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ABSTRACT

Smart homes can be defined as environments monitored by sensors that capture
information executed in it. These sensors are responsible for measure the temperature of
a room, the number of times a switch has been turned on, and so on. However, the data
obtained in these scenarios may vary during or after the capture process. These variations
are defined as noise and affect the interpretation of the data. Given the information
obtained from the environment, machine learning techniques can use this knowledge to
identify the activities and predict future ones. This area of learning is named Activity
Recognition. In recent studies, the Random Forest presented consistent results in Activity
Recognition problems in noisy-free environments. To identify which techniques can be
used in noisy scenarios, this dissertation evaluated the use of Multiple Classifier Systems
in comparison to Random Forest. The proposal is to investigate how these techniques
perform on real-world data sets for activity recognition considering six noise levels: 0% to
50%, which refers to a randomly changing in the label activities. Experimental results have
shown that the Dynamic Selection techniques are adequate to handle noisy environments
presenting stable results as the noise level increases. The performance of OLA and MCB

was significantly better than Random Forest even with the 50% noise level.

Keywords: Multiple Classifier Systems. Imbalanced Data. Dynamic Selection. Activity

Recognition.



RESUMO

Casas inteligentes podem ser definidas como ambientes monitorados por sensores que
capturam as informacgoes nele executadas. Esses sensores sao responsaveis por medir a
temperatura de uma sala, o nimero de vezes que um interruptor foi ligado e assim por
diante. No entanto, os dados obtidos nesses cendrios podem variar durante ou apods o
processo de captura. Essas variacoes sao definidas como ruido e afetam a interpretacao
dos dados. Dadas as informacgoes obtidas do ambiente, as técnicas de aprendizado de
maquina podem usar esse conhecimento para identificar as atividades executadas e pr-
ever as futuras. Essa area de aprendizado é denominada Reconhecimento de Atividade.
Recentemente, a Random Forest apresentou resultados consistentes em problemas de re-
conhecimento de atividade em ambientes sem ruido. Para identificar quais técnicas podem
ser usadas em cenarios ruidosos para residéncias inteligentes, esta dissertacao avaliou o
uso de sistemas de multiplos classificadores em comparacao com o desempenho obtido
pela Random Forest. A proposta é investigar o desempenho dessas técnicas em conjuntos
de dados do mundo real para reconhecimento de atividades, considerando seis niveis de
ruido: 0% a 50%. Resultados experimentais mostraram que as técnicas de selecao dinamica
sao adequadas para lidar com ambientes ruidosos, apresentando resultados estaveis a me-
dida que o nivel de ruido aumenta. O desempenho do OLA e MCB foi significativamente

melhor que o Random Forest, mesmo com o nivel de ruido de 50%.

Palavras-chaves: Multiple Classifier Systems. Imbalanced Data. Dynamic Selection. Ac-

tivity Recognition.
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1 INTRODUCTION

The advancement of sensor technology and its easy access, coupled with powerful data

mining approaches, have contributed to the growth of the term [Internet of Things (IoT)|

becoming quite popular over the years. [[oT] refers to the use of sensing, coupled with
connectivity and intelligent algorithms to make decisions. In the mid-1990s, Mark Weiser
was the forerunner of what we know as Ubiquitous Computing (WEISER, [1993): The use
of any device, and its services, to establish a connection with other devices and services.

According to Weiser, “ordinary computers such as desktops and laptops are a transi-
tional step towards achieving the real potential of information technology." For Weiser,
in the future, machines will be seamlessly integrated into the world in the most diverse
shapes and sizes, resulting in the disappearance of more in-depth technologies (WEISER,
1991]).

In (MATTERN; FLOERKEMEIER, 2010), Mattern and Floerkemeier state that ordinary
daily objects will be intelligent. The objects will be capable of sensing the context it is
inserted in, making assumptions, and making decisions to improve the quality of life,
its performance, and energy consumption. Thus, it is possible to save time, energy, and
money.

[oT] can be applied to health-care, transportation, agriculture, education, and many
other sectors (AL-FUQAHA et al., [2015). One of those applications is smart homes. Smart
Homes are residences that possess a good amount of intelligence in ordinary objects called
smart objects. The smart objects can recognize some actions performed by the residents
in the sensing environment, as well as communicate with other smart objects. In that
way, they can be used to facilitate the resident’s life, such as helping to cook, drink, take
medicine for living an independent functional life. These self-care actions are known as
|Activities of Daily Living (ADLs)| (KRISHNAN; COOK| [2014)). The aging population, the

cost of health-care, and the opportunity of improving life’'s quality of individuals with
disabilities were some of the reasons that motivated studies to predict [ADLs|

IActivity Recognition (AR)|aims to identify the resident’s context, making activities

assumptions through digital devices in Smart Homes. Using the sensors’ information,
methods of activity recognition monitor the resident’s functional status in real-time. Thus,
it is possible to find patterns in the resident’s routine and allows the automation of some
tasks.

The literature reports the use of machine learning for solving the activity recognition
challenge (KRISHNAN; COOK} 2014)). In recent years, different machine learning algorithms
have been used as the key process to find patterns and predict future activities in smart

environments.
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1.1 MOTIVATION

The data quality during the learning process is essential for the good performance
of the algorithms. Unreliable data lead learning to extract incoherent and dystopian in-
formation in the introduced scenario. Thus, ensuring that the algorithms are capable of
handling changes in the environment guarantees the stability of learning. Unfortunately,
data extracted from the real world can change during the process of capturing, processing,

or labeling activities, and such changes are defined as noise.

In this manner, the main objective of this project is to evaluate the [Dynamic Classifier|

[Selection (DCS)|algorithms in activity recognition problems in Smart homes as the noise

increases randomly in the training data set. Noise, in our environment, corresponds to a
changing on label, activity, defined in the training set. A study related to performance and
robustness was conducted for these techniques, and the results found were compared to
Random Forest: the most recent approach used to activity recognition problem as detailed
in (MINOR; DOPPA; COOK, 2017)).

1.2 OVERVIEW OF THE PROPOSAL

The data generated in the smart homes corresponds to a sequence of sensor events
along time (COOK et al., 2013)). The chunks from the sensor events, according to predefined
size, are the activity windows. In each of those windows, the labels could be randomly
changed. The changing in the labels is defined as noise.

In our project is proposed an evaluation of ensemble techniques in comparison with the
Random Forest’s results when the noise level increases. It aims to analyze the impact of the
noise insertion during the training phase and describes the pipeline most suitable to this

environment, considering the Multiple Classifier System approach. This work focuses only

on evaluating the [Dynamic Selection (DS)| techniques performance since this approach
has been shown that surpass the results achieved by Static Selection (JR; SABOURIN;
OLIVEIRA, [2014)).

Based on this, it was evaluated in two of the stages: Generation and Selection.

In the Generation stage, each classifier is trained over sub-regions of feature space to

become a specialist. To select the most appropriate technique, the abstract model Oracle
was assessed (KUNCHEVA, 2002). In the Selection stage, it was evaluated the performance
of [DCY) techniques as the noise increases in comparison to results obtained by Random

Forest.
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1.3 RESEARCH METHODOLOGY

In this work, the proposal is to evaluate the performance considering the Smart home
noisy environments. A noisy environment can be generated when data capture or storage
is corrupted. In CASAS data sets, a specialist defines the label for each activity performed.
During the labeling process, some information could be lost or misinterpreted by him. In
our scenario, we considered a noisy environment when the corresponding activity was
randomly changed in the training set.

The Generation, and Selection phases were experimented, considering the noise inser-
tion on the training phase. That way, the pipeline is compared, and the best is pointed.

The contributions of this work are related below:

It evaluates robustness to noise in smart environments;

o It discusses the use of pool generation methods in noisy environments;
o It reviews the use of the Dynamic Selection of classifiers in activity recognition;

It presents a comparison between dynamic selection techniques and one of the best
classification model, Random Forest (MINOR; DOPPA; COOK, 2017).

1.4 DISSERTATION STRUCTURE

This dissertation is organized as follows. Chapter 2 presents the background. TheMCSY|
main concepts are introduced. In Chapter 3, the Activity Recognition related works are
presented. The proposed method is approached in Chapter 4. In this chapter, process
steps are presented into two blocks: Training and test phases. Chapter 5 conducts the
experiments and evaluates the results according to the methodology previously deter-
mined. Lastly, the main points presented in this dissertation are summarized in Chapter
6. The conclusions derived from the experimental results are summarized, and this work’s

contributions are outlined.
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2 BACKGROUND

2.1 INTRODUCTION

Deciding which model will be used in a problem is a tough question. Due to the variety
of techniques and their approaches to deal with a problem, select one of those methods
depends not only on the problem description but also on the performance achieved during
the test/validation phase. According to (WOLPERT; MACREADY], [1997)), there is not a
single machine learning technique suitable for all kinds of problems. This theorem is
called “No Free Lunch Theorem." Therefore, since there is no ideal classifier, an alternative
approach is to use a combination of multiple classifiers to perform the classification task.
In (WOZNIAK; GRANA; CORCHADO], 2014), the [MCS]is presented: An approach that aims,
given a set of classifiers, to combine several of them based on their competences. The
main objective is to outperform the result achieved by a single classifier.

In (ALKOOT; KITTLER), [1999)), the performance of techniques have shown to
outperform single classifier models. The use of these techniques has shown wide diffusion
in solving different problems, such as Music genre classification (ALMEIDA et al., 2012]),
Handwriting recognition (KO; SABOURIN; BRITTO, 2008), and others.

This chapter proposes to introduce the main concepts of techniques used in our
evaluation. In Section 2.2, an overview of the phases: Generation, Selection, and
Aggregation - is demonstrated. The Oracle model is also presented in this section. In
turn, Section 2.3 presents a brief explanation of the [DS| approaches adopted since the

project is focused on the use of these techniques.

2.2 OVERVIEW

Figure [I] describes the three phases that compound the [MCS} Generation, Selection,
and Integration. According to (JR; SABOURIN; OLIVEIRA, [2014), the Generation phase is
responsible for, given a set I', train it to generate a pool of accurate and diverse classifiers,
C. In the Selection phase, the most competent classifier, or ensemble, is selected from the
pool C'. This ensemble of classifiers (EoC) C’, where C" C C'is validated by the validation
set v. The selection phase is optional in the pipeline because some [MCS|algorithms don’t
use it. Finally, in the Integration phase, after the classification task performed by the
classifiers in C’, the outputs are combined to give an outcome.

There are several approaches to all stages briefly described above. This section is

focused on present the mains concepts regarding each phase.
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\Validation

A

- Pool ( Dynamic ‘Aggregation -
. . N —» Decision
Training Generation Selection Function

Generation phase Selection phase Integration phase

Figure 1 — Stages of a approach. In the first phase, a pool of m classifiers C' =
{c1,¢2,- -+, ¢} is generated through a training set I'. In the selection phase, an
[EoC] C” € C is selected by Dynamic Selection techniques using the validation
set v. Lastly, the Integration is responsible for fuses the classifiers’ outputs to
make a final decision adopted from (CRUZ; SABOURIN; CAVALCANTI, 2018)

Pool of Classifiers C Ensemble of Classifiers C'

2.2.1 Generation

The aim of the Generation phase is to create an accurate and diverse pool of m
classifiers, C' = {c1, ca, - -+, ¢n} by the training set T'. Since the T' is composed of different
base classifiers, the main objective of this phase is to create a pool of classifiers. This pool
is nominated diverse when each classifier presents uncorrelated errors between the other
ones (SOARES et al) 2006). In other words, a pool that contains classifiers specialized in
different portions of feature space is named diverse. Related to the size of the pool, since
each kind of problem has its difficulties, there is no formula to define the ensemble size,
which means that it is a no-trivial task.

As stated in (ROKACH, 2009), there is four-way to reach diversity in an ensemble:

1. Manipulating the inducer: Using different approaches and/or parameters during

the training phase;

2. Manipulation the training samples: Segmenting the training set in different

chunks or a different portion of features for each base classifier;

3. Manipulating the target attribute representation: Instead of using a difficult
classifier to solve a classification task, combine the multiple different classifiers to

induce the representation of target attributes;

4. Use different classifier models or hybrid ensembles.: Using different tech-

niques to mix how the classifiers interpret the feature space.

Regarding the methods used to generate the pool of classifiers, three techniques
were adopted in this proposed method: Bagging (BREIMAN, |1996), AdaBoost (FREUND;
SCHAPIRE] 1997)), and Self-Generating Hyperplanes (SOUZA et al., [2019b)).
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2.2.1.1 Bagging

Bagging is an acronym for Bootstrap Aggregating. The purpose of this method is,
considering a bootstrap replication of the training set I', create an ensemble of classi-
fiers accurate and diverse. Then, the output of classifiers is combined with the Majority
Vote (BREIMAN, |1996). Ideally, it is necessary to use different training sets to guarantee
diversity in the ensemble. Let ' = {t1,¢q,--- ,1,}, the training set with n labeled ex-
amples. To create different subsets of the training set, a chunk L is created from I' by
sampling with replacement. These samples will be used to train individual classifiers. In

other words, each classifier will be trained with a random selection of training set features.

Classifier

Pool of
Classifiers

Classifier

Training set

Classifier

Bootstrap
Replication

Figure 2 — Bagging method. A training set is randomly distributed by bootstrap replica-
tion. Then, each sample is used to train a classifier that will compose a pool
of classifiers.

2.2.1.2 AdaBoost

Boosting is defined as the “general problem of producing a very accurate prediction
rule by combining rough and moderately inaccurate rules-of-thumb" (FREUND; SCHAPIRE,
1997). In other words, Boosting adds, incrementally, the classifiers in a pool of classifiers.

The Boosting technique, during the training process, considers an error uniform dis-
tribution across all learners. The feature classification, named as weight, is used in the
next classifier training. The instances misclassified at step ¢ — 1 defines the weights in
the training of the next classifier in step t. Adjusting the weights leads the learners to
focus on difficult instances until the propagation error to be null or reaches the threshold
defined. This methodology is AdaBoost, Adaptive Boosting.
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Figure 3 — AdaBoost method. During the training phase, the training errors € are propa-
gated to the next classifier training.

2.2.1.3 Self-Generating Hyperplanes

The [Self-Generating Hyperplanes (SGH )| method aims to achieve an Oracle accuracy
rate of 100%. The Oracle is an important concept related to and considers if at
least one classifier can correctly classify a single test sample. The Oracle refers to upper
limit for methods or a [Dynamic Ensemble Selection (DES)|if consider the Majority
Voting as combination scheme. So, it is used to compare the results achieved by Dynamic
Selection techniques (KUNCHEVA| 2002).

The [SGH] defines the centroids for each class, and, for each pair of farther centroids, a
hyperplane ¢,, equidistant to them is defined. After, the ¢,, is evaluated over the training
set, and the instances correctly predicted are removed from training data. c,, is added
into the ensemble, and a new iteration starts until the training set is empty. Therefore,
the SGH ends when all the instances are correctly predicted by at least one classifier
C' (SOUZA et all, [2019D)).

Calculate
Centroids

Separate
Classes

%

Blue Class -~

»’\’/,,,

Calculate
Centroids

Restart the
process

Separate
Classes

Training set Training set Training set Training set

Figure 4 — SGH method. Generation of perceptrons. At the first iteration, the centroids for
each pair of classes are calculated. After that, the hyperplane equally distant
between the centroids are defined. Lastly, the perceptron able to correctly
classify the classes is generated.
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2.2.2 Selection

The second phase in the [MCS| process is Selection. In the Selection phase, the most
competent classifier, or ensemble of classifiers, C’ from the pool C' is selected to perform
the classification task. In some generation methods, the classifiers don’t need to be selected
in the pool. Thus, the Selection phase is not mandatory.

In Selection, two types of approaches are used: Static and Dynamic Selection (JR;
SABOURIN; OLIVEIRA| 2014)).

For the [Static Selection (SS)| approach, the selection is performed considering all in-

stances of the training set according to the criterion estimated in the validation dataset.
Then, the[EoC], or classifier, selected is used to predict throughout all the unknown query
x4 samples. In contrast, the Dynamic Selection selects the classifier, or ensemble, for each
new query z,, and, because of this, the @ considers each classifier from the ensemble as
an expert in a specific region of the feature space. Figure [5| shows the differences between

the two approaches.

Pool of Classifiers Static Selection Ensemble of Decision
Classifiers

X
Validation

Training Test

Static Selection

Pool of Classifier Dynamic Selection Ensemble of Decision
Classifiers
Xq
Validation

Training Test

Dynamic Selection

Figure 5 — Static and Dynamic Selection approaches. In the Static approach, all the val-
idation set is considered to selects a classifier, or ensemble, to predict the test
samples. Dynamic Selection, in turn, considers each query of the validation
set to select a classifier, or ensemble, based on some criterion, such accuracy
and /or diversity.

The Dynamic Selection technique selects the classifiers most competent for each new
query sample. Because of this, it is acceptable that its results outperform the static selec-
tion (KO; SABOURIN; BRITTO, [2008). Thus, in this work, we will focus on [DS|approach.
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2.2.3 Integration

Since the Selection phase can result in more than one classifier, it is necessary to
combine its outputs. Fuse the outcome of the selected classifiers considering a combination
rule is a responsibility of the integration phase. In this phase, the aggregation of the
classifiers” outputs can be non-trainable, trainable, or based on dynamic weighting (CRUZ;
SABOURIN; CAVALCANTT, 2018)).

Regarding the non-trainable combiners, the techniques like the Majority, Sum, and
Product voting have the fixed combination rule (KITTLER et al| [1998). The commonly
used approach is the Majority Vote. In this approach, the outputs are combined based on
the frequency of the labels in the classifier predictions. The outcome of the system is the

most voted class.

2.3 DYNAMIC SELECTION TECHNIQUES

The Dynamic Selection aims to select the classifier, or ensemble, most competent to
the unknown test sample. Regarding the [DS| approach, the following steps are required
to classify a new query z, (CRUZ; SABOURIN; CAVALCANTI, |2018):

1. Define a Region of Competence: A local region around the query z, used to calculate
the classifier competence level; This region is composed of the neighbors’ instances

of the test sample.

2. Determine the criteria used to calculate the competence level of each classifier:

Accuracy, probability, etc.

3. Determine if the selection will be [DCS] which chooses only one classifier, or [DES]

which selects an ensemble.

Firstly, to select the classifier able to predict the query sample, z,, a local region is
obtained. This region around the query sample is called the Region of Competence, RoC.
The validation set is an input to[K Nearest Neighbors (KNN)| a method that selects the k

samples nearby the z, to delimit the region. Thus, the competence of the given classifier,

according to the criteria previously specified, is calculated in the [Region of Competence
. At the end, based on the competences scores, the classifier, or ensemble, is selected
to perform through the test samples.

According to (CRUZ; SABOURIN; CAVALCANTI, [2016; LIMA; SERGIO; LUDERMIR}, 2014;
GIACINTO; DIDACI, |2004]), the definition of the Region of Competence has a huge impact on
the performance, and its defined in four approaches (CRUZ; SABOURIN; CAVALCANTT,
2018):
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o Clustering: In this approach, the validation dataset is clustered to define the Re-
gion of Competence. The competence of each classifier is estimated to all clusters,
and the distance between the unknown sample and the cluster’s centroid is calcu-
lated, during the test phase, to evaluate the competence of each classifier. Lastly,
the classifier competence is measured to the test samples belonging to the nearest
clusters. This approach is faster than KNN because it performs only in the centroids

instead of each sample.

o K-Nearest Neighbors: Considers the method to define the Region of Com-
petence in the validation set. Since the number of neighbors, K, is established, the
competence level is calculated using the criteria set to samples whose is a part of
the Since this approach considers the neighbors, it is more precise to define

the local region even has the computational cost higher than the Clustering method.

« Potential Function Model: Despite the other approaches, the whole validation
set is used to calculate the competence level for each classifier. In this approach, each
data point in the validation set has the weight measured by the Euclidian distance
between the unknown sample using the Potential Function Model, commonly Gaus-
sian potential function. As an advantage, this methodology discards the necessity

to define a [RoC| although the computational cost involved.

» Decision Space: Inspired by (HUANG; SUEN, 1995), this methodology uses classi-
fier’s predictions as information to define the "Decision Space." In this technique, the
test and training samples are transformed into output profiles, where corresponds
to the decision profit by the classifiers. Then, the [RoC]is defined by the instances

whose output profile is closer to the query sample z,.

Dynamic Selection (DS)

2) Selection Criteria 3) Selection approach

Dynamic Classifier Dynamic Ensemble
Selection (DCS) Selection (DES)

1) Region of
Competence definition

Clustering

Potential
function

K-NN Decision
space

Individual

Accuracy Complexity

Meta-learning Data  Ambiguity Diversity
Rank Handling

Probabilistic
Oracle .
Behavior

Figure 6 — Taxonomy of Dynamic Selection based on the proposed taxonomy by (CRUZ;
SABOURIN; CAVALCANTI, 2018)).

The criteria used to evaluate the performance of a classifier can vary according to
different approaches, such Accuracy (WOODS; KEGELMEYER; BOWYER, (1997)), Ranking
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(SABOURIN et al., {1993), Probabilistic (GIACINTO; ROLI, [1999), Behavior (GIACINTO; ROLI,

2001) and so on. In the next section, some of these techniques were detailed.

2.3.1 Dynamic Classifier Selection

The proposed method, posterior described, focuses the evaluation of the performance
of the [DY| techniques and Random Forest in noisy environments.

The DCS techniques used in this work are described below. Its definition of the Region
of Competence is based on the approach.

2.3.1.1 Overall Local Accuracy

According to (WOODS; KEGELMEYER; BOWYER), [1997)), the considers the number

of instances in the Region of Competence correctly predicted as the competence level, o;,

as stated in Equation 2.1. The base classifier, ¢;, which has the highest percentage of the
hits is selected to predict the sample z,.
1 K

0, = — Z P(w|zg € wy, ¢), (2.1)
K3

where w; refers to the output class assigned by the classifier ¢; to the neighbors zy.

2.3.1.2 Local Classifier Accuracy

Despite the resemblance with(OLA] the|[LCA| (WOODS; KEGELMEYER; BOWYER), |1997)

calculates the competence level, o;, based on the labels assigned by the classifiers to
the instances of validation set. This approach considers the class attributed to the test
sample, x4, and estimate the percentage of the neighbors in the were classified by ¢;
as belonging to the same label, w;, and were correctly classified. As the[OLA] the classifier

with the highest competence level is selected.

— ZxkEU)l P(wl|wl7 Ci)
Yy Pwi|wy, ¢;)

(2.2)

%

2.3.1.3 Modified Classifier Ranking

In the Modified Classifier Ranking method (SABOURIN et al., (1993)), the competence
level, 0, is estimated based on the instances correctly labeled in [RoC] successively. This

percentage determines the rank of the classifier, and the one who has the highest com-
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petence level, the number of consecutive samples correctly predicted, will be selected to

perform in the query z,.

2.3.1.4 Multiple Classifier Behavior

The [Multiple Classifier Behavior (MCB)| technique (GIACINTO; ROLI, [2001)) is based
on (HUANG; SUEN} 1995), and the local accuracy method. In this approach, the competence

level, o;, is calculated considering the output profile similarity, «;, between the instances
in the Region of Competence and the instance z,. As established, the instances which have
the similarity below the predefined threshold will be removed from the [RoC| Then, the
competence level of classifiers is computed based on the percentage of examples correctly

predicted. The classifier with the highest competence, ¢;, will be selected to predict z,.

1
_Mi

™M=

% T(xg,x;) (2.3)

1

1,if c(xz;) = c(x;
0, otherwise

, where the z, is the sample to be predicted, and the z; € RoC.

2.3.2 Dynamic Ensemble Selection

The[DES|techniques evaluated in our proposed method are described in the next topics.
Similarly to [DCS| methods, the Region of Competence is based on the KNN approach.

2.3.2.1 KNORA-Elimination

Let the Region of Competence w;. The classifiers who correctly predicted all the sam-
ples in the are selected to compose the Ensemble of Classifiers, C’. If none of the
base classifiers were selected, then the Region of Competence is reduced, and the selection

phase is restarted.

2.3.2.2 KNORA-Union

In contrast to KNORA-Elimination, the KNORA-Union selects the classifiers which
accurately labeled, at least, one of the samples in the Region of Competence w;. In this
approach, the number of votes that a classifier has is correspondent to the number of

samples correctly predicted in the [RoC|
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2.3.2.3 K-Nearest Output Profiles (KNOP)

Similarly to KNORA-Union, KNOP selects the classifiers which correctly predicted, at
least, one of the profiles in the set ¢;. Contrasting KNORA-Union that works on feature
space, KNOP chooses based on decision space. The output profiles are calculated for each
sample, and the similarity between them and the validation space is measured. Then, the

results are stored in the set ¢;.

2324 DES-KNN

Initially, the Region of Competence w; is computed. Based on the samples in w;, the
classifiers are decreasing ordered by accuracy and increasing order by diversity. Here, the
Double Fault is the measure used to calculate the diversity. Then, the N most accurate
and J most diverse classifiers are selected to the [EoC] where J and N are previously
defined and J < N.

2325 DES-P

Considering the Region of Competence wj, the base classifiers’ local accuracy is calcu-
lated for each sample in w;. Thus, the classifier competence is measured as the difference
between its accuracy and the performance of the random classifier, that is, the classifica-
tion model that randomly chooses a class with equal probabilities.

The performance of the Random Classifier is calculated as follows:

1
RC = — 2.5
L ? ( )
where L means the number of classes.
So, the competence level can be measured according to the following equation:
1
Q5 = P(Ci‘w]') — z, (26)

2326 METADES

In this algorithm, the selection phase can be considered as a meta-problem, which
uses the behavior of each classifier as the criteria to select it. Instead of using the features
itself, it is calculated the meta-features. Then, during the meta-training phase, the meta-
classifier is trained using the meta-features. Thus, the meta-classifier predicts if a classifier

is competent enough to classify a given input.
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3 RELATED WORKS

In this section, Activity Recognition related works are presented. The architecture pro-
posed for capturing the signals and the system-design is detailed in Section 3.1. After, in
Section 3.2, the use of machine learning techniques to predict the activities are described.

Finally, the recent discoveries in the Activity Recognition problem are depicted.

3.1 CASAS: AN ARCHITECTURE OVERVIEW

The Activities of Daily Living Recognition is one of the most interesting aspects of
Human Recognition problems. This process is complex and provides information to assist
the aging population as well as mechanisms to help them to have an independent life.
Various researchers have proposed approaches to solve it.

In 2013, (COOK et al, 2013) proposed an architecture to smart homes denominated
CASAS. The CASAS project changed the way data are captured and stored. Their archi-
tecture utilizes a ZigBee wireless mesh that communicates directly with hardware com-
ponents and captures information from different regions of the home. The middleware
provides services, such as adding timestamps to events, assigning universally unique iden-
tifiers (UUIDs), and persisting sensor state. The residences are treated as intelligent agents
to perceive the state of the residents and grab the surrounding sensor information. Figure
presents a sensor layout for CASAS datasets.
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Figure 7 — Sensor layout for seven CASAS smart homes testbeds: The sensor distribution
depends on the number of residents and the type of activities performed.

Temperature Oe D. . 5
i (A |%f )

® I 3f X =
]

Initially, the activity recognition was proposed using simple approaches, such as
lden Markov Model (HMM)| and [Naive Bayes Classification (NBC)| Further, in (KRISH-
NAN; COOK|, [2014]), the Support Vector Machine (SVM) method was applied for real-time
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activity recognition. The articles showed in Table [2 focus on four aspects: i) Ubiquitous
sensors, which indicates the use of sensors along with the environment; ii) Noise, which
indicates if a dataset has divergence from data captured; iii) AR, which indicates if it is
related to Activity Recognition; iv) Ensemble, which indicates the combination of classi-
fiers to predict the activities. The Summary column in Table [2f presents an overview of

the related project. The articles presented will be discussed in the sections below.

Method Ubiquitous sensors Noise AR Ensemble

Mozer 1MOZE§L I%I) v’
Essa v’

Summary

Adaption of environment
by Neural Networks
Ubiquitous sensors dis-
tributed

Hong et al. 1 v’ v’ Combines sensor’s infor-
2009)) mation to activity consen-
sus
Intille et al. v’ Observational apartment
2010)) by sensoring systems
Chen et al. (CHEN; NU- v’ v’ Proposed ontology to ac-
\GENT; WANG} 2012) tivity recognition based on
home characteristics
Krishnan and Cook v’ v’ Support Vector Machinesl
(KRISHNAN;  COOK, SVM)| method for pre-
2014) dict activities on sensor-
window
Lu lu et al. (LU; QING- v’ Knowledge-driven ap-
|LING; YI—JU|, |2017p proach to real-time
Aminikhanghahi and v’ v’ v’ Activity-segmentation de-
Cook  (AMINIKHANG- tection
|HAHI; COOKI, 2019)
Irvine et al. (IRVINE et v’ v’ v’ Homogeneous  ensemble
2019) neural network approach
to Human Activity
Recognition
Myagmar et al. v’ v’ v’ Heterogeneous  transfer
|mar; Li; Kimural, |2020|) learning  approach  to
Activity Recognition
Andrea Sanabria and v’ v’ Unsupervised Domain
Juan Ye (SANABRIA; adaptation technique for
2020)) Activity Recognition
Proposed Method v’ v’ v’ v’ Dynamic Selection of Per-

ceptrons

Table 2 — Related works.

3.2 ACTIVITY RECOGNITION APPROACHES

Mozer 1998)) built ACHE, Adaptive Control of Home Environment, which is

a domestic laboratory equipped with around 75 sensors to provide information related to
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environment status. The approach uses Neural networks to adapt the equipment according
to the activities that will be performed. These predictions could assist in daily tasks, such
as to define when the heater will be turned on, for instance. Despite the approach modeling
the adaptive control in regular activities, in a real-life scenario, it is well-known that the
activities are irregularly performed. Thus, this could be a roadblock to predict the next
actions.

Essa (ESSA, [2000)) through a residential laboratory, The Aware Home, in the Activ-
ity Monitor project, evaluates the acceptance of aging people to health-care monitoring
technologies. Eight attendants wore health technologies, such as cardiac monitor, ther-
mometer and others, for two weeks in the research residences, where five of them indicated
to would like to continue using it. The results suggested that the efforts may focus on
spreading the benefits to monitor health in older people and the usage of its. As detailed,
in this proposal, an important aspect of building a smart environment is to explore easily
accessible and pervasive computing services. However, the sensors used here are narrow
to audio and video capture, which means that interpretation could represent a limitation.

Hong et al. (HONG et al., 2009)) have proposed to use information handling techniques,
mainly the Dempster—Shafer theory of evidence and the Equally Weighted Sum operator
to achieve an activity consensus on prediction. The approach proposes an Eviden-
tial Neural Network to represent the hierarchy of inferring context-aware activities based
on sensors’ data since the information extracted from them could be unreliable due to cor-
ruption, interference, or faults. Although this behavior is more common in real databases,
in this project, we decided on the use of simulated noisy data. Thus, the results achieved
might not reflect the behavior in a real smart home environment.

Lastly, Intille et al. (INTILLE et al., 2010)) proposed an observed apartment where the
condo rooms were equipped with many sensors to develop applications that aid people in
controlling the environment, save resources, and monitoring activity. The PlaceLab was
designed with sensors integrated into the architectural aesthetic. The attendants also used
wearable sensors to integrate with the environment due to its proposal architecture could

be subject to biases and to be poor at capturing chains of causality.

3.3 RECENT DISCOVERIES

In 2012, Liming Chen et al. (CHEN; NUGENT; WANG, |2012) have proposed a knowledge-
driven approach to real-time activities. A generic system architecture was proposed for
the approach based on analyzes of smart home characteristics. Then, an ontology-based
recognition process was presented. The approach to activity recognition is built upon
Description Logic theories and reasoning mechanisms. The system has been tested and
validated in both real-world and simulated activity scenarios.

In 2014, Narayanan Krishnan and Diane J. Cook. in (KRISHNAN; COOK, 2014) defined
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the environments as smart agents, where the residents status and the rooms of the house
are perceived by sensors, and modified by the controllers’ usage to improve the comfort,
security and/or to help in activities performed by the residents. In this project, com-
bining mutual information based weighting of sensor events and adding past contextual
information into the feature presented the best results to predict the activities.

In 2017, Lu lu et al. (LU; QING-LING; YI-JU, [2017)) proposed an approach to assist-
ing living and health-care using wearable technologies. The method extracts the values
captured by sensors and, using the Beta Process Hidden Markov Model, defines latent
features to train the SVM] According to the results, a suggestion to obtain better results
is, previously, extract the latent features, and then train the intelligent algorithms.

In 2019, Samaneh Aminikhanghahi and Diane J. Cook (AMINIKHANGHAHI; COOK,
2019) adopted activity recognition detection based on the segmentation model to im-
prove the robustness of the machine learning techniques. According to this paper, seg-
ment behavior-drift sensor data in real-time improves the accuracy of its by providing
information about activity transitions and, thus, insights on activity start/end times and
duration. Therefore, the approach proposed by Aminikhanghahi considered the imbal-
anced data set arising from the time distribution in time.

Also in 2019, Irvine et al. (IRVINE et al.,[2019) proposed a homogeneous ensemble neural

network approach to [Human Activity Recognition (HAR)| in smart environments. The

activities monitored in this article are related to the ones performed by the inhabitants.
In other words, it’s an action taken by the resident, such as ‘Prepare dinner', ‘Wash
Dishes" and so on. The experiments demonstrated that as the longer activity is, there
are fewer conflicts between the base models leading to the increase in the performance
before the conflict resolution, where occurs when more than one model chosen the main
class output. The Neural Network Ensemble proposed surpasses the results of two non-
parametric benchmarks: KNN and SVM. However, the approach proposed did not consider
a feature selection to determine the optimal subspace features.

In 2020, Myagmar et al. (Myagmar; Li; Kimural, 2020 proposed a heterogeneous trans-
fer learning algorithm called Heterogeneous Daily Living Activity Learning (HDLAL) by
applying Maximum Mean Discrepancy, and Principal Component Analysis in smart en-
vironments to predict Activity Recognition. The approach is used to derive the domain
feature space from other domains. Then, Random Forest, an ensemble classifier, is used
to train this new feature space.

Lastly, in 2020, Andrea Sanabria and Juan Ye (SANABRIA; YE, [2020) proposed an
Unsupervised Domain adaptation technique for Activity Recognition named UDAR. The
main purpose of this article is, considering that there is insufficient labeled data related to
activities performed in smart environments, an approach capable of recognizing activities
in an unknown dataset through unsupervised techniques using transferring learning. The

results have shown that their approach is consistent and outperforms the state-of-art
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domain techniques results found in the literature. However, this approach is limited to
the sensors’ position. To achieve better results, the setting of sensors should be similar,
and semantically comprehensible to the source during the mapping. Otherwise, the sensors

need to be remapped.
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4 PROPOSED METHOD

4.1 INTRODUCTION

In the related works, we explored the usage of machine learning techniques to Activity
Recognition in smart environments. However, in most cases, the context is noise-free,
which means that the data captured is as expected. Hence, to evaluate the performance
of [DY] techniques to activity recognition in a noisy environment, we proposed the following
experiment: the idea is to use this data modeling approach in a noisy scenario, where the
window label changes randomly as the noise level up. Figure [8 shows an overview of the

proposed activity recognition process that is divided into two phases: training and test.
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Figure 8 — The proposed method overview. I' corresponds to the set of sequence of sensor
events, C' is the Pool of Classifiers generated, 0 is the test data set, Tgyery is
the query sample, C" is a subset of the Pool of Classifiers C', and the w; is
the outcome of the sample zgyery. In the first phase, the C' is obtained from
the training phase. Then, in the test phase, the C” is selected according to the
approach evaluated to labeling as w; the x4, and validated by validation set
V.

In order to simplify the understanding of the following sections, the notation used in

our approach is described below:
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C': the Pool of Classifiers.

C': the most competent classifier, or ensemble. C' C C.
Dy,: the training set.

0: the test dataset.

I': the training dataset.

¢: the number of windows in W.
S': the set of sensors events.

t: the number of vectors in X.
X: the set of feature vectors.
xj: the jth feature vector in X.
Tquery: the query example.

w: the class label for the query.
W: the set of windows.

w;: the ith instance of window in W.

Section presents the training phase that is responsible for the data transformation,
and for the training of the Pool of Classifiers. Section details the Dynamic Selection
step responsible for selecting the most competent classifier, or ensemble, and labeling the

instance.

4.2 TRAINING PHASE

Figure [0 shows the training phase that is divided into three main steps:

1. Processing Window: The raw sensor data is transformed into labeled windows, in

which the labels correspond to the activities.
2. Noise Insertion: Random noise is added to the data.

3. Ensemble Training: A pool of classifiers C' containing m trained classifiers is gener-
ated.
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In this phase, the Processing Window step defined in (KRISHNAN; COOK, 2014)) is
responsible for, given a sequence of sensor events I', dividing it into activity windows and
then, extract features, such as the sensor’s activation frequency, for instance. Afterward,
in the Noise Insertion step, the labels of the generated windows are randomly changed.
Finally, the Ensemble Training trains the pool of classifiers C'. In the next sections, these

steps are detailed.
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Figure 9 — Training phase. I" corresponds to the raw data and S to set of sensors extracted
from I'. W refers to the Activity windows, and X to the Bag of Sensors. Dy,
is the training set used during the Ensemble Training to generate the Pool of
Classifiers, C'.

4.2.1 Processing Window

According to (CHEN; DAS; COOK, 2010)), evaluating the previous sensor events is an
approach to comprehending the sensor context in an environment. In the Processing
Window, the sequence of sensor events S is divided into small blocks of data called
windows, denoted by W. This process consists of two steps: Sensor Windowing and Feature
Extraction. Figure [10| shows the complete process.

According to (COOK; KRISHNAN|, 2015)), the Sensor Windowing step is defined as fol-
lows: A process that divides the sensor data stream into windows, W. The number of
events that compose a window is called window size. In Figure [10} two windows, w; and
wsy, are generated in the Sensor Windowing phase considering the window size as 4 sensors
events.

Defining the best window size is a difficult task because, if we assign a small window,
the window might contain no labeled events. Otherwise, a large window may include
multiple distinct activities (KRISHNAN; COOK}, 2014)).

Once the set of windows, W = {wy, ws, - - ,w,} was defined in the Sensor Windowing
step, the next step is to extract the features that correspond to its content. The ¢ windows
are used to extract the ¢ feature vectors X = {z1, 2o, ..., z,} in this phase. In Figure ,
each vector is composed of 8 features extracted from windows.

Each feature vector z; is composed of two types of elements: time and sensors. The

time-based features are composed of three arguments extracted regarding the time of the
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2008-06-24 19:49:18.00 M15 ON

| N
X
Initial Time End Time Elapsed Time M09 M14 M15 M16 Label
Feature
X1 | 71358000,00 71361000,00 3000,00 2 1 0 1 Cook > Extraction
X2 71361000,00 71363000,00 2000,00 2 1 1 0 Cook
' S
Time Based Features

Bag of Sensors

Figure 10 — Processing Window. An example of a transformation of sensors events into a
Bag of Sensors.

sensor events:

e Time of the first sensor event in the window.
e Time of the last sensor event in the window.

o The difference between them (duration of the window).

The Bag of sensors is analogous to the Bag of words, a technique commonly used in
Text mining (SEBASTIANI, 2002). In Bag of words, a text can be represented as a set of
words and their frequency that appears in the document. Similarly, in Bag of Sensors, for
each sensor in the dataset, the frequency of the sensor’s activation defines the window, in
which the value of sensor status can be categorical (ON/OFF) or numeric. Therefore, the
dimensionality of the feature vectors depends on the number of sensors in the dataset.
For instance, for a dataset with 25 sensors, the total number of features is 28 (25 sensors

plus 3 time-based features).
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Lastly, each window needs to be labeled. The activity label is defined based on the last
sensor event within the window. If the last sensor event of the window has the class label
defined, this will be the window label. Otherwise, the window label corresponds to the
“begin-end” block the window is in. For example, in Figure 10} the window label is “Cook".
In cases where the class is not explicitly determined, the window is labeled as “Other”.
In well-known real-world data sets, most of the windows do not correspond to the known
activities. For that reason, it is essential to incorporate the class “Other”. (KRISHNAN;
COOK}, 2014)).

4.2.2 Noise Insertion

In real-world environments, the data available is not always flawless. In some cases,
the data is not reliable due to the inconsistency during its capture. For instance, when
one of the sensors has malfunction producing unexpected results or when the specialists
mislabeling the classes because they are not familiar with the pattern presented. Formally,
a data in which the information obtained has divergence from the expected is named Noisy
data (Wul 2007)). Handling noisy data is still a challenge to machine learning approaches
since it may affect the results of the models.

Noise insertion is used to verify how the classifier behaves in noisy environments. The
generation of noisy data could be performed in different ways. (ZHU; WU, 2004) describes
two approaches widely adopted: Attribute and Class label noise insertion. In Attribute
noise insertion, the errors are introduced in the information captured by sensors, for
example, or by missing information. On the other hand, the Class label noise insertion
can be performed changing the label defined to a data set (NETTLETON; ORRIOLS-PUIG;
FORNELLS, [2010)).

In this work, an amount of the training examples is randomly selected to have their
labels changed to another class to simulate a noisy environment. Six noise levels are
evaluated in our proposed method, from 0% to 50%. Noise-free data, 0%, means that
the data was not changed up, while 50% corresponds to, at maximum, half of the labels
randomly mutated.

As the insertion of noise increases, new labels are randomly assigned to the classes.
Each noise level corresponds to a new dataset to be trained generated from the noise-
free environment, 0%. For instance, 10% refers to a dataset created from 0%. Due to the
randomness, new classes may correspond to the current ones, which does not indicate
a change. It is possible to observe this behavior when changing from 10 % to 20 % in
Figure [L1] and the class label does not change. Therefore, the 50% can be related to, at

maximum, the change of half of the labels.
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Figure 11 — A snapshot of the noise insertion in the data set for six noise levels. 0% refers
to noise-free environments, and the 50% to a scenario where the, at maximum,
half of the labels were changed.

4.2.3 Ensemble Training

After the Noise Insertion step, the data is used to train the classifiers. In the Ensemble
Training step, the proposed method has several examples in Dy, the training set. To train
different classifiers, some methods of pool generation are evaluated to obtain the pool of m
classifiers C' = {¢y, ¢a, ..., ¢ }. Thus, in our project, three ensemble generation techniques
are evaluated: Bagging (BREIMAN, 1996)), AdaBoost (FREUND; SCHAPIRE, 1997), and
Self-Generating Hyperplanes (SOUZA et al., 2019a).

In the Bagging approach, the pool of classifiers is generated using bootstraps. Boot-
straps are replicated random samples of the dataset, where a tuple (class, instance) may
appear repeated or not at all in one of those. The usage of this approach is recommended

in cases where the predictors have high variance. These predictors are named unstable,
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which means when it has small changes in the input, there are large changes in the pre-
dictor. However, Bagging does not improve stable methods (BREIMAN| 1996]).

In the Boosting approach, (SCHAPIRE, [1990)) demonstrates the possibility of generating
a strong learner from weak ones. One of the approaches used to assert the proposition
is AdaBoost. In a nutshell, AdaBoost uses, in a pipeline of classifiers, the learning error
of the previous training set as weight to generate a new training set that will be used
to train the current classifier. In this manner, this algorithm can lead to overfitting.
(RATSCH; ONODA; MiLLER, 2001), (QUINLAN, 1996), and (GROVE; SCHUURMANS; |1998)
mention that AdaBoost has a lower performance than individual classifiers in the presence
of noise.

The Self-Generating Hyperplanes is an alternative method for generating the pool of
classifiers. Instead of randomly selecting the instances to train a subset of classifiers, the
[SGH] sets a classifier able to equally divide the feature-space. The premise of [SGH]is to
achieve an Oracle accuracy rate of 100% on the training set. Therefore, the number of
classifiers in the pool is deterministic, which means that for input data, the number of
classifiers selected to compose the pool is the same in all executions. Regarding selecting
a hyperplane equally distant, it may not work well in boundary cases, where the instances

are outliers, for instance.

4.3 TEST PHASE

Processing Window

Sensor Feature
Windowing

Dynamic

I
|
| c o
; ! - Classificaton —» Class(x,
Extraction | 7| Selection g (query)
|
|

Dynamic Selection

query

Figure 12 — Test phase. In this phase, the Processing Window is also executed in the Test
set, 0. After that, the most competent classifier, or ensemble, C’ is selected
from the Pool of Classifiers C, based on the approach evaluated. Lastly, the
outcome correspondent to the label of x4yery is defined.

Figure [12] shows the data flow during the Test phase. Similarly to the Training phase,
the data from the test set, §, are transformed into a set of feature vectors in the Process-
ing Window. After the Feature Extraction, the query example gy, is presented to be

classified by the Dynamic Selection module. In this step, the most competent classifier,
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or ensemble, is selected from the pool C' to classify the zgyery.
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5 EXPERIMENTS AND DISCUSSION

5.1 INTRODUCTION

In Chapter 2, the background of this project was presented, focusing on pool generation
techniques and the [DS| approaches. Besides the well-known methods, such as Bagging,
the [SGH| method was introduced as another method in the comparison and evaluated. In
Chapter 3, the related works in Activity Recognition were presented to contextualize what
it is researching in the academy to handle this problem. In Chapter 4, an architecture
to evaluate the performance of [DS] approaches in noisy environments was presented. A
random label change occurs in six noise levels to simulate the noisy environment.

In this section, we describe the parameters of our experiment: the data sets, machine
learning techniques parameters, and the other experimental configurations. Afterward,
the results are exhibited and discussed.

This chapter is organized as follows: In Section [5.2] the Experimental Protocol is
described. Section goes deeper into the evaluation of the proposed method in different
configurations. Also, in this section, it is presented a discussion about [DS| techniques

performance.

5.2 EXPERIMENTAL PROTOCOL
5.2.1 Data sets

Five data sets from CASAS projectﬂ are used in the experiments: HH103, HH124,
HH129, Kyoto2008, and Kyoto2009. These databases are composed of activities, such as

“Sleep”, “Brushing Teeth”, among others, that are being performed in smart homes and

captured by sensors. Table [3| describes the main characteristics of the datasets.

Table 3 — CASAS dataset description. The number of residents and sensors, raw sensor
data, distinct activities, the percentage of majority and minority class, and the
imbalance ratio for the five datasets.

Dataset # Residents # Features # Examples # Classes Largest class % Smallest class % IR
HH103 1 58 133713 30 16.45 0.01 1645.0
HH124 1 83 60790 23 79.22 0.01 7922.0
HH129 1 65 173000 33 33.61 0.02 1681.0
Kyoto2008 2 54 16736 5 52.17 1.33 39.0
Kyot02009 2 74 110401 16 23.84 0.16 149.0
The datasets adopted in this project consist of sensor events. Let S = {s1, S92, ,n}

be a sequence of n sensor events composed of a calendar date, time of the day, sensor

1 Available at http://casas.wsu.edu
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name and sensor status. Figure [13| shows a fragment of one of the datasets used in this
work. The data represents calendar date, composed of year, month, and day; time of the
day, which consists of an hour, minute, second and millisecond; sensor’s identification,
and value in which can be nominal, ON/OFF, or numerical. A block that delimits the
beginning and end of activity defines the activity label of sensor events. Otherwise, they

are unlabeled. For instance, in Figure[I3] we can see the beginning of the “sleep” activity.

2011-06-15 ©0:03:09.817697 L5006 @
2011-06-15 @0:17:44.211833 L5005 4
2011-06-15 ©0:23:09.72767 L5006 1
2011-06-15 @0:32:12.827662 BATV1@3 3180
2011-06-15 80:37:44.063746 L5005
2011-06-15 80:43:09.615985 L5006
2011-06-15 80:47:43.992647 L5005
2011-06-15 @1:03:09.498286 L5006
2011-06-15 @1:07:43.887796 L5005
2011-086-15 @1:17:43.846326 L5005
2011-06-15 @1:23:09.380385 L5006
2011-86-15 @1:27:43.776285 L5005
2011-06-15 @1:37:43.727488 L5005
2011-086-15 01:43:09.302783 L5006
2011-06-15 @1:43:14.277702 MO15 ON Sleep="begin"
2011-86-15 @1:43:17.868053 MO15 OFF
2011-06-15 @1:47:43.659496 L5005 5
2011-086-15 @1:53:09.245733 LSB06 6
2011-06-15 @1:57:43.6081974 15005 4
2011-06-15 ©2:01:31.402581 M@15 ON

Figure 13 — Fragment of a sequence of sensor events extracted from smart homes from

the CASAS dataset.

[l I B« T = Wy B E Y N v R W

Figure[l14]shows the floor plan and sensor layout for the apartments. During six months,
the data was collected in the flats while the residents lived there and performed their

regular daily routines.

Sensor Key:

- motion

- motion (area sensor)
- door

© temperature

- light

. water, bumer

: item

[ JmPey T ¥ )

Figure 14 — Example of CASAS environment (CHEN; DAS; COOK,, 2010). The datasets are
composed of the sensors’ information captured in a certain period.

In Table [3| the Activity Recognition datasets present a considerable degree of class

imbalance, named [Imbalance Ratio (IR)| This feature refers to the ratio between the

number of examples in the majority class and the number of samples in the minority class
(ORRIOLS-PUIG; BERNADO-MANSILLA} 2009)).
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As detailed in Table [3| some datasets presents a high rate of [[R] This phenomenon
occurs due to some activities that are more regular and/or longer than others. For instance,
the “Eat” activity usually takes 0.5-1 hours a day for a resident while “Sleep” takes 6-8

hours approximately.

5.2.2 Parameters setting

The proposed method requires a configuration to perform the evaluation. In the Train-
ing phase, it is necessary to define the Window size, the noise level to be inserted, and
the pool generation technique. Lastly, in the Test phase, the [DS| approach, the region of
competence size, and the aggregation method should be defined.

Window sizes between 5 and 30 sensor events are commonly adopted (COOK; KRISH-
NAN| 2015)). As the objective of this work is not to optimize or identify the window size,
no investigation was performed with this purpose. Thus, in our experiments, the window
size chosen was 30, as defined in (KRISHNAN; COOK, [2014)).

Regarding the noise insertion, it was performed six noise levels: 0% to 50%, increasing
by 10% per level. Due to this approach, the original dataset produces six new ones.
Thereby, the experiments were carried out using five datasets with six noise levels each
one, totalizing 30 datasets.

The pool of classifiers used in the experiments was generated according to (CRUZ et
al., [2015). Let C a pool of 100 Perceptrons. In our proposed method, three generation
techniques was evaluated: Bagging (BREIMAN, |1996|), AdaBoost (FREUND; SCHAPIRE,
1997), and . In this latter approach, the pool’s size is determined automatically.

The [D] techniques consider the Region of Competence to select the most competent
classifier, or ensemble, to predict the class of the query example gyer,. The data set
used to define the is called Dggr, and in our experiment is the same as Dy.q;,, the
training data set. The size of the neighborhood in our methodology was established by
the 7-nearest neighbors of zgyery, as described in (CRUZ; CAVALCANTI; REN|, [2011)).

Since the Random Forest parameters used in the (ALBERDI et al., [2018) was not pro-
vided, the Grid Search was used to establish its configuration in our experiments. In this
method, the grid evaluates the possible parameters, and the best setting is chosen as the
final configuration. As each noise level represents a different data set, the grid search, in
our approach, defines the number of trees for each fold on each noise level on each data

set.
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5.2.3 Evaluation

The cross-validation technique is commonly used to evaluate the performance of a
method. In our proposed approach, the data sets were split in 5-folds: 4-folds to training
the classifiers, and 1-fold for testing.

Some evaluation metrics were adopted in our project: For each fold and noise rate, the
F-measure, and Multi-Label F-measure were calculated.

F-measure is suggested in the literature to integrate precision and recall as an average,
which assigns equal importance for Recall and Precision. Therefore, F-measure is defined

as follows:

2 x Precision x Recall
F-M = 5.1
casure Precision + Recall (5-1)

Considering that F-measure is, commonly, used to two-class learning problems, the
Multi-label F-measure can be used as an variation of F-measure to multi-class imbalance
problems. MFM is defined for multi-class problems as follows:

MFM — Y i1 F'— measure;

(5.2)

m
where, i is the index of the class considered positive.

These metrics are computed for each class, and the mean value is taken among the
activity classes. Due to the high degree of imbalance of the data sets, all techniques were
evaluated considering the Micro approach: The average of each class contribution is used
to compute the metric and exposes the effect of noise insertion. Besides these metrics,
the Confusion Matrix was also calculated to understand the behavior of the algorithms
for each class. For more details, see the attached Appendix [D] It is essential to point out
that the activities labeled as “Other" were not considered in these calculations.

Finally, the mean among the folds of the same noise rate is calculated to compute the

average performance of the machine learning algorithm.

5.3 RESULTS AND DISCUSSION

The experiments conducted in this proposed method consist of an evaluation and anal-
ysis of the impact of increasing noise level in Activity Recognition problems. Considering
that the parameters were previously defined, the next sections will describe the steps over

the test set, and the results achieved in each one. Moreover, a deep evaluation of the [OLA]
and [LCA] behavior are presented.
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5.3.1 Comparative Study

In this section, to understand the behavior of the[DS|approach to handle noisy environ-
ments, an evaluation to define the most suitable pool generation technique, and further,
identify the [DS] method appropriate was performed. The choice of static methods, Bag-
ging, and AdaBoost, is related to results achieved in diverse kinds of problems, as stated
in (CRUZ et al,, [2015). Thus, the comparative study evaluates the SGH method, which
presents an alternative for the generation of a pool of classifiers. Recent studies showed
the benefits of OLP, which uses the SGH as generation method, on imbalanced data sets,
as reported in (SOUZA et al., [2019a).

The performance of pool generation techniques using the Oracle model is evaluated
in Section [5.3.1.1] Afterwards, Section presents the [DCY| performance compared
to Random Forest using the SGH] approach to generate the pool of classifiers. Lastly, the
statistical analysis is performed in Section

5.3.1.1 Oracle Evaluation

An inspection of the pool of classifiers techniques was conducted considering the ab-
stract Oracle model in six noise rates to evaluate the effect of the generation phase. In
short, the purpose of this study is to define the most suitable generation method for noisy
environments in the Activity Recognition problem.

As previously defined, the Oracle model seeks to find a pool of classifiers capable of
correctly predicting all instances in the training set. Otherwise, the classifiers are randomly
inserted in the pool, and, because of this, Oracle rates occasionally do not reach 100%.
Therefore, as the Oracle is closest to the maximum, the pool is more diverse and accurate.

Hence, the objective of this study is to correlate the pool generation techniques with
the Oracle rate. The approach which achieves the best results is selected to generate the
pool. For this, considering the HH124 database, which has the highest imbalance ratio, an
evaluation of the performance of the abstract model was made as the noise level increased
for each generation method.

The following generation methods are chosen to evaluate the performance of these
experiments: Bagging, AdaBoost, and SGH. For the baseline methods, a pool composed of
100 Perceptrons was defined. According to its definition, the SGH selects the Perceptrons
needed to achieve the 100% Oracle accuracy rate. Thus, the number of Perceptrons on
the pool of classifiers is defined during the training process. Figure [15]| presents pool size
defined by SGH for each data set considering the noise insertion.

Figure [16| shows that the Oracle presents an accuracy near to 100% when the SGH is
the generation method in test sets. However, despite high results, as noise increases, the

performance of other techniques is affected, showing a decline. Thus, due to the results, the
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Figure 15 — Size of the pool of classifiers defined by SGH for each dataset.

SGH technique was selected to generate the classifier pool. For more details, in Appendix

[A] there are the results for the remaining data sets.
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Figure 16 — Oracle evaluation in HH124 database considering three generations of pool
algorithms: SGH, AdaBoost, and Bagging.

5.3.1.2 Dynamic Selection

Considering that the pool generation technique that had the best results in Oracle
evaluation was chosen, the objective of this section is to evaluate the performance of [DS|
methods as the noise increases. Thus, considering the CASAS data set, Table [4] describes
the accuracy rate of the [DY in comparison with Random Forest, the technique which
achieved the most accurate results, according to (ALBERDI et al., 2018)).

Regarding the performance of the proposed method, the DS techniques were compared
to the Random Forest algorithm. In this work, four DCS algorithms were evaluated: OLA,
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LCA, Rank, and MCB. Besides, six [DES| techniques were also investigated: KNORAU,
KNORAE, DESKNN, DESP, METADES and KNOP.

From Table []it can be observed that [MCB|and [OLA] at high noise levels, most of the
time, outperform the Random Forest results. According to Table[3], the data sets evaluated

are highly imbalanced due to some activities which are more common or spent more time
to be executed than others. However, in cases where the majority class corresponds to
a large part of the data, the algorithms yield similar results. Thus, when the amount of
samples correspondent to the majority class, the techniques become experts. This fallacy
is named Overfitting. However, some techniques have difficulty separating classes when
data is more balanced. In general, [DS] techniques present stable results due to the use of
neighbors’ information to select the most competent classifiers. Appendix [B] presents the
visualization of the evaluation following depicted.

Despite not presenting the highest rate of imbalance, the performance of [DS|techniques
in HH103 and HH109 is similar to the Random Forest. It can be observed that is not
affected by the high noise levels, remaining steady even at the maximum noise level,
50%. In other data sets, the results for these two techniques present stability as the noise

increases.



Noise Level Random Forest OLA LCA Rank MCB KNORAU KNORAE KNOP DESKNN DESP METADES
HH103
00 91.53 (0.09) 81.73 (0.25) 64.0 (0.4) 88.12 (0.23) 81.57 (0.26) 79.8 (0.31) 88.33 (0.22) 19.8 (1.5) 37.51 (7.27)  63.91 (0.47)  20.8 (1.81)
10 83.11 (0.29)  80.56 (0.26)  42.53 (0.59) 71.72 (0.19)  80.48 (0.32)  78.98 (0.65)  72.06 (0.2)  19.99 (0.94) 30.84 (4.04) 47.02 (1.29) 21.41 (1.22)
20 75.58 (0.25) 79.13 (0.2)  32.05 (0.57)  62.35 (0.1)  79.17 (0.23) 77.43 (0.27) 62.63 (0.11) 19.31 (1.88) 26.83 (2.55) 36.81 (0.44) 21.11 (2.18)
30 68.5 (0.22) 76.65 (0.2) 26.11 (0.5)  54.76 (0.16)  77.12 (0.2) 75.4 (0.7) 55.02 (0.16)  18.07 (0.85) 25.74 (1.72) 32.17 (0.86) 19.35 (0.83)
40 62.13 (0.34) 73.75 (0.2) 2167 (0.52) 48.66 (0.15) 74.13 (0.26)  72.07 (0.74)  48.94 (0.16) 17.34 (1.29) 22.85 (2.17) 27.49 (0.65) 17.82 (1.35)
50 56.17 (0.38) 69.96 (0.28)  18.17 (0.41) 43.47 (0.16) 70.54 (0.39) 68.05 (1.22) 43.71 (0.16) 16.68 (0.87) 20.57 (1.75) 23.83 (2.01) 16.62 (0.97)
HH124
00 95.02 (1.76)  88.79 (1.35)  80.29 (2.3)  92.31 (1.73)  88.99 (1.17)  87.11 (1.83) 9247 (1.91) 16.36 (1.21) 31.43 (2.15) 77.46 (2.24) 14.87 (1.22)
10 81.46 (1.03) 84.34 (0.75) 36.77 (1.17)  51.56 (0.55) 84.57 (0.89) 84.43 (1.79) 51.93 (0.64) 5.01 (0.97)  23.95 (2.77) 36.71 (2.87)  5.06 (1.09)
20 68.62 (0.98) 82.35 (0.72) 23.6 (1.03)  39.54 (0.36) 82.48 (0.82) 82.9 (1.48) 39.96 (0.35) 4.46 (0.56)  19.35 (2.75) 28.44 (2.42) 4.21 (0.3)
30 58.68 (1.52) 77.82 (1.92)  15.86 (0.36) 32.48 (0.38) 79.38 (2.07)  77.58 (2.0)  32.88 (0.47)  4.04 (0.17)  15.74 (3.55) 22.41 (2.65)  4.04 (0.17)
40 50.09 (0.58) 71.38 (0.88)  11.92 (0.59) 27.72 (0.28) 72.97 (1.36)  70.06 (5.1)  27.9 (0.32)  4.03 (0.17)  12.1 (1.8)  17.46 (2.65)  4.04 (0.21)
50 42.7 (0.81) 62.68 (0.84) 9.63 (0.52)  23.85(0.39) 64.93 (0.75) 64.92 (3.75) 24.13 (0.42) 4.26 (0.3) 13.47 (1.81) 16.34 (2.14)  4.21 (0.25)
HH129
00 93.87 (0.45) 88.11 (0.53) 72.58 (0.58)  91.17 (0.3) 87.59 (0.42) 86.61 (0.57) 91.59 (0.37)  7.36 (1.07)  38.14 (2.32)  72.5 (1.07) 7.28 (1.03)
10 84.12 (0.55) 85.81 (0.43) 45.56 (0.43)  71.5 (0.46) 86.63 (0.4) 85.95 (0.15)  72.09 (0.43)  7.57 (0.48)  33.47 (2.34) 51.11 (0.85)  7.59 (0.52)
20 76.44 (0.46) 84.86 (0.47)  31.46 (0.42) 61.47 (0.33)  85.4 (0.4)  84.46 (0.65)  61.95 (0.3)  6.42 (0.34)  27.82 (2.08)  38.98 (0.8)  6.35 (0.38)
30 69.32 (0.33) 82.04 (0.18) 24.11 (0.39) 53.72 (0.16) 82.67 (0.42) 81.46 (1.44) 54.08 (0.16)  6.87 (0.45)  25.99 (2.47) 31.99 (2.07) 6.8 (0.54)
40 62.51 (0.36) 78.26 (0.33) 19.19 (0.35) 47.36 (0.24) 79.44 (0.34) 76.37 (1.11)  47.68 (0.24) 6.43 (0.6) 22.27 (3.17)  26.36 (2.11)  6.03 (0.63)
50 56.21 (0.2) 74.05 (0.42)  16.12 (0.4)  42.16 (0.23) 75.47 (0.62) 72.03 (1.72) 425 (0.19)  5.14 (0.43)  19.41 (2.41) 22,68 (2.11)  4.55 (0.44)

67



Noise Level Random Forest OLA LCA Rank MCB KNORAU KNORAE KNOP DESKNN DESP METADES

Kyoto2008
00 99.56 (0.15) 98.58 (0.52) 95.68 (0.44)  99.08 (0.13) 98.47 (0.5) 97.76 (0.61)  99.09 (0.13) 54.21 (1.59) 68.97 (1.58) 95.69 (0.43)  50.68 (4.94)
10 92.83 (0.5) 98.04 (0.37) 68.02 (1.5) 82.39 (0.7) 98.32 (0.39) 96.8 (0.47) 82.5 (0.74) 50.08 (3.2) 74.57 (8.83)  89.86 (1.48) 51.65 (5.58)
20 85.84 (0.83)  97.79 (0.31)  54.3 (3.02)  72.71 (0.79)  97.62 (0.49)  95.42 (1.15) 72.79 (0.69)  37.6 (5.04) 71.63 (5.21) 88.78 (1.23)  40.9 (5.96)
30 78.87 (0.89) 95.15 (0.83) 47.04 (2.6) 65.23 (0.87) 95.54 (0.73) 91.68 (2.73) 65.29 (0.93) 39.32 (2.43) 69.31 (9.42) 81.08 (3.44) 35.93 (5.64)
40 73.58 (0.69) 91.72 (1.11) 40.97 (4.4) 59.74 (1.09) 92.51 (1.67) 85.55 (2.71) 59.79 (1.11)  33.64 (2.31) 57.95 (3.47) 74.58 (2.78) 32.4 (4.83)
50 68.03 (1.03) 86.54 (0.79) 33.62 (3.6) 55.07 (1.07) 88.02 (0.9) 79.21 (2.41)  55.15 (1.02) 28.58 (4.23) 56.7 (6.55) 67.53 (2.6) 31.01 (5.69)

Kyoto2009Spring

00 99.47 (0.1) 96.31 (0.23)  91.28 (0.22)  98.32 (0.15)  96.33 (0.25)  95.62 (0.32)  98.33 (0.17) 46.11 (2.32) 49.62 (5.17) 90.45 (0.41) 46.55 (1.64)
10 92.62 (0.4) 95.95 (0.35) 59.91 (0.33) 83.13 (0.13) 95.86 (0.34) 95.6 (0.2) 83.22 (0.11)  50.85 (1.62) 53.15 (1.85) 69.57 (2.1) 48.7 (1.66)
20 86.02 (0.38) 95.53 (0.22)  43.26 (0.49) 73.47 (0.22) 95.41 (0.23) 94.14 (0.42)  73.57 (0.21) 46.97 (0.81)  39.23 (3.91) 53.42 (1.7) 46.33 (0.94)
30 79.47 (0.6) 94.43 (0.15)  35.16 (0.76)  65.56 (0.08) 94.73 (0.03)  92.8 (0.8)  65.65 (0.09) 45.02 (1.51)  40.2 (2.42)  46.76 (1.12) 33.26 (4.41)
40 73.1 (0.47) 91.99 (0.18)  29.21 (1.04) 59.06 (0.17) 92.45 (0.15) 90.13 (2.48) 59.15 (0.19)  46.99 (3.03) 35.18 (6.79) 39.42 (5.87)  30.85 (2.34)
50 67.3 (0.28) 88.39 (0.27) 22.87 (0.79) 53.39 (0.31) 89.05 (0.43) 84.42 (3.05) 53.47 (0.31) 43.81 (2.2) 28.66 (2.91) 31.26 (3.49) 27.69 (2.61)

Table 4 — Mean and Standard deviation of the Average of Multi-label F-measure rate using the DCS techniques: OLA, LCA, MLA, Rank,
and MCB. Also, it was evaluated the DES techniques: KNORA-Union, KNORA-Elimination, KNOP, DESKNN, DESP, and
METADES. Since the SGH outperformed the results of Bagging and Adaboost, was used as the pool generation approach. The

Random Forest was compared with the results achieved.

0¢
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In Section [5.3.2] an in-depth evaluation of the performance of [OLA] and [LCA] it will

be discussed due to opposite behaviors as the noise increases.

5.3.1.3 Statistical Analysis

For the statistical comparison of the Dynamic Selection methods and Random Forest
over the 5 classification data sets, the Friedman test was used (FRIEDMAN| |1937)). Consid-
ering each data set, the average rank is calculated to evaluate the method that achieves
the best performance. Then, the algorithm that achieves the best result is given rank 1,
the second receive rank 2, and so forth. In the case of a tie, i.e., two methods presented
the same classication accuracy for the data set, their average ranks were summed and
divided by two.

=)

I
RandomForestClassifier DESKNN RandomForestClassifier 4 [I—
(a) 00% (b) 10%
©
—_— ©
1 2 3 4 5 6 7 8 9 10 1 —_—
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(c) 20% (d) 30%
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Figure 17 — Critical difference diagram representing the results of a post-hoc Bonferroni-
Dunn test on the accuracy rates of the methods from Table[d The calculated
critical difference value was CD = 1.1. The values near the methods’ labels
indicate their average rank. Statistically similar methods are connected by an
horizontal line, while statistically different ones are disconnected

After this, the critical difference (CD) value was calculated using the Bonferonni-Dunn
post-hoc test recommended in (DEMSAR], 2006)). In the Bonferonni-Dunn post-hoc test,
two configurations are different if their average rank difference is greater than the critical
difference CD. We use the critical difference diagram proposed in (DEMSAR| [2006) to
have a visual illustration of the statistical test. The CD diagram with the results of the

Bonferonni-Dunn post-hoc test is shown in Figure [17}
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From the figures, it is possible to see that, as noise levels in datasets increase, the
performance of the Random Forest algorithm decreases with the noise iterations. On
the other hand, [MCB| and [OLA] have stable performance and, even at high noise levels,

the accuracy outperforms the Random Forest results. The CD = 2.27 is common to all

figures. The configurations with no significant difference are connected by a bar, while

significantly different ones are not intersected in the diagram.

5.3.2 Discussion

This section presents a deep evaluation of the [OLA] and [LCA] performance for the

previous experiments. Despite these techniques evaluating the performance of a classifier
using accuracy as an approach, the methodology is different. It can be observed in Table ]
that the accuracy rate achieved by [OLA|surpasses the results of [LCA] To understand these
differences, the purpose of this evaluation is to analyze the behavior of the techniques as
the noise increases over classes and the classifier competence when the neighbors have the
same class.

In order to analyze and evaluate the performance of [OLA] and [LCA] two experiments

were conducted on the Kyoto 2008 dataset:

1. Performance over the activity classes;

2. Performance over the neighbor.

The Kyoto2008 dataset contains 5 classes. Fach class corresponds to an activity exe-
cuted by the two residents living in this environment. The technical features available on

this dataset can be found below:

e Number of Instances: 16,736
o Classes distribution:

— 0: 3255; 1: 279; 2: 5360; 3: 1081; 4: 10948
« Imbalanced Ratio: 39.0

— Minority Class: 1.33%
— Majority Class: 52.17%

According to Figure [I§ as the noise increases, the [OLA] algorithm achieved better
results than the [LCA] In this evaluation, the noise increase affects, significantly, the
performance of the majority classes in[LCA] However, [OLA]remains stable. The difference
can be sharply seen in the first round of noise additions: The [LCA] performance is heavily

affected, whereas the [DLA| performance is not.
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Figure 18 — Accuracy rate. OLA and LCA accuracy evaluation on the noise augmentation
in RoC for instances that present the same classification, in which the labels
are defined 0 to 4.

Regarding the 50% noise level, it can be noted that the [LCA|was drastically affected in
the majority class (class 4), while the remains with stable results. Figure |19| details
the performance of the algorithms to comprehend how the techniques behave in a noisy
scenario. In our evaluation, each row of the matrix corresponds to the actual class and
each column to the classification task. It can be seen that [LCA] presents a misclassification

in most categories, whereas the [OLA] remains consistent even in the minority class.
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0.8 0.8
1 0.00 0.01 0.00
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Figure 19 — Normalized confusion matrix for Kyoto2008 dataset considering 50% of noise
insertion. Class 4 is the majority, while class 1 is the minority. The [OLA]
technique presents consistent results even in a high noise rate, while the [LCA]
is significantly affected.

Hence, an in-depth evaluation of the base classifiers’ competences can explain why in

the majority classes, the results are discrepant in [OLA] and [LCA] The mean competence

was estimated considering when Target and Predictions are the same. The following three

cases were found when the predictions refer to Minority class, Majority class, and Other
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classes.

In Figure each one of the 12 base classifiers, B,,, that compose the Pool C' was
evaluated to classify correctly: the majority class, minority class, and the other one into
the[RoC| It can be noted that even with six of the seven neighbors agreeing with the label,
the mean competence of the base classifiers selected by [LCA]is lower than that of [OLA]

Moreover, the behavior of the base classifiers remains similar among the techniques.
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Figure 20 — Mean of competence to Base Classifiers. OLA and LCA evaluation to the
highest noise level considering five and six neighbors with the same class.
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It is possible to conclude that the classifiers selected by [OLA] do not consider the
specialization in its evaluation. Although the noise insertion was the same, the [OLA] does
not find the number of samples for each class on its assessment and, because of this,
the performance is not significantly affected as the [LCA] Therefore, in scenarios where
there is an increase of noise in smart environments, and when there is a variation between
the frequency of activities performed inside the home, algorithms similar to [DLA] present
more stable and accurate results.

In this evaluation, we could add a similar performance obtained by the MCB]|technique.
As we previously presented in [2] the MCB]| has a similar approach to [OLA} Based on the
number of hits in the [RoC| the classifier most competent, or well-ranked, is selected from
the pool of classifiers. However, has a slight difference in their [RoC} It prunes the
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instances which don’t have related behavior. Considering that we have an environment
even more polluted as the noise increases, this pre-step might be responsible for the best
performance of the classifier selected among the others. So, we can see this fine difference
in Table @4
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6 CONCLUSION

In this work, it was evaluated the [MCS| techniques in the context of Activity Recognition
in Smart Homes, one of the applications of [oT] technologies. The literature reports the
usage of machine learning techniques to predict the activities performed in Smart Homes,
and the challenge to improve their precision when it has noise insertion due to misleading
data capture. The CASAS project, the main dataset used in our approach, was randomly
changed to simulate a noise insertion to evaluate the [DCS| techniques performance in
contrast to Random Forest’s accuracy.

The stages of an[MCS|approach were presented: Generation, Selection, and Integration.
The pool generation of classifiers was detailed, and evaluation of Oracle accuracy rate in
known techniques, such as Bagging and Adaboost, was made in comparison to [SGH]
performance. Further, the process of dynamically selecting classifiers was introduced, and
the[DCY| techniques evaluated in our project were introduced. Finally, a discussion over the
robustness of ensemble techniques in the noisy environment was raised, and the evaluation
has shown that even when the half of labels are randomly changed, the [DS techniques
presents stable results in comparison to Random Forest.

Premised on the challenge to recognize and predict activities in noisy environments,
the proposed method was presented. Firstly, the generation techniques must guarantee an
accurate and diverse pool of classifiers. Thereby, the generation techniques were evaluated
and the most suitable, which has the highest Oracle, to fully cover the feature space is
selected. In our proposed method, the [SGH]| had the highest Oracle accuracy ratio. After
that, experiments were conducted over 30, five smart home data sets each one with 6
different insertion noise rates, including a noise-free scenario. The accuracy, precision and
recall were performed in five machine learning techniques: Random Forest, [OLA] [LCA]
Rank, and [MCB|

The results have shown that, in most cases, DCS| techniques are less sensitive to noise
insertion than Random Forest. We observed that the configurations SGHHMCB]| and
present the most stable results even with a 50% noise level. However, even
though the [LCA] considers the accuracy as the criteria to evaluate the performance of
a classifier as [OLA] its performance was highly impacted by the noise insertion. Thus,
to comprehend the decision made by [LCA], a deep evaluation of the competence of the
classifiers selected was performed. As exhibited previously, the [LCA] was not able to select
the classifiers most accurately to fit the problem as the [OLA]did. The behavior of the base
classifiers remains similar among the techniques even though achievements are different.

As the[SGH]is a pool generation method that defines a centered hyperplane to separate
the classes, boundaries instances may represent a challenge. Related to this scenario, the
future works may lead to the representation of the hyperplane that considers all instances,

instead of only centroids, to handle multi-class problems. Similarly to SVM, the proposal
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idea is to maximize the margin in order to cover the instances more distant of centroids.
Besides, due to the generation process used in this proposed method, [DES| techniques
were not evaluated. The [DES techniques have shown promise achievements to handle
imbalanced data problems, as discussed in (CRUZ et al., [2019). In future experiments, the

proposal is to evaluate [DES| methods with different generation techniques in comparison

to [DCY]| techniques.
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APPENDIX A - ORACLE F1 PERFORMANCE IN NOISY ENVIRONMENTS
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Figure 21 — F1 Score rate. The Selection approaches SGH, Adaboost, and Bagging were
evaluated in order to define the most suitable technique to our problem.
According to the results achieved, the SGH presented the better rate even in
high noise levels.
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APPENDIX B - MULTI-LABEL F-MEASURE IN NOISY ENVIRONMENTS
ACROSS THE EVALUATED GENERATION METHODS
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Figure 22 — Multi-Label Fmeasure in a noisy environment to Dynamic Selection tech-
niques in comparison with Random Forest achievements using three Genera-
tion methods: Bagging, Adaboost and SGH.
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Figure 23 — Multi-Label Fmeasure in a noisy environment to Dynamic Selection tech-
niques in comparison with Random Forest achievements using three Genera-
tion methods: Bagging, Adaboost and SGH.
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Figure 24 — Multi-Label Fmeasure in a noisy environment to Dynamic Selection tech-
niques in comparison with Random Forest achievements using three Genera-
tion methods: Bagging, Adaboost and SGH.
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Figure 25 — Multi-Label Fmeasure in a noisy environment to Dynamic Selection tech-
niques in comparison with Random Forest achievements using three Genera-
tion methods: Bagging, Adaboost and SGH.
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B.0.5 Kyoto 2009 Spring
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Figure 26 — Multi-Label Fmeasure in a noisy environment to Dynamic Selection tech-
niques in comparison with Random Forest achievements using three Genera-
tion methods: Bagging, Adaboost and SGH.
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APPENDIX C - F1-SCORE + SGH PERFORMANCE IN NOISY
ENVIRONMENTS
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Figure 27 — F1-Score rate. The Perceptrons were chosen by DCS and DES techniques
and compared with Random Forest results through noise augmentation. The
KNORA-U, OLA, and MCB presented better results even in noises level up.



APPENDIX D - CONFUSION MATRICES TO DYNAMIC SELECTION
APPROACHES
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Figure 28 — The confusion matrix evaluated on Kyoto 2008 considering OLA as the dy-
namic selection technique on labels randomly modified in up to 50% of cases.
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Figure 29 — The confusion matrix evaluated on Kyoto 2008 considering LCA as the dy-
namic selection technique on labels randomly modified in up to 50% of cases.
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Figure 30 — The confusion matrix evaluated on Kyoto 2008 considering MCB as the dy-
namic selection technique on labels randomly modified in up to 50% of cases.
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Figure 31 — The confusion matrix evaluated on Kyoto 2008 considering Rank as the dy-
namic selection technique on labels randomly modified in up to 50% of cases.
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Figure 32 — The confusion matrix evaluated on Kyoto 2008 considering Random Forest
as technique on labels randomly modified in up to 50% of cases.
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Figure 33 — The confusion matrix evaluated on Kyoto 2008 considering Knora-Union as
the dynamic selection technique on labels randomly modified in up to 50% of

cases.
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Figure 34 — The confusion matrix evaluated on Kyoto 2008 considering Knora-

Elimination as the dynamic selection technique on labels randomly modified

in up to 50% of cases.
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Figure 35 — The confusion matrix evaluated on Kyoto 2008 considering KNOP as the

dynamic selection technique on labels randomly modified in up to 50% of
cases.
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Figure 36 — The confusion matrix evaluated on Kyoto 2008 considering
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Figure 37 — The confusion matrix evaluated on Kyoto2008 considering DESKNN as the

dynamic selection technique on labels randomly modified in up to 50% of
cases.
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