Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/38964

Compartilhe esta página

Título: An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
Autor(es): RODRIGUES, Maria Luiza Nascimento
Palavras-chave: Inteligência computacional; Sistemas de classificação múltipla
Data do documento: 13-Ago-2020
Editor: Universidade Federal de Pernambuco
Citação: RODRIGUES, Maria Luiza Nascimento. An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart home. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.
Abstract: Smart homes can be defined as environments monitored by sensors that capture information executed in it. These sensors are responsible for measure the temperature of a room, the number of times a switch has been turned on, and so on. However, the data obtained in these scenarios may vary during or after the capture process. These variations are defined as noise and affect the interpretation of the data. Given the information obtained from the environment, machine learning techniques can use this knowledge to identify the activities and predict future ones. This area of learning is named Activity Recognition. In recent studies, the Random Forest presented consistent results in Activity Recognition problems in noisy-free environments. To identify which techniques can be used in noisy scenarios, this dissertation evaluated the use of Multiple Classifier Systems in comparison to Random Forest. The proposal is to investigate how these techniques perform on real-world data sets for activity recognition considering six noise levels: 0% to 50%, which refers to a randomly changing in the label activities. Experimental results have shown that the Dynamic Selection techniques are adequate to handle noisy environments presenting stable results as the noise level increases. The performance of OLA and MCB was significantly better than Random Forest even with the 50% noise level.
URI: https://repositorio.ufpe.br/handle/123456789/38964
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Maria Luiza Nascimento Rodrigues.pdf4,66 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons