Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/37967

Comparte esta pagina

Título : Refinamento para testes de hipóteses em modelos espaciais lineares Gaussianos com repetições
Autor : SANTOS, Rodrigo Gonçalves dos
Palabras clave : Estatística aplicada; Correção de Bartlett
Fecha de publicación : 21-feb-2020
Editorial : Universidade Federal de Pernambuco
Citación : SANTOS, Rodrigo Gonçalves dos. Refinamento para testes de hipóteses em modelos espaciais lineares Gaussianos com repetições. 2020. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2020.
Resumen : Nesta tese, tratamos de refinamentos para testes de hipóteses em modelos espaciais lineares gaussianos com repetições. Nós obtivemos um fator de correção de Bartlett para a estatística da razão de verossimilhanças baseado na verossimilhança perfilada modificada proposta por Cox e Reid (1987). Além disso, desenvolvemos novos ajustes para a estatística da razão de verossimilhanças com base nos trabalhos de Skovgaard (SKOVGAARD et al., 1996; SKOVGAARD, 2001). Um outro teste de hipóteses em modelos lineares gaussianos com repetições foi apresentado, com o intuito de averiguar se a parte espacial do modelo é relevante, utilizando os desenvolvimentos dos ajustes para a estatística da razão de verossimilhanças com base nos trabalhos de Skovgaard. Estudos de simulação de Monte Carlo foram considerados para avaliar e comparar numericamente o desempenho dos testes propostos nesta tese, assim como o teste da razão de verossimilhanças tradicional e sua versão original corrigida por Bartlett (DE BASTIANI, 2016), em amostras finitas. Ademais, um exemplo utilizando dados reais foi ilustrado com o objetivo de utilizar todas as ferramentas apresentadas na tese.
URI : https://repositorio.ufpe.br/handle/123456789/37967
Aparece en las colecciones: Teses de Doutorado - Estatística

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Rodrigo Gonçalves dos Santos.pdf831,82 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons