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ABSTRACT

Parametric models with real numbers valued parameters have greater performance
than its counterparts with binary valued weights, due to the gain in representing informa-
tion with real values, and therefore having a larger space for memory association. In this
work, is proposed a quantum neuron capable of store real weights and preserve the gain of
the superposition property, encoding the information in the probability amplitudes of the
quantum system, the Real Weights Quantum Neuron. Its performance is compared with
other quantum neurons to analyze the application of the quantum neurons on real-world
problems, i.e diabetes classification. The results of the experiments shows that a single
quantum neuron is capable of achieving an accuracy rate of 100% in the XOR problem
and an accuracy rate of 100% in a non-linear dataset, demonstrating that the quantum
neurons with real weights are capable of modeling non-linearly separable problems. In the
problem of diagnosing diabetes, quantum neurons achieved an accuracy rate of 76% and
AUC-ROC of 88%, while its classic version, the perceptron, reached only 63% accuracy
and the artificial neural network reached 80% AUC-ROC. These results indicate that a
single quantum neuron performs better than its classical version and even the artificial
neural network for AUC-ROC, demonstrating potential for use in healthcare applications
in the near future. This work is also a contribution to the field of quantum neural networks,
which can be further advanced from the quantum neuron proposed.

Keywords: machine learning; diabetes mellitus; healthcare; quantum computing; quan-
tum machine learning.



RESUMO

Este trabalho apresenta resultados sobre a aplicação de algoritmos de aprendizagem
de máquina quântica no setor de saúde. Foi desenvolvida e testada uma proposta de
neurônio quântico capaz de armazenar pesos reais em comparação com outros neurônios
quânticos. Esse modelos podem transportar uma quantidade exponencial de informação
para um número linear de unidades de informação quântica (qubits) usando a propriedade
quântica de superposição. Foi comparado o desempenho desses algoritmos nos seguintes
problemas: simular o operador XOR, resolver um problema não linear genérico e pre-
visão de diabetes em pacientes. Os resultados dos experimentos mostraram que um único
neurônio quântico é capaz de atingir uma acurácia de 100% no problema XOR e 100%
de acurácia em um conjunto de dados não linear, demonstrando que neurônios quânti-
cos com pesos reais são capazes de classificar corretamente problemas não linearmente
separáveis. No problema de classificação de diabetes, os neurônios quânticos alcançaram
uma acurácia de 76% e AUC-ROC de 88%, enquanto sua versão clássica, o perceptron,
atingiu apenas 63% de acurácia e a rede neural artifical atingiu 80% AUC-ROC. Esses
resultados indicam que um único neurônio quântico tem um desempenho maior que sua
versão clássica e até mesmo que a rede neural artifical na AUC-ROC, demonstrando seu
potencial para uso em aplicações para o setor de saúde. Este trabalho é também uma
contribuição ao campo das redes neurais quânticas, que pode ser avançada a partir do
neurônio quântico proposto.

Palavras-chaves: aprendizado de máquina; diabetes mellitus; saúde; computação quân-
tica; aprendizado de máquina quântico.
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1 INTRODUCTION

The growing development of information systems for the management of healthcare insti-
tutions enabled the storage of patient data such as medical diagnosis, personal character-
istics, events and procedures during hospitalization and hospital infrastructure. Although
this data has been historically stored in hard copies, the use of Electronic Health Records
leads to an expanding digital storage, such that the U.S. healthcare system has reached
150 exabytes in 2011 (RAGHUPATHI; RAGHUPATHI, 2014). All this information can be
used to develop machine learning applications to enhance the care services, e.g. predict
hospitalization and intervening before the patient reaches a critical point, predict the risk
of developing a wide range of diseases and promote the preventive care.

Recent advances in computing hardware made it possible to achieve better results in
machine learning and artificial intelligence. Although there are models capable of storing
large and complex patterns such as Artificial Neural Networks (ANNs), much still has to
be done to develop systems with higher performance for speech and image recognition,
industrial optimisation, financial forecast and other areas. As an example, the OpenAI
company launched in 2020 the state of the art GPT-3 language model (BROWN et al.,
2020), with 174 billion parameters and trained by more than 440 billion text-encoded
tokens. There is a growing need for models capable of high-dimensional representations of
knowledge and can be efficiently trained with large volumes of data to develop intelligent
systems capable of doing more complex activities.

Quantum Computing may be used in the near future to address this need due to its
quantum mechanical properties of storing large complex-valued vectors and matrices and
performing linear operations on these vectors. 2𝑁 classical 𝑁 -bits of information can be
stored in a 𝑁 -qubits quantum state (e.g. a 40-qubit system stores more than 1 trillion
quantum states). Furthermore, quantum states amplitudes can represent the weights of a
neural model, and the inner product between input data and weights can be performed.

Neural models such as Rosenblatt’s perceptron (ROSENBLATT, 1958) were proposed
and investigated at the earlier stages of machine learning (artificial intelligence). Percep-
trons works with binary weights, such that given 𝑚 inputs 𝑥𝑘 ∈ {−1, 1}, 𝑘 = 0, ...,𝑚− 1
and 𝑚 weights, 𝑤𝑘 ∈ [−1, 1), the output of the perceptron is the inner product of the
inputs and weights. Tacchino et al. (TACCHINO et al., 2019) develops a quantum neu-
ron based on the perceptron, exploiting the superposition to encode binary input and
weights in quantum states. Recently, a quantum artificial neural network (QANN) has
been proposed using the perceptron with binary input and weight (TACCHINO et al., 2020).
However, in the task that ANNs are involved, the weight stores the network information.
Siegelmann et al. show that the type of weights of classical neural networks is intrinsi-
cally related to their computational power (SIEGELMANN; SONTAG, 1991; SIEGELMANN,
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1995). For example, neural networks with rational weights are computationally equiva-
lent to Turing Machines whilst arbitrary real-valued weights have super-Turing computing
power.

One can use existing quantum algorithms that solve optimisation problems (ORUS;

MUGEL; LIZASO, 2019; JONES; MOSCA; HANSEN, 1998; SHENVI; KEMPE; WHALEY, 2003;
HAN; KIM, 2000; BOYER et al., 1998) at an acceptable cost and to solve weight search
problems in ANN or QANN. Altaysky’s QANN (ALTAISKY, 2001) acts over a single input
qubit, returning as output a state of a qubit, described by a learning rule that adapts the
weight matrix to the expected result. The quantum m-p neural network proposed by Zhou
(ZHOU; DING, 2007) uses a neuron representation given by a weight matrix that is updated
from a training set. Although closer to the functioning of classical neural networks, it
does not have a nonlinear activation function (SILVA; OLIVEIRA; LUDERMIR, 2015). Wiebe
(WIEBE; KAPOOR; SVORE, 2016) exploited the Grover Search Algorithm (GROVER, 1996)
to propose quantum perceptron training algorithms that are significantly faster than its
classical counterpart, while also making training less sensitive to small errors. Kristensen
et al (KRISTENSEN et al., 2020) develops an artificial spiking quantum neuron using the
spins of qubits to generate a model capable of returning the similarity between two bell
states.

The quantum learning model developed by Panella (PANELLA; MARTINELLI, 2011) uses
the superposition of states to perform a search for the optimal network through nonlinear
operators. The qRAM from de Oliveira (OLIVEIRA, 2009) operates with 2𝑛 selectors where
𝑛 is the number of qubits as inputs, one qubit as output and 2𝑛 matrices of controlled
NOT gates, which allows one to learn classically but not uses a nonlinear function as
an activation function. Lamata (LAMATA, 2020) reviews the field of quantum biomimet-
ics as a possible approach to solve optimisation problems, building quantum computing
algorithms that mimic the behaviour of biological systems. Approaches to performing non-
linear operations on quantum neurons have been proposed (YAN; QI; CUI, 2020; PANELLA;

MARTINELLI, 2011; NETO et al., 2019; SCHULD; SINAYSKIY; PETRUCCIONE, 2014), demon-
strating the capacity of solving nonlinear separable problems with quantum computing.
Nevertheless, studies of the applications of these algorithms in real-world problems (BIA-

MONTE et al., 2017) are lacking.
Chapter 2 introduces quantum notation and the fundamentals of quantum operations

necessary to understand this work. In Chapter 3, is proposed a new quantum neuron with
real-valued weights, combining the hypergraph states generation subroutine (TACCHINO

et al., 2019) for data input and the uniformly controlled rotations proposed in (MöTTöNEN

et al., 2005) for encoding the weights. The proposed model substantially saves the use of
auxiliary quantum registers, since it encodes information in the amplitude of quantum
states, a technique known as information encoding. Experiments indicate that, when cou-
pling bias in the neuron to address the symmetry problem, the quantum neuron with real
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weights has higher predictive performance than the binary weights quantum neuron. Ex-
periments on noisy intermediate-scale quantum (NISQ) processors (PRESKILL, 2018) were
performed and the results indicate that the proposed quantum neuron has the potential
to be executed in real-world applications. Therefore, contributing to the development of
machine learning algorithms that exploit the properties of quantum computing.

To analyse the suitability of quantum neurons for healthcare problems, In Chapter
4 the performance of the Real Weights Quantum Neuron proposed in chapter 3, the Bi-
nary Quantum Neuron proposed by (TACCHINO et al., 2019) and the Continuously Valued
Quantum Neuron proposed by (MANGINI et al., 2020) are compared, models which are
capable to carry an exponential amount of information to a linear number of quantum in-
formation units (qubits) using the quantum property of superposition, and there is also a
proposal of preprocessing strategies based on the notion of hypercomplex numbers. These
algorithms are tested on the problems of simulating the XOR operator, solving a generic
nonlinear problem and a novel test on a healthcare problem, the prediction of patients
with diabetes, whereas in the original and related works this was not explored (MANGINI

et al., 2021; TACCHINO et al., 2020). Experiments indicate that the quantum neurons have
the potential to be executed in real-world applications in the healthcare industry and that
it can be further advanced in order to improve the performance in classification tasks.
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2 QUANTUM COMPUTING

In this chapter, quantum computing basic concepts are reviewed to serve as a basis for the
understanding of quantum neurons. Further material can be found in (NIELSEN; CHUANG,
2000). Quantum computing uses the principles of quantum mechanics to perform informa-
tion processing. There are properties underlying quantum behaviour not found directly
in the classical macroscopic world, such as entanglement and superposition, which are
believed to be accelerators of information processing (JOZSA; LINDEN, 2003).

In quantum computing, the minimum unit of information is a qubit. A qubit represents
a system that can be in two states simultaneously. Mathematically, the qubit can be
represented as a complex two-dimensional vector in C2. Using the computational basis
formed by the vectors |0⟩ = [1, 0]𝑇 and |1⟩ = [0, 1]𝑇 , is possible to generate any vector in
this space by linear combination (or superposition), such as shown in Equation 2.1. The
Dirac notation represents quantum vectors with the symbol |·⟩.

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (2.1)

The values 𝛼 and 𝛽 are complex numbers, also called probability amplitudes, and obey
the normalisation condition |𝛼|2 + |𝛽|2 = 1. These values also indicate that there is a
chance to measure or observe the quantum states |0⟩ and |1⟩ with the probability |𝛼|2

and |𝛽|2 , respectively. Quantum computing then becomes the application of quantum
operators that change the probability amplitudes of the qubits involved, represented as a
complex vector space. A complex vector is a nonempty set V whose elements are called
vectors, with the operations addition, negation and scalar multiplication, which obey to
the following properties: for all V, W, X ∈ V, and for a, b, c, ∈ C, (i) commutativity
of addition denotes that V + W = W + V; (ii) associativity of addition denotes that
(V + W) + X = V + (W + X); (iii) zero is an additive identity, V + 0 = V = 0 + V; (iv)
every vector has an inverse, V+(−V) = 0 = (−V)+V; (v) scalar multiplication has a unit,
1 ·V = V; (vi) scalar multiplication respects complex multiplication, a ·(b ·V) = (a×b) ·V;
(vii) scalar multiplication distributes over addition, c · (V + W) = c · V + c · W; and finally,
(viii) scalar multiplication distributes over complex addition, (a + b) · V = a · V + b · V
(YANOFSKY; MANNUCCI, 2008).

It is possible to compose many qubits in a single quantum system through the opera-
tion of a tensor product ⊗. The tensor product is used to represent quantum systems with
two or more qubits |𝑖𝑗⟩ = |𝑖⟩ ⊗ |𝑗⟩. Let 𝑆 and 𝑇 be two vector spaces, the tensor product
of 𝑆 and 𝑇 , denoted by 𝑆 ⊗ 𝑇 , is the vector space generated by the tensor product of all
vectors |𝑠⟩⊗|𝑡⟩, with |𝑠⟩ ∈ 𝑆 and |𝑡⟩ ∈ 𝑇 . For example, the operation |𝜓1⟩⊗|𝜓2⟩ from two
states |𝜓1⟩ = 𝛼1 |0⟩ +𝛼2 |1⟩ and |𝜓2⟩ = 𝛽1 |0⟩ + 𝛽2 |1⟩ is defined as |𝜓1⟩ ⊗ |𝜓2⟩ = |𝜓1𝜓2⟩ =
(𝛼1 |0⟩ + 𝛼2 |1⟩) ⊗ (𝛽1 |0⟩ + 𝛽2 |1⟩) = 𝛼1𝛽1 |00⟩ + 𝛼1𝛽2 |01⟩ + 𝛼2𝛽1 |10⟩ + 𝛼1𝛽2 |11⟩.
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Some states |𝜓⟩ ∈ 𝑆 ⊗ 𝑇 cannot be written as a product of states of its component
systems 𝑆 and 𝑇 . States with this property are called entangled states. For instance, two
entangled qubits are the Bell states described in Equation (2.2).

⃒⃒⃒
Φ+

⟩
= |00⟩ + |11⟩√

2⃒⃒⃒
Φ−

⟩
= |00⟩ − |11⟩√

2⃒⃒⃒
Ψ+

⟩
= |01⟩ + |10⟩√

2⃒⃒⃒
Ψ−

⟩
= |01⟩ − |10⟩√

2

(2.2)

To transform the information stored on qubits, we use quantum operators. In this
work, they essentially are unitary matrices or gates that can act on single or multiple
qubits. Quantum operator U over 𝑛 qubits is a unitary complex matrix of order 2𝑛 × 2𝑛.
We specify the gates: Identity I, which generates the output identical to the input; the
Pauli X operator, which works like the classic NOT on the computation basis, flipping
the value of the qubit; the Hadamard H gate which produces a superposition of quantum
states; and the Pauli Z gate, that applies a negative in the quantum state when the qubit
is not zero.

I =

⎡⎢⎣1 0

0 1

⎤⎥⎦ I |0⟩ = |0⟩

I |1⟩ = |1⟩
X =

⎡⎢⎣0 1

1 0

⎤⎥⎦ X |0⟩ = |1⟩

X |1⟩ = |0⟩

H = 1√
2

⎡⎢⎣1 1

1 −1

⎤⎥⎦ H |0⟩ = 1/
√

2(|0⟩ + |1⟩)

H |1⟩ = 1/
√

2(|0⟩ − |1⟩)

Z =

⎡⎢⎣1 0

0 −1

⎤⎥⎦ Z |0⟩ = |0⟩

Z |1⟩ = − |1⟩
Furthermore, there are the controlled gates that perform transformations on multiple

qubits, acting with conditional structures (i.e. if / else). The Controlled NOT gate CNOT
operates on two qubits, controlled by the first and applying the NOT gate in the second
one. The matrix representation of this operator is defined below:

CNOT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

CNOT |00⟩ = |00⟩

CNOT |01⟩ = |01⟩

CNOT |10⟩ = |11⟩

CNOT |11⟩ = |10⟩
In the CNOT operator, the X operator is conditionally applied, depending on the

control qubits. However, it is possible to define a controlled operation for any quantum
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operator, Controlled-U gate, or just C-U, defined as C-U |00⟩ = |00⟩, C-U |01⟩ = |01⟩,
C-U |10⟩ = |1⟩𝑈 |0⟩ and finally C-U |11⟩ = |1⟩𝑈 |1⟩.

It is possible to represent quantum operations in a circuit representation. In this rep-
resentation, qubits are considered wires and operators as boxes or a few special symbols.
Figure 1 has an example of a quantum circuit composed of a CNOT, where the control
qubit is depicted by a filled circle, and the X operator represented as an encircled plus
signal ⊕ . The order of execution of the operators is the usual order of execution, from
left to right.

Figure 1 – Example of quantum circuit with two CNOT operators, a H operator and a
Controlled-Z operator

|𝑎⟩ ∙ ∙ ∙

|𝑏⟩ 𝐻 Z

|𝑐⟩
Source: The author (2021)

The CNOT and C-U operators can have more than one control qubit. These are
qubits that are involved in the operation and all are conditioning factors for the application
of an operator. C-U𝑁 to generalise to 𝑁 -ary C-U having 𝑁 − 1 control qubits and the
last qubit being the target. An example of C-Z6 gate is given in Figure 2.

Figure 2 – Example of a C-Z operator with N=6
.

∙

∙

∙

∙

∙

Z

Source: The author (2021)

Quantum computing systems must stay isolated from the environment. Available quan-
tum devices are still subjected to environmental interference that generates decoherence,
a loss of the ordering of probability amplitudes due to variations in the phases of the
quantum states. This interference also generates dissipation, the destruction of the pop-
ulation of quantum states when parts of the quantum system behave as classical systems
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(SCHULD; SINAYSKIY; PETRUCCIONE, 2014). This implies that the expected output from
quantum measurements is subject to higher variations over the execution time. Neverthe-
less, alternative approaches for quantum computing that incorporate the interaction of
quantum systems with the environment have been proposed and can be further explored
for the development of quantum neural models, e.g. dissipative quantum computing (VER-

STRAETE; WOLF; CIRAC, 2009), measurement-based quantum computing (BRIEGEL et al.,
2009) and adiabatic quantum computing (FARHI et al., 2000). E.g. Torrontegui and García-
Ripoll (TORRONTEGUI; GARCíA-RIPOLL, 2019) proposed a quantum perceptron with the
implementation of the perceptron operator behaving as a quasiadiabatic passage on an
Ising-type spin model, which scales favourably with the network size and the total circuit
error.

A possible approach for minimising the effects of decoherence and dissipation in larger
space vectors, is to choose a modelling strategy that has fewer qubits and fewer iterations
over time. This can be achieved by using an ensemble of quantum neurons for predicting
different perspectives of the features, where each neuron is responsible for predicting one
perspective and combining the decisions classically, or training one quantum neuron for
each input (CAO; GUERRESCHI; ASPURU-GUZIK, 2017). Therefore the qubits required to
execute the quantum neuron is reduced as each quantum neuron trained for subsets of
data is smaller than the quantum neuron trained with full data features.
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3 QUANTUM NEURON WITH REAL WEIGHTS

This chapter proposes a new quantum neuron, with real weights, exploiting the so-called
quantum parallelism which allows for an exponential speedup of computations. The quan-
tum neurons were trained in a classical-quantum approach, considering the delta rule to
update the values of the weights in an image database of three distinct patterns. We
performed classical simulations and also executed experiments in an actual small-scale
quantum processor. The results of the experiments show that the proposed quantum neu-
ron, with real weights has a good generalisation capacity, demonstrating better accuracy
than the traditional binary quantum perceptron model. The paper proposing this new
quantum neuron model was accepted and published in August 2021 in the journal Neural
Networks (MONTEIRO et al., 2021).

3.1 QUANTUM NEURONS

Schuld et al (SCHULD; SINAYSKIY; PETRUCCIONE, 2014) reviewed different strategies of
quantum neural networks, stating that for a QNN to be considered valid it should satisfy
the requirements: (1) The initial state of the quantum system encodes any binary string
of length N; (2) the model reflects neural computing behaviors (e.g. synaptic connections,
integrate and fire, training rule, etc.); and (3) the evolution is based on quantum effects
such as superposition, entanglement and interference. The authors identified that most
of the proposed models do not incorporate these requirements and therefore they do not
fully exploit the advantages of quantum computing for neural computing applications.
Nevertheless, they state that quantum perceptrons and quantum measurements proposals
are viable modelling solutions but still must be further developed into mature Quantum
Neural Networks (SCHULD; SINAYSKIY; PETRUCCIONE, 2015).

Tacchino et al. (TACCHINO et al., 2019) proposed a quantum neuron based on Rosen-
blatt’s perceptron, exploring the property of superposition between qubits to generate 2𝑁

possible entries for 𝑁 qubits. The information is encoded in the amplitudes of quantum
states in the system, employed by the Brute Force algorithm or the Hypergraph States
Generation Subroutine (HSGS), detailed in Algorithm 21.

This quantum neuron calculates the inner product of two vectors 𝑖⃗ and 𝑤⃗ both of
size 𝑚 = 2𝑁 . This computation is performed firstly using quantum operators that carry
the information of these vectors in the amplitudes of quantum states |𝜓𝑖⟩ e |𝜓𝑤⟩. In this
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Figure 3 – Circuit of quantum neuron for 𝑁 input qubits proposed in (TACCHINO et al.,
2019)

𝑈𝑖 𝑈𝑤

|0⟩1

𝐻⊗𝑁 𝑈𝑔𝑖 𝑈𝑔𝑤 𝐻⊗𝑁 𝑋⊗𝑁

∙

|0⟩2 ∙

· · · ∙

|0⟩𝑁 ∙

|𝑜⟩

⏞  ⏟  ⏞  ⏟  

Source: Tacchino et al (2019)

model, the possible values for information input and weights are binary (e.g. {−1, 1}).

𝑖⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑖0

𝑖1
...

𝑖𝑚−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑤⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑤0

𝑤1
...

𝑤𝑚−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
|𝜓𝑖⟩ = 1√

𝑚

𝑚−1∑︁
𝑗=0

𝑖𝑗 |𝑗⟩

|𝜓𝑤⟩ = 1√
𝑚

𝑚−1∑︁
𝑗=0

𝑤𝑗 |𝑗⟩

Source: The author (2021) (3.1)

To generate the quantum state |𝜓𝑖⟩, we use a quantum operator 𝑈𝑖, i.e,

|𝜓𝑖⟩ = 𝑈𝑖 |0⟩⊗𝑁 = 𝑈𝑔𝑖𝐻
⊗𝑁 |0⟩⊗𝑁 (3.2)

To generate the state |𝜓𝑤⟩, an operator 𝑈𝑔𝑤:

|𝜓𝑤⟩ = 𝑈𝑔𝑤𝐻
⊗𝑁 |0⟩⊗𝑁 (3.3)

After that, the circuit of the quantum neuron responsible for computing the inner prod-
uct is made with the operators 𝑈𝑖 and 𝑈𝑤, where 𝑈𝑖 = 𝑈𝑔𝑖𝐻

⊗𝑁 and 𝑈𝑤 = 𝑋⊗𝑁𝐻⊗𝑁𝑈𝑔𝑤,
followed by a Controlled-NOT (CNOT) operator with 𝑁 control qubits and an auxiliary
qubit as the target. The quantum Perceptron circuit is described in Figure 3.

The quantum neuron calculates the inner product ⟨𝜓𝑤| |𝜓𝑖⟩, considering that,

𝑈𝑤 |𝜓𝑤⟩ = |1⟩⊗𝑁 = |𝑚− 1⟩ (3.4)
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and

𝑈𝑤 |𝜓𝑖⟩ =
𝑚−1∑︁
𝑗=0

𝑐𝑗 |𝑗⟩ = |𝜑𝑖,𝑤⟩ (3.5)

The operation 𝑈𝑤 |𝜓𝑖⟩ returns the inner product output, which is coded at the last
amplitude of the quantum state involved in the operation:

⟨𝜓𝑤| |𝜓𝑖⟩ = ⟨𝜓𝑤|𝑈 †
𝑤𝑈𝑤 |𝑝𝑠𝑖𝑖⟩ = ⟨𝑚− 1| |𝜑𝑖,𝑤⟩ = 𝑐𝑚−1 (3.6)

Although, to consider that

𝑈𝑤 |𝜓𝑤⟩ = |1⟩⊗𝑁 = |𝑚− 1⟩ (3.7)

other assumptions are needed about the operator 𝑈𝑔𝑤 that were not made explicit in
(TACCHINO et al., 2019). For example, if 𝑈𝑔𝑤𝐻

⊗𝑁 |0⟩⊗𝑁 = |𝜓𝑤⟩, 𝑈𝑤 = 𝑋⊗𝑁𝐻⊗𝑁𝑈𝑔𝑤, and
𝑈𝑤 |𝜓𝑤⟩ = |1⟩⊗𝑁 = |𝑚− 1⟩ are true, then:

𝑈𝑤 |𝜓𝑤⟩ = (𝑋⊗𝑁𝐻⊗𝑁𝑈𝑔𝑤)(𝑈𝑔𝑤𝐻
⊗𝑁 |0⟩⊗𝑁) (3.8)

It is possible to reduce the equation above only if 𝑈𝑔𝑤𝑈𝑔𝑤 = 𝐼, where 𝑈𝑔𝑤 = 𝑈 †
𝑔𝑤 and

𝐼 is the identity matrix:

𝑈𝑤 |𝜓𝑤⟩ = (𝑋⊗𝑁𝐻⊗𝑁𝑈𝑔𝑤)(𝑈𝑔𝑤𝐻
⊗𝑁 |0⟩⊗𝑁)

= 𝑋⊗𝑁𝐻⊗𝑁𝐻⊗𝑁 |0⟩⊗𝑁 = 𝑋⊗𝑁 |0⟩⊗𝑁 = |𝑚− 1⟩
(3.9)

The HSGS algorithm transforms the probability amplitudes of the quantum states
such that they represent the binary information of input and weights as 1 and −1 values.
The first step is to check whether the value on the first position of the vector is −1.
If the condition is satisfied, flip the sign of every element on the vector v (line 4). The
next step is to verify if there is any quantum state with only one qubit in the state |1⟩
(e.g. |0100⟩) that has amplitude −1, if so, a Z gate is applied to that position. Then, for
𝑝 ∈ [2, · · · , 𝑁 ]., the elements of the quantum system in the computational basis with p
qubits in state |1⟩ are identified. For each of these cases, check whether it is necessary to
insert a Z gate.

In Figure 4 it is possible to observe an example of the binary weights quantum neuron
implemented using the HSGS algorithm to input data and weights in the quantum circuit.
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Algoritmo 1: HSGS Algorithm proposed in (TACCHINO et al., 2019).
Result: Quantum circuit QC;

1 Input: a given v = {−1, 1}2𝑁 input vector;
2 Auxiliary variables: vAux = {1}2𝑁 vector;
3 if v[0] is -1 then
4 v = [amp.(-1) for amp in v] // Flip all the binary values of v;
5 end
6 for 𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(𝑣); 𝑖+ + do
7 if v[i] is -1 and there exist only one qubit is in IntToBin(i) string then
8 Put Z gate on the circuit QC in the position of the one qubit of the state

IntToBin(i);
9 Update vAux vector, considering that a signal change was applied in the

position 𝑖;
10 end
11 end
12 for 𝑝 = 2, 𝑝 < 𝑁, 𝑝+ + do
13 for 𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(v); 𝑖+ + do
14 if IntToBin(i) has 𝑝 bits equal to one then
15 if vAux[i] is not equal to v[i] then
16 Put 𝐶𝑝𝑍 gate on the circuit QC between the 𝑝 qubits that have

values 1 in IntToBin(i);
17 Update vAux vector considering that a signal changed was applied

in 𝑗 positions of vAux which 𝑝 qubits that have 1 value in
IntToBin(i) are in the same position in IntToBin(j);

18 end
19 end
20 end
21 end

Figure 4 – Example of quantum circuit for the binary weights quantum neuron

𝑈𝑖 𝑈𝑤

|0⟩

𝐻⊗𝑁

∙ ∙ ∙ ∙ ∙ ∙

𝐻⊗𝑁 𝑋⊗𝑁

∙

|0⟩ ∙ Z ∙ Z ∙

|0⟩ Z Z ∙

|0⟩ Z Z Z Z ∙

|0⟩

⏞  ⏟  ⏞  ⏟  

Input vector 𝑣𝑖 = [1, 1, 1, 1, 1, −1, 1, 1, 1, −1, −1, 1, −1, 1, 1, −1] and weights
𝑤𝑖 = [−1, −1, −1, −1, −1, 1, −1, −1, −1, 1, 1, −1, 1, −1, −1, 1].

Source: The author (2021)



22

3.2 QUANTUM NEURON WITH REAL WEIGHTS

Parametric models with real numbers valued parameters have greater performance than
its counterparts with binary valued weights. This is due to the gain in representing infor-
mation with real values, and therefore having a larger space for memory association. To
develop a quantum neuron capable of store real weights and preserve the gain with the
superposition property, we need to encode the information in the probability amplitudes
of the quantum system.

For the 𝐻𝑆𝐺𝑆 algorithm to generate 𝑈𝑔𝑖 and 𝑈𝑔𝑤 used in (TACCHINO et al., 2019), the
condition 𝑈𝑔𝑤𝑈𝑔𝑤 = 𝐼 is true because is formed only by Z gates and controlled-Z gates.
The restriction mentioned in 3.9 is applied only for the operator 𝑈𝑔𝑤. The operator that
generates the quantum state |𝜓𝑖⟩ does not have such restrictions. Therefore, we can use
any other operator to load information in the quantum system.

Möttönen et al. (MöTTöNEN et al., 2005) proposed an algorithm to store real values in
the amplitudes of quantum states. Here we named this circuit as the Encoding Operator
(EO), detailed in Figure 5. This operator is not obviously equal to its adjoint due to the
rotation operations that it produces, i.e. the operator 𝑈𝑔𝑤 has to be Hermitian since
Equation 3.9 dictates that 𝑈𝑔𝑤𝑈𝑔𝑤 = I. Despite this limitation, as described in Section
3.1, we can then use it to generate the operator 𝑈𝑔𝑖 to represent the real weights, and use
the HSGS algorithm to generate 𝑈𝑔𝑤 to represent the binary inputs, since the internal
product is a commutative operation, where the order of the operands does not change the
result of the operation.

Figure 5 – Circuit of uniformly controlled rotations presented in (MöTTöNEN et al., 2005)
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The rotation angles 𝛼𝑞
𝑗,𝑘 for the uniformly controlled rotations are given in Equations 3.10 and 3.11.

Source: The author (2021)

The uniformly controlled rotation 𝐹 𝑘
𝑡 (𝑎, 𝛼) can be represented as a quantum gate

where: 𝑘 is the number of controlled qubits; 𝑡 is the target qubit; 𝑎, the rotation axis
and 𝛼𝑖 as the angles. Therefore, the EO is defined as sequence of controlled 𝑅𝑎(𝛼𝑖) gates,
where the algorithm has an exponential computational cost to find the sequence of gates
(MöTTöNEN et al., 2005).

The first step is to equalize the phases 𝑤𝑖 using a sequence of uniformly controlled
rotations in cascade, transforming the vector up to the global phase. This is executed
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using a diagonal 𝑁 -qubit quantum gate (BULLOCK; MARKOV, 2003). The rotation angles
are given in Equation 3.10, where 𝑗 = 1, 2, ..., 2𝑁−𝑘 and 𝑘 = 1, 2, ..., 𝑁 :

𝛼𝑧
𝑗,𝑘 =

2𝑘−1∑︁
𝑙=1

(𝑤(2𝑗−1)2𝑘−1+𝑙 − 𝑤(2𝑗−2)2𝑘−1+𝑙)/2𝑘−1, (3.10)

After applying the uniformly controlled rotation 𝐹 𝑛−1
𝑛 (𝑦, 𝛼) with the angles found, we

find the desired decomposition (take the product of the non-commuting matrices found
from left to right) and then, the rotation angles have the values:

𝛼𝑦
𝑗,𝑘 = 2 arcsin(

⎯⎸⎸⎷2𝑘−1∑︁
𝑙=1

|𝑎(2𝑗−1)2𝑘−1+𝑙|2/

⎯⎸⎸⎷ 2𝑘∑︁
𝑙=1

|𝑎(𝑗−1)2𝑘+𝑙|2), (3.11)

where 𝑗 = 1, 2, ..., 2𝑁−𝑘 and 𝑘 = 1, 2, ..., 𝑁 .
This procedure is used to build the EO, and therefore manipulate the probability

amplitudes of the quantum system, allowing for the representation of real values on the
quantum neuron. The model still uses the HSGS algorithm to input data, but now the
inner product is achieved with more information gain than its binary counterpart.

Figure 6 shows an example of quantum neuron with real weights for a 2×2 image rep-
resented by the vector 𝑣𝑖 = [1,−1, 1, 1] and real weights 𝑤𝑖 = [0.117,−0.77,−0.177, 0.5].
Due to the restriction pointed in Equation 3.9, for the real weights quantum neuron, the
operator 𝑈𝑖 is used to input the weights using the EO operation and 𝑈𝑤 is used to encode
the input vector using the HSGS algorithm.

Figure 6 – Example of quantum circuit for the real weights quantum neuron

𝑈𝑖 𝑈𝑤

|0⟩ 𝑅𝑦(3.8) 𝑅𝑦(−2.8) × ∙ 𝐻 𝑋 ∙

|0⟩ 𝑅𝑦(1.1) ∙ 𝑋 ∙ 𝑋 × 𝑍 𝑍 𝐻 𝑋 ∙

|0⟩

⏞  ⏟  ⏞  ⏟  

Input vector 𝑣𝑖 = [1, −1, 1, 1], encoded in the circuit by the operator 𝑈𝑖, and weights
𝑤𝑖 = [0.117, −0.77, −0.177, 0.5] encoded by 𝑈𝑤.

Source: The author (2021)
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Algoritmo 2: Amplitude Encoding Algorithm proposed in (MöTTöNEN et al.,
2005) .

Result: Quantum circuit QC;
1 Input: a given vector v with dimension 𝑚 = 2𝑁 ;
2 Auxiliary variables: vAux and vBeta vectors;
3 Procedure: recursiveComputeBetas(v, vBeta):
4 for 𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(v); 𝑖+ 2 do
5 compute square-root of the sum of 𝑣[𝑖]2 and 𝑣[𝑖+ 1]2 and store result norm in

vAux;
6 if norm is 0 then
7 append 0 to vBeta
8 else
9 if 𝑣[𝑖] less than 0 then

10 compute 2𝜋 − 2 arcsin (𝑣[𝑖+ 1]/norm) and store result in vBeta ;
11 else
12 compute 2 arcsin 𝑣[𝑖+ 1]/norm and store result in vBeta
13 end
14 end
15 recursiveComputeBetas(vAux, vBeta)
16 end
17 Procedure: generateCircuit(vBeta):
18 for 𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(vBeta); 𝑖+ + do
19 if 𝑛 of controlled qubits is 0 then
20 apply a RY rotation in the qubit with the angle vBeta[i], put the qubit in

the list of controlled qubits and update the number of controlled qubits.
Return final quantum circuit QC for vector v.

21 end
22 end

3.3 BIAS AND THE SYMMETRY PROBLEM

The quantum perceptron proposed in (TACCHINO et al., 2019) has the property of learning
a pattern and its negative counterpart, due to the inner product behavior in the quantum
system. The data here is represented by 4×4 images with black (−1) and white (1) pixels.
When training for a pattern 𝑋, the quantum neuron spontaneously learns the opposite
pattern 𝑋̂ (see Figure 10). Accordingly to (TACCHINO et al., 2019), this behavior reflects
the invariance of the encoding states |𝜓𝑖⟩ and |𝜓𝑤⟩ under the addition of a global −1
factor.

We show that this property can be undesirable for classification tasks. The quantum
neuron can deceive the target pattern and return a prediction probability that is greater
than expected for an input pattern that is far from the original target, but close to its
negative.

To evidence this problem we trained the patterns 1 and 2 together (see Figure 10)
for the same neuron (quantum neuron 𝐴), and another quantum neuron for the pattern
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3 (quantum neuron 𝐵). The optimization procedure used to train the weights of the
neurons is the Delta Rule, applied for all quantum neurons for reliability and described in
(WIDROW; HOFF, 1960). The delta rule is executed with real values and the weights are
binarized for the execution of the HSGS operator only, but continues to be real valued in
the neurons using the Encoding algorithm. Although the optimization returns the trained
weights as real numbers, for the binary neurons we apply the deterministic binarization
−1 if 𝑥 < 0 else 1.

In Equations 3.12 and 3.13 it is possible to observe the weights found by the Delta
Rule algorithm considering the quantum neurons 𝐴 and 𝐵. The weights are trained with
real numbers but the binarization is applied to generate the states |𝜓𝑖⟩ and |𝜓𝑤⟩. When
executing the trained quantum neurons with the test example 𝑌 , Fig 7, we find that 𝐵 ·𝑌
has a greater probability output than 𝐴 · 𝑌 (0.14 for quantum neuron 𝐴 and 0.38 for
quantum neuron 𝐵). Therefore, although the pattern 𝑌 is much closer to the patterns
1 and 2, due to the symmetric behavior, the negative pattern 3̂ increase the probability
activation for the quantum neuron 𝐵.

Figure 7 – Example of binary image pattern (left) and its representation in binary
matrix (right)

Source: The author (2021)

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.064 0.064 0.064 −0.064

0.064 0.487 0.487 0.064

0.064 0.487 0.487 0.064

−0.064 0.064 0.064 −0.064

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 −1

1 1 1 1

1 1 1 1

−1 1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.12)

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.118 0.353 0.118 0.118

0.353 −0.118 −0.353 0.353

0.353 −0.118 −0.353 0.118

0.118 0.353 0.118 0.118

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −1 −1 1

1 −1 −1 1

1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.13)

To address this problem we perform a preprocessing stage in the quantum neuron,
adding bias to the input vectors, with the fixed cost of adding only one more qubit in
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the system. This procedure doubles the number of quantum states, inserting a set of a
constant bias of +1, which is the same size of the original input (see Figure 8).

Figure 8 – Quantum neuron without bias (left) and with bias (right)
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Source: The author (2021)

We also test the inner product behavior of the quantum neurons for a range of differ-
ence between input and weights, generating random states input vector and then testing
from 0 to 2𝑁 + 1 number of differences, where 𝑁 is the number of qubits of the quantum
system. Figure 9a exhibits the results of this test, showing the symmetry relation between
inner product output and the level of difference in input 𝑈𝑖 and weights 𝑈𝑤. A more de-
tailed analysis of this behavior can be found in (NETO; FILHO; MONTEIRO, 2020). The
output of the inner product decreases when the difference increases until it reaches the
point of maximum orthogonality, then the inner product output increases as the difference
becomes a mirror of the opposite target. This behavior happens due to the result of the
neuron being a measure of probability that can only be positive, so internal products with
negative values will be normalized and squared.

In Figure 9b, the variance of the difference between input and weights with bias follow
a linear pattern, instead of the symmetry observed before, without bias. Therefore, we
can verify the distance from the input pattern and the stored weight without considering
the barred input or barred weight as the same pattern.

With the weights trained with bias, when testing, the pattern learned is related only
to the real target and not its negative counterpart. For each of the quantum neurons 𝐴
and 𝐵, we also trained the biased version quantum neurons 𝐴 and 𝐵̂. To this extent, we
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Figure 9 – Test of the inner product behavior of the quantum neurons for a range of
difference between input and weights

(a) Without bias, the quantum perceptron proposed in (TACCHINO et al., 2019) is
stimulated maximally to the pattern exactly equal to weight and to the

pattern exactly opposite to weight (its negative counterpart), being unable to
differentiate both.

(b) With bias, the quantum proposed neuron is able to differentiate the input
patterns as they become more and more different from their weight.

The graphs show the neuron output (vertical axis) as a function of the difference between the input
vector and the weight vector (horizontal axis) for the quantum neuron without bias (top) and with bias

(below), considering 𝑁 = 2 qubits (left) and N = 3 (right). In the quantum neuron without bias, the
neuron preserves the symmetry of the output, showing its inability to differentiate a pattern from its

completely reverse pattern (i.e. its negative counterpart). When the quantum neuron has bias, the
neuron has an ever-decreasing curve as an output, which indicates that the degree of the difference
between inputs and weights is inverse to the output stimulus, therefore being able to differentiate a
pattern from its completely opposite pattern. To generate these graphs, 1000 completely different

binary input values and weights were generated for each of the possible distances. The output value of
the neuron on the graph is the average output of these iterations. It is possible to verify that the

theoretical quantum neurons BWQN, RWQN and RWCN have average output values exactly the same.
Source: The author (2021)
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find that the biased approach indeed has an error correction behavior, denoted by the
output of these neurons where 𝐴 · 𝑌 = 0.10 and 𝐵̂ · 𝑌 = 0.03.

These experiments have demonstrated the advantage of using the biased approach for
the quantum neuron, in order to correct the symmetry problem. Nevertheless, for this
approach, the HSGS algorithm shows an issue related to cases that have a value of −1 in
the first position of the input or weight vectors, where the algorithm flips all the values
to generate the circuit and therefore the pattern learned is the opposite. The experiments
consider the opposite pattern in these cases, in order to validate the biased approach
proposal, however in real applications the Brute Force algorithm proposed in (TACCHINO

et al., 2019) can be used.

3.4 EXPERIMENTS

We conducted experiments with a data set of 4 × 4 images with three different patterns
(cross, X and square) as shown in Figure 10. There is also a variation in the test data set
ranging from 1 to 3 noises in the image, to analyze the behavior of the quantum neurons
when dealing with different patterns from those learned.
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Figure 10 – Database of figures X (pattern 1), Cross (pattern 2) and Square (pattern 3),
used in the experiments

At the top, the figures that are used during training in the absence of noise. Next to each pattern, there
is its negative counterpart (1̂, 2̂ and 3̂). Below, noises on three scales are added to the patterns that

were used in the test stage to assess the quality of the training.
Source: The author (2021)

The quantum neurons used in the experiments are the Binary Weights Quantum
Neuron (BWQN), Real Weights Quantum Neuron (RWQN), Binary Weights Classical
Neuron (BWCN) and Real Weights Classical Neuron (RWCN). For each of these quantum
neurons, we also test the biased approach, therefore duplicating the quantum states for
𝑈𝑖 and 𝑈𝑤 with the cost of adding only one qubit.

The quantum neuron is initialized with the input state |𝜓𝑖⟩ and random weights |𝜓𝑤⟩,
then the model is executed to evaluate its probability output given by the number of shots
with output 1 divided by the total shots, fixed at 8192 shots. The weights are updated
during the training process in a quantum-classical approach, where the quantum simulator
executes the quantum circuit of the quantum neuron and the Delta Rule algorithm update
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the weights based on the circuit output. We use Python (v.3.6) for coding and the Qiskit
package for development and simulation of the quantum circuits (ALEKSANDROWICZ et

al., 2019).
The first set of experiments test a target class for each of the three patterns (X-0,

Square-1 and Cross-2), i.e. one neuron for each class, therefore each neuron learns a unique
pattern. Table 1 1 shows the average error of each model, measured as the number of wrong
predictions divided by the total number of predictions, alongside its standard deviation.
Is possible to state that, when patterns have only one noise, all quantum neurons reached
an error mean of 0 with a standard deviation of 0, explained by the specialist behavior
of the quantum neurons when dealing with only one class of target and low differences
form the pattern learned. Nevertheless, its also possible to state the behavior of the biased
quantum neurons when dealing with 2 and 3 noises in the test image, which points to a
significant error reduction compared to the quantum neurons without bias.

This indicates an error reduction for the Real Weights Quantum Neuron compared
to the Binary Weights Quantum Neuron both for 2 and 3 noises. The mean error for
2 noises in the image achieved 0.1209 for RWQN and 0.1222 for BWQN, while for 3
noises the RWQN achieved 0.1308 and BWQN, 0.1407. The variance of the error for the
Binary Weights Quantum Neuron is more than double of the Real Weights Quantum
Neuron for this experiment, for 2 noises the quantum neurons exhibit a variance of 0.0004
(RWQN) and 0.0019 (BWQN), while for 3 noises the quantum neurons had a variance of
0.0003 (RWQN) and 0.0020 (BWQN). Therefore, expressing a better adjustment, making
the proposed quantum neuron more stable, a feature that is highly relevant for machine
learning and classification tasks.

The second set of experiments is executed with the target classes in a combined ap-
proach, creating a quantum neuron for pairs of classes, to analyze the behavior of the
models to deal with multiple patterns. Here we define the 3 subsets of classification for
this test: (1) X and Cross (class a) vs Square (class b); (2) X and Square (class a) vs
Cross (class b); and (3) X (class a) vs Square and Cross (class b). The training process is
designed with the Delta Rule algorithm with a learning parameter of 0.09 and 400 epochs.

In Table 2 it is possible to state that the Real Weights Quantum Neuron with Bias
has the best performance for all experiments and noise configurations, with an error mean
of 0 found in 7 of 8 experiments with bias, while also reducing the error variance when
compared to the Binary Weights Quantum Neuron.

The benefits of the biased approach are more evident in these experiments and can be
denoted by the subset of experiments (2) X and Square vs Cross (third column from left to
right) and (3) X vs Square and Cross (right column), where for all noise configurations the
biased approach had an effect of reducing the error of all quantum neurons. Nevertheless,
for the experiment X and Cross (class a) vs Square (class b), the bias has reduced the
error for the real weights quantum neurons but increased the error for the binary weights
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Table 1 – Results of experiments with unique patterns

Model Bias Approach 1 Noise (std) 2 Noises (std) 3 Noises (std)
RWQN Biased 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
RWQN Unbiased 0.00 (0.00) 0.12 (0.02) 0.13 (0.02)
BWQN Biased 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
BWQN Unbiased 0.00 (0.00) 0.12 (0.04) 0.14 (0.04)
RWCN Biased 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
RWCN Unbiased 0.00 (0.00) 0.11 (0.00) 0.11 (0.00)
BWCN Biased 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
BWCN Unbiased 0.00 (0.00) 0.07 (0.00) 0.07 (0.00)

Each quantum neuron learns a unique pattern, with noise levels ranging between 1, 2 and 3 (pixels
changed from the original pattern). The values in the table corresponds to the average error in the

training set, measured as the number of wrong predictions divided by the total number of predictions,
with its standard deviation between parenthesis.

Source: The author (2021)

quantum neurons. This indicates a faster learning convergence for the proposed quantum
neuron, due to the property of storing real information in the quantum states and therefore
having more discriminant power than the binary quantum neuron while reducing the
learning error caused by the symmetry problem using the biased approach.

In Figure 11, it is possible to visualize the error reduction of the real weights quantum
neuron and binary weights quantum neuron, by epoch (0-20) and for the four configura-
tions of data set: (1) X and Cross vs Square; (2) X and Square vs Cross; (3) X vs Square
and Cross; and (4) X vs Cross vs Square. For each configuration we tested the biased and
unbiased approaches. In the quantum neurons without bias, although the RWQN has a
greater error reduction on the first epochs, the BWQN decreases more on the long run for
3 of the 4 data sets tested. Nevertheless, when applying the biased approach, the RWQN
has the best performance in the 3 data sets with combined classes, and reach the same
error of the BWQN in the individual class neurons (X vs Square vs Cross).
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Table 2 – Results of experiments with multiple patterns (classes)

Model Bias
Approach

Subset Data 1 Noise (std) 2 Noises (std) 3 Noises (std)

RWQN Biased Subset 1 0.00 (0.00) 0.00 (0.00) 0.05 (0.02)
RWQN Unbiased Subset 1 0.33 (0.00) 0.19 (0.03) 0.26 (0.00)
BWQN Biased Subset 1 0.18 (0.03) 0.19 (0.03) 0.22 (0.03)
BWQN Unbiased Subset 1 0.15 (0.04) 0.14 (0.04) 0.11 (0.02)
RWCN Biased Subset 1 0.00 (0.00) 0.00 (0.00) 0.04 (0.00)
RWCN Unbiased Subset 1 0.33 (0.00) 0.30 (0.00) 0.26 (0.00)
BWCN Biased Subset 1 0.11 (0.00) 0.11 (0.00) 0.18 (0.00)
BWCN Unbiased Subset 1 0.07 (0.00) 0.07 (0.00) 0.07 (0.00)
RWQN Biased Subset 2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
RWQN Unbiased Subset 2 0.33 (0.00) 0.22 (0.01) 0.22 (0.01)
BWQN Biased Subset 2 0.15 (0.04) 0.16 (0.03) 0.10 (0.00)
BWQN Unbiased Subset 2 0.19 (0.04) 0.19 (0.04) 0.22 (0.03)
RWCN Biased Subset 2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
RWCN Unbiased Subset 2 0.33 (0.00) 0.22 (0.01) 0.22 (0.02)
BWCN Biased Subset 2 0.07 (0.00) 0.07 (0.00) 0.11 (0.00)
BWCN Unbiased Subset 2 0.11 (0.00) 0.11 (0.00) 0.18 (0.00)
RWQN Biased Subset 3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
RWQN Unbiased Subset 3 0.04 (0.00) 0.20 (0.02) 0.15 (0.01)
BWQN Biased Subset 3 0.01 (0.02) 0.07 (0.02) 0.07 (0.02)
BWQN Unbiased Subset 3 0.31 (0.02) 0.25 (0.05) 0.28 (0.05)
RWCN Biased Subset 3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
RWCN Unbiased Subset 3 0.04 (0.00) 0.18 (0.00) 0.11 (0.00)
BWCN Biased Subset 3 0.04 (0.00) 0.11 (0.00) 0.11 (0.00)
BWCN Unbiased Subset 3 0.33 (0.00) 0.30 (0.00) 0.33 (0.00)

The quantum neurons learn a combination of two patterns defined as subsets (1) X and Cross (class a)
vs Square (class b); (2) X and Square (class a) vs Cross (class b); and (3) X (class a) vs Square and

Cross (class b), with noise levels ranging between 1, 2 and 3 (pixels changed from the original pattern).
The values in the table corresponds to the average error in the training set, measured as the number of
wrong predictions divided by the total number of predictions, alongside its standard deviation between

parenthesis.
Source: The author (2021)
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3.5 RUNNING IN A REAL QUANTUM PROCESSOR

Figure 11 – Error by epoch during training of the RWQN and the BWQN

Error during training of the RWQN and the BWQN by epoch in the delta rule weight adjust, measured
as the number of wrong predictions divided by the total number of predictions. We analyzed 4 different
configurations of binary classifications: (A) X and Cross (class 0) vs Square (class 1); (B) X and Square
(class 0) vs Cross (class 1); (C) X (class 0) vs Square and Cross (class 1); and (D) X (class 0) vs Cross
vs Square (class 1). For each configuration we tested the biased (right) and unbiased approaches (left).
The results show the generalization capacity of the proposed quantum neuron combined with biased

approach, when dealing with different patterns.
Source: The author (2021)

In order to evaluate the proposed quantum neuron on real quantum devices, we devel-
oped experiments with a noisy intermediate-scale quantum (NISQ) computer, testing
the models: binary weights classical neuron (BWCN), binary weights quantum neuron
(BWQN), and real weights quantum neuron (RWQN). Three input and weight vectors
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that generate three different outputs for the neuron were simulated: (1) 𝑣𝑖 = [1, 1, 1, 1]
and 𝑤𝑖 = [1, 1, 1, 1]; (2) 𝑣𝑖 = [1, 1, 1, 1] and 𝑤𝑖 = [1, 1, 1,−1]; and (3) 𝑣𝑖 = [1, 1, 1, 1],
𝑤𝑖 = [1, 1,−1,−1]. The circuit to be executed in a determined architecture is generated
by a compilation routine performed by the Qiskit tool of IBM and can be replicated from
these inputs and weights (ALEKSANDROWICZ et al., 2019).

The quantum neurons are executed in the IBM Athens NISQ computer, available for
experimentation through Qiskit, running 8192 shots to get the results for each quantum
neuron. The quantum neurons are simulated using the quantum circuit simulator backend
QasmSimulator, to compare the expected output of the neurons with the NISQ computer
output.

The results of the experiments are shown in Figure 12, where is possible to notice that
the outputs of the quantum neurons, running in the quantum device, are similar to the
same quantum neurons running on the simulator. The difference between the expected
output in the simulator and in the quantum device is not substantial and the neuron
output levels for 𝑁 = 2 can be distinguishable even in the presence of noise from the
real computer. This indicates the potential for near-future applications as the quantum
devices reduce noise and expands the number of qubits available for experimentation.

Figure 12 – Results of proof of concept of the proposed quantum neuron in a real
quantum computer

a Neuron outputs (vertical axis) for 3 possible values of the input and weight vectors (horizontal axis,
weights |𝑤1⟩, |𝑤2⟩ and |𝑤3⟩) for the models: binary weights classical neuron (BWCN), binary weights
quantum neuron (BWQN), and real weights quantum neuron (RWQN). The last two executed both in

the classical simulator and in the IBM Athens quantum device. The results demonstrate the
effectiveness of the quantum neurons in a real quantum processor, evidenced by the proximity of the
simulation output and the quantum device output, therefore indicating the potential for near-future

applications. b Scheme of IBM Q-5 “Athens” backend quantum processor
Source: The author (2021)
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4 QUANTUM MACHINE LEARNING TO SUPPORT MEDICAL DECISION

This chapter presents relevant preliminary results from the application of quantum ma-
chine learning in the healthcare industry. We test quantum neurons that can carry an
exponential amount of information to a linear number of quantum information units
(qubits) using the quantum property of superposition. We compared their performance
on the problems of (1) simulating the XOR operator, (2) solving a generic nonlinear
problem and (3) classify patients with diabetes. The results of the experiments shows
that a single quantum neuron is capable of reach 100% accuracy rate in the XOR prob-
lem and 100% accuracy rate in a nonlinear dataset, demonstrating the plausibility of the
quantum neurons in modelling non linearly separable problems. The quantum neurons
achieved 76% accuracy rate and 88% AUC-ROC in the problem of diagnosing diabetes.
These findings indicates that a single quantum neuron has good generalization capacity,
demonstrating potential for use in a near-future application in healthcare.

4.1 MACHINE LEARNING AND BIG DATA IN HEALTHCARE

Health can be defined not just as the absence of diseases but also in a broader approach,
where the the individual state of well-being is relevant, relating to the physical, mental and
social health (UN, 1946; BURTON-JEANGROS et al., 2015). This implies that the individual
health is a continuous state in time, with variances and events that has a sequential effect.
Therefore, identifying the patterns that leads to a health state, a care company can prevent
the demand and propose an intervention to the individuals before they reach a critical
point. This improves the quality of their services, promote cost-efficient management while
reducing risks for the health of the patients.

With the growing development of information systems for the management of health-
care institutions, the storage of care data such as medical diagnosis, personal charac-
teristics, events and procedures during hospitalization and infrastructure of the health
institutions reached a point of pettabytes or more of storage in some locations such as the
Kaiser Permanente network in California, United States (HARTZBAND, 2019). All this
information can be used to promote a better health for patients, lower costs for private
and public healthcare companies, improve the patient experiences during hospitalization
and enhance the workflow for healthcare practitioners (FLöTHER MURPHY; SOW, 2020).

Machine learning has been used in healthcare as a tool to support the decision-making
process, with companies developing strong predictors from lots of weak attributes. Al-
though machine learning is widely exploited in image diagnosis such as x-ray for iden-
tifying lung and breast cancer, the data mining of healthcare processes is still not fully
exploited. This is due to the complexity of these problems when compared to image
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recognition, for example the prediction of patient hospitalization can explore many differ-
ent measures of data, e.g. patient previous health conditions, food consumption habits,
physical movement habits, family relatives comorbidities, environmental and healthcare
conditions in the neighborhood, image diagnosis, genomics, wearable devices and more
(SOLENOV; BRIELER; SCHERRER, 2018). All this information is relevant data that can
be used to train machine learning learning algorithms. These applications require large
databases for continuous storage, and the data preprocessing techniques can easily expand
exponentially the attributes for the algorithm training when generating longitudinal in-
formation to be encoded in different time stamps and levels of aggregation. The need of
computing power and model degrees of freedom to learn the patterns from these sources
of big data is also growing and quantum computing can be used as a tool to address this
need.

Some articles have applied quantum computing to health problems, although it is
recognized that the area is still in development, requiring the test and simplification of
quantum circuits so that they are actually capable of running on real processors (SHAIKH;

ALI, 2016; SOLENOV; BRIELER; SCHERRER, 2018). Wiebe, Kapoor and Svore (WIEBE;

KAPOOR; SVORE, 2015) have proposed Quantum Nearest-Neighbor Algorithms to classify
breast cancer, heart disease, and diabetes in patients, showing that their algorithms are
competitive with classical algorithms while also leading to polynomial reductions in query
complexity relative to the corresponding classical algorithms. Gupta et al (GUPTA et al.,
2021) made a comparative study of the performance of quantum machine learning (QML)
algorithms with deep learning (DL) for diabetes prediction, using the PIMA Indian Dia-
betes dataset, showing that the DL models has a high diabetes prediction accuracy when
compared with the developed QML and existing state-of-the-art models. Nevertheless,
they highlight that the performance of the QML model has been found satisfactory and
comparable with existing literature.

In 2021 IBM has announced its first private commercial sell of a quantum computer
through a partnership with the Cleveland Clinic, situated in Ohio (US), to develop quan-
tum computing applications for the healthcare center (HEALTHCARE. . . , 2021). The aim
of this cooperation is to address the need for innovative discoveries, harnessing the power
of quantum computers to promote advances in research areas that require analysis of
large amounts of data such as genomics, cell transcriptomics, population health and drug
discovery (HEALTHCARE. . . , 2021), indicating the relevance of the field to healthcare ap-
plications. Nevertheless, although there is quantum machine learning applications being
developed, there is still need to investigate the fitness of these algorithms to healthcare
problems (SOLENOV; BRIELER; SCHERRER, 2018).
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4.2 CONTINUOUSLY VALUED QUANTUM NEURON

Parametric models with real valued parameters have a greater performance than its coun-
terparts with binary values. This is due to the gain in representing information with real
values, therefore having a larger space for memory association. To develop a quantum
neuron capable of store real weights and preserve the gain with the superposition prop-
erty, we need to encode the information in the probability amplitudes of the quantum
system.

Möttönen et al. (MöTTöNEN et al., 2005) proposed an algorithm to store real values in
the amplitudes of quantum states. However, this operator is not equal to its adjoint due
to the rotation operations that it produces, therefore it can only be used to generate the
operator 𝑈𝑔𝑖 or the operator 𝑈𝑔𝑤, while the HSGS algorithm is used to generate the other
one. Mangini et al. (MANGINI et al., 2020) exploit the Sign-Flip Algorithm proposed in
(TACCHINO et al., 2019) to implement a phase encoding operation on the quantum circuit
and encode continuously valued information in the amplitudes of the quantum states
through the usage of rotation in the qubits. This procedure makes possible to encode
both input and weight vectors with continuous values, producing a quantum neuron that
is suitable for classification problems with real valued data.

The input for the phase encoding is the classical information to be encoded, given by
Θ = (𝜃0, ..., 𝜃𝑁−1) with 𝜃𝑖 ∈ [0, 𝜋], whereas weights are given by Φ = (𝜑0, ..., 𝜑𝑁−1) with
𝜑𝑖 ∈ [0, 𝜋]. The corresponding vectors for inputs and weights are defined as 𝑖⃗ and 𝑤⃗:

𝑖⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒𝑖𝜃0

𝑒𝑖𝜃2

...

𝑒𝑖𝜃𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑤⃗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒𝑖𝜑0

𝑒𝑖𝜑2

...

𝑒𝑖𝜑𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

The information is then carried to the amplitudes of the quantum states |𝜓𝑖⟩ and |𝜓𝑤⟩:

|𝜓𝑖⟩ = 1
2𝑛/2

2𝑛−1∑︁
𝑘=0

𝑖𝑘 |𝑘⟩ , |𝜓𝑤⟩ = 1
2𝑛/2

2𝑛−1∑︁
𝑘=0

𝑤𝑘 |𝑘⟩ (4.2)

Where 𝑛 = log2 𝑁 qubits and the states |𝑘⟩ denote the computational basis states of
𝑛 qubits ordered by increasing binary representation, [|00...0⟩ , |00...1⟩ ,
..., |11...1⟩]. The similarity between the input and weight vectors is given by the inner
product in Equation 4.3, which is equivalent to the scalar product between the input
vector 𝑖⃗ and the conjugated of the weight vector 𝑤⃗, 𝑤*.

⟨𝜓𝑤| |𝜓𝑖⟩ = 1
2𝑛

2𝑛−1∑︁
𝑘,𝑗=0

𝑖𝑘𝑤
*
𝑗 ⟨𝑗| |𝑘⟩ = 1

2𝑛
𝑖⃗ · 𝑤*

= 1
2𝑛

(𝑒𝑖(𝜃0−𝜑0) + · · · + 𝑒𝑖(𝜃2𝑛−1−𝜑2𝑛−1))
(4.3)



38

Considering that probabilities in quantum systems are given by the square modulus of
the wave-function amplitudes, the Equation 4.4 represents a nonlinear activation function
of the phase encoding quantum neuron.

|⟨𝜓𝑤| |𝜓𝑖⟩|2 = 1
2𝑛

+ 1
22𝑛−1

2𝑛−1∑︁
𝑖<𝑗

cos ((𝜃𝑗 − 𝜑𝑗) − (𝜃𝑖 − 𝜑𝑖)) (4.4)

The quantum circuit for implementing the phase encoding quantum neuron is similar
to the HSGS quantum neuron circuit defined in Figure 3. The difference for the phase
encoding quantum neuron is at 𝑈𝑖 and 𝑈𝑤, where the quantum operators used to encode
the information in the probability amplitudes are a combination of 𝑋 gates and multi-
controlled phase shift gate 𝐶𝑛−1𝑅(𝜃) rotation gates.

The Phase Encoding Algorithm transforms the probability amplitudes of the quantum
states such that they represent continuously valued information in the range [0, 𝜋]. For
each of the quantum state in computation basis, the first step is to identify the positions
of the state where the qubit is in |0⟩ and apply the X gate to that position to flip it to
the state |1⟩. Then, if the size of the vector is greater than 2 a multi-controlled rotation
𝐶𝑛−1𝑅(𝜃) is applied, where 𝜃 is the continuous value in the range [0, 𝜋], otherwise only the
rotation 𝑅(𝜃) is applied. The last step is to reverse the inversion of the qubits in the first
step, applying the X gate in the positions where the qubit is in |0⟩. Figure 13 shows an
example of the phase encoding quantum neuron implemented using the phase encoding
algorithm to input data and weights in the quantum circuit.

Figure 13 – Example of quantum circuit for the continuously valued quantum neuron

𝑈𝑖 𝑈𝑤

|0⟩ 𝐻 𝑋 𝑅(−𝜋) 𝑋 𝑅(𝜋) 𝑋 𝑅(−2.45) 𝑋 𝑅(−0.09) 𝐻 𝑋 ∙

|0⟩

⏞  ⏟  ⏞  ⏟  

Inputs 𝑣𝑖 = [−1, 1], encoded in the circuit by the operator 𝑈𝑖, and weights 𝑤𝑖 = [0.7828, 0.0287]
encoded by 𝑈𝑤.

Source: The author (2021)

4.2.1 Preprocessing Strategies for The Continuously Valued Quantum Neuron

The application of preprocessing techniques is inspired by the notion of hypercomplex
numbers, where we calculate the hyperspherical representations of the input vector to
represent them as high-dimensional vectors. Some articles propose the use of hypercom-
plex numbers in pattern recognition problems (VALLE; LOBO, 2021). Inspired by the opera-
tions of these numbers, we define the calculation of the angle 𝜆 and radius 𝜎 preprocessing
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strategies of the paired numbers of an input vector 𝑣𝑘 of size 𝑛, 𝑘 = 0, ..., 𝑛−1, generating
𝑣′

𝑘.
Therefore, for each subsequently pair of numbers in input 𝑣𝑘, the angle preprocess-

ing strategy applies the function arctan( 𝑣𝑘

𝑣𝑘+1
), the radius preprocessing strategy executes

the function
√︁
𝑣2

𝑘 + 𝑣2
𝑘+1, and the combination of angle and radius preprocessing strategy

executes the angle preprocessing strategy resulting 𝑣′
𝑘 and then append the radius prepro-

cessing strategy to the output vector 𝑣′
𝑘. For all strategies, we also couple to 𝑣′

𝑘 in the final
execution the angles resulting from the functions

√︁∑︀𝑛−1
𝑗=0 𝑣

2
𝑘 and arcsin((𝑛−1)/

√︁∑︀𝑛−1
𝑗=0 𝑣

2
𝑘).

4.3 EXPERIMENTS AND RESULTS

We compare the behaviour of the Continuously Valued Quantum Neuron (CVQN) and the
usage of the preprocessing strategies of angle, radius and the combination of both, with
the behaviour of the Real Weights Quantum Neuron (RWQN) and the Binary Quantum
Neuron (BQN) proposed by Tacchino et al. (TACCHINO et al., 2019), which are describe in
chapter 3. In the first set of experiments we test two datasets to analyse the nonlinearity
of the quantum neurons, the xor problem dataset and the nonlinear real valued dataset. In
the second set of experiments we test the application of these algorithms in a healthcare
problem, the classification of patients with diabetes. Each quantum neuron is trained with
different parameters of learning rate (0.1, 0.02), neuron threshold (0.1, 0.3, 0.5, 0.7 and
0.9), and using bias or not using bias. The dataset is split in 80% for training and 20%
for test. The results shows the average accuracy with the standard deviation, and also
presents the best values found for the other metrics.

The three proposed strategies of preprocessing the input vector were also tested in
the CVQN during training to identify some gain by applying the radius transformation,
angle transformation or a combination of both. For each quantum neuron is performed
a search grid for the delta rule learning rate, the neuron threshold and the usage of the
biased approach or not. Python (v.3.6) is used for coding and the Qiskit package for
development and simulation of the quantum circuits (ALEKSANDROWICZ et al., 2019).

To analyse the performance of the models, we measure the metrics of: accuracy, defined
as the number of correct prediction divided by the total number of predictions; precision,
as the number of true positives divided by the sum of true positives and false positives,
which measure the proportion of positive identifications that were corrected predicted;
recall, as the number of true positives divided by the sum of true positives and false
negatives, measuring the proportion of actual positives that were correctly identified; and
the f1-score, which is two times the product of precision and recall divided by the sum
of precision and recall, as a measure of balance between precision and recall; AUC-ROC,
defined as the area under the roc curve; and the KS and KS p-value, the Kolmogorov-
Smirnov test of hypothesis to observe if there is a statistical significant difference between
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Table 3 – Inputs and outputs of the XOR problem.

Input 1 Input 2 Output
0 0 0
0 1 1
1 1 0
1 0 1

Source: The author (2021)

the classes for the predicted outputs. Additionally, we also measure the error by epoch of
the quantum neurons as the number of incorrect predictions divided by the total number
of predictions.

For the datasets with real valued input data, we make a binarization of the data for
inputing data in the BQN and the RWQN, such that number 𝑥 ∈ R is approximated to
its binary representation 𝑥′ to 4 decimal places:

𝑥′ =
4∑︁

𝑖=0
𝑏−𝑖 · 1

2𝑖
(4.5)

The first experiment has the purpose of assess the nonlinearity of the CVQN and
RWQN and compare it with the BQN. The dataset used for this experiment consists of 4
patterns and two classes, representing the exclusive-OR (XOR) problem (True XOR True
= False (class 0), True XOR False = True (class 1), False XOR True = True (class 1),
and False XOR False = False (class 0) (see Table 3). Because the inputs are not linearly
separable, it takes more than just a processing unit (neuron) to perform the correct
classification, so a neural network is needed (MINSKY; PAPERT, 1969). We therefore test
the ability of each quantum neuron to tackle this problem.

The second experiment is executed with a artificial nonlinear dataset with 4 real inputs
values, ranging from −1.0 to 1.0, to evaluate the performance of the quantum neurons
on real valued data. The data distribution is presented in figure 14, where is possible
to observe that a single line could not separate the classes and therefore the dataset is
suitable for the experiment. The dataset consists of 20 examples, 9 of class 0 (blue dots)
and 11 of class 1 (red dots).

To analyse the applicability of the quantum neurons for healthcare problems, the third
experiment is conducted with the Pima Diabetes Dataset, which consists of information
from the National Institute of Diabetes and Digestive and Kidney Diseases (SMITH et al.,
1988). The objective of this problem is to diagnostically classify whether a patient has
diabetes or not, based on diagnostic measurements such as glucose level, blood pressure,
age, number of pregnancies and other as presented in Table 4 . The target class measures
whether the patient has diabetes (268 individuals) or not (500 individuals). A constraint
particular to this dataset is that all patients are females of at least 21 years old. For
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Figure 14 – Distribution of the real valued nonlinear dataset

The real valued nonlinear dataset used for training and testing the quantum neurons, with patterns for
class 0 in blue color and patterns for class 1 in red color. It is possible to observe that a single line could

not separate the classes.
Source: The author (2021)

Table 4 – Description of the Pima Diabetes dataset variables

Variable Minimum Value Maximum Value Type
Pregnancies 0 17 Integer
Glucose 0 199 Integer
Blood Pressure 0 122 Integer
Skin Thickness 0 99 Integer
Insulin 0 846 Integer
Body Mass Index 0 67.1 Real
Diabetes Pedigree 0.08 2.42 Real
Age 0 81 Integer
Outcome 0 1 Integer

Values in the table represent minimum value, maximum value and type of each feature in the dataset.
Source: The author (2021)

each feature we applied a min-max normalization to put the data in the range between
zero and one. We also tested the performance of the Classical Perceptron (CP) and the
Multilayer Perceptron (MLP) for comparison with the quantum neurons. For MLP we
performed a grid search on the activation functions (tanh and relu), alpha, learning rate,
solver (stochastic gradient descent and adam) and hidden layer sizes ((50, 50, 50), (50,
100, 50) and (100,)), whereas for the CP we tested the regularization terms L1, L2 and
elasticnet.

4.3.1 Nonlinear behaviour experiment

The experiments with the XOR problem in table 5 shows that all three quantum neurons
were able to achieve an accuracy of 100% and KS value of 1.0, statistically significant
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Table 5 – Results of experiments with the XOR problem for each quantum neuron and
preprocessing strategy

Model Preprocess.
Strategy

Best
Accuracy

Average
Accuracy
(std)

Min
Accuracy

Best
Precision

Best
Recall

Best
F1-
Score

Best
AUC-
ROC

Best
KS

Best
KS p-
value

BQN - 1.00 0.82 (0.23) 0.25 1.00 1.00 1.00 1.00 1.00 0.00
RWQN - 1.00 0.85 (0.23) 0.50 1.00 1.00 1.00 1.00 1.00 0.00
CVQN Original 0.50 0.50 (0.00) 0.50 0.50 1.00 0.67 0.80 0.70 0.01
CVQN Angle 1.00 0.86 (0.12) 0.75 1.00 1.00 1.00 1.00 1.00 0.00
CVQN Radius 0.70 0.51 (0.05) 0.50 0.67 1.00 0.73 0.80 0.60 0.05
CVQN Angle and

Radius
1.00 0.43 (0.40) 0.00 1.00 1.00 1.00 1.00 1.00 0.00

The values in the table corresponds to the evaluation metrics of best accuracy, average accuracy with
standard deviation, minimum accuracy, best precision, best recall, best f1-score, best AUC-ROC score

and best Kolmogorov-Smirnov test for classes and predicted probabilities with its p-value.
Source: The author (2021)

at p<0.00. For the CVQN, the best results were found when the angle preprocessing
strategy (100% best accuracy and KS 1.0, significant at p<0.00) and the combinations of
the angle and radius preprocessing (100% best accuracy and KS 1.0, significant at p<0.00)
were employed. They also show good precision, recall and F1-score, reaching 100%, with
highlight to the angle and the combination of angle and radius preprocessing strategies
for the CVQN. The performance of the BQN can be explained by the binary nature of
the input values and therefore an experiment with real valued input data is also presented
forward in the paper.

Analysing the error by epoch in figure 15, in the test without bias, all quantum neu-
rons were able to reach zero error, with attention to the BQN and the RWQN that stayed
at zero error since the first epoch and the preprocessing strategies of angle and the com-
bination of angle and radius that showed a variance during training but could also reach
zero error. For the tests with bias, the only the CVQN (with angle preprocessing strategy)
and the RWQN were able to reach zero error.

In figure 16 is possible to observe the outputs from a trained CVQN, which combines
the angle and radius transformation for the input vector and has a learning rate of 0.1,
a neuron threshold of 0.7 and without bias. The patterns from class 0 are under the
threshold value whereas the patterns from class 1 are above the threshold value. This
quantum neuron achieved zero error and the figure illustrates its functioning when dealing
with nonlinear patterns.

The results of the experiments with the artificial nonlinear dataset (see Table 6) shows
that the CVQN has the top performance in best accuracy (100% and KS 1.0, significant
at p<0.00), average accuracy (77%), precision (100%), recall (100%) and f1-score (100%),
when compared to the BQN and RWQN. The original CVQN without a preprocessing
strategy and the combination of angle and radius strategies shows the best performance
among the processing strategies for the CVQN model. This indicates a better adjustment
of the CVQN model for real valued input data, due to the continuous valued information
that this model can carry in inputs and weights . Although the BQN and the RWQN
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Figure 15 – Error by epoch for the best weights found for each quantum neuron in the
XOR problem experiment

In the graph above, without bias, the original CVQN without a preprocessing strategy stays at 2 error,
along with the CVQN with the radius preprocessing strategy and the RWQN. In the graph bellow, with
bias, the CVQN with the angle preprocessing strategy initiates at error 2 and then descend to zero error

at epoch 48, whereas the RWQN starts at error 2 and drops to zero error at epoch 4.
Source: The author (2021)

have shown a lower performance, it is relevant that they were able to reach 70% and 71%
maximum accuracy and 66% and 57% maximum f1-score, respectively.

4.3.2 Diabetes Classification

Table 7 shows the results of the experiments, where the CVQN achieved the top per-
formance in best accuracy (76%) among the quantum neurons and the best AUC-ROC
(88%) among all models, including the classical MLP. Extremely low or high values of
precision and recall and are explained by the tendency of classifying one prevalent class.
Therefore we focus on analysing the best accuracy rate and AUC-ROC. All quantum
neurons achieved better accuracy than the CP (63%), although the MLP performed bet-
ter than the quantum neurons in best accuracy (80%), the CVQN combined with the
radius preprocessing reached the best AUC-ROC (88%). This indicate the advantage of
the quantum neurons over the classical perceptron and incite the further development of
Quantum Neural Networks.
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Figure 16 – Example of circuit outputs of the CVQN

Vi = [1, 1]  and    
wi = [0.7828, 0.0287]

Vi = [-1, -1]  and    
wi = [0.7828, 0.0287]

Vi = [-1, 1]  and    
wi = [0.7828, 0.0287]

Vi = [1, -1]  and    
wi = [0.7828, 0.0287]

Outputs of the CVQN trained in the XOR problem, combining the angle and radius transformation for
the input vector, with a learning rate of 0.1, a neuron threshold of 0.7 and without bias. Input vectors

represent the patterns for class 0 (bottom) and patterns for class 1 (up).
Source: The author (2021)

Table 6 – Results of experiments with the nonlinear dataset problem for each quantum
neuron and preprocessing strategy

Model Preprocess.
Strategy

Best
Accuracy

Average
Accuracy
(std)

Min
Accuracy

Best
Precision

Best
Recall

Best
F1-
Score

Best
AUC-
ROC

Best
KS

Best
KS p-
value

BQN - 0.70 0.55 (0.07) 0.43 0.65 1.00 0.66 0.72 0.52 0.01
RWQN - 0.71 0.58 (0.06) 0.43 1.00 0.67 0.57 0.66 0.37 0.16
CVQN Original 1.00 0.77 (0.16) 0.51 1.00 1.00 1.00 1.00 1.00 0.00
CVQN Angle 0.86 0.66 (0.14) 0.29 1.00 1.00 0.86 1.00 1.00 0.00
CVQN Radius 0.86 0.61 (0.12) 0.43 1.00 1.00 0.80 0.88 0.67 0.00
CVQN Angle and

Radius
1.00 0.69 (0.18) 0.43 1.00 1.00 1.00 1.00 1.00 0.00

The values in the table corresponds to the evaluation metrics of best accuracy, average accuracy with
standard deviation, minimum accuracy, best precision, best recall, best f1-score, best AUC-ROC score

and best Kolmogorov-Smirnov test for classes and predicted probabilities with its p-value.
Source: The author (2021)
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Table 7 – Results of experiments with the Pima Diabetes dataset for each quantum
neuron and preprocessing strategy

Model Preprocess.
Strategy

Best
Accuracy

Average
Accuracy
(std)

Min
Accuracy

Best
Precision

Best
Recall

Best
F1-
Score

Best
AUC-
ROC

Best
KS

Best
KS p-
value

BQN - 0.68 0.52 (0.15) 0.32 0.40 0.46 0.43 0.57 0.29 0.00
RWQN - 0.69 0.66 (0.05) 0.30 0.32 0.96 0.48 0.33 0.41 0.00
CVQN Original 0.72 0.68 (0.02) 0.54 0.40 0.46 0.43 0.64 0.57 0.00
CVQN Angle 0.68 0.66 (0.03) 0.53 0.70 0.27 0.39 0.70 0.40 0.00
CVQN Radius 0.76 0.65 (0.09) 0.33 0.87 0.36 0.45 0.88 0.64 0.00
CVQN Angle and

Radius
0.68 0.66 (0.05) 0.50 0.21 0.08 0.11 0.84 0.56 0.00

CP Original 0.80 0.63 (0.00) 0.63 0.66 0.03 0.06 0.51 0.20 0.09
MLP Original 0.80 0.70 (0.04) 0.65 0.77 0.66 0.71 0.80 0.65 0.00
The values in the table corresponds to the evaluation metrics of best accuracy, average accuracy with

standard deviation, minimum accuracy, best precision, best recall, best f1-score, best AUC-ROC score
and best Kolmogorov-Smirnov test for classes and predicted probabilities with its p-value.

Source: The author (2021)
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5 CONCLUSIONS AND FUTURE WORK

In this work we proposed a new model of quantum neuron with real-valued weights
(RWQN), combining the hypergraph states generation subroutine proposed by Tacchino
et al. (TACCHINO et al., 2019) to generate the operator 𝑈𝑔𝑤 to represent the binary inputs
and the uniformly controlled rotations proposed by Möttönen et al. (MöTTöNEN et al.,
2005) which generates the operator 𝑈𝑔𝑖 that represents the real weights. These models
are able to carry an exponential amount of information to a linear number of quantum
information units (qubits) using the quantum property of superposition, and the results
shows that when combining the quantum neuron with real-valued weights and the biased
approach, we find the best performance in the classification problems. The variance error
reduction of the proposed models, compared to the quantum neuron with binary weights,
is another benefit of this model, indicating more stability in classification tasks. When
executing the quantum neuron models in the NISQ computer, we found that the expected
output given by the simulation is close to the real output executed in the quantum device,
even in the presence of noise, indicating that the proposed model has the potential to be
executed in real-world applications.

We also compared the performance of the proposed Real Weights Quantum Neuron
(RWQN) with the Continuously Valued Quantum Neuron (CVQN) proposed by Mangini
et al (MANGINI et al., 2020) and the Binary Quantum Neuron proposed by Tacchino et
al. (TACCHINO et al., 2019), while also testing the performance of proposed preprocess-
ing strategies based on the notion of hypercomplex numbers. We executed experiments
with these algorithms on the problems of simulating the XOR operator, solving a generic
nonlinear problem and a test on a healthcare problem, the prediction of patients with dia-
betes. The results of the experiments showed that a single quantum neuron, the proposed
RWQN and the CVQN, are capable of reaching 100% accuracy rate in the XOR problem
and the CVQN reaches 100% accuracy rate in the nonlinear dataset, demonstrating the
plausibility of the quantum neuron in modelling non-linearly separable problems, while
also exhibiting a 76% accuracy rate and 88% AUC-ROC in the problem of diagnosing dia-
betes. Hence, there is evidence that the quantum neurons are a viable modelling approach
for healthcare problems of classification. The preprocessing strategies has also shown ev-
idence that it can be useful as a method for boosting up the performance of the CVQN
in some cases, presented by the performance of radius and the combination of radius and
angle preprocessing strategies in the Pima Diabetes dataset.

We show that the healthcare industry can benefit from investments in this area, while
experimenting with more complex models as the quantum devices advances. Limitations
of this work include evaluating the performance of the models on quantum devices, given
the limited capacity of current quantum systems available. Furthermore, the depth of the
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circuit is a challenge that can be explored using other methods of amplitude encoding.
Future work can explore the behavior of quantum neural networks by connecting these
quantum neuron models and also developing encoding algorithms that can be applied in
for generating 𝑈𝑖 to encode the input data and 𝑈𝑤 to encode the weights.

5.1 SUMMARY OF RESULTS

• Discussion of the restriction imposed to the Binary Quantum Neuron of (TACCHINO

et al., 2019);

• Analysis of the symmetry problem in the quantum neurons and proposition of a
biased approach to address it;

• Proposition of the Real Weights Quantum Neuron (RWQN) based on uniformly
controlled rotations;

• Proposition of preprocessing strategies based on the notion of hypercomplex num-
bers;

• Analysis of the suitability of quantum neurons for healthcare problems, in specific
the prediction of diabetes, where the experiments shows satisfactory results for the
quantum neurons that can carry real or continuous values in the quantum states;

5.2 FUTURE WORK

Future work can explore the behaviour of quantum neural networks by connecting these
quantum neurons. This could serve as a basis for real value input neurons with binary
weights on a network, therefore allowing tests with more complex data sets.

An analysis of the computational cost of the algorithms used to encode the information
on quantum states amplitudes would be of great benefit, along the analysis of circuit dept
and time of execution. The circuit architecture can also be optimised in future efforts
exploring available approaches that optimise specific circuit architectures (ZHANG et al.,
2018; ZHANG et al., 2019).

The quantum neurons can be used for classifying other problems like image classifi-
cation for identifying breast cancer, forecasting of time series data such as stock price
and others. Finally, the preprocessing strategies based on hypercomplex numbers could
be further explored for other quantum neural models.
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