Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/25303

Compartilhe esta página

Título: The spinorial formalism, with applications in physics
Autor(es): VENÂNCIO, Joás da Silva
Palavras-chave: Física matemática; Formalismo espinorial; Relatividade geral; Geometria diferencial
Data do documento: 23-Fev-2017
Editor: Universidade Federal de Pernambuco
Abstract: It is well-known that the rotation symmetries play a central role in the development of all physics. In this dissertation, the material is presented in a way which sets the scene for the introduction of spinors which are objects that provide the least-dimensional faithful representation for the group Spin(n), the group that is the universal coverage of the group SO(n), the group of rotations in n dimensions. With that goal in mind, much of this dissertation is devoted to studying the Clifford algebra, a special kind of algebra defined on vector spaces endowed with inner products. At the heart of the Clifford algebra lies the idea of a spinor. With these tools at our disposal, we studied the basic elements of differential geometry which enabled us to emphasise the more geometrical origin of spinors. In particular, we construct the spinor bundle which immediately lead to the notion of a spinor field which represents spin ½ particles, such as protons, electrons, and neutrons. A higher-dimensional generalization of the so-called monogenic multivector functions is also investigated. In particular, we solved the monogenic equations for spinor fields on conformally flat spaces in arbitrary dimension. Particularly, the massless Dirac field is a type of monogenic. Finally, the spinorial formalism is used to show that the Dirac equation minimally coupled to an electromagnetic field is separable in spaces that are the direct product of bidimensional spaces. In particular, we applied these results on the background of black holes whose horizons have topology R X S² X … X S².
Descrição: SILVA FILHO, Carlos Alberto Batista da, também é conhecido em citações bibliográficas por: BATISTA, Carlos
URI: https://repositorio.ufpe.br/handle/123456789/25303
Aparece nas coleções:Dissertações de Mestrado - Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DISSERTAÇÃO Joás da Silva Venâncio.pdf1,08 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons