Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/42831

Compartilhe esta página

Título: Quantum neurons with real weights for diabetes prediction
Autor(es): MONTEIRO, Cláudio Luis Alves
Palavras-chave: Inteligência computacional; Aprendizado de máquina
Data do documento: 2-Set-2021
Editor: Universidade Federal de Pernambuco
Citação: MONTEIRO, Cláudio Luis Alves. Quantum neurons with real weights for diabetes prediction. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.
Abstract: Parametric models with real numbers valued parameters have greater performance than its counterparts with binary valued weights, due to the gain in representing informa- tion with real values, and therefore having a larger space for memory association. In this work, is proposed a quantum neuron capable of store real weights and preserve the gain of the superposition property, encoding the information in the probability amplitudes of the quantum system, the Real Weights Quantum Neuron. Its performance is compared with other quantum neurons to analyze the application of the quantum neurons on real-world problems, i.e diabetes classification. The results of the experiments shows that a single quantum neuron is capable of achieving an accuracy rate of 100% in the XOR problem and an accuracy rate of 100% in a non-linear dataset, demonstrating that the quantum neurons with real weights are capable of modeling non-linearly separable problems. In the problem of diagnosing diabetes, quantum neurons achieved an accuracy rate of 76% and AUC-ROC of 88%, while its classic version, the perceptron, reached only 63% accuracy and the artificial neural network reached 80% AUC-ROC. These results indicate that a single quantum neuron performs better than its classical version and even the artificial neural network for AUC-ROC, demonstrating potential for use in healthcare applications in the near future. This work is also a contribution to the field of quantum neural networks, which can be further advanced from the quantum neuron proposed.
URI: https://repositorio.ufpe.br/handle/123456789/42831
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Cláudio Luis Alves Monteiro.pdf1,79 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons