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ABSTRACT 

Oil spills are among the most undesirable events in coastal environments because they are 

substantially harmful, with negative environmental, social, and economic consequences. In 

general, a risk framework for the event involves prevention, monitoring, detection, and damage 

mitigation. Regarding detection, rapid oil spill identification is essential for problem mitigation, 

which generally fosters the use of automated procedures. Usually, automated oil spill detection 

involves radar images, computer vision, and machine learning techniques to classify these 

images. In this work, we propose a novel image feature extraction method based on the q-

Exponential probability distribution, named q-EFE. Such a probabilistic model is suitable to 

account for atypical extreme values of the variable of interest, e.g., pixels values, as it can have 

the power-law behavior. The q-EFE part is combined with machine learning methods to 

comprise a computer vision methodology to automatically classify images as “with oil spill” or 

“without oil spill”. Hence, we also propose a new automatic oil spill detection methodology 

that uses the q-EFE to rapidly identify oil spills in radar images. We used a public dataset 

composed of 1112 Synthetic Aperture Radar (SAR) images to validate our proposed 

methodology. Considering the proposed q-Exponential-based feature extraction, the tested 

Machine Learning methods and Deep Learning models architectures, the Support Vector 

Machine (SVM) and Extreme Gradient Boosting (XGB) models outperformed deep learning 

models and Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM) 

techniques for the biggest dataset size.  

 

 

Keywords: q-Exponential distribution; feature extraction; machine learning; computer vision; 

oil spills; risk analysis.  



 

RESUMO 

Vazamentos de óleo estão entre os mais indesejáveis eventos que podem ocorrer em ambientes 

costeiros por causa de seu perigo substancial, com consequências ambientais, sociais e 

econômicas. Em geral ua metodologia de risco envolve prevenção, monitoramento, detecção e 

mitigação dos danos. A respeito da detecção, a rápida identificação de um vazamento de óleo é 

essencial para a mitigação dos problemas, que geralmente fomenta o uso de procedimentos 

automáticos. Usualmente, a detecção automática de vazamento de óleo envolve imagens de 

radar, visão computacional, e técnicas de aprendizado de máquina para classificar as imagens. 

Neste trabalho, um novo método de extração de características em imagens baseado na 

distribuição probabilística q-Exponencial, chamado de q-EFE, está sendo proposto. Esse 

modelo probabilístico é adequado para explicar valores extremos atípicos de variáveis de 

interesse, e.g., valores de pixels, uma vez que ele tem comportamento de lei de potência (power-

law). A parte do q-EFE é combinada com métodos de aprendizado de máquina para 

compreender uma metodologia de visão computacional para classificar automaticamente 

imagens como “com vazamento de óleo” ou “sem vazamento de óleo”. Consequentemente, este 

trabalho propõe uma nova metodologia de detecção automática de vazamento de óleo que usa 

o q-EFE para identificar rapidamente vazamentos de óleo em imagens de radar. Foi utilizado 

um conjunto de dados composto por 1112 imagens geradas pelo Synthethic Aperture Radar 

(SAR) para validar a metodologia proposta. Considerando a extração de características proposta 

que é baseada na distribuição q-exponencial, os métodos de aprendizado de máquina e as 

arquiteturas dos modelos de aprendizado profundo testados, os modelos Support Vector 

Machine e Extreme Gradient Boosting (XGB) superaram os modelos deep learning e as técnicas 

de Local Binary Pattern (LBP) e Gray Level Co-occurrence Matrix (GLCM) para os maiores 

tamanhos de conjunto de dados.  

Palavras-chave: distribuição q-Exponencial; extração de características; aprendizado de 

máquina; visão computacional; vazamentos de óleo; análise de risco. 
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1  INTRODUCTION 
 
Oil spills are a specific type of catastrophic environmental disaster provoked by human 

activities. They are a form of pollution described as the release of a liquid petroleum 

hydrocarbon into the environment, especially marine areas [1], e.g., originated in refineries, oil 

platforms, oil tankers that have an accident or “clean” their tanks in the ocean, operative 

discharge from ships [2], [3]. Indeed, considering the pollution by liquid petroleum, the illicit 

outflow of ballast and tank cleaning oily residues from oil tankers and ships are the main causes 

contributing to the contamination of seas and oceans [2] [4]. Oil spills are among the 

environmental accidents with the most significant economic, ecological and social impacts [5]–

[10]. They can be very costly to companies, from fines to the government to the very waste of 

spilled oil. And as an ecological concern, such disasters can lead to severe consequences that 

can affect much of the natural marine environment [6], [11], and even human health [12], [13]. 

Thus, to attenuate the environmental disaster, control oil dispersion, and ensure human lives 

are not in danger, soon detection of the oil spill and immediate warning from authorities become 

crucial [14]. 

 

Oil spills have increased considerably in the last decades [10] with the occurrence of the 

following well-known accidents [15]: the Amoco Cadiz in France in 1978, the Exxon Valdez 

in Alaska in 1989, the “GulfWar” in Kuwait in 1991, the Aegean Sea in Galicia, Spain in 1992, 

the Erica in France in 1999, the Prestige in Spain and France in 2002, and the British Petroleum 

platform Deepwater Horizon in the Gulf of Mexico in 2010. More recently, in 2019, there was 

a huge oil spill on the Brazilian coast [14], [16]–[18], which caused numerous negative impacts 

on the environment, tourism business, fishermen, among others. These accidents evidence the 

following three points: i) investment in prevention is the most central measure to avoid this type 

of disaster; ii) detection of the leakage is the second most important measure to prevent more 

significant damages, and iii) risk treatment is crucial to ensure that relevant and adequate safety 

barriers are in place to prevent accidents and to ensure mitigation in case an accident occurs; 

besides, oil and gas activities are associated with a major accident potential [19].  

 

Thus, to prevent such accidents, there are safety barriers. In this context, there are two important 

concepts concerning safety barriers [20]. The first is a barrier function (BF) planned to prevent, 

control, or mitigate accidents or undesired events. The second is a barrier system (BS) designed 

and implemented to perform one or more barrier functions and risk influencing factors (RIFs). 
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RIFs (e.g., maintenance) influence barrier performance. The process of the safety barriers is 

composed of preventative and consequence reduction barriers. This work involves techniques 

that can be used in the second group of barriers, once the intention is to detect as soon as 

possible the oil spill and mitigate the disastrous consequences. This is an important task because 

a large time gap between the oil spill incident and the start of the cleaning procedure generally 

emphasizes the negative oil spill impacts [21]. Thus, once the oil spill is detected, response 

techniques can be applied to mitigate the consequences as soon as possible [22] 

 

The oil spill detection in images can be made specially in two ways, manual/visual detection 

and automated detection [19]. In the manual detection of oil spills, most of the process is made 

by humans. Contextual information is important in this process, such as oil rigs’ and pipelines’ 

location and wind and speed direction [3]. A trained operator goes through the entire image 

using an image viewer that can calculate some spot characteristics to find some possible oil 

spills and discriminate between oil spills and look-alikes. The look-alikes are petroleum-free 

false targets [23]; they are dark spots caused by atmospheric fronts [24], such as currents and 

eddies [7], [15]. Then, the operator evaluates some features provided by the image viewer, such 

as the contrast level to the surroundings, homogeneity of the surroundings, wind speed, nearby 

oil rigs and ships, natural slicks nearby, and edge and shape characteristics of the spot [25]. 

This process is time-consuming and labor-intensive, given a large number of images that must 

be analyzed in a short period for effective oil spill monitoring [26]. In addition, the success of 

manual detection is highly dependent on the knowledge and experience of operators, and the 

results are subjective. Besides, according to Jiao et al. [27], as manual detection cannot rapidly 

detect oil spills, enterprises’ operating costs remain high. In contrast, their detection methods 

hardly prevent oil pollution. However, even with an effective automatic detection process, 

manual detection is still valuable in the final stage process in an optimized way, as a validation 

procedure in the support for decision-making.  

 

In turn, automated detection uses systems capable of detecting patterns in the images and 

performing the identification. Nevertheless, a common problem in detecting oil spills is that 

they are easily confused with the called look-alikes [7], [15]. These look-alikes may result in 

misidentification [28], [29]. Another problem is because the oil spill images are often very dark 

because they are acquired by remote sensing, which uses radars composed of sensors mounted 

at a distance (in general in satellites and aircraft) from the interesting object (the oil spill, in this 

study). It is important to use methods capable of detecting oil spills even when the images are 
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dark because, in general, the oil spills images have problems that difficulties the classification 

task. Besides, according to Kerf et al [30], during the nighttime, the odds of detecting an oil 

spill are lowered significantly, since not every part of the water is illuminated. However, an 

efficient automatic oil spill detection system is, in general, faster, cheaper, and with greater 

reliability compared to a manual system [26]. 

 

On this basis, many approaches to detect oil spills try to apply efficient methods capable of 

extracting good features from images to handle the referred problems that may arise. For 

example, methods as Local Binary Pattern (LBP) [31], Gray Level Co-occurrence Matrix 

(GLCM) [32], Local Tetra Patterns (LTrP) [33] are well-known feature extraction methods, and 

they can be applied in many types of researches of different areas. The idea is that such methods 

can extract from data (images) small important features that will be input into the classification 

models. Automatic image feature extraction techniques that compose computer vision-based 

approaches (CV-B) have become more and more common because of their efficiency and 

practical applications [34]–[40]. In addition, there are some problems where traditional CV-B 

techniques, which use the context of the image as a whole [41], are a better solution compared 

to deep learning-based (DL-B) methods [42]–[45]. For example, identifying whether multiple 

objects in an image are the same or different targets [46].  

 

In this work, we propose a novel feature extractor based on the q-Exponential probabilistic 

model (q-EFE) to extract features from oil spill images. This new technique uses related q-

Exponential functions to extract complex features of Synthetic Aperture Radar (SAR) oil spills 

images, combining computer vision and statistical techniques to improve the extraction process 

power. Besides, we apply the ResNet50 model, three other deep learning-based (DL-B) models 

and two classical CV techniques (LBP and GLCM) to perform result comparisons. Such 

approaches are being applied in this work motivated by the classification power generally 

provided by computer vision-based (CV-B) and DL-B methods. The use of CV-B techniques 

become more and more common because of their efficient feature extraction process, and, it 

has attracted growing attention owing to their useful applications [34]–[37]. In addition, there 

are some problems where traditional CV-B techniques with global features are a better solution 

compared to DL-B methods [42], such as identifying whether multiple objects in an image are 

the same or different, this limitation was demonstrated by Marcus [46]. However, it is 

undeniable that methods based on deep learning emerged as a solid and effective kind of 

computational technique. This is because, according to O’Mahony et al. [42], DL-B methods 
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such as Convolutional Neural Networks (CNNs) usually improve prediction results using big 

data and abundant computing resources and have pushed the boundaries of what was possible. 

This fact is such a huge technology advance for the entire humanity, once such techniques have 

been applied in the most diverse fields in order to solve problems and\or improve human tasks.  

 

The methodology proposed in this research, which is based on the q-EFE, englobes parameter 

estimation, feature extraction, and machine learning (ML) methods (including a deep learning 

model - CNN). The purpose is to encounter a interesting new option to extract complex and 

important features from SAR oil spill images. We expect that by using these extracted features 

as input data into ML models, such methods can classify the oil spill images with a satisfactory 

balanced accuracy rate. Figure 1 presents a general Computer Vision System (CVS) to perform 

tasks like classification or segmentation. In stage 4, methods such as Principal Components 

Analysis (PCA) are a post-processing step because the feature extraction is our reference, the 

focal point in this work. The structure of the methodology proposed in this work follows such 

steps.  
 

Figure 1 - Classical Computer Vision System (CVS) 

 
Source: The author (2022). 

 
The remainder of this work are organized as follows: Chapter 2 brings a literature review about 

oil spills characteristics, remote sensing, classification methods, q-Exponential distribution, 

recent works, and others. The idea of this literature review chapter is to present to the reader 

the theoretical basement to construct this work. Chapter 3 describes the novel q-EFE 

methodology to extract features from SAR imagery and to classify these images into one of the 
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two classes: images with oil spill, or image without oil spill. Chapter 4 presents the applied 

dataset to validate our proposed methodologies and visual analysis. Chapter 5 exhibits all the 

experiments results obtained with the proposed approaches and the classical CV technique 

applied. Finally, chapter 6 brings the conclusion and outlooks. 

1.1 MOTIVATION 

As time goes on, humanity understands more and more about the importance of care for the 

place where they live. People had experimented with discoveries and revolutions, such as 

industrial revolutions that brought technological, socioeconomic, and cultural changes 

worldwide. Such modifications happened combined with many other aspects. For instance, the 

world started producing and consuming more and more. In this context, the petroleum industry 

kept pace with this rhythm with a rapidly growing demand globally for petroleum products 

[51]. Nowadays, we are still extremely dependent on products manufactured from crude oil, 

such as gasoline, kerosene, diesel fuel, lubricants, and others.   

 

However, it is common to encounter petroleum in the deep sea, and in the last years, there was 

an expansion of offshore petroleum extraction [47]. This fact also means that sea pollution by 

petroleum (crude oil) also became most common at the time we are. In general, such pollution 

is caused by oil spills, which is a real and dangerous problem that must be combated hard. This 

phenomenon causes damages that can be seen since the marine biota [48] until the human health 

[49]. 

 

Thereby, considering the oil spills phenomena, studies have been carried out in order to prevent 

it and\or to minimize its damages. The prevention of this type of environmental disaster is 

performed, generally, by the called barriers functions [20]. Nevertheless, when these barriers 

fail it is extremely important to mitigate the damage caused by such undesirable event. Thus, 

the first step required is to know that it happened, and, considering the sea constitutes the largest 

single environment on earth, with a vast expanse and remoteness area, the identification of this 

kind of occurrence is definitely not an easy task.  

 

Therefore, the motivation to perform this research can be justified by the importance of the 

early oil spills detection for the planet, once undesirable events verified in specific globe spots 

might, and generally do, bring negative impacts for the entire humanity. More specifically, we 

can enumerate environmental, economic, and social aspects directly affected by the results 
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obtained with this research. Such issues can also be seen as motivation to do this work. The 

environmental aspects are probably the most important ones for conducting this research once 

the faster it is the oil spill detection less environmental negative impacts will exist. From an 

economic view, we can think of the costs required to clean up the contaminated areas and the 

business losses when the oil spill occurs very close to or into coastal environments. Finally, 

about the social issues, oil spills generally affect the greenhouse and interfere in human health. 

More directly, some studies conclude that the oil spill clean-up workers have a high probability 

of developing specific diseases such as chronic rhinitis and cardiac conditions.  

 

Besides, considering an academic motivation, in this work we are proposing a new approach to 

extract features from images based on the q-Exponential probabilistic distribution with 

promising results in the context of oil spill detection.  

  

1.2 OBJECTIVES 

 

1.2.1 General Objective 

 
The general objective of this work is to develop a new feature extraction approach based on the 

q-Exponential probabilistic distribution (q-EFE) to be coupled with machine learning 

techniques to detect oil spills automatically in Synthetic Aperture Radar images. 

 

1.2.2 Specific Objectives 

 
To achieve the general goal previously presented, we defined some specific objectives exposed 

in the following: 

 

• To perform a literature review about petroleum (crude oil), barriers functions, remote 

sensing, use of radars in oil spill detection, oil spill detection methods, machine learning 

methods, deep learning method, computer vision techniques, data augmentation (DA) 

techniques, q-Exponential distribution, and its related functions. 

• To propose a new computer vision-based technique to extract features from oil spill 

images using the q-Exponential model (q-EFE). 
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• To perform tests in the feature extraction step using some q-Exponential related 

functions. 

• To generate new oil spill data using DA. 

• To create archives of features extracted from the oil spills images using the proposed 

CV-based approach. 

• To perform visual analysis about the heatmaps generated using the q-EFE proposed 

approach.  

• To apply CV approach using a feature extractor (q-EFE, GLCM, or LBP) and an ML 

model (MLP, RF, SVM, LR, XGB, CNN) or DL models alone (CNN, ResNet50) to 

classify images for performance comparison. 

• To identify limitations and current gaps of this thesis to be addressed in future research. 

 

1.3 THESIS OUTLINE 

 
The content present in each of the following Chapters of this thesis is briefly described below:  

 

● Chapter 2 presents the theoretical background and literature review to locate 

this work as an element of safety barriers in a risk-based framework and to understand the 

concepts, models, and metrics used in the thesis. We present the characteristics of crude oil 

(chemical and physical properties), the consequences of oil spills, key concepts about the 

remote sensing field, the ways to prevent this type of dangerous event (safety barriers); the q-

Exponential distribution and its related functions, the machine learning classification methods, 

the applied classical CV techniques for texture analysis, data augmentation, metric evaluations.  

 

● Chapter 3 describes the proposed q-EFE approach to extract features from SAR 

images step by step. Besides, we explain why this specific probabilistic model is chosen in this 

feature extraction context. Also, we expatiate about the three related q-Exponential functions 

(cumulative distribution function-CDF; probability distribution function-PDF, and entropy). 

 

● Chapter 4 brings the information about the applied oil spill dataset used in this 

study. We perform a visual analysis of this SAR imagery, with and without oil spills, and 

present related aspects of these images. Also, we perform other visual analyses on the images, 

and obtain their respective masks and heatmaps generated using the proposed q-EFE.  
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● Chapter 5 shows all the experiment results performed throughout the realization 

of this study. Besides, we present comparisons between all the applied approaches to detect oil 

spills automatically in images.  

 
● Chapter 6 brings a technological product for the proposed methodology: a web 

app for oil spill detection. 

 

● Chapter 7 presents the thesis conclusion and outlook of this work. We show the 

main results and give future perspectives in this knowledge area. 
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

 

This chapter presents the theoretical background of this research to explain the important 

concepts involved.  

 
2.1 PHYSICAL AND CHEMICAL PROPERTIES OF CRUDE OIL 
 
Petroleum is defined by geochemists as any subsurface material that, when produced, yields 

crude oil and/or gas. In general, the thermal degradation of kerogen during burial is responsible 

for forming petroleum, although biogenic or bacterially formed gases should also be included 

[50]. The basic components of petroleum are hydrocarbons and different organic and inorganic 

compounds containing nitrogen, sulfur, and oxygen, besides metals such as iron, vanadium, and 

nickel. Oil is the product acquired by a distillation process of petroleum [2] and the liquid 

fraction at standard temperature and pressure, while the remainder is gas. Each type of 

petroleum has its distillation curve, which specifies its chemical identity. After the physical 

distillation process, different hydrocarbon groups are produced within different temperature 

ranges, called fractions or cuts [51].  

The oil has important physical characteristics (e.g., density, surface tension, pour point, 

viscosity, water solubility) that affect the spreading potential [50], [52]. The process of oil 

scattering occurs rapidly on water surfaces and forms a thin layer called an oil slick. The oil 

slick then thins to finally become a sheen (i.e., a very thin layer). In addition, in the marine 

environment, the spilled oil immediately experiences a variety of weathering processes, such 

as dissolution, emulsification, microbial degradation, photo-oxidation, adsorption to suspended 

matter, deposition on the seafloor, and evaporation. Also, the way how the spilled oil will 

damage the environment depends on the level of each of such weathering processes [53]. 

According to [54], evaporation is often the dominant process in the early stages of weathering, 

and biodegradation plays a dominant role in the later stages. Besides, the complex oil chemical 

properties are influenced mostly by hydrocarbons, which are the dominant oil chemical 

component [55]. Furthermore, other oil components are oxygen, nitrogen, trace metals, and 

sulfur [56], [57]. Also, [58] explain that oils can be divided into unsaturated hydrocarbons and 

saturated, refined products, aromatic hydrocarbons, resins, and asphaltenes. Besides, the 

quantity of the oil, thus of chemical components, to which organisms are exposed is crucial in 

determining how populations respond to spilled oil [59]. For instance, a study of Garcia et al. 
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[60] concluded that, according to petroleum biomarkers tools, the deposition of hydrocarbons 

is different for each zone along the terrestrial-aquatic gradient. 

In the marine environment, a problem associated with the oil spill is that many components of 

oxygenation, such as acids, aromatic components, and alcohols, cause water pollution for a long 

time [61]. Additionally, contamination of soils (either marine or ground) with petroleum 

products leads to changes in soil compressibility. It also stipulates alteration of the grain-size 

distribution of sandy-clayey soils [62].  

In this context, Figure 1 shows the oil’s variation, transformation, and alteration process after 

spilling into the sea. The oil spreading depends on some factors, such as the wind direction and 

air temperature.  For instance, it is possible the sinking as faecal pellets, which is material from 

zooplankton [63], sedimentation, and biodegradation of oil. 

The process in Figure 1 characterizes the spreading and the persistence of the film after an oil 

spill occurs, and it relies on the [64]: 

• evaporation, depending on the volatility of the components and air temperature;  

• biodegradation, due to the presence of microorganisms that can decompose some 

compounds depending on temperature and oxygen level;  

• dispersion, caused by turbulence on the sea surface, which is highly dependent on the 

type of oil and weather conditions;  

• emulsification and dissolution as a consequence of a physical and chemical mixing with 

water; 

• oxidation, a very slow degrading process based on sunlight; and 

sedimentation, allowed by suspended solid particles. 
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Figure 2 - Oil's variation, transformation, alteration process after spilling into the sea 

 
Source: Adapted from [55]. 

The oil’s physical and chemical characteristics explain why this product contaminates the 

marine environment when an oil spill occurs. Also, the oil spreading potentiality is mostly 

determined by natural aspects, such as wind direction, sunlight, temperature, etc.   

 
 
2.2 OIL SPILL CONSEQUENCES 
 
This subsection is dedicated to presenting a literature review about the impacts caused by oil 

spill occurrences. Impacts caused by this kind of event can be seen in the environment, 

economy, and human society. 

 

The understanding about important consequences that resulted from oil spill events starts with 

the recognition that this is a challenging task once oil spill negative impacts are conditional 

upon the particular geographic, ecological, societal, and temporal contexts in which the disaster 

occurs [59]. Also, the quantity of oil spilled and spillage rate is also key determinants of the 

severity of the consequences [59]. However, some negative impacts are common for almost 

every oil spill occurrence.  
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In this context, avoiding bigger negative oil spill impacts is a task that also helps to reach the 

Global Challenges. According to The Global Challenges Foundation [65], there are three 

interconnected global risks: Climate change, other large-scale environmental degradation, and 

weapons of mass destruction. Thus, the framework developed and proposed in this work can 

auxiliary in the two first global risks, once the oil spill generally affects the air atmospheric; 

hence, it has effects on the greenhouse, which has huge action on climate change. Besides, this 

research also influences the second global risk, once the oil spill event can promote big 

environmental degradation. A recent study by Irakulis-Loitxate et al. [66] affirms that if the 

companies prevent oil and gas spills, it is possible to reduce methane emissions, which would 

help the world fight against climate change. Thereby, there are many interests in containing the 

consequences caused by oil spill accidents. In addition, 1 liter of oil can contaminate up to 25 

liters of water, taking to death of many marine creatures [66]. Also, Gupta et al. [67] ratify that, 

for example, a typical mining operation produces 140000 liters of oil-contaminated water per 

day.  

 

According to Ribeiro et al. [14], generally, oil spills contaminate coral reefs, fishes, reptiles, 

and mammals, and, because of this, the environmental impacts on marine fauna caused by this 

type of disaster are often immeasurable. Besides, Dalton & Jin [68] ratifies that the pollution 

caused by crude oil can affect coastal and marine resources in numerous ways. Indeed, Capuzzo 

[69] explain that exposure to oil and other hydrocarbons can affect the growth, feeding, 

development, and reproduction of living organisms. Thus, oil can directly affect the survival of 

sea creatures, such as fish, sea birds, and marine mammals. Also, it indirectly affect these 

organisms by reducing the availability of prey [53], oil can still affect heat insulation and 

buoyancy by penetrating the plumage of sea birds or fur marine mammals [70]. Besides, toxicity 

pathways in different species are myriad and some examples may include DNA damage, oil's 

ingestion, impacts to immune functioning, accumulation of contaminants in tissues, cardiac 

dysfunction, mass mortality of eggs and larvae, e.g., in fish, loss of buoyancy and insulation for 

birds [49], [71], [72].  

 

Dalton & Jin [68] explains that when a large spill of crude oil or petroleum products happens 

in a biologically sensitive marine area, environmental damages can amount to billions of 

dollars. However, it is important to understand that the smaller and more frequent oil spills are 

also very harmful to the environment. In this context, according to Sandrini-Neto et al. [73], in 

general, frequent low-dosage oil spills are more deleterious than infrequent high-dosage ones. 
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Also, from an economic point of view, in the oil spills, in general, there are costs involving 

clean-up of affected areas, state and federal law spending, and compensation for losses to 

fisherman and businesses also affected by this type of disaster. In 1989, there was a huge oil 

spill in Alaska, the Exxon Valdez, Exxon paid $2.2. billion for clean-up, $1 billion to settle 

state and federal lawsuits, and $300 million for lost wages to 11,000 fishermen and business 

firms [68], [74]. According to Cohen [75], the cost to the fisheries of south-central Alaska was 

estimated to be $108.1 million, the bigger component being a $65.4 million reduction in the 

pink salmon fishery in the first year following the accident. However, the impact of an oil spill 

on aquaculture and commercial fisheries would depend, for example, upon aspects including 

the volume of the oil spill and location relative to fishing/cultivation areas; the types of species 

harvested in the region, e.g., whether species are sedentary or mobile; tides, currents, and wave 

action that disperse the oil; and government decisions relating to fishing bans and compensation 

schemes [59].  

 

Also, the negative economic impacts can be seen from another perspective, for instance, from 

the perspective of the fisherman tourism business. These fishermen and companies can also be 

largely impacted, once some communities that depend on fishing and tourism are directly 

affected as beaches have become banned for swimming or purely less attractive to tourists due 

to oil contamination [76], [77]. For example, in August of 2019, crude oil had appeared on 

Brazil’s beaches, mainly in the Northeast region, causing numerous economic problems [78], 

[79]. In total, 1009 affected locations across 130 municipalities located in all nine northeast 

states and two southeast states were identified only five months after this tragic event [14], 

which is, according to IBAMA [80], considered the most massive Brazilian environmental 

disaster. Also, the impact of this oil spills occurred in Brazil is already being assessed with 

regard to marine food webs in the affected areas, because crude oil tends to undergo 

fragmentation, driving to the accumulation of microparticles at different trophic levels, such as 

in eggs and larval stages [78]. A study made by Ribeiro et al. [14] showed that, considering the 

economic impacts provoked by this specific oil spill event, the most affected areas were the 

most dependent on tourism and fishing. Besides, the environmental and socioeconomic impacts 

caused by the oil contamination in Brazil are incalculable [16].  

 

Besides, according to Ribeiro et al. [14], the economic impacts of this type of event can be 

worse if they occur in regions with poorly diversified economies and, consequently, more 
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dependent on tourism, such as the Brazilian Northeast. Indeed, studies had demonstrated that 

domestic tourism contributes to decreasing regional inequalities in Brazil [14], [81].  

 

However, different from most people's understanding, the impacts provoked by oil spill 

occurrences are not only associated with marine environmental effects, and economic expenses, 

but also to human health. In this context, relatively little is understood about the injurious 

human health consequences of toxic exposures from oil spill occurrences [13]. However, recent 

articles have been carried out in order to explain possible direct and indirect consequences for 

human health. 

 

On this basis, a study carried out by Webler and Lord [12] showed that humans' health can be 

affected by oil spills in two main ways: stressors can directly harm humans, e.g., health impacts 

from breathing oil vapors, and oil can affect ecological processes that cause direct harm, e.g., 

health impacts from eating seafood with bioaccumulated oil toxins. Also, D'Andrea et al. [13] 

fulfilled a study that proved that a majority of the oil spill cleanup workers of the 2010 

Deepwater  Horizon Gulf disaster developed chronic rhinosinusitis and reactive airway 

dysfunction syndrome. Also, the cardiac abnormalities that were seen in the initial health 

assessment persisted even 7 years after the disaster in most of the oil spill cleanup workers, and, 

the oil spill exposed workers reported prolonged or worsening illness symptoms that were 

present even 7 years after their initial exposure. Besides, still considering the 2010 

Deepwater Horizon Gulf oil spill, during the first 18 months after this disaster, residents of 

Southeastern Louisiana reported increased symptoms of depression, anxiety, and posttraumatic 

stress [82]–[84]. 

 
2.3 RISK MANAGEMENT FRAMEWORK 
  
Considering the whole systematic view and literature review that are being presented in this thesis, 

as part of the research, Figure 3 illustrates this scheme. 
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Figure 3 - Systematic scheme 

 
Source: The author (2022). 

 
Many government regulations around the world serve as preventive measures for oil spills in 

an offshore environment. Besides the prevention task, many of these regulations involve the 

requirement of a contingency plan to handle the oil spills occurrences. Such a plan must include, 

for example, the production rate, evaluations of the area, potential recovery amounts of oil and 

gas, recovery methods, monitoring procedures, costs, technical proposals, and environmental 

factors [85]. In an overview from Sklet[20], safety barriers are always regarded as non-physical 

or physical approaches aiming to protect assets from damage. First of all, the term safety barrier 

originates from road transportation. In this context, they refer to central reservations of roads to 

prevent collisions or those concrete obstacles on bridges and road edges to avoid driving out of 

the way [86]. In the oil spill context, the definition is similar once the intent is to prevent 

catastrophic events.  

In the oil & gas and process industries, safety barriers can be shut down valves in pipelines, 

blowout preventers, or evacuation ways [87]. In situations where the oil was already spread 

onto the water surface, barriers work on trying to restrain the spread of oil and facilitate its 

recovery at a later stage [88]. Besides, the division of barrier functions and sub-functions should 

continue until the barrier function ‘materializes’ and ‘becomes’ a barrier element [89]. In 

addition, Roed & Bjerga [19] explain that barrier functions can be organized at several levels 

where the top-level barrier is to ‘prevent environmental damage’. Figure 4 shows the high-level 



 

 

28 

environmental barrier functions where the left-hand side of an initiating event focuses on 

preventive barriers (a) and (b), and the right-hand side focuses on consequence reduction 

barriers (c) and (d). This figure is similar to the traditional thinking about barriers in a bow-tie 

diagram [19]. In this context, we will deal with this issue as a general risk management 

framework to avoid or restrain oil spills occurrences. 

 

Figure 4 - High-level environmental barrier functions to prevent environmental damage 

 
Source: Adapted from [19]. 

Regarding the step “a” presented in Figure 4, the first top-level barrier function in Figure 5, that 

presents the barrier function of Figure 3 subdivided at a lower level, is the same presented in 

the left hand in Figure 4. This barrier involves many preventive factors, such as maintenance, 

training, and updating of the procedures and manuals.  

Figure 5 - Environmental safety barrier functions to mitigate risk associated with acute oil spill on oil 
and gas installations 

 
Source: Adapted from [19]. 
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In “Prevent acute oil spill on the installation”, the leakage can be avoided in scenarios such as 

riser and pipeline leaks, discharge from storage tanks, and leaks during loading and offloading 

of oil [90]. For scenarios, there are combinations of barrier sub-functions and barrier systems 

that must be chosen according to the context. In this step and in the next one, rapid oil spill 

detection is extremely important. If the leakage is detected before it spills into oceans or seas, 

it is possible to prevent greater negative environmental effects. In this stage, it is common the 

use sensors [91] to detect possible leakages on settlement. 

If the “Prevent acute oil spill on installation” (step “b” in 3) barrier function fails, and the oil 

spill occurs, the following barrier function (“Stop or reduce the oil spill on the installation – 

step “c”) can involve some mitigation devices such as shut-off valves, drain systems, and 

bunding. However, “Stop or reduce acute oil spill on the installation” can be split into the sub-

functions: “Ensure detection of the leak” and “Stop or reduce leak from the vessel”. Once again, 

“Ensure detection of the leak” can be further divided into “Ensure visual detection” or “Ensure 

manual detection” [3] and “Ensure automatic detection” [26].  

In this context, “Ensure visual detection” is made, for example, by operators as organizational 

barrier elements and descriptions of check routines as operational barrier elements. The “ensure 

automatic detection” is made by a technical sensor and alarm system, and also operational 

barrier elements, such as alarm panels, and organizational barrier elements, such as someone 

observing them. This detection enables the use of machine learning and computer vision 

techniques. According to Roed & Bjerga [19], there may be situations where weather conditions 

such as snow or ice may block the drain systems or make it more difficult to observe an ongoing 

leakage by visual detection, for example, due to darkness. Thus, in general, automatic detection 

has advantages compared to manual detection; it is cheaper, more reliable, and more accurate 

[26]. Section 5 brings a more comprehensive review of manual and automatic detection and 

methods used to detect oil spills automatically. 

If the measures to prevent the oil spill fail, it is necessary to choose the best solution to clean 

up the contaminated area. According to [92], oil spill clean-up has been a questioned issue due 

to the impossible cleaning of all the discharged and dumped oil into the seawater. There are 

some options available to clean up the affected areas, called recovery methods. They are 

physical techniques, chemical techniques, in-situ burning (or thermal) techniques, and 

bioremediation (or biological) techniques [55]. However, the type of selected methods must be 
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based on the oil spill characteristics, such as type and quantity, on the conditions of weather 

and environment [52]. 

Physical methods to control and prevent oil spills are used [55]. They work as a barrier to avoid 

oil spreading, but oil’s physical and chemical aspects are not changing. The main physical 

barriers used in this context are [93]–[95]: 

● Booms: it is a common type of equipment used to prevent oil spills and slicks from 

spreading [96]. They act as physical barriers that enclose floating oil and prevent it from 

spreading [93]. Besides, booms are also used to concentrate oil and maintain an 

adequate thickness or to deviate oil from biologically sensitive areas so that skimmers 

can be used or other clean-up techniques [93]. 

● Skimmers: skimmers are used with booms to recover oil spills from the surface of 

seawater but oil’s physical and chemical properties are maintained hence recovered oil 

can be reprocessed and reused, this is the step after the use of booms to limit the effective 

area of spilled [97]. The type and thickness of the oil spill and weather conditions 

generally determine the success of skimming. In general, skimmers are effective in calm 

waters and subject to clogging by floating debris [93]. 

● Adsorbent materials: this type of material facilitates the conversion of a liquid to a semi-

solid phase and is considered at the final clean-up step after using skimmers with a high 

capacity for absorbing the oil and repelling water [98]. These adsorbents can be natural 

organic, natural inorganic, or synthetic materials. 

Chemical methods are used in combination with physical ones, and it treats oil spills by 

remediating the marine environment due to the capabilities of changing the oil spill’s physical 

and chemical properties [55]. According to Tewari and Sirvaiya [99], chemical methods are 

among the best remediation techniques available for both onshore and offshore situations. 

However, chemical methods are not environmentally amicable due to the use of disagreeable 

chemical agents [100]. The main chemical products used to treat oil spills are: 

● Dispersants: they are called surfactants, which are surface-active agents [93], and, might 

be used in larger areas [55]. The main objective of dispersants application is to weather 

the oil slicks into small droplets, which submerge into the depth of the water and become 

quickly diluted and easily degraded [93]. Dispersants are applied by spraying the water 

with the chemical from vessels or aircraft [55]. 
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Solidifiers: they are high molecular weight polymers that have porous matrices and large 

oleophilic surface areas and are introduced to chemically bond the solidifier with the oil and 

transform the physical and chemical properties of the oil during an oil spill [101], [102]. Also, 

solidifiers were considered as dry granular materials, which functioned by reacting with oil 

compounds aiming at changing liquid oil into a solid state and they were able to be removed 

easily [103] and is used to convert oil spill into solid or semi-solid materials, it is contained in 

booms, pillows, pads, among others [104]. 

The thermal or in-situ burning method is a simple and quick technique for oil spill remediation 

that can proceed with minimal specialized equipment and with higher rates of oil removal 

efficiency [55], [85]. Also, it involves the burning of oil, and it is a more effective oil spill 

response in the open water with calm winds and is best applicable for refined oil products that 

will burn quickly without causing any danger to marine life [99]. Also, the major constraints in 

the use of this method are fear of secondary fires, destruction of aquatic lives and vegetation 

near the site, which can be affected by burning, long-term alteration in aquatic animals and 

plants, and risk to human health due to the gases emitted from thermal combustion. Thermal 

remediation methods are usually affected by speed, water temperature, wind direction, wave 

amplitude, slick thickness, oil type, and amount of weathering and emulsification that have 

occurred. 

The bioremediation method is a reasonably cheap and straightforward remediation technique. 

Also, this is a natural process in which microorganisms like bacteria degrade, break up, and 

metabolize any complex compounds and chemical substances into their food to reestablish and 

overcome the environmental quality [99], [105]. Therefore, the bioremediation technique has 

been accepted globally as an in-situ therapy for polluted sites [106]. 

In this setting, safety barriers (risk management framework) are designed to prevent oil spill 

accidents. Such barriers can be physical or non-physical assets. The first stage of a barrier 

system is to prevent the oil spill into the installation. In this regard, an occurred oil spill study 

that compiles information about where and how such barriers failed and occasioned spilled oil 

is also missing in the literature. Knowing the failure reason, the system can be improved. Also, 

studies that show avoided accidents because of the use of structured risk management would be 

very important for clarifying the real power of such a risk framework, and it could influence 

the propagation of its use of it.  
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2.4 REMOTE SENSING 
 
According to Fussell & Rundquist [107] remote sensing was docused on collecting information 

about the Earth's environment. In addition, its phenomenon has been used to collect information 

about other planets also and even about the nature of space itself [107]. In other words, remote 

sensing consists of a group of techniques used to obtain important information about objects of 

interest in specific surfaces that use distant or remote sensors.  

 

Considering the oil spill detection task, satellite and airborne remote sensing techniques have 

been extensively used to identify, characterize, monitor, and compute estimates of the thickness 

of oil spills. These techniques include thermal, visible, and infrared multispectral, microwave, 

hyperspectral, and laser fluorosensors. Oils in seas and oceans exhibit different characteristics 

in various wavelengths across the spectrum. For example, in general, there are differences 

between an oil spillage event captured by Sentinel multispectral and SAR sensors in two distinct 

places. Each remote sensing technique has its specific advantages and drawbacks [108].  

 

In this context, active microwave sensors are frequently used remote sensing systems for oil 

spill identification and monitoring due to their broad coverage and capabilities in collecting 

day-and-night data under all weather conditions. The main types of radar imaging used in 

detecting and monitoring oil spills are SAR and side-looking airborne radar (SLAR) systems. 

SAR and SLAR receive/transmit backscattered radio waves, and the reflection of target-surface 

properties are recorded to produce two-dimensional images of the scene. Both systems operate 

based on the same synthetic aperture principle and share the same side-looking imaging 

geometry [108]. 

 
2.4.1 Use of Radars 
 
As introduced by this work, the early detection of oil spills can substantially minimize its degree 

of impact on the environment. That being said, an image analysis system, mostly compounded 

by satellite and radar images, is a valuable tool for identifying the oil pools in their early stages. 

 

Sea waves backscatter microwave (radar) signals, producing an illuminated image called “sea 

clutter” and the oil on the sea attenuates capillary waves and the sea clutter from radar imagery 

[94]. Oil is then shown as a “dark” spot on the sea [109]. Considering SAR imagery, the signals 

acquired by this type of radar are two-dimensional, but it is possible to create a three-
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dimensional model using signal processing methods. Any object or surface that comes into 

contact with the beam scatters the signal in all directions which is why we use the term 

“scatterer” to describe them [110]. 

 

The image resolution depends on the antenna size or antenna aperture. The larger the antenna 

aperture is, the higher the image resolution, which may affect classification tasks. In SAR 

equipment, the movement of the platform at high speed acts as another form of antenna aperture 

[111]. Also, it has three modes of acquisition: stripmap, spotlight, and scanSAR modes [110]. 

 

Chaturvedi et al. [112] affirm that SAR is perceived as the most important remote sensing 

apparatus for ocean oil spill examination, recording, documentation, and propagation. These 

SAR sensors are commonly used for monitoring and early identification of oil slicks due to their 

capability for operating efficiently regardless of the weather and illumination conditions [11]. 

According to Solberg [113], the sensor is considered a good option due to its effectiveness in 

all-weather and diversifying illumination conditions and its robustness to cloud occlusions. 

Despite reported problems with the SAR imagery [114], they are essential for oil spill remote 

sensing [94]. 

 

Many authors have used SAR images in many types of scientific research involving statistical, 

machine learning, and computer vision techniques over the years [115]–[118]. SAR are active 

microwave sensors that capture two-dimensional images and are extensively used for dark 

formation detection in the marine environment, as their recording is independent of weather 

and clouds [119]. Also, the image brightness reflects the surface's microwave backscattering 

properties [3]. They can be used in many contexts and for many different objectives; they have 

properties that can be used, among other applications, to discriminate types of land use and to 

develop specialized filters for speckle noise reduction [120]. Besides, this kind of image is the 

most effective way to monitor marine oil spills because the difference in backscattering 

capabilities between the surface of the sea and the smooth surface of an oil spill area causes 

their performance on the SAR image to differ [121]. 

 

In addition, to provide other information, signal polarizations using vertical (V) and horizontal 

(H) electromagnetic wave propagation can be used [122]. Collins et al. [123] comment that 

there is a new form of polarimetry, the compact SAR, in which the system utilizes a mixed 
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polarization where the transmitter polarization is either circular or orientated at 45 degrees and 

the receivers are aligned horizontally and vertically.  

 
2.4.2 Use of Infrared 
 
Infrared (IR) is a kind of electromagnetic wave that has a frequency lower than that of red light 

and is not part of the spectrum visible to the human eye. As many other important technologies’ 

advances, the origin of a modern IR detector technology also refers to World War II [124]. Until 

today it is important in many detection tasks of different knowledge areas. 

 

According to Pisano et al. [125], oil spill remote sensing techniques are based on visible, 

microwave, infrared, and radar sensors.  Fingas & Brown [101] explain that the oil emissivity 

of infrared is greater than the water, the oil will after heating emit infrared radiation. However,  

Despite infrared cameras offering some potential as oil spill sensors, it has several limitations 

[94]. For instance, in infrared (IR) images, thick oil appears hot, intermediate thicknesses of oil 

appear cool and thin oil or sheens are not detected [101]. In addition, most infrared sensing of 

oil spills takes place in the thermal infrared at wavelengths of 8–14 µm, and specific studies in 

the thermal infrared show that there is no spectral structure in this region [126].  

 
2.5 OIL SPILL DETECTION SYSTEMATIC REVIEW 
 
In this subsection we present three approaches (manual, semiautomatic, and automatic) used to 

detect oils spills, we also present a systematic review of oil spill detection. 

 

The detection of oil spills happens in phases “b” and “c” in the scheme shown in Figure 4. The 

rapid detection of oil spill occurrence, such as other oil and gas accidents [127], is essential, 

requiring methods capable of detecting it even when the images are dark or with a lot of noise. 

According to Kerf et al.,[30], the odds of detecting an oil spill are lowered significantly during 

the night since not every part of the water is illuminated. Besides, a considerable time gap 

between the oil spill incident and the start of the cleaning procedure generally emphasizes the 

negative oil spill impacts. 

On this basis, according to Vasconcelos et al. [128], the rise in the number of sensor systems 

and the consequent increase in the availability of images to be used in the detection of spills is 

one of the reasons that explain the increasing trend in the number of publications about oil spills 

that occurred especially in the last 20-30 years. Thus, the greater quantity of available images 
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allows the development of novel models to rapidly detect oil spills. In addition, the authors 

mention a higher frequency of oil spills in the seas in the last decades, alarming the oil spill 

consequences.  

Considering the increase in publications, we present a literature review of the oil spill detection 

manually and automatically in this section. However, in the automatic detection, we analyzed, 

considering the period from 1994 until 2021, the most cited works (i.e., articles with ten or 

more citations, as detailed below) and identified some important aspects of the proposed 

automatic detection methods, such as used technique, metrics considered, achieved results, 

database. We used the SCOPUS database to perform our analyzes, such as [128]. However, we 

considered a different time window and filters and performed other analyses. 

 
2.5.1 Manual detection 

 

In manual detection of oil spills, most of the process is made by humans. Therefore, contextual 

information such as external information about the location of oil rigs and pipelines and wind 

and speed direction is important [3]. A trained operator goes through the entire image using an 

image viewer to calculate some spot characteristics to find some possible oil spills and 

discriminate between the oil spills and look-alikes. Then, the operator evaluates specific 

features provided by the image viewer, such as the contrast level to the surroundings, 

homogeneity of the surroundings, wind speed, nearby oil rigs and ships, natural slicks nearby, 

and edge and shape characteristics of the spot [25]. 

 

Such evaluation is performed to assign the presence of possible oil spills with high, medium, 

or low confidence levels. This process is time-consuming, and it is also labor-intensive given 

the large number of images that must be analyzed quickly for effective oil spill monitoring [26]. 

In addition, the success of manual detection is highly dependent on the knowledge and 

experience of operators, and the results are subjective. Besides, according to Jiao et al. [27], as 

manual detection cannot rapidly identify oil spills, enterprises operating costs remain high while 

their detection methods hardly prevent oil pollution. 

 
2.5.2 Semiautomatic and fully automatic detection 
 
Manual oil spill detection has been replaced by automatic solutions. The automatization of it 

might follow the same steps as the manual detection because, considering SAR imagery (the 

most common type of image used for oil spill detection [29], [121], [121]), oil spills appear as 
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dark spots in these images. One problem is that similar dark spots may arise from a range of 

unrelated meteorological and oceanographic phenomena, the called look-alikes, this fact results 

in misidentification [28], [29]. However, differently from the manual process, in automated oil 

spill detection systems these step processes are performed faster, cheaper, and with greater 

reliable [26].   

In this context, because of the increased number of publications in the last decades [128], we 

present in Table 1 the papers more cited from 1994 until 2021. We found 703 articles in 

SCOPUS base in this period, we used “oil spill detection” to perform this search. Besides, 

Figure 6 brings a graphic representation of the step-by-step of this systematic review performed 

to construct Tables 1 and 2 (most cited papers and most recent papers). However, such a 

systematic review is also summarized below: 

• First, we used the term “oil spill detection” to select, using VOSviewer software tool, 

all the articles encountered in SCOPUS database published from 1994 until 2021;  

• Then, we used two filters to perform the analysis: 

- First filter: we selected, the papers that had 10 or more citations, we reached 21 

papers; 

- Then, we selected from this amount only the papers published in journals and the 

ones that applied some oil spill detection method, manual or automatic method, we 

reached 7 papers, they are presented in Table 1; 

- Second filter: we selected the most recent ones, from the original 703 papers, we 

only considered the ones published in 2020 and 2021, we reached 82 papers; 

- Then, again, we selected only the papers published in journals, and the ones that 

applied some oil spill detection method, we reached 10 papers, they are presented 

in Table 2. 

In this regard, the idea was to perform an analysis of the methods used to detect the oil spill 

phenomenon, the datasets used, and the metrics achieved over time. In Table 1, all works apply 

some method based on ML or some feature extractor before applying a classifier. The most 

recent article in this list was published in 2007, and the most used metric to evaluate the 

approaches is the overall accuracy. Besides, some works do not present the number of images 

used and the paper of Karathanassi et al. [129] used a very small dataset (12 images). Also, 

there were no papers with manual approaches to detecting oil spills.  
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Figure 6 - Step-by-step of the systematic literature review of oil spill detection 

 
Source: The author (2022). 

 

On the other hand, Table 2 presents a list of recent papers about oil spill detection published in 

journals last in 2020 and 2021. In general, accuracy is chosen as an evaluation metric. Two 

papers, [130] and [131], used the same dataset, but they do not use the same evaluation metric, 

which means that the results cannot be compared. Also, from the ten papers presented in Table 

2, six of them were published in the Remote Sensing journal.  
 

Table 1 - Most cited papers about oil spill detection from mid-1990 until 2021, their respective authors, 
publishers, applied methods, used datasets, and evaluated metric used 

 Authors and Year Title Publisher Methods Dataset Metric  
1 Fabio Del Frate, 

Andrea Petrocchi, 
Juerg Lichtenegger, 
and Gianna Calabresi, 
2000 [130]. 

Neural networks 
for Oil Spill 
Detection using 
ERS-SAR Data 

IEEE 
Transactions on 
Geoscience and 
Remote Sensing 

Multilayer Perceptron 
(MLP) 

Dataset composed by 600 
images have been taken 
in the years 1997 and 
1998 over various areas 
of the Mediterranean Sea. 

The overall 
accuracy of 
86% in oil 
spill 
detection. 

2 B. Fiscella , A. 
Giancaspro , F. Nirchio 
, P. Pavese & P. 
Trivero, 2000 [131]. 
 

Oil spill detection 
using marine 
SAR images 
 

International 
Journal on 
Remote Sensing 

Feature extraction based on 
dark spots detected on 
images and two 
classification procedures: 
one based on a 
Mahalanobis classifier, and 
the second on compound 
probability classifier 

Dataset composed by 123 
images, being 80 with oil 
spills and 43 with look-
alike.  
 

The overall 
accuracy 
about 80% in 
oil spills 
detection. 

3 Karathanassi, 
Topouzelis, pavlakis, 
and rokos, 2006 [129] 
 

An object-
oriented 
methodology to 
detect oil spills 
 

International 
Journal on 
Remote Sensing 

Object Oriented Image 
Classification: the first step 
extracts homogeneous 
image objects in any 
chosen resolution that are 
subsequently classified by 
means of fuzzy logic. 

Dataset composed by 12 
images.  
 

The overall 
accuracy of 
98.84% in oil 
spills 
detection. 
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4 Miroslav kubat, robert 
c. Holte, stan matwin, 
1998 [132] 
 

Machine 
Learning for the 
Detection of Oil 
Spills in Satellite 
Radar Images 

Machine Learnng Feature engineering to 
define useful features and 
C4.5 and the 1-nearest-
neighbor (1-NN) to classify 
the images. 

Dataset composed by  
937 images, being 41 
with oil spill and 896 
with look-alike. 
 

The 𝑔 −
𝑚𝑒𝑎𝑛* of 
81.1% for the 
C4.5 and 
67.2% for the 
1-NN. 

5 Maged Marghany, 
2001 [133] 

RADARSAT 
automatic 
algorithms for 
detecting coastaI 
oil spill pollution 
 

International 
Journal of 
Applied Earth 
Observation and 
Geoinformation 

 

Texture analysis using gray 
level co-occurrence 
matrices. Lee algorithm 
was used to determine the 
linearity of oil movements, 
and the Gamma algorithm 
was used to determine oil 
spill spreading. 

The RADARSAT data 
were acquired on 26 
October 1997.  

Evaluation 
classification 
metrics were 
not provided.   

6 F. Nirchio, m. 
Sorgente, a. 
Giancaspro, w. 
Biamino, e. Parisato, r. 
Ravera, and p. Trivero, 
2005 [64] 
 

Automatic 
detection of oil 
spills from SAR 
images 
 

International 
Journal on 
Remote Sensing 

A method is used to 
compute some features 
from interested images. 
Then a Logistic Regression 
is performed to distinguish 
between oil spills and look-
alikes.  

Dataset composed by 390 
images of ERS-1 and -2 
satellites, 390 in total 237 
oil spills and 153 
lookalikes.  
 
 

The overall 
accuracy 
about 90% in 
oil spill 
detection. 

7 K. Topouzelis, V. 
Karathanassi, P. 
Pavlakis, D. Rokos., 
2007 [119] 
 

Detection and 
discrimination 
between oil spills 
and look-alike 
phenomena 
through neural 
networks 
 

Journal of 
Photogrammetry 
and Remote 
Sensing 

Filters and data 
normalization as pre-
processing. Then, a 
combination of two 
Multilayer Perceptrons 
were used for dark 
formation detection and for 
oil spill and look-alike 
discrimination using high 
resolution SAR images. 
 

Dataset composed by 159 
images, 90 with look-
alikes and 69 with oil 
spills. 50% of the dataset 
was used to test the 
model. 

The balanced 
accuracy 
about 88% in 
oil spill 
detection. 

Source: The author (2022). 

 
In this regard, we identified in this research that most of the articles that propose some oil spill 

detection methods focused on automatic detection. In the most cited papers about oil spill 

detection, there was a limited amount of data available, accuracy was the evaluation metric used 

for almost every article, and machine learning methods were the most applied. In recent papers 

there is a greater quantity of data available, accuracy is still very used to evaluate the models 

but less than before, and the methods are more complex. However, it is not common for papers 

to use the same dataset as we found only two papers that used the same one but consider 

different evaluation metrics which does not allow direct comparisons. Thus, performing more 

benchmarking is important in this field to make methods evaluation easier for future practice 

applications. Also, SAR imagery is the most used type of image, other type of images could be 

more tested in the future, such as images generated by unmanned aerial vehicles (UAVs).   
 

Table 2 - Most recent papers about oil spill detection, their respective authors, journals, applied 
methods, used datasets, and evaluation metrics used. 

 Authors and Year Title Journal Methods Dataset Metrics 
1 Fan Y., Rui X., 

Zhang G., Yu T., Xu 
Feature merged network for oil 
spill detection using sar images 
 

Remote Sensing Firstly, a threshold 
segmentation algorithm 
is used to process the 

Oil spill detection 
dataset from the 

The 
intersection-
over-union 
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X., Poslad S., 2021. 
[121] 

original data to obtain 
the high frequency the 
information of the 
original image in the 
frequency domain. 
Then the convolutional 
neural network is used 
to extract features from 
the global features, and 
finally providing 
decision-making for the 
segmentation model. 

European Space 
Agency (ESA). 
Dataset 
composed by 
1110 images. 
 

(IoU) of 
49.95% in oil 
spill detection.  
 

2 Almulihi A., 
Alharithi F., 
Bourouis S., 
Alroobaea R., Pawar 
Y., Bouguila N., 
2021 [134] 

Oil spill detection in sar images 
using online extended 
variational learning of dirichlet 
process mixtures of gamma 
distributions 
 

Remote Sensing Authors developed a 
variational learning 
approach based on the 
infinite Gamma 
mixture model. 
 

Oil spill detection 
dataset from the 
European Space 
Agency (ESA). 
Dataset 
composed by 
1110 images. 
Sentinel-1 wave 
mode (TenGeoP-
SARwv). 

Accuracy of 
97.96% and 
FPR of 0.02 
for the first 
dataset. 
 
Accuracy of 
94.53% and 
FPR of 0.05 
for the second 
dataset. 

3 Wandi WANG, Hui 
SHENG, Yanlong 
CHEN, Shanwei 
LIU, Jijun MAO, 
Zhe ZENG, Jianhua 
WAN. 2021. [135] 
 

A fast, edge-preserving, 
distance-regularized model with 
bilateral fi ltering for oil spill 
segmentation of SAR images 

Journal of 
Oceanology and 
Limnology 
 

Authors proposed an 
edge-preserving 
framework 
(segmentation) based 
on the distance-
regularized level set 
evolution (DRLSE). 

Two set of 
remotely sensed 
Polarimetric 
Radarsat-2 data 
were used. 
 

Overall 
segmentation 
accuracy of 
97.83%. 
 

4 Li Y., Lyu X., Frery 
A.C., Ren P, 2021. 
[136]. 

Oil spill detection with 
multiscale conditional 
adversarial networks with small-
data training 
 

Remote Sensing Authors developed a 
multiscale conditional 
adversarial network 
(MCAN) that is able to 
adversarially learn an 
oil spill detection 
model with a limited 
amount of training 
data.  
 

Synthetic 
Aperture Radar 
images acquired 
by ERS-1, ERS-
2, and Envisat-1. 
Authors obtained 
all of the oil spill 
observation 
images used in 
the experiments 
from the 
NOWPAP 
database. 

Accuracy of 
97.6% 
Precision of  
63.2% 
Recall of 
66.8% 
F1-Score of 
50.6%. 

5 Conceição M.R.A., 
Mendonça L.F.F., 
Lentini C.A.D., 
Lima A.T.C., Lopes 
J.M., Vasconcelos 
R.N., Gouveia M.B., 
Porsani M.J., 2021. 
[137] 

Sar oil spill detection system 
through random forest classifiers 
 

Remote Sensing Authors proposed a 
framework to detect oil 
spills based on machine 
learning, by making 
use of random forest 
models to predict 
image contents.  

Images generated 
by satellites with 
a C-band 
synthetic aperture 
radar (SAR) 
operating in the 
wide range and 
TOPS mode.  

Accuracy 
about 93% for 
two classes 
(oil spill and 
sea surface). 

6 Li G., Li Y., Hou Y., 
Wang X., Wang L., 
2021. [138] 

Marine oil slick detection using 
improved polarimetric feature 
parameters based on 
polarimetric synthetic aperture 
radar data 
 

Remote Sensing Authors proposed an 
improved polarimetric 
feature combination 
based on difference in 
scattering mechanism 
and Random Forest 
classifier.  
 

The 
RADARSAT-2 
image in Case 1. 
 
The 
RADARSAT-2 
image in Case 2. 
 
The 
RADARSAT-2 
image in Case 3. 
 

Accuracy 
about 91%. 

7 Wang B., Shao Q., 
Song D., Li Z., Tang 
Y., Yang C., Wang 
M. 2021. [139] 

A spectral-spatial features 
integrated network for 
hyperspectral detection of 
marine oil spill 

Remote Sensing Authors proposed a 
spectral–spatial 
features integrated 
network (SSFIN) for 

Data obtained 
from the flight 
mission on 24 
July 2010 for 

Precision, 
Recall, and 
F1-Score of 
99.09%. 
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 marine oil spill 
detection from 
hyperspectral images. 
Specifically, 1-D CNN 
and 2-D CNN models 
have been employed 
for the extraction of the 
spectral and spatial 
features, respectively. 
 

Dalian offshore 
oil spill 
monitoring are 
the airborne 
hyperspectral 
data acquired by 
the spectral 
imager sensor—
AISA Eagle 
(made in 
Finland).  

8 Mohammadi M., 
Sharifi A., 
Hosseingholizadeh 
M., Tariq A. 2021. 
[140] 

Detection of Oil Pollution Using 
SAR and Optical Remote 
Sensing Imagery: A Case Study 
of the Persian Gulf 

Journal of the 
Indian Society of 
Remote Sensing 
 

Authors proposed a 
object-based image 
analysis (OBIA) 
method using optical 
data to detect oil spills. 

Sentinel-1 SAR 
data processed 
with the Sentinel 
Application 
Platform (SNAP) 
Sentinel-2 data 
processed with e-
Cognition 
software that 
utilized the scale 

Accuracies of 
92% and 79%. 

9 Shamsudeen 
Temitope Yekeen, 
Abdul-Lateef 
Balogun, 
Khamaruzaman B. 
Wan Yusof. 2020.  
[141] 

A novel deep learning instance 
segmentation model for 
automated marine oil spill 
detection  

Journal of 
Photogrammetry 
and Remote 
Sensing 

Authors developed a 
novel deep learning oil 
spill detection model 
using computer vision 
instance segmentation 
Mask-Region-based 
Convolutional Neural 
Network (Mask R-
CNN) model. 

Sentinel SAR 
data with a 
frequency of 
5.405 GHz on a 
Band-C covering 
a larger area of 
250 km with 
pixel resolution 
of 10 X 10 m.  

96.6% of 
overall 
accuracy for 
oil spill 
classification. 

10 Mohammed Ozigis, 
Jorg Kaduk, Claire 
Jarvis, Polyanna da 
Conceição Bispo, 
Heiko Balzter. 2020. 
[142] 
 

Detection of oil pollution 
impacts on vegetation using 
multifrequency SAR, 
multispectral images with fuzzy 
forest and random forest 
methods 

Environmental 
Pollution 

Authors compared the 
Fuzzy Forest (FF) and 
Random Forest (RF) 
methods in detecting 
and mapping oil-
impacted vegetation 
from a post spill 
multispectral sentinel 2 
image and 
multifrequency C and 
X Band Sentinel – 1, 
COSMO Skymed and 
TanDEM-X images. 

Six different 
datasets. 

Different 
reached 
metrics for the 
different 
datasets and 
algorithms.  

Source: The author (2022). 

 
 
2.6 IMAGE PROCESSING TECHNIQUES 
 
2.6.1 Grey Level Co-occurence Matrix 
 
The Grey Level Co-occurence Matrix  (GLCM) and its derived features are tools for image 

classification that were initially proposed by Haralick et al. [32]. It is a statistical method that 

computes the frequency of pixel pairs having the same gray levels in an image and applies 

additional knowledge obtained using spatial pixel relations [143]. Also, according to Eichkitz 

et al. [144] the GLCM can be explained as a measure of how often different combinations of 

pixel brightness values occur in an image.  
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GLCM is calculated on the basis of two parameters: relative distance (𝑑) in between the pair 

of pixels, and relative orientation (𝜑) among those pixels. For a 2D image, the immediate 

neighboring pixels can be in four different directions (0°, 45°, 90°, and 135°). The following 

equation is used to compute a 2D GLCM: 

 

𝑀(𝑖, 𝑗) = ∑ ∑ .1, 𝐺
(𝑥, 𝑦) = 𝑖		𝐴𝑁𝐷		𝐺(𝑥 + ∆𝑥, 𝑦 +	∆𝑦) = 𝑗

0, 𝐺(𝑥, 𝑦) ≠ 𝑖		𝑂𝑅		𝐺(𝑥 + ∆𝑥, 𝑦 +	∆𝑦) 	≠ 𝑗		
!
"#$

%
&#$ , 

 
where 𝑖 and 𝑗 vary from 1 to 𝑁' (number of grey levels). 

 

The correlation between the reference pixel and the neighboring pixels is calculated to 

determine the textural features of the image [143]. In this work, we applied the GLCM 

combined with six Haralick features (i.e., contrast, correlation, energy, homogeneity, 

dissimilarity, and ASM). Contrast, correlation, energy, and homogeneity are presented in Table 

3, and the ASM and dissimilarity are presented below: 

 
𝐴𝑆𝑀 = >∑ 𝑝(𝑖, 𝑗)2𝑖,𝑗 , 
 
𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 	∑ 𝑝(𝑖, 𝑗)2𝑖,𝑗 |𝑖, 𝑗|. 
 
To run the GLCM experiments we set (2, 0) as the hyperparameters, which is a distance of 2 

and an angle of 0, other values were tested, such as (1, 0), (1, 180), (2, 180), but the results were 

inferior. 

 
2.6.2 Local Binary Patterns 
 
In order to compare the results achieved by the proposed q-EFE approach, in this work, we will 

also apply some traditional CV techniques. We will use CV methods to classify texture, which 

is generally considered as a human perception [145]. However, there are some CV techniques 

developed aiming classifying different texture images. In this context, we believe that images 

with oil spills have a different texture from images without oil spills, this is the motivation to 

use this type of technique.  

 

In this work, we will use the traditional Local Binary Pattern (LBP), originally proposed by 

Ojala et al. [146], and four LBP variants techniques that take into consideration central 

intensity, the neighboring intensity, and the radial difference in the grayscale image, such LBP 

variations were proposed by Liu et al. [147]. The traditional LBP and its variants were applied 
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many times for texture classification and analysis, image description, face recognition, signal 

processing, etc. [148]–[152]. The classical LBP is denoted by 

 

𝐿𝐵𝑃(,* = ∑ 𝑠I𝑥*,+ − 𝑥,,,K2+
(-$
+#, 	,								𝑠(𝑥) = M1, 𝑥 ≥ 0

0, 𝑥 < 0. (1) 
 
The LBP variants were proposed by Liu et al. [147] in order to overcome some drawbacks and 

limitations of the classical LBP, such as  

(i) sensibility to image rotation; 

(ii) small spatial support; 

(iii) loss local textural information; and 

(iv) high sensitivity to noise. 

The LBP variants and additional explanation can be encountered in Liu et al. [147]. For each 

of the four LBP image we compute four features (i.e., contrast, correlation, energy, and 

homogeneity) such features were extracted from [153]. Also, we extracted more four features 

from the LBP image (i.e. thresh out, entropy, local variance and standard deviation) as proposed 

by [154]. The outcome of this process is a feature vector composed of twenty-four features. 

Table 3 provides a detailed description of the referred features. 

 
Table 3 - Description of textural properties 

Feature Description Formulation 

Contrast Intensity contrast between a pixel and its 
neighbor over the whole image. 

%|𝑖 − 𝑗|%𝑝(𝑖, 𝑗)
&,'

 

Correlation Correlation between a pixel and its neighbor 
over the whole image. 

%
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎&𝜎'&,'

 

Energy Sum of squared elements in the GLCM. %𝑝(𝑖, 𝑗)%
&,'

 

Homogeneity The closeness between the distribution of 
elements in GLCM and its diagonal. 

%
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
&,'

 

Thresh Out The relative proportion of the cracks to non-
crack objects. 

The threshold value for the Sobel 
edge detection method 

Entropy A statistical measure of randomness. −%𝑞 log% 𝑞
(

 

Local 
variance 

The average local standard deviation of 3 × 3 
neighborhood around each pixel in the image. 

𝑠𝑡𝑑𝑓𝑖𝑙𝑡 function in MATLAB 
divided by the number of pixels in 
the image 

Standard 
Deviation The standard deviation of all values. 𝑠𝑡𝑑2 function in MATLAB 

Source: The author (2022). 
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2.7 MACHINE LEARNING METHODS 
 
This subsection presents the machine learning classification methods applied in this work in 

order to validate the proposed methodology. 

 
2.7.1 Multilayer Perceptron 
 
Multilayer Perceptron (MLP) is a well-known machine learning method that is a class of 

feedforward artificial neural networks. According to Ramchoun et al. [155], the MLP is the 

most utilized model in neural network applications using the back-propagation training 

algorithm. It consists of a system of simple interconnected neurons or nodes. Each of these 

neurons has a model in the network that includes a nonlinear activation function – this function 

is the sum of the inputs to nodes modified by a simple nonlinear transfer. The transfer function 

can be linear or nonlinear. If it is linear, then the multilayer perceptron would only be able to 

model linear functions. One of the most transfer functions used in this kind of method is the 

logistic one due to its easily computed derivative. This model can perform static mapping 

between an input space and an output [156]. The MLP can have one or more hidden layers and, 

finally, an output layer. MLPs are reported as being fully connected if each node is connected 

to every node in the next and previous layers [157]. 
 
2.7.2 Random Forest 
 
Proposed by Breiman [158], the Random Forest (RF) is an ML algorithm that combines tree 

predictors in which each depends on the value of a random vector, sampled independently from 

the same distribution of all other modeled trees. Many works have been applied and\or studied 

the RF [159]–[161]. The convergence of the tree and the strength of each of them is important 

because the algorithm generalization depends on that. The RF is an ensemble technique that 

generates multiple and independent decision trees from a vector of random parameters.  

 

Thus, each input vector gives to its corresponding tree an output owing to classification or 

regression. For classification problems, the task performed in this work, the RF is composed of 

trees depending on a random vector 𝛩, in which, the tree predictor,  ℎ(𝑥, 𝛩), is a numerical 

value opposed to the class labels. The output is the classes, and the training set is independent 

of the distribution of the random vector. It can be characterized as an ensemble of 𝐵 decisions 
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trees R𝑇$(%), … , 𝑇0(%)U, where 𝑋 = {𝑥$, … , 𝑥0} is a B-dimensional vector. Its predictor is formed 

by calculating the average overall trees ℎ(𝑥, 𝛩0). 

 

2.7.3 Support Vector Machine 
 
Support Vector Machine (SVM) [162], [163] works as a supervised and unsupervised learning 

model widely used to recognize patterns and perform regression. It is based on statistical 

learning theory and, as its training involves a convex and quadratic optimization problem, the 

Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to guarantee the global 

optimum. After the learning phase, an estimated classifier or regression function is obtained 

and can be used to predict a class, or a function value related to unseen input data. 

 

In this work, the SVM is used for classification. Given a training set of 𝑁 data points 

{𝑦1 , 𝑥1}1#$2 , where 𝑥1 ∈ 𝑅 and corresponding binary class labels 𝑦1 ∈ {−1,+1}, the support 

vector method approach aims at constructing a classifier of the form [164]: 𝑦(𝑥) =

𝑠𝑖𝑔𝑛[∑ 𝛼1𝑦1𝜓(𝑥, 𝑥1) + 𝑏2
1#$ ], where 𝛼1 are positive real constants and 𝑏 is a real constant; 

𝜓(. , . ) is the kernel function, which has the task of fit different models and obtain different 

predicted values.  In other words, the choice of the kernel is based on the data shape, for 

example, if the data is linearly separable, the kernel linear is the best choice, it is also 

computationally faster. Several choices for the kernel function are possible, such as linear, 

polynomial and radial function basis [165]. 

 
2.7.4 Logistic Regression 
 
Logistic Regression (LR) models, in general, are used to fit data obtained under experimental 

conditions [166]. In a multiple logistic regression model, the hypothesis of interest may be the 

effect of a specific covariate in the presence of other covariates, besides there is more than one 

covariate in the model [167]. Under certain assumptions, the linear regression is appropriate in 

cases where the response variable is quantitative (e.g. serum cholesterol level) [168]. However, 

for a binary (two classes, e.g., “Oil spill detected” and “Oil spill not detected”) or multiclass 

response (more than two classes) adjustment based on the linear model is not appropriate and 

the LR must be used.  

 

In this work, when a response variable 𝑦 is dichotomous, the observed outcome for a given 

subject 𝑗 is either 𝑦3 = 0 if the oil spill was not detected or 𝑦3 = 1 if the oil spill was detected. 
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The LR model presumes that the probability of to detect the oil spill in the images (𝑦) has a 

sigmoidal relationship with 𝑋, the vector of independent variables (the image pixels and feature 

vectors in this work). 

 
2.7.5 Extreme Gradient Boosting 
 
Extreme Gradient Boosting (XGB) [169] is a decision-tree ensemble-based ML model that uses 

Gradient Boosting (GB) as its framework. This method is considered an optimized and scalable 

ML system for tree boosting; it performs parallel processing, handling missing values, and 

avoiding overfitting and bias. XGB is widely applied for problems involving unstructured data, 

such as images and text, yet it is also used to solve regression and classification problems, such 

as store sales prediction, high energy physics event classification, web text classification, 

customer behavior prediction, and others [170]. Among other advantages, Dhaliwal et al. [171] 

explain that the XGB has a parallel processing, that is uses all the cores of the machine it is 

running on. Even using minimal resources, this model generates billions of examples using 

distributed or parallel computation and algorithmic optimization operations. Therefore, it is 

highly effective in dealing with issues such as classification of data and high-level pre-

processing of data. In fact, due its highly scalability, which is an important factor that helps the 

success of XGB, it can to model different types of problems – and its adaptability to its 

algorithm (e.g. credit approval, predicting house prices, online predictions) - and algorithmic 

optimizations. It applies the principle of boosting weak learners using the gradient descent 

method.  

 
2.7.6 Convolutional Neural Network 
 
Humans have an enviable learning process. Indeed, most deep learning algorithms were created 

with the objective to imitate the way the human brain uses distinct parts of information and 

makes the associative processes that lead to learning [172]. In Deep Artificial Neural Networks 

(DANN) each node in the net is called ‘‘neuron’’ because its properties are similar to actual 

neurons in the human nervous system. Biological neurons have the known dendrites that act as 

input channels, a body that processes and uses information, and an axon that acts like a 

connector between the output to another neuron. On the other side, artificial neurons have a 

number of input channels and an output that can be used as an input to another neuron. 

 

The Convolutional Neural Network (CNN) can be explained just as in the previous paragraph, 

and its original goal is to imitate the way the human brain recognizes images. Thus, for the 
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training process, images are inputted to feed the model. However, today, CNNs have been also 

used with other types of input (e.g., feature vectors and text). The convolution operation in 

CNNs performs operations in small windows of an image, the size of this window is set by the 

programmer. In the human recognition process, to cover the whole image, there is overlap 

between different regions, while in CNNs there is also an overlap measure that can be tuned. 

This process is similar, for example, when feature vectors are used instead of images.  

 

The core layers of CNN are the convolutional layers, which creates the called filter bank, that 

in turn creates a feature map of the signal analyzed (e.g. image) connecting with the previous 

layer with a set of weights. In a convolutional setting, each input neuron is not connected to 

each output neuron in the next layer, but is divided into locally connected segments instead, 

besides, there is a fully connected layer, which is responsible for the classification or regression 

task, just after the convolutional operations made by the first convolutional layers [173].  
 

Figure 7 - Convolutional Neural Networks layers for an oil spill image classification 

 

Source: Adapted from Lecun et al. [174]. 

 
In this context, we applied three the architectures of CNNs in this work (Figure 8). Before 

presenting a simple explanation of the architectures of CNN proposed in this research, it is 

worth mentioning that we tested some other architectures, including using a library for 

hiperparameter optimization in Python, named “hparams” [175]. However, there was no 

improvement in the results. CNN_1  is the simplest CNN applied in this work. It has only three 

convolutional layers, three max pooling layers, and three last dense layers. The max pooling 

layers are important because they aggregate activations of spatial locations to produce a fixed-

size vector in several state-of-the-art CNNs [176]. In the convolutional layers there are 64 

neurons in each, in the dense layers, two has 128 neurons, and the last one has 2 neurons, 
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because we are working in binary classification problem. CNN_2 is more complex than the first 

model, it has five convolutional layers, three max pooling layers, and four last dense layers. In 

the convolutional layers there are 64 neurons in each, in the dense layers, three has 512 neurons, 

and the last one has 2 neurons. Finally, CNN_3 is more complex than the first and second 

models, it has eight convolutional layers, five max pooling layers, and four last dense layers. In 

the convolutional layers there are 64 neurons in each, in the dense layers, three has 512 neurons, 

and the last one has 2 neurons. 

 

These deep models were trained using TensorFlow [177] and Keras [178] libraries in Python 

running on a free Tesla K80 GPU provided by Google Colaboratory. The image size was 

256x256, the number of epochs for training was 100 with an early stop if the validation loss 

(i.e., binary cross-entropy) did not improve in ten consecutive epochs, and when the training 

was stopped the best weights were restored. We considered a learning rate of 0.001 and the 

“adam” optimizer. Other parameters were tested, such as different learning rates and optimizers, 

but the results were inferiors. The batch size (number of samples per gradient update) was equal 

to 32, which is the Keras default. 
 

Figure 8 - CNN architectures 

 
Source: The author (2022). 

2.7.7 ResNet50 
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ResNet50 is a deep learning model based on deep residual learning [179]. This model was 

proposed in 2016 and is considered a successful deep learning model in image recognition with 

high power in complex classification tasks [180], mainly because of its deep feature extraction 

process. Resnet50 was mainly inspired by the philosophy of VGG [181], which was proposed 

in 2015. According to He et al. [179], the convolutional layers mostly have 3×3 filters and 

follow two simple design rules: (i) for the same output feature map size, the layers have the 

same number of filters; and (ii) if the feature map size is halved, the number of filters is doubled 

to preserve the time complexity per layer. It is possible to see the graphic representation and 

obtain more details in He et al., [179]. They also performed downsampling directly by 

convolutional layers with a stride of 2. The network ends with a global average pooling layer 

and a 1000-way fully-connected layer with softmax. ResNet50 has been used in many 

knowledge areas, such as health [182]–[184], agriculture [185], cognitive computing [186], 

satellite image classification [187], and failure detection [188]. In this work, the ResNet 50 ran 

in the same machine of CNN models presented in Figure 8, we used the pre-trained weights of 

imagenet. 

 
2.8 PRINCIPAL COMPONENT ANALYSIS 
 
Principal Component Analysis (PCA) uses orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of linearly uncorrelated 

variables [189].e. Its objective is to extract the important information from the dataset, to 

represent it as a set of new orthogonal variables called principal components, and to display the 

pattern of similarity of the observations and of the variables as points in maps [190]. In this 

work we used the PCA as a dimensionality reductor, Bro and Smilde [191] explains that it is 

quite common to use PCA as a preprocessing step in order to get a nicely compact 

representation of a dataset. In practice, the dataset can be expressed in terms of the few (𝑅) 

principal components instead of the original many (𝑗) variables.  

 

Mathematically, PCA depends upon the eigen-decomposition of positive semi-definite matrices 

and upon the singular value decomposition (SVD) of rectangular matrices. The PCA 

components are obtained from the SVD of the data table 𝑋. Specifically, with 𝑋 = 𝑃∆𝑄4, where 

𝑃 is the 𝐼	𝑥	𝐿 matrix of left singular vectors,	∆ is the diagonal matrix of singular values, and 𝑄 

is the 𝐽	𝑥	𝐿 matrix of right singular vectors, the 𝐼	𝑥	𝐿 is also denoted matrix of factors scores, 

and also denoted by 𝐹, which is obtained by: 
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𝐹 = 𝑃∆. 
 
The matrix 𝑄 gives the coefficients of the linear combinations used to compute the factors 

scores. This matrix can also be interpreted as a projection matrix because multiplying 𝑋 by 𝑄 

gives the values of the projections of the observations on the principal components. Besides, as 

an alternative to the PCA for dimensionality reduction, it is possible to use, for example, Linear 

Discriminant Analysis (LDA) and Auto-encoders. The LDA tool is developed to transform the 

features into a lower-dimensional space, maximizing the ratio of the between-class variance to 

the within-class variance, thus guaranteeing maximum class separability [192]. Also, the Auto-

encoder is a way to transform representation. According to Wang et al. [193], to achieve desired 

dimensionality reduction effect, it is necessary to restrict the number of hidden layer nodes to 

less than the number of original input nodes, thus, we can get a compressed representation of 

the input.   

 
2.9 DATA AUGMENTATION 
 
Data augmentation (DA) is an effective method for improving the accuracy of modern image 

classifiers [194], indeed it is a technique also used to augmentation other type of data, such as 

audio used in speech recognition [195]. In addition, the well-known Deep neural networks are 

powerful machine learning systems that tend to work well when trained on massive amounts of 

data [194]. In this context, DA is an effective technique to increase both the amount and 

diversity of data by randomly “augmenting” it [196], [197].  

 

In a generic manner, DA refers to any technique that artificially inflates the original training set 

with label preserving transformations and can be represented as the mapping [198]: 

 

𝜓: 𝒮 ↦ 𝒯                                                                                                                                (2) 

 

Where, 𝒮 is the original training set and 𝒯 is the augmented set of 𝒮. The artificially inflated 

training set is thus represented as 

 

𝒮5 = 𝒮 ∪ 𝒯                                                                                                                             (3) 

 

In addition, 𝒮5 contains the original training set and the respective transformations defined by 

𝜓. The term label preserving transformations refers to the fact that if data 𝑥 is an element of 
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class 𝑦 then 𝜓(𝑥) is also an element of class 𝑦. ). In this work, DA process was performed in 

Python, using the Keras library [178], performing rotation, zoom, flip, width shift range, height 

shift range, and shear range. 

 

2.9.1 Synthetic Minority Over-sampling Tecnique 
 

Synthetic Minority Over-sampling Technique (SMOTE) is a method proposed by Chawla et al. 

[199] to handle the imbalanced class problem, which occurs when one of the target classes has 

a small number of instances compared to the other class [200]. Its used for unidimensional data. 

Using imbalanced data sets in training can cause problems in the generalization ability of the 

machine learning model. Some parameters must be set to perform the SMOTE technique, such 

as the ‘k_neighbors’, which is the number of nearest neighbors used to construct synthetic 

samples, and the ‘random_state’, which is the seed used by the random number generator. In 

this work, we used the default value for ‘k_neighbors’ (5), and ‘random_state’ was randomly 

chosen as 42. 

 

In some situations, applying a technique to handle the imbalanced dataset is a step very 

important, which could significantly improve the classification performance. Basically, there 

are two simplest techniques to solve this problem, a random over-sampling technique and a 

random under-sampling technique [201]. In fact, both methods are sampling the dataset until 

the classes are approximately equally represented, resulting in a balanced dataset. However, the 

random over-sampling technique may create the decision regions smaller and more specific and 

it can lead to the overfitting problem [202]. On other hand, a random under-sampling technique 

encounters the problem of diminishing some important information from a dataset. For handling 

these problems, the SMOTE was proposed, it generates synthetic examples in a less application-

specific manner, by operating in “feature space” rather than “data space”. The minority class is 

over-sampled by taking each minority class sample and introducing synthetic examples along 

the line segments joining any/all of the 𝑘 minority class nearest neighbors. Neighbors from the 

𝑘 nearest neighbors are randomly chosen depending upon the amount of over-sampling required 

[199]. 

 
2.10 EVALUATION METRICS 
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The performance of the classifiers is commonly evaluated by a binary confusion matrix [200] 

as illustrated in Figure 9 below. In this work we have a binary classification problem, however 

the matrix is analogous for the multiclass classification.   
Figure 9 - Generic binary confusion matrix 

 
Source: The author (2022). 

 
 
Where: 

𝐶,,,: represent the number of true negatives (TN); 

𝐶,,$: represent the number of false negatives (FN). 

𝐶$,,: represent the number of false positives (FP); 

𝐶$,$: represent the number of true positives (TP); 

 

We used five performance measures on classification to evaluate the results of the proposed 

methodology in this work: accuracy (𝐴𝑐), precision (𝑃𝑟), recall (𝑅𝑒) or sensitivity, specificity 

(𝑆𝑝), and balanced accuracy (𝐵𝐴𝑐). The 𝐵𝐴𝑐 is a classification performance metric devised to 

account for imbalanced classes. These metrics can be computed by the following Equations 4 - 

8:  

 
𝐴𝑐 = (42647)

(42682647687)
                     (4) 

 
𝑃𝑟 = 47

47687
                      (5)

  
𝑅𝑒 = 47

47682
                      (6) 

 
𝑆𝑝 = 42

42687
                      (7) 
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𝐵𝐴𝑐 =
9 )*
)*+,-6

)-
)-+,*:

;
                     (8) 

 
The accuracy computes the number of correct predictions divided by all the predictions (correct 

and wrong ones). This metric does not consider the imbalance of the classes. The precision is 

interested in evaluating the examples predicted correctly as positive (“image with oil spills”) 

divided by all the positive predictions. A low precision rate indicates that the model lets pass 

many positive examples, or many examples can be predicted as positive when it is not. The 

recall is a rate interested in the positive examples, the correctly predicted ones, and the wrongly 

predicted as “negative”. A small recall indicates that the model cannot accurately predict the 

images with oil spill, which could be very harmful because measures will not be taken in a 

timely manner. The specificity is the opposite of the recall; it is interested in negative examples. 

And, the balanced accuracy is a weighted mean between recall and specificity. It penalizes the 

majority class and improves the value of the correct predictions of the minority class.  

 
2.11 q-EXPONENTIAL PROBABILITY DISTRIBUTION 
 
The q-Exponential related functions will be used to try to extract important features from the 

oil spill images. The key idea is that these functions can be as sensitive as possible to classify 

correctly the images with and without oil spills.  

 

The q-Exponential distribution has the following probability density function (PDF) 

 

𝑓(𝑡) = ;-<
=
𝑒𝑥𝑝< q−

>
=
r = ;-<

=
s1 − ($-<)>

=
t
.

./0,                                                                         (9) 
                                                                      
Where, 𝑡 > 0, 𝜂 > 0 is the scale parameter and 𝑞 < 2 determines the PDF shape and is known 

as entropic index. When 𝑞 < 1, Equation (9) has a limited support with an upper bound that 

depends on 𝜂 and 𝑞, see the Equation (10): 

 

𝑡 ∈ x
(0,∞), 1 < 𝑞 < 2
q0, =

$-<
r , 𝑞 < 1 .                                                                                                           (10) 

 
 
The q-Exponential has the following cumulative distribution function (CDF): 

 

𝐹(𝑡) = 1 − s𝑒𝑥𝑝< q−
>
=
rt
;-<

= 1 − s1 − ($-<)>
=

t
1/0
./0 , 𝑡 ≥ 0.                                                  (11)                                          
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Based on maximum likelihood method, which has some important properties (such as 

asymptotic unbiasedness, strong consistency and efficiency, for a given sample 𝑡	 =

	(𝑡$, … , 𝑡? , … 𝑡+) of pixel values, the q-Exponential likelihood function is given by 

 

𝐿(𝑡|𝑞, 𝜂) = ∏ ;-<
=
𝑒𝑥𝑝< q−

>2
=
r+

?#$ = ∏ ;-<
=
s1 − ($-<)>2

=
t

.
./0+

?#$ .                                                 (12)  
                                       
The corresponding log-likelihood function is, as can be seen in [203] 
 
𝑙(𝑡|𝑞, 𝜂) = 	𝑛 𝑙𝑛 𝑙𝑛	 q;-<

=
r 	+ $

$-<
∑ 𝑙𝑛 s1 − ($-<)>2

=
t+

?#$ .                                                                  (13) 
 

When 𝑞 < 1 we have q-Exponential estimation problems using the maximum likelihood method as 

explained by Negreiros et al. [203]. Beyond presenting the q-Exponential problem when 𝑞 < 1, the 

authors also proposed a corrected q-Exponential log-likelihood function to be used in this case. This 

correction was made applying the Firth method [204]. The general equation for the corrected log-

likelihood is presented in Equation (14)  

 
𝑙∗(𝑡|𝑞, 𝜂) = 𝑙(𝑡|𝑞, 𝜂) + $

;
𝑙𝑛 𝑙𝑛	|𝐾|	,                                                                                               (14)  

        
where 𝐾 refers to the determinant of the Fisher information matrix, and the penalization term 

|𝐾|
.
1 is the Jeffreys invariant prior [205]. 

 

Tsallis entropy is a generalization of the Boltzmann-Gibbs-Shannon (BGS) entropy [206], and 

it is defined as [47] 

 

𝑆< =
$-A∑ (2

03
24. C
<-$

,                                                                                                                        (15) 
 
where 𝑤 ∈ 𝑁 is the total number of possible configurations, 𝑝? is the associated probabilities 

and ∑ 𝑝? = 1D
?#$ . The q-Exponential entropy is given by  

 

𝑆<-E&( =
9$-(./0)7	9 :

1/0
./0

<-$
.                                                                                                                (16) 
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3 THE q-EXPONENTIAL COMPUTER VISION APPROACH 
 
The entire methodology will be presented in this Section in some steps explained in detail 

below. Steps 2 and 4 of the CVS (Figure 1) are optional, even though such steps are, in general, 

applied to increase the system power. Our proposed approach is inserted in step 3 (Figure 10), 

the feature extraction. This process can be performed by other methods, such as LBP, GLCM, 

and CNN, in its convolutional layers.  

 

3.1 PROPOSED METHODOLOGY 

 
A flowchart of the whole proposed methodology has a graphical representation shown in Figure 

10. Thus, our proposed q-EFE approach is detailed explained in the following steps: 

 

• First, the image is loaded in a chosen size (𝑝 × 𝑞). Then, it is converted to a grayscale 

representation. This grayscale conversion can be made using any method available. In 

our case, we used “np.dot” available in Python. 

• Then, the zero-valued pixels of the image are replaced by one once the feature extraction 

process uses the q-Exponential log-likelihood maximization to estimate the distribution 

parameters, and one of the model restrictions is related to the positivity of values 

(Equation 10). We chose one to replace zero because it is the closest integer to the latter 

in grayscale (0, 1, 2, …, 255). Indeed, it is impossible to see the difference between 

these two tons of grey with an unaided eye.  

• Then, the choice of using DA or not is considered. If the dataset is too small or very 

imbalanced, the DA maybe improve the results.  

• The feature extraction (Figure 11) starts on the resized grayscale with no null pixels in 

the image. Features are small newsworthy, descriptive, or informative patches in images 

[42]. In this step, we take 𝑛	 × 	𝑛 image patches (i.e., 𝑛; pixels), we maximize the q-

Exponential log-likelihood function, using some numeric maximization method and 

compute the interested q-Exponential function ∅? (e.g., PDF, CDF, entropy). In this 

work, we used Nelder-Mead [207] maximization method. We repeat this process for the 

entire image considering a stride size (∆). The output of this process is feature vectors 

with sizes that depend on the image’s dimension, the patches size, and the stride.  

• The feature vector often presents a high dimension. For example, for 𝑝 = 𝑞 = 64, ∆	=

1 and 𝑛	 = 	4, the output feature vector has dimension 3721. Equations 17 and 18 bring 
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the formulas to compute the feature vector size. Hence, for dimensionality reduction, 

the feature vector undergoes PCA for obtaining the first 𝑘 principal components. After 

this, the reduced feature vector is ready to feed the machine learning classifier. Also, 

another dimensionality reduction can be used instead of PCA, such as LDA and Auto-

encoders. 

 
Figure 10 - Methodology for pre-processing and feature extraction using the q-Exponential probabilistic 

distribution (q-EFE approach) 

 
Source: The author (2022). 

 
In Figure 10, the step of converting the image to a grayscale representation is performed because 

we are working with only one channel of color, as the classical computer vision methods (e.g., 

LBP and GLCM). The proposed q-EFE is a method that can be considered as a feature extractor 

based on probabilistic distribution, the q-Exponential. In this context, there are other 

probabilistic models used to extract features from images, such as ℊF,  [208], [209] and, q-

sigmoid function [210]. 

 

To compute the size of the feature vector (𝑀), the following formulas are given [211]: 

 

• If ∆	= 𝑛 and 𝑝 = 𝑞 (without overlapping),  

𝑀 = (𝑝 ∆⁄ );,                                                                                                                              (17)  

• If ∆	< 𝑛 and 𝑝 = 𝑞 (with overlapping),  



 

 

56 

𝑀 = II𝑝 − (𝑛 − 1)K ∆⁄ K;.                                                                                                     (18) 
 

Considering the feature extraction process (Figure 11), this process of acquiring features is very 

important in a CVS. According to O’Mahony et al. [17], features are small newsworthy, 

descriptive, or informative patches in images. Thus, our idea is to extract features descriptive 

enough to detect oil spills in images. Thereby, this feature extraction process starts with the q-

Exponential parameter estimation by the maximum likelihood method [132]. This step is very 

important for the proposed approach because these extracted features will define the 

classification model's power. In our experiments, we take image patches 4 x 4 (16-pixel values 

in total) to estimate the q-Exponential parameters by the Nelder-Mead optimization method 

[133], which proved to be a successful numeric method to find the maximum of the q-

Exponential log-likelihood function as can be seen in Sales Filho et al. [134]. Also, the q-

Exponential distribution has two parameters – 𝑞 (shape) and h (scale) – and, when 𝑞 < 1 we 

use the corrected q-Exponential log-likelihood demonstrated by Negreiros et al. [86], which is 

also maximized by the Nelder-Mead. In practice, less than 3% of the cases had 𝑞 < 1, according 

to the experiments. In such cases, the q-Exponential presents the power-law behavior and we 

have evidence of rare events, with more heavy distribution tails. Also, in such situations, the 

results obtained in [86] are used in practice to maximize the q-Exponential log-likelihood, 

estimate the parameters and compute the related function values.  

 

3.2 q- EXPONENTIAL DISTRIBUTION AS IMAGE FEATURE EXTRACTOR 
 
 
The q-Exponential is a probabilistic distribution very used in reliability field because of its 

ability in modeling the three phases of the bathtub curve [203], [212]. However, it is also used 

in other fields, such as finances and physics [213], [214]. Nevertheless, there are no studies in 

which q-Exponential has been used to extract features from images before this work. This 

model has the characteristic of modeling very well rare events, presenting power-law behavior 

when the shape parameter is between 1 and 2 (1 < 𝑞 < 2). Besides, recent studies provide 

findings that proves that the original q-Exponential can be better than other reliability models 

(e.g. Weibull distribution) to fit failure data when the system is in the improvement phase 

(failure rate decreasing and power-law behavior) [212], and when the system is in the wear-out 

phase (last phase of the bathtub curve), the corrected q-Exponential [203] is better than other 

reliability distribution (e.g Weibull, q-Weibull and Modified Extended Weibull). Thus, as in 

general the oil spills appear as small dark spots in images, they can be considered as rare events. 
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Considering the q-Exponential power to fit rare events, this is the reason to choose this specific 

model to develop this methodology.   

 

In this regard, we tested three functions (CDF, PDF, and entropy) to extract complex and 

important features from the oil spill images. In other words, we intend to extract features 

descriptive enough to classify these images correctly. The CDF is a function that computes the 

probability of the random variable (𝑇) takes a value less than or equal to a real value (𝑡); the 

q-Exponential CDF is presented in Equation 4. Thus, considering that the oil spill in images is 

generally dark spots, and, in grayscale, dark pixels are close to 0, we expect that pixel windows 

that contain oil spills will have high CDFs, and pixel windows that don’t contain oil spills will 

have lower CDFs. To compute the CDF value of each pixel window, we take the mean patch 

value. We also tested the median of the image patches, but the mean resulted in better results. 

The minimum and maximum values should not be used as summary statistics because they 

would lead to CDF closer to 0 and 1, respectively. There are no references of works that used 

the q-Exponential CDF computed per each image patch, and used for classification purposes 

the way we did in this work. However, other works also used probability distributions to extract 

features from images. For instance, Rodrigues et al. [210] proposed the q-sigmoid function 

derived from non-extensive Tsallis statistics and used it for feature extraction in tasks of regions 

enhancement in ultrasound images. On the other hand, Marques et al. [208] applied the ℊF,  

distribution to perform segmentation in SAR imagery to characterize image regions. 

 

In this context, the PDF methods is applied in many situations, such as modeling chemically 

reacting turbulent flows [215]. However, as the q-Exponential CDF, no studies used the q-

Exponential PDF to extract features from images. We take the estimates parameters to compute 

the PDF value of each pixel patch. Then, the output is a feature vector composed of PDF values. 

The idea is that these values can extract some important information to aid in the oil spill 

classification task. If these values can identify some complex pattern, we believe that such 

vectors can be used for oil spill image detection.  

 
Using entropy to extract image features and classify different image textures has been widely 

used by researchers of different fields and for distinct types of image textures [136]–[138]. 

Also, according to Amigó et al. [206], entropy appears in many contexts (statistical mechanics, 

information theory, thermodynamics, etc) to measure different properties (complexity, 

randomness, uncertainty, etc). Specifically, we use the q-Exponential entropy to imagery 
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feature extraction. Given the properties of the q-Exponential distribution discussed in Section 

2 and the application of entropy in CV context, the q-Exponential entropy may provide good 

results. 

3.3 FEATURE EXTRACTION CONFIGURATIONS 

 
In this work, we will test two specific configurations to extract the features, and it is displayed 

in Erro! Fonte de referência não encontrada.. In configuration 1 we will have feature vectors 

of 3721 elements, and in the second configuration, we will have feature vectors of 4096 

elements. 
 

Table 4 - The two different configurations to extract the image features used in this worK 

 Description Configurations Output 
Configuration 1 𝑝 = 𝑞 = 64 

∆= 1 
𝑛 = 4 

Feature vector of size 3721 
values 

Configuration 2 𝑝 = 𝑞 = 256 
∆= 4 
𝑛 = 4 

Feature vector of size 4096 
values 

Source: The author (2022). 

 
Once the feature extraction is completed (Figure 11), the next step is to train the ML 

classification methods. The feature vectors will be used as input to the classification models, 

each of these vectors represents an image. Before the training process, the SMOTE technique 

(Figure 12 - see subsection 2.10 for more details) is used to handle the imbalanced dataset 

problem.  
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Figure 11 - Feature extraction step using the q-Exponential model 

 
Source: The author (2022). 

However, we also perform the classification without the SMOTE, the best result (greater 

balanced accuracy (BA)) is chosen for each case. Also, before the classification step, we apply 

a method to reduce the dimensionality, the PCA (see subsection 2.9 for more details). We also 

performed the classification process without the PCA and compared the results, choosing the 

option that resulted in the best BA. The conceptual idea is that the images with oil spills will 

produce feature vectors different from the feature vectors related to the images without oil 

spills. We expect that this difference will be big enough that the ML techniques can detect the 

oil spill.. Thus, we believe that the classification models will be able to classify these images 

with a high balanced accuracy level. 

  
 

Figure 12 - SMOTE effect 

 
Source: The author (2022). 
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4   DATASET 
 
The dataset used in this work were made available by Krestenits et al.  [7] and Krestenits et al. 

[11]. It also includes semantically annotated masks for the researchers to evaluate their 

experimental results [7]. In general, masks are generated automatically from a segmentation 

approach, this process could generate some mistakes at the input mask [216]. However, in this 

work, we are not using the masks to train the models.  

 

The referred dataset containing oil polluted sea areas was collected via the European Space 

Agency (ESA) database, the Copernicus Open Access Hub, and it has the geographic 

coordinates and timestamps information about the pollution event provided by the European 

Maritime Safety Agency (EMSA) through the Clean Sea Net service. Besides, the EMSA 

confirmed the presence of dark spots depicted in the SAR images as oil spills. The oil pollution 

records cover a period from 28 September 2015 up to 31 October 2017 while the SAR images 

were acquired from the Sentinel-1 European Satellite missions [7]. 

 

According to Krestenits et al. [7], the ground range coverage of SAR sensor is about 250 km 

with pixel spacing equal to 10 × 10 m. Satellites employed for the Sentinel-1 mission are 

equipped with a SAR system operating at C-band.  The polarization of the radar image is dual, 

i.e., vertical polarization transmitted - horizontal polarization received (VH) and vertical 

polarization transmitted - vertical polarization received (VV). To make the SAR image dataset 

only the collected raw data from the VV band were processed, following a series of pre-

processing steps in order to extract common visualizations. The image pre-processing scheme 

includes the following phases: 

 

(i) Every confirmed oil spill was located according to EMSA records.  

(ii) A region containing oil spills and possibly other contextual information of interest was 

cropped from the raw SAR image. The cropped image was re-scaled to meet the 

resolution of 1250×650 pixels.  

(iii) Radiometric calibration was applied in order to project every 1250×650 image into the 

same plane,  

(iv) A speckle filter was used to suppress the sensor noise scattered in the entire image.  

(v) A linear transformation was applied for dB to real luminosity values conversion. 



 

 

61 

Figure 13 - The image of the left side is SAR image, and the image of the right side is the corresponding 
ground truth mask 

 
Source: Adapted from Krestenits et al. [7].  

The dataset used in this study is composed of 1112 images, where 873 images have oil spills 

and 239 do not present this phenomenon. The oil spill is identified in the masks by cyan. 

Besides, the image masks identify other parts that can be of interest, such as: look-alikes (in 

red); ship (in brown); land (green); and sea surface (black), as can be visualized in Figure 13. 

However, once this work deals with detection of images that contain oil spills, only two classes 

were considered: images with oil spills and images without oil spills. In future we intend 

developing a study multiclass able to identify all the phenomena/objects in the images.  Figure 

13 presents an example of an extracted SAR image accompanied with its respective ground 

truth mask; these images are present in the referred dataset used in this paper. In this figure, we 

can see that the left image has oil spill, look-alikes, ad sea surface.  

 

Besides, another important characteristic of this dataset is that it is quite an imbalanced dataset. 

An imbalanced dataset is verified when one of the target classes has a small number of instances 

compared to other classes [200]. In this case, the images with oil spill comprise about 78% of 

the entire dataset, and the remaining are the images without oil spills. Figure 14 presents a 

sample of four images without oil spills extracted from the used dataset.  
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Figure 14 - Sample of images without oil spills 

 
Source: Adapted from Krestenits et al. [7].  

On the other hand, Figure 15 presents a sample of four images with oil spills. By visual analysis, 

we can conclude that the task of identifying the images with and without oil spills is hard, once 

the oil spill’s pattern can be easily confounded by the named look-alikes. Indeed, some 

researchers of the oil spill detection field confirm that the most challenge verified in the oil spill 

image identification is the fact that the look-alikes be very similar phenomena compared to the 

oil spills. 
 

Figure 15 - Sample of images with oil spills 

 
Source: Adapted from Krestenits et al. [7].  
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4.1 VISUAL ANALYSIS OF THE OIL SPILL DATASET 
 
For visual analysis purposes, we show Figures 16 and 17. We present images with and without 

oil spills in these figures and the respective masks and heatmaps. The real images and masks 

are available in the dataset used in this work; the heatmaps were constructed using the proposed 

q-EFE approach. Such heatmaps were provided by transforming the feature vectors (output of 

the feature extraction process using the q-EFE (Figure 11)) in matrices preserving the spatial 

information. We generated the specific heatmaps in Figures 16 and 17 using configuration 2 

(Erro! Fonte de referência não encontrada.).  
 

Figure 16 - Images with oil spills and their respective masks and heatmaps 

 
Source: Adapted from Krestenits et al. [7].  

In Figure 16, we observe that the oil spill in the original images (left side) are dark spots, 

considering that such dark spots are represented by the cyan color in the mask (middle). In the 

heatmaps (right side), the oil spills appear, in general, as darker pixels; this pattern repeats in 

the three heatmaps displayed. Figure 17 shows the images, masks, and heatmaps without oil 

spills. In this figure, we see that, for example, land (represented by green in the masks) appears 

in the heatmaps as lighter pixels. On the other hand, the look-alikes in both classes (with and 
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without oil spills) appear, in general, also as darker pixels, ratifying the challenge of 

discriminating between oil spills and look-alikes. 

 
Figure 17 - Images without oil spills and their respective masks and heatmaps 

 
Source: Adapted from Krestenits et al. [7].  
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5  EXPERIMENTS’ RESULTS 

 
This section will show the obtained results for the several techniques applied in this research. 

For each specific configuration test, we display the best result; the results of all experiments are 

in the appendices. Then, the results are analyzed and compared. Considering the ML methods 

used, Erro! Fonte de referência não encontrada. presents the values used in the grid search 

for all the methods to get the best hyperparameters. Hyperparameters are parameters of the ML 

and DL models whose values characterize the models actually used in the learning process (e.g., 

neural network architecture, activation functions, kernel type). Figure 18 presents an outline 

that synthesizes the ran experiments.  
 

Table 5 - Parameters values for the grid search 

Method Parameters 
MLP Hidden_layer_sizes: [50, 100, 500, 1000] 

Activation: [identity, logistic, tanh, relu] 
Solver: [lbgs, sgd, adam] 
Learning_rate: [(constant), (invscaling), (adaptive)] 

RF N_estimators: [10, 50, 100, 200, 500] 
Max_features: [auto, sqrt, log2, 5, 10, 30] 
Max_depth: [2, 8, 16, 32, 64, 128] 
Min_samples_split: [1, 2, 4, 8, 16, 24] 
Min_samples_leaf: [1, 2, 5, 10, 15, 30] 

SVM C: [0.1, 1, 100, 1000] 
Gamma: [auto, 1, 0.01, 0.0001] 
Kernel: [linear, rbf, sigmoid] 

LR Penalty: [l1, l2] 
C: [100, 10, 1, 0.1, 0.01, 0.001] 

XGB N_estimators: [100, 500, 1000] 
Learning_rate: [0.1, 0.05, 0.01] 
Max_depth: [2, 8, 16, 64, 128] 
Colsample_bytree: [0.3, 0.8, 1] 
Gamma: [0, 1, 5] 

Source: The author (2022). 
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Figure 18 - Outline of the experiments 

 
Source: The author (2022). 

5.1 q-EFE + ML RESULTS WITH CONFIGURATIONS 1 AND 2 

In this subsection, we present the obtained results for the proposed approach, q-Exponential-

CV-B, considering configurations 1 and 2, six classification machine learning methods, five 

dataset sizes to train the models, and three related q-Exponential functions (CDF, PDF, and 

entropy). In this case, we also tested the three CNN architectures used in this work (Figure 8). 

However, again, the architecture of the CNN_2 resulted in the best performances from the three 

CNNs tested. Thus, we only display the CNN_2 results. Figure 19 presents a results 

summarization of the exeperiments using configurations 1 and 2. However, the next subsections 

presents more detailed results. 
Figure 19 - Results overview considering configurations 1 and 2 

 
Source: The author (2022). 
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5.1.1 CDF  

Erro! Fonte de referência não encontrada. present the best and worst results using four 

dataset sizes (200, 400, 1002, 1572 using SMOTE, and 1572 using DA) to generate the 

respective feature vectors derived from the proposed q-EFE approach using the CDF, 

considering configurations 1 and 2. This quantity and specific images are the same used to train 

the CNNs models and to generate the feature vectors of the classical CV techniques. Indeed, 

the datasets used in this work are the same for all the techniques and classification models tested 

in this study. For instance, Erro! Fonte de referência não encontrada. shows that, considering 

200 images and configuration 1, the RF achieved the best 𝐵𝐴𝑐 (76.11%), and the CNN_2 

obtained the worst result, a 𝐵𝐴𝑐 of 52.47%. Also, using 400 images to generate the respective 

400 feature vectors the XGB achieved the best 𝐵𝐴𝑐 (77.84%), and the LR obtained the worst 

result, a 𝐵𝐴𝑐 of only 47.85%. and for 1002 images, the XGB was the best methods. For the 

experiments using the q-EFE approach, we also applied the PCA to dimensionality reduction 

before the classification steps. The models that were better without PCA are indicated in the 

table with “*”. 
 

Table 6 - Metric results achieved with q-EFE approach using four dataset sizes to train the classification models, 
CDF, and configuration 1 and 2. The best value considering each dataset size and each column is highlighted in 

bold; worst is underlined. The * means that the results were obtained without PCA. 

Dataset size Configuration Method 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 
200 1 RF 0.6727 0.9636 0.6091 0.9130 0.7611 

 CNN_2* 0.4000 0.8181 0.3103 0.7391 0.5247 
 

2 RF 0.5636 0.9148 0.4942 0.8260 0.6601 
 CNN_2 0.3545 0.7857 0.2528 0.7391 0.4960 

 
400 1 LR 0.5545 0.7794 0.6091 0.3478 0.4785 

 XGB 0.6727 0.9814 0.6022 0.9545 0.7784 
 

2 LR 0.6181 0.8461 0.6321 0.5652 0.5987 
 XGB 0.5636 0.9534 0.4712 0.9130 0.6921 

 
1002 1 RF 0.7454 0.7920 0.9195 0.0869 0.5032 

  XGB 0.7818 0.9090 0.8045 0.6956 0.7501 
  RF 0.7636 0.7904 0.9540 0.0434 0.4987 
 2 XGB 0.7636 0.8144 0.9080 0.2134 0.5627 

 
1572 

(SMOTE) 
1 RF 0.7272 0.9130 0.7241 0.7391 0.7316 
 LR 0.6000 0.7866 0.6781 0.3043 0.4912 

 
2 SVM 0.7545 0.7830 0.9540 0.0000 0.4770 

  XGB 0.6636 0.9032 0.6436 0.7391 0.6914 
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1572 1 XGB 0.7000 0.9090 0.6896 0.7391 0.7143 
(DA)  CNN_2 0.3363 0.8181 0.2068 0.8260 0.5164 

 2 RF 0.7363 0.9027 0.7471 0.6956 0.7213 
  CNN_2 0.2727 1.0000 0.0804 1.0000 0.5402 

 
Source: The author (2022). 

5.1.2 PDF  

Erro! Fonte de referência não encontrada. present the results using four dataset sizes (200, 

400, 1002, 1572 using SMOTE, and 1572 using DA) to generate the respective feature vectors 

derived from the proposed q-EFE approach using the PDF, considering configurations 1 and 2. 

In this situation, for instance, using 1002 images and configuration 1, the CNN_2 without PCA 

reached the best result and the MLP presented the worst performance.  
Table 7 - Metric results achieved with q-EFE approach using four dataset sizes to train the classification 

models, PDF, and configurations 1 and 2. The best value considering each dataset size and each column is 
highlighted in bold; worst is underlined. The * means that the results were obtained without PCA 

Dataset size Configuration Method 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 
200 1 RF 0.2090 0.0000 0.0000 1.0000 0.5000 

 SVM 0.2090 0.0000 0.0000 1.0000 0.5000 
 LR 0.2090 0.0000 0.0000 1.0000 0.5000 
 XGB 0.2090 0.0000 0.0000 1.0000 0.5000 
 CNN_2* 0.7000 0.8750 0.7241 0.6086 0.6664 

 
2 MLP 0.2454 0.6428 0.1034 0.7826 0.4430 

  CNN_2 0.7090 0.8571 0.7586 0.5217 0.6401 
 

400 1 MLP 0.2454 0.6428 0.1034 0.7826 0.4430 
 CNN_2* 0.6909 0.8840 0.7011 0.6521 0.6766 

 
2 MLP 0.2363 0.6153 0.0919 0.7826 0.4372 

  CNN_2 0.6545 0.9016 0.6321 0.7391 0.6856 
 

1002 1 MLP 0.6727 0.8311 0.7356 0.4347 0.5852 
 CNN_2* 0.7000 0.8857 0.7126 0.6521 0.6824 

 
2 RF 0.2090 0.0000 0.0000 1.0000 0.5000 
 SVM 0.2090 0.0000 0.0000 1.0000 0.5000 
 LR 0.2090 0.0000 0.0000 1.0000 0.5000 
 XGB 0.2090 0.0000 0.0000 1.0000 0.5000 
 CNN_2 0.2272 0.6000 0.0689 0.8260 0.4475 

 
1572 

(SMOTE) 
1 MLP 0.2363 0.6153 0.0919 0.7826 0.4372 
 CNN_2 0.7000 0.8648 0.7356 0.5652 0.6504 

 
2 MLP 0.2363 0.6363 0.0804 0.8260 0.4532 
 CNN_2 0.6818 0.8939 0.6781 0.6956 0.6869 

 
1572 1 MLP 0.6909 0.8533 0.7356 0.5217 0.6286 
(DA)  CNN_2* 0.5181 0.9047 0.4367 0.8260 0.6314 

 2 MLP 0.6454 0.8636 0.6551 0.6086 0.6319 
  CNN_2 0.4454 0.9062 0.3333 0.8695 0.6014 



 

 

69 

 
Source: The author (2022). 

5.1.3 Entropy  

Erro! Fonte de referência não encontrada. present the results using four dataset sizes (200, 

400, 1002, 1572 using SMOTE, and 1572 using DA) to generate the respective feature vectors 

derived from the proposed q-EFE approach using the Entropy, considering configurations 1 and 

2.  

Table 8 - Metric results achieved with q-EFE approach using four dataset sizes to train the classification 
models, Entropy, and configurations 1 and 2. The best value considering each dataset size and each column is 

highlighted in bold; worst is underlined. The * means that the results were obtained without PCA 

Dataset size Configuration Method 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 
200 1 RF 0.6454 0.8428 0.6781 0.5217 0.5999 

 CNN_2 0.7909 0.7909 1.0000 0.0000 0.5000 
 

2 XGB 0.6272 0.8484 0.6436 0.5652 0.6044 
 CNN_2 0.2090 0.0000 0.0000 1.0000 0.5000 

 
400 1 SVM 0.7818 0.7889 0.9885 0.0000 0.4942 

 XGB 0.6545 0.8450 0.6896 0.5217 0.6056 
 

2 XGB 0.6272 0.8382 0.6551 0.5217 0.5884 
 CNN_2 0.7909 0.7909 1.0000 0.0000 0.5000 

 
1002 1 RF 0.7636 0.7904 0.9540 0.0434 0.4987 

 XGB 0.7636 0.8144 0.9080 0.2134 0.5627 
 

2 MLP 0.7545 0.7830 0.9540 0.0000 0.4770 
 XGB 0.7545 0.8260 0.8735 0.3043 0.5889 

 
1572 

(SMOTE) 
1 MLP 0.2545 0.7272 0.0919 0.8695 0.4807 
 RF 0.6727 0.8311 0.7356 0.4347 0.5852 

 
2 MLP 0.2818 0.7857 0.1264 0.8695 0.4980 
 SVM 0.7181 0.8255 0.8160 0.3474 0.5819 

 
1572 
(DA) 

1 RF 0.4454 0.8611 0.3563 0.7826 0.5694 
 LR 0.3181 0.7307 0.2183 0.6956 0.4570 

 
2 MLP 0.2272 0.7500 0.0344 0.9565 0.4955 
 XGB 0.5545 0.8958 0.4942 0.7826 0.6384 

Source: The author (2022). 

 

5.3 LBP  + ML AND GLCM + ML RESULTS  

In this subsection, we present the experiment results for the oil spill detection using two 

methods that involves a classical computer vision technique, LBP and GLCM, described in 
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subsection 2.6. We used the traditional CV techniques to extract features from the SAR oil spill 

images, and, then, used six machine learning methods, including one deep learning model 

(CNN), to classify the images. These methods are also used to classify the feature vectors 

provided by the q-EFE approach proposed in this study. Also, we tested the three CNN 

architectures used in this work (Figure 8), however, as the architecture of the CNN_2 resulted 

in the best performances between the CNNs we only display the results of this model.  Tables 

below only shows the best and worst results for each experiment. Table 9 present the results 

using four dataset sizes (200, 400, 1002, 1572 using SMOTE, and 1572 using DA) to generate 

the respective feature vectors derived from the LBP CV technique. 

 
Table 9 - Metric results achieved with q-EFE approach using four dataset sizes to train the classification 

models and LBP. The best value considering each dataset size and each column is highlighted in bold; worst is 
underlined. The * means that the results were obtained without PCA 

Dataset size Method 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 
200 LR_LBP 0.8000 0.8155 0.9655 0.1739 0.5697 

 CNN_2_LBP 0.7727 0.7870 0.9770 0.0000 0.4885 
 

400 MLP_LBP 0.7909 0.8404 0.9080 0.3478 0.6279 
 SVM_LBP 0.7909 0.7909 1.0000 0.0000 0.5000 

 
1002 MLP_LBP 0.7909 0.7909 1.0000 0.0000 0.5000 

 RF_LBP 0.7909 0.7909 1.0000 0.0000 0.5000 
 SVM_LBP 0.7909 0.7909 1.0000 0.0000 0.5000 
 XGB_LBP 0.7727 0.8163 0.9195 0.2173 0.5684 
 CNN_2_LBP 0.7909 0.7909 1.0000 0.0000 0.5000 

 
1572 MLP_LBP 0.7727 0.8780 0.8275 0.5652 0.6964 

(SMOTE) CNN_2_LBP 0.5818 0.7594 0.6896 0.1739 0.4317 
 

1572 RF_LBP 0.7909 0.8076 0.9655 0.1304 0.5479 
(DA) LR_LBP 0.8272 0.8469 0.9540 0.3478 0.6509 

 
Source: The author (2022). 

 
In Table 10, we present the experiment results for the oil spill detection using GLCM and 

Haralick features. Table 10 present the results using four dataset sizes (200, 400, 1002, 1572 

using SMOTE, and 1572 using DA) to generate the respective feature vectors derived from the 

GLCM CV technique. 
 

Table 10 - Metric results achieved with q-EFE approach using four dataset sizes to train the 
classification models and GLCM. The best value considering each dataset size and each column is highlighted in 

bold; worst is underlined. The * means that the results were obtained without PCA 

Dataset size Method 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 
200 MLP_GLCM 0.2363 0.6666 0.0689 0.8695 0.4692 
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 XGB_GLCM 0.6909 0.9344 0.6551 0.8260 0.7406 
 

400 MLP_GLCM 0.2372 0.6700 0.0700 0.8700 0.4700 
 XGB_GLCM 0.6953 0.9362 0.6598 0.8297 0.7447 

 
1002 MLP_GLCM 0.7909 0.7909 1.0000 0.0000 0.5000 

 RF_GLCM 0.8181 0.8453 0.9425 0.3478 0.6451 
 SVM_GLCM 0.7909 0.7909 1.0000 0.0000 0.5000 

 
1572 MLP_GLCM 0.7909 0.7909 1.0000 0.0000 0.5000 

(SMOTE) RF_GLCM 0.7909 0.8902 0.8390 0.6086 0.7238 
 

1572 SVM_GLCM 0.7909 0.7909 1.0000 0.0000 0.5000 
(DA) LR_GLCM 0.8545 0.8817 0.9425 0.5217 0.7321 

 
Source: The author (2022). 

5.4 CNN AND RESNET50 RESULTS WITH ORIGINAL IMAGES 

In this subsection, the results reached using the CNNs and ResNet50 models are shown. Figure 

8 shows the applied CNN architectures for comparison purposes. Table 11 show the metrics 

results achieved by CNN_1, CNN_2, CNN_3 and ResNet50. In this table, we present the best 

and worst performances for the three CNNs and the Resnet, considering four dataset sizes to 

train the models (200, 400, 1002, and 1572 images). The set with 1002 images is the original 

train dataset, the others have the same number of images in each class. For the cases with 200 

and 400 images, the examples were randomly chosen. The set with 1572 images was augmented 

by Data Augmentation (DA. The test set is the same for all the experiments of this work, which 

includes 110 images, being 87 with oil spills and 23 without oil spills.  
 

Table 11 - Metric results achieved by the three CNNs using four dataset sizes for training, including 
using Data Augmentation (DA). The best value of each column is highlighted in bold and the worst is underlined 

CNN_1 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 
200 0.5909 0.9375 0.5172 0.8695 0.6934 
1002 0.8090 0.8113 0.9885 0.1304 0.5594 

 
CNN_2 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 

400 0.5636 0.9333 0.4827 0.8695 0.6761 
1002 0.7909 0.7909 1.0000 0.0000 0.5000 

 
CNN_3 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 

1002 0.8272 0.8469 0.9540 0.3478 0.6509 
1572 (DA) 0.7454 0.7809 0.9425 0.0000 0.4712 

 
RenNet50 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝑆𝑝 𝐵𝐴𝑐 

200 0.7636 0.7961 0.9425 0.0869 0.5147 
1572 0.7818 0.7889 0.9885 0.0000 0.4942 

 
Source: The author (2022). 
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5.5 COMPARISON OF RESULTS 

Tables 12 and 13 presents 𝐵𝐴𝑐 mean and standard deviation provided by the q-EFE approach, 

using configurations 1 and 2, and four data set sizes to train the models (200, 400, 1002, 1572), 

the sizes 200 and 400 images were chosen to test small balanced datasets, 1002 images comprise 

the original and imbalanced dataset, and 1572 images is a training dataset composed by the 

original data plus DA. The mentioned training datasets do not include the test set, which consist 

of 110 images (88 labeled as ‘oil spills’ and 22 labeled as ‘no oil spills’). All the models 

analyzed here considered the same test set. Also, all the training processes took 10% of the 

training data to validation. Ten rounds provided these measures. For the training sets of sizes 

200 and 400, we randomly chose an equal number of images from both classes from the original 

training data set of size 1002, with 786 images “with oil spill” and 216 “without oil spill”. We 

used DA to complete the training dataset with 1572 images, where 786 images have oil spills 

and 786 have not, thus only the minority class (“without oil spill”) were augmented.  
 

Table 12 - Descriptive statistics for the balanced accuracy 𝐵𝐴𝑐 obtained in 10 rounds, considering the 
four training set sizes, the ML models, and configuration 1. The best value of each column and different training 

sizes are highlighted in bold and the worst is underlined for mean, median and, standard deviation 

Dataset  
size 

Model Mean Median Standard  
Deviation 

Maximum Minimum 

200 MLP 0.6333 0.6312 0.0755 0.7496 0.5000 
 RF 0.6979 0.7025 0.0173 0.7208 0.6684 
 SVM 0.6934 0.6926 0.0037 0.6996 0.6869 
 LR 0.6240 0.6380 0.0256 0.6524 0.5814 
 XGB 0.6800 0.6921 0.0340 0.7278 0.6224 

 
400 MLP 0.5657 0.5628 0.0355 0.6221 0.4897 
 RF 0.6834 0.6965 0.0273 0.7188 0.6364 
 SVM 0.7022 0.6984 0.0094 0.7258 0.6926 
 LR 0.4804 0.4836 0.0260 0.5277 0.4395 
 XGB 0.6724 0.6735 0.0204 0.7073 0.6409 

 
1002 MLP 0.5000 0.5000 0.0000 0.5000 0.50000 
 RF 0.5197 0.5278 0.0237 0.5422 0.5000 
 SVM 0.5043 0.5000 0.0137 0.5434 0.5000 
 LR 0.5278 0.5319 0.0149 0.5377 0.5000 
 XGB 0.7348 0.7341 0.0292 0.7833 0.6894 

 
1572 MLP 0.6679 0.6631 0.0284 0.7328 0.6344 
 RF 0.6544 0.6420 0.0379 0.7488 0.6151 
 SVM 0.7468 0.7488 0.0065 0.7501 0.7283 
 LR 0.6263 0.6266 0.0125 0.6484 0.5992 
 XGB 0.7399 0.7344 0.0123 0.7648 0.7258 

 
Source: The author (2022). 
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For the results presented in Tables 12 and 13, configurations 1 and 2, it was used PCA to 

dimensionality reduction, the features vectors were reduced to 20 components, other component 

sizes were tested (10, 40, 50, 100) with inferior performances. In Table 12, the results concern 

the proposed CV methodology based on q-EFE using configuration 1, for 200 training images, 

RF presented the higher mean for the BAc (69.79%), closely followed by SVM (mean 𝐵𝐴𝑐 of 

69.34%). Also, SVM presented the best performances for 400 and 1572 training images (mean 

BAc of 74.68% for 1572 images). XGB achieved the best result for the imbalanced dataset 

(1002 images) and it was the second-best for 1572 images training. Besides, LR achieved the 

worst 𝐵𝐴𝑐 for 1572 images (62.63% of BAc. Also, for 1002 images, the MLP had a very poor 

𝐵𝐴𝑐 (50.00%), which means that the model was incapable of distinguishing the images and, 

consequently, considering all the test examples as the same class (i.e., “with oil spill”). This 

behavior may lead to conclude that the MLP has a limited ability to deal with the imbalanced 

data sets. SVM had the smallest standard deviations for most situations, which means that this 

model is not much sensitive to small input variations. In Table 13, we present the results of 

configuration 2 used with the q-EFE. Again, SVM was the method that presented the best 

performances, except for the imbalanced dataset (1002 training images). In this case, the XGB 

was again the best method. Besides, the results of configuration 1 were superior compared to 

the results reached by configuration 2, once the best model considering configuration 2 

achieved a mean BAc only close to 70%, against a mean BAc close of 75% of the best model 

considering configuration 1. 
 

 
Table 13 - Descriptive statistics for the balanced accuracy 𝐵𝐴𝑐 obtained in 10 rounds, considering the 

four training set sizes, the ML models, and configuration 2. The best value of each column and different training 
sizes are highlighted in bold and the worst is underlined for mean, median and, standard deviation 

Dataset  
size 

Model Mean Median Standard  
Deviation 

Maximum Minimum 

200 MLP 0.6146 0.6261 0.0601 0.6889 0.5179 
 RF 0.6635 0.6636 0.0260 0.6934 0.6051 
 SVM 0.6652 0.6496 0.0506 0.7488 0.6119 
 LR 0.6010 0.6019 0.0265 0.6409 0.6921 
 XGB 0.6457 0.6445 0.0239 0.6921 0.6186 

 
400 MLP 0.5980 0.6027 0.0583 0.6606 0.4500 
 RF 0.6893 0.6792 0.0265 0.7291 0.6499 
 SVM 0.7018 0.7057 0.0101 0.7086 0.6799 
 LR 0.5506 0.5664 0.0358 0.5802 0.4657 
 XGB 0.6684 0.6761 0.0423 0.7266 0.5879 

 
1002 MLP 0.5000 0.5000 0.0000 0.5000 0.5000 
 RF 0.4984 0.5009 0.0208 0.5249 0.4642 
 SVM 0.5178 0.5022 0.0566 0.6779 0.4827 
 LR 0.5319 0.5319 0.0000 0.5319 0.5319 
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 XGB 0.6418 0.6561 0.0505 0.6996 0.4827 
 

1572 MLP 0.6298 0.6254 0.0230 0.6689 0.5934 
 RF 0.5649 0.5185 0.0986 0.7156 0.4482 
 SVM 0.7069 0.7066 0.0150 0.7328 0.6709 
 LR 0.6360 0.6324 0.0122 0.6541 0.6202 
 XGB 0.6821 0.6788 0.0205 0.7098 0.6421 

 
Source: The author (2022). 

 
On the other hand, Table 14 presents the performances obtained by the ResNet50, CNNs, LBP 

+ ML, and the GLCM + ML approaches. All models were trained and tested with the same 

datasets used with the proposed q-EFE approach. The performances show that LBP provided 

the worst results in two situations (200 and 1002 images), and ResNet50 reached the worst 

results in the other two cases (400 and 1572 images). On the other hand, the methods with 

GLCM provided better results compared with LBP and DL (ResNet50 and CNNs) for all dataset 

sizes. XGB using 200 images provided the best GLCM result (74.06%), approaching SVM with 

q-EFE, configuration 1, and 1572 images (74.68%). Also, in Table 14, we do not report standard 

deviation related to SVM, LR, and XGB because, as we use the same input (feature vectors) 

and the same seed (random state) in the grid search step, the results for these methods do not 

change. MLP and RF are initialized randomly, and, even for the same input, the results can 

vary. For the results corresponding to the q-EFE approach, there is a variation for SVM, LR, 

and XGB because we perform a PCA before each round, and the input data may change. 
 

Table 14 - Mean and standard deviation for BAc obtained in 10 rounds MLP, RF, ResNet50 and CNNs, and 
BAc reached by SVM, LR, and XGB considering the four training set sizes and the LBP and GLCM CV techniques. 
The best value of each column and different training sizes are highlighted in bold, and the worst is underlined for mean and 

standard deviation. 

Dataset  
size 

Model Mean ± standard 
deviation 

Dataset  
size 

Mean ± standard 
deviation 

200 MLP_LBP 0.5104 ± 0.0331 400 0.5015 ± 0.0050 
 RF_LBP 0.5000 ± 0.0000  0.5013 ± 0.0121 
 SVM_LBP 0.5000  0.5000 
 LR_LBP 0.5697  0.5422 
 XGB_LBP 0.5147  0.5697 
 MLP_GLCM 0.5125 ± 0.0397  0.5256 ± 0.0539 
 RF_GLCM 0.7215 ± 0.0136  0.7279 ± 0.0219 
 SVM_GLCM 0.5409  0.7031 
 LR_GLCM 0.6984  0.7258 
 XGB_GLCM 0.7406  0.6996 
 CNN_1 0.6873 ± 0.0219  0.6359 ± 0.0253 
 CNN_2 0.6725 ± 0.0621  0.6859 ± 0.0380 
 CNN_3 0.6559 ± 0.0573  0.5927 ± 0.0647 
 ResNet50 0.5147 ± 0.0266  0.4953 ± 0.0343 

 
1002 MLP_LBP 0.5000 ± 0.0000 1572 0.5747 ± 0.0673 
 RF_LBP 0.4994 ± 0.0018  0.5727 ± 0.0513 
 SVM_LBP 0.5000  0.6349 
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 LR_LBP 0.5582  0.6509 
 XGB_LBP 0.5684  0.6496 
 MLP_GLCM 0.5056 ± 0.0165  0.5448 ± 0.0545 
 RF_GLCM 0.6360 ± 0.0185  0.6436 ± 0.0036 
 SVM_GLCM 0.5000  0.5000 
 LR_GLCM 0.5102  0.7321 
 XGB_GLCM 0.6234  0.6451 
 CNN_1 0.6325 ± 0.0300  0.6299 ± 0.0254 
 CNN_2 0.6557 ± 0.0483  0.5715 ± 0.0472 
 CNN_3 0.5473 ± 0.0679  0.5169 ± 0.0257 
 ResNet50 0.5110 ± 0.0186  0.4942 ± 0.0224 

 
Source: The author (2022). 

 
Figure 20 presents the BAc means for q-EFE using configuration 1 and the results with GLCM. 

We plotted such results because they were the best ones. In general, the GLCM presented the 

higher BAc means for 200 and 400 images, and the q-EFE presented the higher BAc means for 

1002 and 1572 images. However, the SVM using the q-EFE outperformed the other methods 

with mean BAc of 74.68% for 1572 images.  
 

Figure 20 - Average balanced accuracy of 10 rounds for the test set, considering the four dataset sizes, the q-EFE 
and the GLCM 

 
Source: The author (2022). 

 

The results indicate that the SVM had the best performance for detecting oil spills in SAR 

imagery, followed by XGB, using the proposed q-EFE approach, configuration 1 and DA. The 
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comparisons indicate that this new methodology for identifying oil spills in images is promising 

and represents an advance in this field.  

 

Besides, we made a test to evaluate the generalization power of the best models of configuration 

1 (SVM and XGB). In the grayscale conversion step (Figure 10), we used a continuous 

grayscale instead of a discrete one to convert the images from the test set. We obtained a BAc 

of 78.97% using SVM and a BAc of 73.86% using XGB. Taking the regular accuracy into 

consideration, we obtained 82.72% using SVM and 66.36% with XGB. Thus, the SVM was 

more powerful in the generalization task than the XGB. The generalization ability assessment 

is essential, as, in practice, new images may have unseen patterns in the training stage.  

 

Also, we performed an analysis of the scalability of the q-EFE. Table 15 shows the required 

time to extract features and train the best-tested models presented in Figure 20, and the DL 

models applied for comparison purposes, according to the software configurations previously 

presented. Thus, analyzing Table 15, we can see that the q-EFE is the method requiring the 

greatest computational effort in terms of time. However, the time issue is justified by the 

performance reached with q-EFE. And this disadvantage is only verified for the feature 

extraction and to train the model. As with all ML-based models, once the model is already 

trained, the test step is quick. 

  
Table 15 - Required time to extract features and train the best models presented in this work 

Models  

(1572 images) 

SVM q-EFE LR_GLCM CNN_1 CNN_2 CNN_3 ResNet50 

Time in seconds 81744 110 600 1300 1800 2800 

Source: The author (2022). 
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6 WEB APP FOR OIL SPILL DETECTION  

We also designed a simple web app foi oil spill detection in this work. This web app relies on 

a novel feature extraction technique based on the q-Exponential combined with SVM or LR. 

The following steps are necessary to use the web app (Figure 21): 

• First, the image is loaded in a chosen size by the user. This resize process is performed 

by the “Pillow” library using the “resize” function. Then, the image is converted to a 

grayscale representation utilizing a function (mean) of the “numpy” library. 

• Then, the user must select whether the feature map related to the inputted image should 

be displayed after the q-Exponential-based feature extraction.  

• To display this feature map and to perform the classification using the SVM or LR 

model, we apply the referred technique to extract features based on the q-Exponential 

CDF. Then, the chosen ML model is used to perform the classification and predict the 

class.  

• Finally, the user will see the classification results displayed.  

 
 

Figure 21 - Steps of use of the Oil Spill Detection Web App 

 
Source: The author (2022). 

In this context, the feature extraction performed in this proposed system is the very same 

presented in Section 3, which is based on the q-Exponential distribution computes the CDF 
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using patches of the image. We maximize the q-Exponential log-likelihood function for each 

patch to estimate the corresponding parameters. We then take the mean pixel of the patch and 

calculate the corresponding CDF. If the original q-Exponential log-likelihood presents 

estimation problems, the corrected function is used, as detailed in [203]. After this process, we 

have the feature vectors used to train and test an SVM or an LR model. 

 
In Figure 22, we show the web app initial view, with a summary description for the user. 
 

Figure 22 - This is the first view encountered by the user of the web app for oil spill detection 

 
Source: The author (2022). 

 
In Figure 23, we present how the user must start to interact with the system. He must choose the 

image size (“64x64” or “256x256”). If the user does not choose any of these two options, the system 

will set the default value of the image size, which is “64x64”. Then, the user must choose whether 

they want to see the corresponding feature map. Again, if the user does not choose any of the two 

options, the system will set the default choice for this question, which is “Yes, I do.”.  
Figure 23 - View of the left side of the oil spill web app, where the selects the image size and chooses 

whether the feature map should or not be displayed 

 
Source: The author (2022). 

 
Then, the user must upload an image from their computer. Figure 24 presents the local to upload 

the image.  
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Figure 24 - Local where the user must upload an image 

 
Source: The author (2022). 

After the upload step, the user chooses which machine learning method will perform the 

classification task (Figure 25).  

 
 

Figure 25 - Selection of the machine learning method 

 
Source: The author (2022). 

 

Next, to start the feature extraction and classification processes, the user must click in the “Run” 

button (Figure 26). 
 

Figure 26 - Button Run to start the process 

 
Source: The author (2022). 

 
When the button “Run ” is clicked, the uploaded image is shown on the screen, as the image size. 

The uploaded image will be resized according to the image size chosen by the user in the initial 

process. After that, the process of feature extraction begins and the user must wait for the process 

to be completed to see the result. While the feature extraction is processed, appears on the screen a 

message for the user to wait for the end of the process. If the user did choose to see the correspondent 

feature map, it would be presented on the screen before the classification result is shown. Then, the 

classification result appears for the user plus the predicted class and probability of such result using 

an SVM or LR pre-trained model. Figure 27 presents a feature map generated by our proposed 

interface.   
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Figure 27 - Feature map generated by the oil spill detection web app 

 
Source: The author (2022). 

Besides, Figure 28 shows how the classification result, the chosen machine model, the 

probability of such outcome, and the predicted class are displayed for the user.  
 

Figure 28 - Classification result, probability of the result according to pre-trained ML model, and 
predicted class 

 
Source: The author (2022). 

 

 

 
  



 

 

81 

7   CONCLUSION 

This work proposed a new images feature extractor based on q-Exponential distribution that 

aimed to detect oil spills in SAR images. Indeed, the results obtained by our proposed 

methodology outperformed other well-known and succeed computer vision and deep learning 

models. 

 

Oil spills in seas and oceans are a specific environmental disaster caused by humans with a high 

potential for damage. Such events can cause impacts that can be seen in the marine environment, 

human health, and the economy. In this context, the whole environment can be negatively and 

extensively affected. It may cause the death of thousands of plants and animals, and contaminate 

huge areas, including the atmospheric air. Besides, oil spills can directly affect the health of the 

oil clean-up workers. They can also cause significant economic exes with clean-up activities, 

government tax, and losses of fishermen and tourism businesses. Because of this, it is essential 

for rapid oil spill identification. In this context, this research proposed a novel feature extractor 

based on the q-Exponential probabilistic distribution to comprise, along with machine learning 

models, a computer vision methodology to detect oil spills automatically and, hence, avoid 

more significant catastrophic impacts. 

 

The oil spill detection is generally made using SAR images. This specific radar is very useful 

for the oil spill detection task because it is a kind of radar capable of differentiating the oil and 

seawater characteristics. However, even using SAR imagery, one big challenge in this task 

involves the common look-alike occurrences. Such phenomenon is denominated as similar to 

oil spill events, but it is natural phenomena such as wind shadow and wave movements. 

 

In this context, our proposed feature extractor based on the q-Exponential distribution (q-EFE) 

was developed to handle the look-alike problems and detect the oil spills accurately. The q-

Exponential model is used in the reliability field also because of its capability to fit rare events 

well (power-law behavior). In reliability, rare events are events with a low occurrence 

probability, e.g., systems that rarely fail. In the oil spill context, the oil spills generally appear 

in the images as small dark spots; such image pieces can be considered rare events because they 

are small parts compared to the whole image. This is the motivation to use the q-Exponential 

distribution in this work. The quantitative measuring of the oil spill average size and its relation 

with the whole image is a topic of ongoing research.  



 

 

82 

 

Thus, we computed the CDF, PDF, and entropy functions according to the methodology 

proposed in this work, detailed the feature extraction from SAR images, and performed the 

classification. We executed several experiments using such q-Exponential related functions, 

and the CDF achieved the best results compared to PDF and entropy functions. These best 

results can be explained by the fact that CDF values are naturally within the interval [0, 1], 

which could be important to the tested classifiers.  

 

Besides, we also performed several experiments using ResNet50, other deep learning models 

(three architectures of CNNs) and two classical CV features extractors (LBP and GLCM). Also, 

we applied five ML models (MLP, RF, SVM, LR, and XGB) and one DL model (CNN) 

combined with the proposed q-EFE and combined with LBP and GLCM. The CDF 

outperformed the applied methods considering the entire dataset without data augmentation 

techniques (1002 images) and considering the dataset plus data augmentation (1572 images). 

The SVM and XGB were the best classifiers tested; SVM was slightly superior. We also 

performed a generalization test considering these two best ML models, SVM and XGB, and the 

SVM was superior.  

 

The results indicate that this new methodology for identifying oil spills in images is promising 

and represents an advance in this field. It can be used online to monitor oil spills in seas, making 

possible damage reduction considering a risk framework and the safety barriers to prevent 

and/or mitigate oil spill consequences. The results showed that there is space for improvements 

in the 𝐵𝐴𝑐 levels. We believe that, with more data, we can improve the achieved performances. 

 

7.1 WORK LIMITATIONS 

Limitations encountered during the development process of this work are summarized below. 

We considered: 

• The grayscale range (0 - 255);  

• One color channel; 

• Patches of size 4 x 4; 

• A single dataset. Therefore, despite being promising, the obtained results are 

specifically related to it and are not readily extendible to other datasets. 
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7.2 FUTURE WORKS 

In developing this work, we found some new perspectives to improve the results achieved in 

this research. In the following, we list topics of ongoing and/or future research: 

 

• To test other configurations beyond the tested in this research (different patch sizes, 

different strides, image sizes, color ranges, color channels, etc.), aiming for better 

results; 

• To apply the proposed approach to other oil spill datasets, including datasets constructed 

by images generated with another type of radars and possibly datasets of images 

generated by drones; 

• To test other deep learning models such as Generative Adversarial Networks (GANs), 

Long Short-Term Memory (LSTM), and others.  

• To research works that propose semiautomatic methodologies to identify oil spills; 

• To test other probabilistic distributions as replacement of the q-Exponential distribution 

to try to find unknown possibilities of feature extraction power and to perform 

comparisons; 

• To develop an approach to perform semantic segmentation using the proposed feature 

extractor and others for binary and multiclass problems; 

• To perform tests using images generated by other types of radar, such as Side Looking 

Airborn Radar (SLAR) and compare with the SAR imagery results; 

• To test unsupervised methods (e.g., Variational Autoencoder) to handle the imbalanced 

dataset problem. 

• To perform a study to measure the oil spill mean size and compare it with the whole 

image.  

• To evaluate the use of Unmanned Aerial Vehicle (UAV) to generate oil spills images; 

• To apply the proposed approach to address images from other risk and reliability 

contexts, such as concrete images for crack detection.  

• To improve the proposed web app for oil spill detection to make possible the oil spill 

source identification.   
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APPENDICE A – TEST RESULTS 

  
In this appendix Section we present the confusion matrices for all the experiments and the tables 

that bring the parameters used in the ML methods according to the grid search performances 

for all the ran experiments of this research. 

 
 
Part 1 - Proposed Approach 
 
In this part 1 we present the confusion matrices and the parameters chosen by the grid search 

for the proposed q-EFE approach, considering configurations 1 and 2.  

 
Figure A 1: Confusion matrices of the results obtained by the q-EFE approach using 200 images to train the 

classification models, the CDF, and configuration 1. 

 
Source: The author (2022). 

 
Table A - 1: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 1, and 200 images. 

 
MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': 'invscaling', 
‘hidden_layer_sizes’: 
(200), 
 'activation': 'tanh'. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘log2’, 
'max_depth': 2. 

‘kernel’: ‘rbf’, 
‘gamma’: 0.01, 
'C': 0.1. 

'penalty': 'l2', 
'C': 100. 

‘n_estimators’: 100, 
‘max_depth’: 8, 
‘learning rate’: 0.01, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 
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Figure A 2: Confusion matrices of the results obtained by the q-EFE approach using 400 images to train 
the classification models, the CDF, and configuration 1 

 
Source: The author (2022). 

 
Table A - 2: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 1, and 400 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': 'invscaling' 
‘hidden_layer_sizes’: 
(100), 
 'activation': 'logistic'. 

‘n_estimators’: 50, 
‘min_samples_split’: 16, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘log2’, 
'max_depth': 2. 

‘kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 1. 

'penalty': 'l2', 
 'C': 0.1. 

‘n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 0.8. 

Source: The author (2022). 

Figure A 3: Confusion matrices of the results obtained by the q-EFE approach using 1002 images to 
train the classification models, the CDF, and the configuration 1 

 
Source: The author (2022). 
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Table A - 3: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 1, and 1002 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘adaptive’,  
‘hidden_layer_sizes’: 
(1000), 
 'activation': ‘identity’. 

‘n_estimators’: 100, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 2, 
‘max_features’: ‘sqrt’, 
'max_depth': 2. 

 kernel’: ‘linear’, 
‘gamma’: ‘auto’,, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.1. 

‘n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 1.  

Source: The author (2022). 

Figure A 4: Confusion matrices of the results obtained by the q-EFE approach using 1572 feature 
vectors (using SMOTE) to train the classification models, the CDF, and the configuration 1 

 
Source: The author (2022). 

 
Table A - 4: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 1, and 1002 images plus 

SMOTE (1572 images in total) 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': 'invscaling' 
‘hidden_layer_sizes’: 
(1000) 
 'activation': ‘relu’. 

‘n_estimators’: 200, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘sqrt’, 
'max_depth': 8. 

kernel’: ‘rbf’, 
‘gamma’: 1, 
 'C': 1.  

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 0, 
'colsample_bytree': 0.3. 

Source: The author (2022). 
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Figure A 5: Confusion matrices of the results obtained by the q-EFEapproach using 1572 images (with 
DA) to train the classification models, the CDF, and the configuration 1 

 
Source: The author (2022). 

Table A - 5: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 1, and 1002 images plus DA 
(1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': ‘adaptive’, 
‘hidden_layer_sizes’: 
(200), 
 'activation': ‘tanh’ 

‘n_estimators’: 50, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘log2’, 
'max_depth':2. 

‘kernel’: ‘rbf’, 
‘gamma’: 
0.0001, 
 'C': 1000. 
  

'penalty': 
‘l2’, 
 'C': 100. 

‘n_estimators’: 500, 
‘max_depth’: 16, 
‘learning rate’: 0.1, 
‘gamma’: 0, 
'colsample_bytree': 1. 

Source: The author (2022). 

 

Figure A 6: Confusion matrices of the results obtained by the q-EFE approach using 200 images to train 
the classification models, the PDF, and the configuration 1 

 
Source: The author (2022). 

Table A - 6: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 1, and 200 images. 

MLP RF SVM LR XGB 
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‘solver’: ‘sgd’, 
'learning_rate': çonstant’, 
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1.  

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
 

 
Source: The author (2022). 

Table A - 7: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 1, and 400 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’ 
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’ 

‘n_estimators’: 200, 
‘min_samples_split’: 8,  
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 32.  

‘kernel’: 
‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': ‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 
0.3. 

Source: The author (2022). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A 7: Confusion matrices of the results obtained by the q-EFE approach using 
400 images to train the classification models, the PDF, and the configuration 1. 
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Figure A 8: Confusion matrices of the results obtained by the q-EFE approach using 1002 
images to train the classification models, the PDF, and the configuration 1. 

 

 
Source: The author (2022). 

Table A - 8: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 1, and 1002 images. 

MLP RF SVM LR XGB 
‘solver’: ‘lbfgs’, 
'learning_rate': ‘constant’, 
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 8. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 

Figure A 9: Confusion matrices of the results obtained by the q-EFE approach using 1572 feature 
vectors (using SMOTE) to train the classification models, the PDF, and the configuration 1. 

 
Source : The author (2022). 
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Table A - 9: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 1, and 1002 images plus 
SMOTE (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’, 
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’ 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
Figure A 10: Confusion matrices of the results obtained by the q-EFE approach using 1572 images 

(with DA) to train the classification models, the PDF, and the configuration 1. 

 
Source: The author (2022). 

Table A - 10: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 1, and 1002 images plus 
DA (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘lbfgs’, 
'learning_rate': ‘adaptive’, 
‘hidden_layer_sizes’: 
(1000), 
 'activation': ‘relu’ 

‘n_estimators’: 50, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15 
‘max_features’: ‘sqrt’ 
'max_depth': 8. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': ‘l2’ 
 'C': 0.1. 

n_estimators’: 500, 
‘max_depth’: 16, 
‘learning rate’: 0.1, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 
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Figure A 11: Confusion matrices of the results obtained by the q-EFE approach using 200 images to 
train the classification models, the entropy, and the configuration 1. 

 

 
Source: The author (2022). 

 
Table A - 11: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 1, and 200 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': adaptive’, 
‘hidden_layer_sizes’: (50), 
 'activation': ‘relu’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 8. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C':100. 

n_estimators’: 500, 
‘max_depth’: 16, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 

Figure A 12: Confusion matrices of the results obtained by the q-EFE approach using 400 
images to train the classification models, the PDF, and the configuration 1. 

 

 
Source: The author (2022). 
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Table A - 12: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 1, and 200 

images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘adaptive’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘tanh’. 

‘n_estimators’: 50, 
‘min_samples_split’: 24, 
‘min_samples_leaf’: 10, 
‘max_features’: ‘log2’, 
'max_depth': 2. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 1. 

n_estimators’: 500, 
‘max_depth’: 2, 
‘learning rate’: 0.01, 
‘gamma’: 1, 
'colsample_bytree': 0.8. 

Source: The author (2022). 

 

Figure A 13: Confusion matrices of the results obtained by the q-EFEapproach using 1002 images to 
train the classification models, the entropy, and the configuration 1. 

 
Source: The author (2022).  

 
Table A - 13: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 1, and 1002 

images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’. 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘logistic’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘log2’, 
'max_depth': 2. 

kernel’: ‘rbf’, 
‘gamma’: ‘autp’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

n_estimators’: 100, 
‘max_depth’: 128, 
‘learning rate’: 0.01, 
‘gamma’: 0, 
'colsample_bytree': 0.3. 
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Source: The author (2022). 

Figure A 14: Confusion matrices of the results obtained by the q-EFEapproach using 1572 feature 
vectors (using SMOTE) to train the classification models, the entropy, and the configuration 1. 

 
Source: The author (2022). 

Table A - 14: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 1, and 1002 
images plus SMOTE (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': çonstant’, 
‘hidden_layer_sizes’: 
(1000), 
 'activation': ‘identity’. 

‘n_estimators’: 500, 
‘min_samples_split’: 4, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 0.1. 

n_estimators’: 1000, 
‘max_depth’: 16, 
‘learning rate’: 0.05, 
‘gamma’: 0, 
'colsample_bytree': 0.3. 

Source: The author (2022). 
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Figure A 15: Confusion matrices of the results obtained by the q-EFEapproach using 1572 images 
(with DA) to train the classification models, the entropy, and the configuration 1. 

 
Source: The author (2022). 

 
Table A - 15: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 1, and 1002 

images plus DA (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': ‘constant’, 
‘hidden_layer_sizes’: 
(1000), 
 'activation': ‘relu’.  

‘n_estimators’: 100, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 2, 
‘max_features’: ‘sqrt’, 
'max_depth': 16. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

n_estimators’: 100, 
‘max_depth’: 16, 
‘learning rate’: 0.01, 
‘gamma’: 0, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

Figure A 16: Confusion matrices of the results obtained by the q-EFE approach using 200 images to 
train the classification models, the CDF, and the configuration 2. 

 
Source: The author (2022). 
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Table A - 16: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 2, and 200 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': 
‘invscaling’, 
‘hidden_layer_sizes’: 
(200), 
 'activation': ‘logistic’. 

‘n_estimators’: 50, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 2, 
‘max_features’: 10, 
'max_depth': 2. 

kernel’: ‘rbf’, 
‘gamma’: 
0.0001, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.1. 

n_estimators’: 100, 
‘max_depth’: 128, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
Figure A 17: Confusion matrices of the results obtained by the q-EFE approach using 400 

images to train the classification models, the CDF, and the configuration 2. 

 

 
Source: The author (2022). 

Table A - 17: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 2, and 400 images. 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': 
‘inviscaling’, 
‘hidden_layer_sizes’: (50),  
 'activation': ‘tanh’. 

‘n_estimators’: 200, 
‘min_samples_split’: 16, 
‘min_samples_leaf’: 1, 
‘max_features’: 10, 
'max_depth': 2. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 1000, 
‘max_depth’: 8, 
‘learning rate’: 0.05, 
‘gamma’: 5, 
'colsample_bytree': 0.3. 
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Source: The author (2022). 

Figure A 18: Confusion matrices of the results obtained by the q-EFE approach using 1002 images to 
train the classification models, the CDF, and the configuration 2. 

 
Source: The author (2022). 

Table A - 18: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 2, and 1002 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’, 
‘hidden_layer_sizes’: (50), 
 'activation': ‘logistic’. 

‘n_estimators’: 100, 
‘min_samples_split’: 16, 
‘min_samples_leaf’: 10, 
‘max_features’: ‘log2’, 
'max_depth': 2. 

kernel’: ‘rbf’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.01. 

n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 1. 

Source: The author (2022). 

 

Figure A 19: Confusion matrices of the results obtained by the q-EFE approach using 1572 feature 
vectors (using SMOTE) to train the classification models, the CDF, and the configuration 2. 

 
Source: The author (2022). 
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Table A - 19: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 2, and 1002 images plus 
SMOTE (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': ‘adaptive’, 
‘hidden_layer_sizes’: 
(200), 
 'activation': ‘tanh’. 

‘n_estimators’: 500, 
‘min_samples_split’: 4, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘rbf’, 
‘gamma’: 1, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 0.1. 

n_estimators’: 500, 
‘max_depth’: 16, 
‘learning rate’: 0.05, 
‘gamma’: 0, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
 

 
Source: The author (2022). 

Table A - 20: Parameters that were chosen in the grid search for q-EFE, CDF, configuration 1, and 1002 images plus DA 
(1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': ‘constant’, 
‘hidden_layer_sizes’: 
(100), 
 'activation': ‘tanh’. 

‘n_estimators’: 200, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘sqrt’, 
'max_depth': 8. 

kernel’: ‘rbf’, 
‘gamma’: 
0.0001, 
 'C': 1000. 

'penalty': 
‘l2’, 
 'C': 10. 

n_estimators’: 100, 
‘max_depth’: 8, 
‘learning rate’: 0.01, 
‘gamma’: 0, 
'colsample_bytree': 0.8. 

Source: The author (2022). 

 

 
 
 
 
 
 
 
 
 

Figure A 20: Confusion matrices of the results obtained by the q-EFE approach using 1572 
images (with DA) to train the classification models, the CDF, and the configuration 2. 
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Figure A 21; Confusion matrices of the results obtained by the q-EFEapproach using 200 images 
to train the classification models, the PDF, and the configuration 2. 

 
Source: The author (2022). 

Table A - 21: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 2, and 200 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 

Figure A 22: Confusion matrices of the results obtained by the q-EFE approach using 400 
images to train the classification models, the PDF, and the configuration 2. 

 
Source: The author (2022). 
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Table A - 22: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 2, and 400 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 

Figure A 23: Confusion matrices of the results obtained by the q-EFE approach using 1002 images to 
train the classification models, the PDF, and the configuration 2 

 
Source: The author (2022). 

 
Table A - 23: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 2, and 1002 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3. 
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Source: The author (2022). 

Figure A 24: Confusion matrices of the results obtained by the q-EFE approach using 1572 feature 
vectors (using SMOTE) to train the classification models, the PDF, and the configuration 2. 

 
Source: The author (2022). 

 
Table A - 24: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 2, and 1002 images plus 

SMOTE (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’. 

‘n_estimators’: 200, 
‘min_samples_split’: 8, 
‘min_samples_leaf’: 15, 
‘max_features’: ‘sqrt’, 
'max_depth': 32. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3 

Source: The author (2022). 

 

Figure A 25: Confusion matrices of the results obtained by the q-EFE approach using 1572 images 
(with DA) to train the classification models, the PDF, and the configuration 2. 

 
Source: The author (2022). 
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Table A - 25: Parameters that were chosen in the grid search for q-EFE, PDF, configuration 1, and 1002 images plus 
DA (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘lbfgs’, 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘identity’. 

‘n_estimators’: 50, 
‘min_samples_split’: 16, 
‘min_samples_leaf’: 1, 
‘max_features’: ‘log2’, 
'max_depth': 2. 

kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 100. 

n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 1, 
'colsample_bytree': 0.3 

Source: The author (2022). 

 
 
 
 

 
 

 
Source: The author (2022). 

 
Table A - 26: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 2, and 200 

images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: 
(1000) 
 'activation': ‘identity’.  

‘n_estimators’: 10, 
‘min_samples_split’: 4, 
‘min_samples_leaf’: 10, 
‘max_features’: ‘sqrt’, 
'max_depth': 8. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.1, 
‘gamma’: 5, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
 
 
 
 
 
 
 
 
 

Figure A 26: Confusion matrices of the results obtained by the q-EFE approach using 200 
images to train the classification models, the entropy, and the configuration 2. 
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Figure A 27: Confusion matrices of the results obtained by the q-EFE approach using 400 images 
to train the classification models, the entropy, and the configuration 2. 

 

 
Source: The author (2022). 

Table A - 27: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 2, and 400 
images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': 
‘invscaling’,  
‘hidden_layer_sizes’: 
(500), 
 'activation': ‘tanh’. 

‘n_estimators’: 10, 
‘min_samples_split’: 16, 
‘min_samples_leaf’: 5, 
‘max_features’: ‘auto’, 
'max_depth': 2. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

n_estimators’: 1000, 
‘max_depth’: 2, 
‘learning rate’: 0.1, 
‘gamma’: 5, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
Figure A 28: Confusion matrices of the results obtained by the q-EFE approach using 1002 

images to train the classification models, the entropy, and the configuration 2. 

 
Source: The author (2022). 
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Table A - 28: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 2, and 

1002 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘adaptive’,  
‘hidden_layer_sizes’: (50), 
 'activation': ‘logistic’. 

‘n_estimators’: 50, 
‘min_samples_split’: 2,  
‘min_samples_leaf’: 30, 
‘max_features’: ‘auto’, 
'max_depth': 2. 

kernel’: ‘rbf’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 1. 

Source: The author (2022). 

 
Figure A 29: Confusion matrices of the results obtained by the q-EFE approach using 1572 feature 

vectors (using SMOTE) to train the classification models, the entropy, and the configuration 2. 

 
Source: The author (2022). 

Table A - 29: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 2, and 1002 
images plus SMOTE (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': 
‘invscaling’, 
‘hidden_layer_sizes’: 
(100),  
 'activation': ‘relu’. 

‘n_estimators’: 100, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 2, 
‘max_features’: ‘auto’, 
'max_depth': 32. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

n_estimators’: 100, 
‘max_depth’: 128, 
‘learning rate’: 0.01, 
‘gamma’: 0, 
'colsample_bytree': 0.8. 

Source: The author (2022). 
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Figure A 30: Confusion matrices of the results obtained by the q-EFE approach using 1572 images 
(with DA) to train the classification models, the entropy, and the configuration 2. 

 
Source: The author (2022). 

Table A - 30: Parameters that were chosen in the grid search for q-EFE, entropy function, configuration 2, and 1002 
images plus DA (1572 images in total). 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘constant’,  
‘hidden_layer_sizes’: 
(1000), 
 'activation': ‘logistic’.  

‘n_estimators’: 500, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 5, 
‘max_features’: ‘auto’, 
'max_depth': 8. 

kernel’: ‘rbf’, 
‘gamma’: 0.01, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 10. 

n_estimators’: 500, 
‘max_depth’: 8, 
‘learning rate’: 0.1, 
‘gamma’: 0, 
'colsample_bytree': 0.8. 

Source: The author (2022). 

 
Figure A 31: Confusion matrices of the results obtained by the LBP, using the 200 images to 

train the classification methods 

 
Source: The author (2022).  
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Table A - 31: Parameters that were chosen in the grid search for LBP and 200 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': 
‘constant’, 
‘hidden_layer_sizes’: 
(50), 
 'activation': ‘identity’. 

‘n_estimators’: 50, 
‘min_samples_split’: 
16, 
‘min_samples_leaf’: 
30, 
‘max_features’: ‘sqrt’, 
'max_depth': 2. 

‘kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.1. 

‘n_estimators’: 100, 
‘max_depth’: 128, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
Figure A 32: Confusion matrices of the results obtained by the LBP, using the 400 images to 

train the classification methods. 

 
Source: The author (2022).  

 
Table A - 32: Parameters that were chosen in the grid search for LBP and 400 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘adptive’, 
‘hidden_layer_sizes’: 
(50), 
 'activation': ‘identity’. 

‘n_estimators’: 100, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 2, 
‘max_features’: ‘sqrt’, 
'max_depth': 2. 

‘kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.01. 

‘n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.1, 
‘gamma’: 5, 
'colsample_bytree': 0.3. 

Source: The author (2022). 
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Figure A 33: Confusion matrices of the results obtained by the LBP, using the entire dataset to train the 
classification methods, without SMOTE and DA. 

 
Source: The author (2022). 

 
Table A - 33: Parameters that were chosen in the grid search for LBP and 1002 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘adptive’, 
‘hidden_layer_sizes’: 
(50), 
 'activation': ‘identity’. 

‘n_estimators’: 100, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 2, 
‘max_features’: ‘sqrt’, 
'max_depth': 2. 

‘kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.01. 

‘n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.1, 
‘gamma’: 5, 
'colsample_bytree': 0.3. 

Source: The author (2022). 

 
Figure A 34: Confusion matrices of the results obtained by the LBP, using the entire dataset plus 

SMOTE (1572 feature vectors in total to train the classification methods). 

 
Source: The author (2022). 
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Table A - 34: Parameters that were chosen in the grid search for LBP and 1002 images plus SMOTE (1572 images in 
total). 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': 
‘invscaling’, 
‘hidden_layer_sizes’: (50),  
 'activation': ‘relu’. 

‘n_estimators’: 50, 
‘min_samples_split’: 4, 
‘min_samples_leaf’: 1, 
‘max_features’: 5, 
'max_depth': 128, 

‘kernel’: ‘rbf’, 
‘gamma’: ‘auto’, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

‘n_estimators’: 1000, 
‘max_depth’: 64, 
‘learning rate’: 0.01, 
‘gamma’: 0, 
'colsample_bytree': 0.8. 

Source: The author (2022). 

 
Figure A 35: Confusion matrices of the results obtained by the LBP for texture analysis, using the entire 

dataset plus DA (1572 images in total to train the classification 

 
Source: The author (2022).  

 
Table A - 35: Parameters that were chosen in the grid search for LBP and 1002 images plus DA (1572 images in 

total). 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': çonstant’,  
‘hidden_layer_sizes’: 
(100), 
 'activation': ‘relu’  

‘n_estimators’: 200, 
‘min_samples_split’: 16, 
‘min_samples_leaf’: 1, 
‘max_features’: 10, 
'max_depth': 2. 

‘kernel’: 
‘sigmoid’, 
‘gamma’: ‘auto, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

‘n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 1. 

Source: The author (2022). 
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Figure A 36: Confusion matrices of the results obtained by the GLCM, using the 200 images to 
train the classification methods. 

 
Source: The author (2022). 

 
Table A - 36: Parameters that were chosen in the grid search for GLCM and 200 images. 

MLP RF SVM LR XGB 
‘solver’: ‘adam’, 
'learning_rate': 
‘invscaling’, 
‘hidden_layer_sizes’: 
(1000), 
 'activation': ‘relu’. 

‘n_estimators’: 10, 
‘min_samples_split’: 4, 
‘min_samples_leaf’: 
30, 
‘max_features’: ‘5’, 
'max_depth': 16. 

‘kernel’: ‘sigmoid’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 1. 

‘n_estimators’: 1000, 
‘max_depth’: 2, 
‘learning rate’: 0.1, 
‘gamma’: 0, 
'colsample_bytree': 0.8. 

Source: The author (2022). 

 
 
 

Figure A 37: Confusion matrices of the results obtained by the GLCM, using the 400 images to 
train the classification methods. 

 
Source: The author (2022).  
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Table A - 37: Parameters that were chosen in the grid search for GLCM and 400 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': ‘adptive’, 
‘hidden_layer_sizes’: 
(1000), 
 'activation': ‘relu’. 

‘n_estimators’: 10, 
‘min_samples_split’: 2, 
‘min_samples_leaf’: 
10, 
‘max_features’: ‘5’, 
'max_depth': 16. 

‘kernel’: ‘sigmoid’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.1. 

‘n_estimators’: 500, 
‘max_depth’: 64, 
‘learning rate’: 0.05, 
‘gamma’: 5, 
'colsample_bytree': 1. 

Source: The author (2022). 

 
Figure A 38: Confusion matrices of the results obtained by the GLCM, using the entire dataset 

to train the classification methods, without SMOTE and DA. 

 
Source: The author (2022).  

Table A - 38: Parameters that were chosen in the grid search for GLCM and 1002 images. 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': 
‘invscaling’, 
‘hidden_layer_sizes’: 
(500), 
 'activation': ‘identity’. 

‘n_estimators’: 200, 
‘min_samples_split’: 
24, 
‘min_samples_leaf’: 
30, 
‘max_features’: ‘log2’, 
'max_depth': 2. 

‘kernel’: ‘linear’, 
‘gamma’: ‘auto’, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 0.1. 

‘n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.01, 
‘gamma’: 5, 
'colsample_bytree': 1. 

Source: The author (2022). 
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Figure A 39: Confusion matrices of the results obtained by the GLCM, using the entire dataset plus 
SMOTE (1572 feature vectors in total to train the classification methods). 

 
Source: The author (2022). 

Table A - 39: Parameters that were chosen in the grid search for GLCM and 1002 images plus SMOTE (1572 images 
in total). 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': 
‘invscaling’, 
‘hidden_layer_sizes’: (50),  
 'activation': ‘relu’. 

‘n_estimators’: 50, 
‘min_samples_split’: 4, 
‘min_samples_leaf’: 1, 
‘max_features’: 5, 
'max_depth': 128, 

‘kernel’: ‘rbf’, 
‘gamma’: ‘auto’, 
 'C': 1. 

'penalty': 
‘l2’, 
 'C': 0.001. 

‘n_estimators’: 1000, 
‘max_depth’: 64, 
‘learning rate’: 0.01, 
‘gamma’: 0, 
'colsample_bytree': 0.8. 

Source: The author (2022). 

 
 
 
 

 

 

 

 

 

 

 

 

 

 
Source: The author (2022). 

Figure A 40: Confusion matrices of the results obtained by the GLCM for texture 
analysis, using the entire dataset plus DA (1572 images in total to train the classification. 



APPENDICE A – TEST RESULTS  130 

 

 

Table A - 40: Parameters that were chosen in the grid search for GLCM and 1002 images plus DA (1572 images in 
total). 

MLP RF SVM LR XGB 
‘solver’: ‘sgd’, 
'learning_rate': constant’,  
‘hidden_layer_sizes’: 
(100), 
 'activation': ‘relu’  

‘n_estimators’: 50, 
‘min_samples_split’: 16, 
‘min_samples_leaf’: 1, 
‘max_features’: 5, 
'max_depth': 2. 

‘kernel’: 
‘sigmoid’, 
‘gamma’: ‘auto, 
 'C': 0.1. 

'penalty': 
‘l2’, 
 'C': 100. 

‘n_estimators’: 100, 
‘max_depth’: 2, 
‘learning rate’: 0.10, 
‘gamma’: 5, 
'colsample_bytree': 1. 

Source: The author (2022). 

 
Figure A 41: Confusion matrices of the results obtained by CNN_1 for 

the different dataset sizes. 

 
Source: The author (2022). 

Figure A 42: Confusion matrices of the results obtained by CNN_2 for 
the different dataset sizes. 

 
Source: The source (2022). 
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Figure A 43: Confusion matrices of the results obtained by CNN_3 for 
the different dataset sizes 

 
Source: The author (2022). 

 


