Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/41704
Comparte esta pagina
Título : | Análise comparativa da eficiência de buscas aleatórias unidimensionais |
Autor : | FERREIRA JÚNIOR, José Edivaldo |
Palabras clave : | Física Teórica e Computacional; Buscas aleatórias; Caminhadas aleatórias; Distribuição de probabilidade |
Fecha de publicación : | 29-jul-2020 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | FERREIRA JÚNIOR , José Edivaldo. Análise comparativa da eficiência de buscas aleatórias unidimensionais. 2020. Dissertação (Mestrado em Física) - Universidade Federal de Pernambuco, Recife, 2020. |
Resumen : | Neste trabalho estudamos o problema de um caminhante aleataório unidimensional em um espaço finito de extensão L limitado por duas extremidades fixas (sítios alvos), isto é, 0 ≤ x ≤ L. Consideramos que o caminhante parte de uma posição x0 << L não equidistante das bordas. Analisamos qual é a melhor estratégia de busca para encontrar um destes sítios nas bordas percorrendo a menor distância possível. Em particular, quando o animal não possui informações sobre o espaço de busca e inicia a procura nas proximidades de um sítio alvo a distribuição de Lévy com parâmetro α ≈ 1 surge como a que otimiza a eficiência da busca. No presente trabalho, comparamos as eficiências de buscas unidimensionais com distribuições de tamanhos de passos do tipo exponencial simples, exponencial dupla e lei de potência (que representa o limite assintótico para grandes passos da distribuição de Lévy). Realizamos um estudo extensivo da eficiência máxima de cada tipo de busca à medida que L aumenta, ou seja, à medida que o ambiente se torna progressivamente mais escasso. Para isso, trabalhamos com resultados analíticos a partir de expressões para a eficiência da busca existentes na literatura e também via o método do operador integral. Obtemos como a eficiência máxima ηopt escala com L para as três distribuições quando x0 << L. Nossos resultados mostram que ηopt ∼ 1/L para a exponencial simples, ηopt ∼ 1/(√L log L) para a lei de potência, e ηopt ∼ 1/√L para a exponencial dupla com comprimentos característicos tau1 ≫ L e tau2 ≈ x0, o primeiro associado à exponencial com peso estatístico w1 ≈ 2x0/L. Estes resultados indicam que, em uma dimensão, a distribuição do tipo exponencial dupla possui uma eficiência máxima superior à da distribuição lei de potência quando x0 ≪ L. Isto se deve, contudo, à escolha específica dos comprimentos característicos e pesos estatísticos associados às escalas relevantes do problema, x0 e L. Argumentamos que quando o animal não possui conhecimento a priori sobre o espaço de busca, tal escolha é extremamente improvável, de modo que na ausência de informações o resultado que aponta as buscas de Lévy como as mais eficientes permanece válido. |
URI : | https://repositorio.ufpe.br/handle/123456789/41704 |
Aparece en las colecciones: | Dissertações de Mestrado - Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
DISSERTAÇÃO José Edivaldo Ferreira Júnior.pdf | 3,37 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons