Such a probabilistic model is suitable to account for atypical extreme values of the variable of interest, e.g., pixels values, as it can have the power-law behavior. The q-EFE part is combined with machine learning methods to comprise a computer vision methodology to automatically classify images as “with oil spill” or “without oil spill”. Hence, we also propose a new automatic oil spill detection methodology that uses the q-EFE to rapidly identify oil spills in radar images. We used a public dataset composed of 1112 Synthetic Aperture Radar (SAR) images to validate our proposed methodology. Considering the proposed q-Exponential-based feature extraction, the tested Machine Learning methods and Deep Learning models architectures, the Support Vector Machine (SVM) and Extreme Gradient Boosting (XGB) models outperformed deep learning models and Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM) techniques for the biggest dataset size. |
URI: | https://repositorio.ufpe.br/handle/123456789/46587 |
Aparece nas coleções: | Teses de Doutorado - Engenharia de Produção |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE Ana Cláudia Souza Vidal de Negreiros.pdf | 7,81 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons