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Abstract

It is well-known that the rotation symmetries play a central role in the development of
all physics. In this dissertation, the material is presented in a way which sets the scene for
the introduction of spinors which are objects that provide the least-dimensional faithful
representation for the group Spin(n), the group that is the universal coverage of the group
SO(n), the group of rotations in n dimensions. With that goal in mind, much of this
dissertation is devoted to studying the Clifford algebra, a special kind of algebra defined
on vector spaces endowed with inner products. At the heart of the Clifford algebra lies
the idea of a spinor. With these tools at our disposal, we studied the basic elements of dif-
ferential geometry which enabled us to emphasise the more geometrical origin of spinors.
In particular, we construct the spinor bundle which immediately lead to the notion of a
spinor field which represents spin 1/2 particles, such as protons, electrons, and neutrons.
A higher-dimensional generalization of the so-called monogenic multivector functions is
also investigated. In particular, we solved the monogenic equations for spinor fields on
conformally flat spaces in arbitrary dimension. Particularly, the massless Dirac field is
a type of monogenic. Finally, the spinorial formalism is used to show that the Dirac
equation minimally coupled to an electromagnetic field is separable in spaces that are
the direct product of bidimensional spaces. In particular, we applied these results on the
background of black holes whose horizons have topology R x S? x ... x S2.

Keywords: Clifford algebra. Spinors. Monogenic. Dirac Equation. Separability.



Resumo

E bem conhecido que as simetrias de rotacdo desempenham um papel central no de-
senvolvimento de toda a fisica. Nesta dissertacao, apresentamos o contetdo de forma a
estabelecer o cenério para a introducao dos chamados spinors, os quais sao objetos que
fornecem as representagoes fiéis de menor dimensao para o grupo Spin(n), o grupo que é
a cobertura universal do grupo SO(n), o grupo das rota¢oes em n dimensoes. Para este
fim, grande parte desta dissertacao é dedicada ao estudo da algebra de Clifford, um tipo
especial de algebra definida em espagos munidos de um produto interno. No coracao da
algebra de Clifford esta precisa definicao de um espinor. Com estas ferramentas a nossa
disposi¢ao, estudamos os elementos basicos de geometria diferéncial, o que nos permi-
tiu entender sobre a origem mais geométrica de espinores. Em particular, construimos
o fibrado espinorial, o qual conduziu imediatamente a no¢ao de um campo espinorial
que, por sua vez, representa com precigdo as particulas com spin 1/2 tais como: pro-
tons, elétrons e neutrons. Uma generalizagao para dimensoes mais altas do conceito de
multivetores monogénicos também ¢é investigada. Em particular, resolvemos a equagao
dos monogénicos para campos espinoriais em espacgos conformemente planos em dimen-
sao arbitraria. Particularmente, o campo de Dirac sem massa ¢ um tipo de monogénico.
Finalmente, o formalismo espinorial foi usado para mostrar que a equacao de Dirac com
massa minimamente acoplada ao campo eletromagnético é separavel em espagos que sao
produtos diretos de espagos bidimensionais. Em particular, aplicamos estes resultados a
buracos negros com horizontes topolégicos R x S% x ... x S2.

Palavras chaves: Algebra de Clifford. Espinores. Monogenicos. Equacdo de Dirac. Sepa-
rabilidade.
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1 Introduction

The so-called rotational symmetries play a fundamental role in the development of
physics. For instance, in classical mechanics and classical field theory the invariance
by rotations gives rise to conserved quantities that allow the analytical integration
of the equations of motion, whereas in quantum mechanics the irreducible repre-
sentations of the rotation group are used to label quantum states. Moreover, and
foremost, the Lorentz group can be seen as the group of rotations in a space with
a metric of Lorentzian signature. It is worth recalling that the invariance under
Lorentz transformation is the foundation of the standard particle model, the most
successful physical theory of the second half of the twentieth century. In this disser-
tation, the material is presented in a way which sets the scene for the introduction
of spinors which are objects that provide the least-dimensional faithful representa-
tions for the group Spin(n), the universal coverage of the group SO(n), the group
of rotations in n dimensions. To this end, we introduce a special kind of algebra
defined by vector spaces endowed with inner products: the Clifford algebra, also
known as geometric algebra. This Algebra was created by the English mathemati-
cian William Kingdon Clifford around 1880 building on the earlier work of Hamilton
on quaternions and Grassmann about exterior algebra. Although the definition of
a spinor lies at the heart of the Clifford algebra, the spinors were discovered in
1913 by Elie Cartan as objects related to linear representations of simple groups;
they provides a linear representation of the SO(n) group. Hence, spinors are of
fundamental importance in several branches of physics and mathematics and this
dissertation sheds light on the role played by spinors on physics and mathematics.
This dissertation splits in three chapters. In chapter 1 we introduce the Clifford
algebras intimately related to the orthogonal transformations, the rotations. These
algebras play a central role in the construction of the groups Pin(n) and Spin(n),
which are the universal covering groups of the orthogonal groups O(n) and SO(n)
respectively. Finally, at the end of chapter, we define the so-called spinors. In chap-
ter 2 we study the basic elements of differential geometry, such as the curvature
tensor, the Killing vectors and the fiber bundles which enabled us to emphasize on
more geometrical origin of these objects. In particular, we construct the spinor bun-
dle which immediately lead to the notion of a spinor field which represents spin 1/2
particles, such as protons, electrons, and neutrons. Finally, in chapter 3 the mono-
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CHAPTER 1. INTRODUCTION 10

genic functions which are multivector functions that are annihilated from the left
by the Dirac operator are reviewed and a higher-dimensional generalization these
multivetor functions is also investigated. In particular, we solved the monogenic
equations for spinor fields on conformally flat space in arbitrary dimension. More-
over, in chapter 3 it is present the main results of this dissertation. It is shown that
the Dirac Equation coupled to a gauge field can be decoupled in even-dimensional
manifolds that are the direct product of bidimensional spaces.
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2 Clifford Algebra and Spinors

A vector space V over a field F is a set of vectors with an operation of addition and
a rule of scalar multiplication, which assigns a vector to the product of a vector
with an element of the field. Elements in F will be called scalars. An algebra is a
vector space in which an associative multiplication between the vectors is defined.
In this chapter we introduce the Clifford algebra, a special kind of algebra defined on
vector spaces endowed with inner products. These algebras are intimately related
to the orthogonal transformations, namely the rotations. This special algebra plays
a central role in the construction of the groups Pin(V) and Spin(V), which are the
universal covering groups of the orthogonal groups O(V) and SO(V) respectively,
and also define the so-called spinors, which are elements of the a vector space on
which a fundamental representation of these groups act.

2.1  The Exterior Algebra

Let V be an n-dimensional vector space over a field F (R or C) and {e,} an arbitrary
basis for V, where a € {1,2,...,n}. We can expand any vector V' € V in this basis
as

V =V%e,, (2.1)
where we have started to employ the Einstein summation convention on which

repeated indices are summed. Associated to V is the dual space of V, denoted by
V* whose elements are linear functionals, also called co-vectors,

w: V = F
V —» w(V) |,
which obey the rule of linearity w(AV +0U) = Aw(V) +dw(U)V X, 0 € F.
If the addition of co-vectors and their multiplication by an element of the field is

trivially defined it is straightforward to prove that the dual of V is also a vector
space.

(2.2)

We can define the co-vectors e’ € V* (b= 1,2, ...,n) by their action on elements of
Y as:
“ " 1, ifa=0>
e(eb):(sb:{o 1fa7éb’ (23)
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hence the co-vectors {e®} provide a basis for V*. So, any co-vector w can be
expanded in this basis and written as:

w = w,e", (2.4)

where w, = w(e,). It follows that if w € V* is co-vector and V € V is a vector
then w(V') = w,V* € F. We also may regard elements of V as linear functions on
its dual V* by defining V (w) = w(V), since V** ~ V.

The tensor product refers to way of constructing a big vector space out of two or
more smaller vector spaces. For example, the tensor product of V' € V with w € V*,
denoted as V ® w, gives rise a new tensor t belonging to a vector space V ® V* on
which the n? elements of the form e, ® e’ provide a basis, so that the most general
element of this space can be written as t = 1% e, ® e°, where t%, = t(e?, e;) € F.
Likewise, an arbitrary tensor T has the following abstract representation:

T =T"" ,€y®. . Qe,0e"x. e, (2.5)

ai...a .
where 777, = T(e",...,e", ey,...,e,). The space of such tensors is de-

noted 1% (V).

The so-called p-vectors are totally skew-symmetric tensors of degree p and the
vector space generated by all them, namely A% % = Als1-al is denoted by AV,
where we identify the field F with Ag) and V with A;V. We must assume that all
the indices inside square brackets take different values to ensure that the p-vector
A € A,V given by

A= Alvwle @ @ €q, ; (2.6)

be non-null. Because the antisymmetry, it is a simple matter to prove that the
dimension of A,V is:

n o if 0<p<n
di — — J pl(n—p)! =~ > 9
lm(/\pV) (p) { 0 if p>n (2.7)

from which we can note that p-vectors of degree greater than n are zero. By taking
the direct sum of the spaces A,V, we obtain the 2"-dimensional multivector space,
that is

A = EPny. (2.8)
p=0

Elements in AV are called multivectors and we denote them by A. Because of de-
composition of AV in p-vector subspaces, we can define a set of projection operators,
denoted by ( ), whose action is:

(2.9)
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Notice that ( ) p 1sin fact a projector, since that it maps an arbitrary multivector
to its p-vector component each of the form (2.6). Thus, an arbitrary multivector A
can be decomposed into a sum of pure degree terms

A = (A)g+ A +...+(A)

n

= Aot A+ A+ A=) A, (2.10)
p=0

Multivectors containing terms of only one degree are called homogeneous.

An interesting feature of the space of multivectors is that it carries naturally a
product, denoted by A, which maps two tensors of degrees p and ¢ to a totally
antisymmetric tensor of degree (p + ¢), this is the so-called exterior product.
Therefore, if A is a p-vector and B is a g-vector, the exterior product A is a map

such that:
A AYXAY = AppgV 2.11)
A,B — A AB’ '
where A AN B = (—1)?" B A A is defined as:
|
AANB = MA[““%B”l---bq]ea1 ®.. e, ey, D...R e, (2.12)
p-gq
In n dimensions the set {1, e,,, €4 A€y, €0, A€oy A€oy, .. €0 N... A€, }, which

contains 2" elements furnish a basis for the space of multivectors A). Therefore, a
multivector A € AV may be written in this basis as

A= A + A%, +A%e,Ne,+ A e, NeyNe....+ A" e, N...Ne,, .
\ d N / N ~~ J/ N ~ >y N 7
O0—wvector 1—wector 2—wvector 3—vector nqurector

(2.13)
For instance, in V = R? there exist eight elements that generate this basis. These
are: one 0-vector which is denoted by 1, three 1-vectors e,, three 2-vectors e, A e,
each of the form e, N e, = e, ® e, — e, ® e, for each choice of a #b=1,2,3 and a
single 3-vector. In particular, note that this 3-vector is written as

e, NeyNe, = e, ReRe.+e e Ve, +e. e, e, +
— eR¥e,Re.—e.RVe, e, —e, Re. R ep.

Definition 1. The exterior algebra is an associative algebra formed from AV and
the exterior product on p-vectors.

2.2 The Clifford Algebra

The definitions of the exterior product, and of the multivectors do not depend
on any inner product. However, Clifford algebras are a generalization of exterior
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algebras, defined in the presence of an inner product. In what follows, we will
assume an inner product in our vector space. Let V' be a vector space endowed with
a non-degenerate inner product <, >, this means that for V€V, <V, U >= 0
for all U € V if and only if V' = 0. The pair (V, <, >) is called an orthogonal
space. Then the Clifford product, assumed to be associative and denoted by
juxtaposition, of a pair of vectors is defined to be such that its symmetric part
gives the inner product:

VU+UV =2<V,U> V V., UeV. (2.14)

Since the base used is completely arbitrary, it is convenient to adopt {e,} =
{é1,é,...,€,} as an orthonormal basis, since in this case we have < é,,€&, >
= 44, and therefore e,e, = —eye,, if a # b. Analogously, e,éyée. is totally skew-
symmetric if a # b # ¢ # a. Thus, any element of C4(V, <, >), the Clifford algebra
of V, can be written as a linear combination of p-vectors €,, ...¢&,, with 1 <p < n.
In other words, the vector space of the Clifford algebra associated to V is AV, then
it can be written as a direct sum:

cuy) = Py, (2.15)
p=0
hence the dimension dim(C¢(V, <, >)) = 2". This decomposition introduces a

multivector structure into the Clifford algebra C¢(V). The multivector structure is
unique, that is, an arbitrary element A € C¢()) can be uniquely decomposed into a
sum of p-vectors A = Ag+ A1 +...+ A, . In what follows, for simplicity, instead of
the previous notation it will be denoted by C¢(V) the Clifford algebra associated to
V. Tt follows that the set {1,&q,,€4,€qy, .- €q, - .. &4, with the identity element
1 € F, forms a basis for C/(V). Therefore, a general element A € C/(V) can be

written as:
~ ba ~ bcy o A ..an ) ~
A= _A +A%,+ A%e.e, + AV e epe.+ ...+ A"me, ... e, , (2.16)
—~ N’ N\, e’ %,—/ (& g vl
scalar vector 2—wvector 3—wvector n—uvector

Now, in the same way that (2.12) was defined in terms of the tensorial product, it
is natural to define the exterior product in terms of the Clifford product. So, given
a permutation o : {1,2,...,n} — {o(1),0(2),...,0(2)} we define the exterior
product as the totally antisymmetric part of the Clifford product:

1
V1 AN V2 VANRAN Vp = H Z E(O')Vo(l)vo(z) . Vg(p) s (2.17)

" o€Sy

where S, is the symmetric group whose elements are all the permutations and €(o)
is +1 on even permutations, —1 otherwise. So, for example, given two vectors V'
and U we find that:

1
VAU = J(VU-UV). (2.18)
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The equations (2.14) and (2.18) combine to give the Clifford product of two vectors:
VU =<V, U> +V AU, (2.19)

also called the geometric product.

The decomposition of the Clifford product of two vectors into a scalar term and a
2-vector term has a natural extension to general multivectors. This may be done
through the use of the projection operator in terms of which we can conveniently
express the inner and exterior products. So, given A, € A,V and B, € A,V the
exterior product is written as:

A, NB, = <Aqu>

p+q’

and the inner product as:

<A, B,>= (A,B,) (2.20)

lp—ql

Another important operation is the left contraction, denoted by , defined as follows:

<A, B,> if p<gq

A,.B, = { ) £ poq (2.21)

The products defined above can be extended by bilinearity for the whole algebra.
Using the equations (2.18) and (2.17) the Clifford product of a vector and an arbi-
trary multivetor is given by:

VA=VIA+VAA VY VeV AcClV). (2.22)

Moreover, one can prove that the contration by a vector satisfies Leibniz’s rule, this
means that such a contraction is a derivation of the Clifford algebra C¢(V). Indeed,
a result that is extremely useful in practice is the following;:

VIVIAVaA. LAV, = (VAV )V AVIAVIA LAV, + (2.23)
V_IVQ)Vl/\Vg/\V4/\.../\Vp—|—
+ (VAV)VIAVLAVAA LAV + o

p
= D ()T <V V> VAL
=1

AViA...ANV,, (2.24)

~—~

where the check on V; denotes that the term should be withdrawn from the series.
For instance, when p = 2 we find that:

V(UANX) =<V U>X-<V,X>U.
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Using the above result, by means of the equation (2.20), that in its turn ensures
VX = 0 for any scalar A, the equation (2.22) lead us at the following formula for
the Clifford product of three vectors:

VUX =<V,U>X+<UX>V-<V,X>U+VAUAX. (2.25)

Note that in (2.22), as expected, multiplication by a vector raises and lowers the
degree of a multivector by 1. But, in general, if A, is a p-vector and B, is a g-vector

A,B, # A,.B, + A,AB,,

where A, B, € \,_,(V) and A, A B, € N\,+,(V). Using (2.22) it is not so hard to
prove that the products of two homogeneous multivector decompose as:
A,B, = (Aqu>\p7q| + (4,By)

+...+(A,B,) (2.26)

[p—ql+2 ptq -

Definition 2. The Clifford algebra associated to V, denoted by CL(V), consists of
the vector space NV together with the Clifford product.

2.2.1  Involutions

It is well-known that the conjugate of the conjugate of a complex number is the
complex number itself. An operation, which, when applied to itself, returns the
original object is called involution. In particular, the complex conjugation is a
simple example of an involution. The Clifford algebra has three involutions similar
to complex conjugation. The direct sum decomposition (2.15) gives C/(V) the
structure of a Z-graded algebra. This induces in C{(V) the first involution, denoted
by ~, called the degree involution which is a linear map whose the action is
defined on homogeneous multivectors by:

~

ANV — \N%
g 2.2
A, — A, =(-1)PA,. (2.27)

The degree involution is an automorphism!® such that:

AB =AB YV A BeciV). (2.28)

L An automorphism is an an invertible mapping from a set in itself. In particular, an automorphism s
of V is said to be orthogonal with respect to <, > if s leaves <, > invariant, i.e, < sV, sV >=< V.,V >
VYV eV, see [14].
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—
—

Since the map ~ applied to itself is identity map, A, = A, , the eigenvalues
of 7 are £1, then the degree involution induces a Zs-grading on C¢(V). Under
degree involution the multivectors corresponding to eigenvalue +1 will be called even
and the space of even multivectors will be denoted C/T(V), while the multivectors
corresponding to eigenvalue —1 will be called odd, and belong to the subspace
C¢= (V). Thus, given A € CL(V) we have

A= Ag— A+ Ay — Az + ... (2.29)

In particular, we can write the inner and exterior products in terms of the degree
involution. Indeed, we can prove that for an arbitrary multivector A € C/(V) the
following relations are satisfied:

v$4230a4—ﬁv) (2.30)

VAA= %(VA + AV), (2.31)

where V' € V. Moreover, one can prove that the contration by a vector V€ V
obeys the following version of of the Leibniz’s rule

VI(AB) =V_AB+AV_.B V¥V ABeAV. (2.32)

The second involution in Clifford algebra is the called reversion, denoted by
which reverses the order of vectors in any product. For instance, for a p-vector the
reverse can be formed by a series of swaps of anticommuting vectors, each resulting
in a minus sign. The first vector has to swap past p — 1 vectors, the second past
p — 2, and so on. Using this it is easy matter to see that

VIAVIA . AV, = VoAV, A AVAV, = (—1)PCDRY AVLALL AV,

(2.33)
It follows that the reversion, on a homogeneous vector, is a linear mapping such
that:
- AV — AV
- 2.34
A, — A, = (_1)p(p71)/2Ap ( )
From the above the degree involution is an anti-automorphism, that is,
AB = BA ¥V A, Becly), (2.35)

thus, we see that the reverse of A € C/(V) is:

A= Ag+ A —Ay—As+ ... . (2.36)
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The composition of the two previous involutions is called the Clifford conjuga-

J— -~ ~

tion, denoted by A = (A) = (A), which is expressed by

| 2} - sz  (—1plerizg (2.37)
and it is also an anti-automorphism,

AB =BA YV A BecCiV). (2.38)
Thus, o

A=A - A — A, - Az + ... (2.39)

The Clifford conjugation can be used to determine the inverse. Indeed, if A € C{(V),

then its inverse is given by

A
AA

In particular, using the Clifford conjugation of a vector U € V which is given by

the following relation

Al (2.40)

U
— ﬁ ,
we can show that the associativity property of the Clifford product ensures that it
is now possible to divide by vectors. In fact, defining B=V U VYV U €V we
have that

U (2.41)

BU = (VU)U =V (UU) =VU?,

Now, from (2.41) we can recover V' and we eventually arrive at the following ex-
pression:

V=BU".
This ability to divide by vectors gives the Clifford algebra considerable power.

The reversion can be used to extend the concept of norm. Now, we are going to
define the norm of an arbitrary multivector A € C4(V) as follows:

A7 = <JA>O - <Afl>0 . (2.42)
For example, if V = R? the most general element A € C{(R?) is given by
A = _a_taie; +ae;+ azez+aneies +azere; + apeses+
scalar vezgor Z—Jerctor
+ a123é1é2é3 s (243)
3—vect

then, using (2.43) and (2.14) it is straightforward to prove that:

A" = (a)* + (a1)” + (a2)* + (as)* + (a12)” + (a13)” + (a23)” + (a123)” . (2.44)
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Since we can split a multivector into those components that, under degree involu-
tion, are even and those that are odd, every A € C/(V) can be written as:

A=A+ A, (2.45)

where .A+ = A0+A2+A4+... and A_ = A1+A3+A5+.... It follows that
we can write C{(V) = CLT (V) & Cl~ (V) where

CrEV) ={AecCl(V)|A =+A}). (2.46)

This Zs-grading of the Clifford algebra ensures that elements of even degree form
a subalgebra, the called even subalgebra. Indeed, note that, AB € C{(V) if A €
Cl*(V) and B € C(*(V) while AB € C¢~(V) if A € Cl*(V) and B € CF(V) or
A € ClF(V) and B € Cl*(V).

The center Z of an algebra A consists of all those elements z of A such that za = az
for all @ in A. We can easily prove that the center of C/(V), denoted by Z(C(V)),
depends on the dimension of space as follows:

AoV, if n is even

2(CUv)) = { NV @ NV, if nis odd (2.47)

Before proceeding let us make as example.

Example 1: The C/(R?) algebra.

Let us work out in the vector space V = R?, whose Clifford algebra C¢(R?) is gener-
ated by {1, él, éQ, ég, élég, élég, égég, é1é2é3}, which contains 23 =38 elements,

where 1€, = €6y, = e3e3 = 1 and e,e, = —epe, if a # b. A priori just for
the sake of simplicity in notation, let us denote the product é,e;e3 = I and in
the next section we discuss this important symbol. The reversion this symbol is
I = —1I and their square is equal to
I2 - é1é2é3é1é2é3 = —élégégélégég - égéléQélégég == —é3é2é1é1é2é3
= —e3ey6s63 = —ezey
= I’ = 1. (2.48)

The symbol I commutes with all vectors in three dimensions, using this one can
prove that A = AI V A € C{(R3) given by (2.43). C{T(R?), the the even
subalgebra of C/(R?), is generated by {1, é€,, €1é3, €sé3} which contains 323 = 4
elements in terms of which a multivector A, € C/T(R?) can be written as:

AL = _a _+apeéiéy+aze e;+ aneses .
N e e N

scalar 2—wvector 2—wvector 2—wvector
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Defining i = é9é3, j = €163, k = 4j = 165, we find that i* = j* = k* = —1,
i,e., is the quaternion algebra H. Thus, the even subalgebra of C/(R?) is isomorphic
to the quaternion algebra, as can be seen by the following correspondences:

H (R

1 1

. o, (2.49)
J eres

k é1es

The basis vectors €, é; and e3 can also be represented by matrices 07,09 and o3

given by
(o0} O = {10
T=l1 0|27 0 o0 |7 T o -1

the so-called Pauli matrices, since these matrices in accordance with this represen-
tation satisfy the same algebra, namely o101 = 090y = 0303 = 1,0,0, = —00,
if @ # b. The quaternion algebra admits the following matrix representation

A

1~1; 2=ee3~i01; J=ee3~ioy; k=1 = e ey ~i03,

where T is the 2 x 2 identity matrix. Equivalently, the multivetor A € C/(R?) can
be represented as:

1 0 0 1 0 —i
[A] = a[O 1}%—&1{1 0]—!—&2{2. O}—l—&g{ 1}%—
0 0 1 0 ¢ 0
+ alQ{é _i]+a13{_1 O}—i_a%[i O]+a123[é z}
= [A] = {Zl 23], (2.50)
zZ9 24
Where Z1 = (a+a3)+i(a12+a123), 29 = (a1+a13)—|—i(a2—|—a23), zZ3 = (CLl —

a13) —i(ag — ass), and z4 = (a — az) — i(a12 — a123) . Note also that A, € CLT(R3)
is represented by

_|w —wy*
where w; = a+iaj2, wy = a3+ iass and w} is the complex conjugate of w; (i =
1,2). By equation (2.47), the center of C/(R?) is the subalgebra of scalars and 3-
vectors, namely AoV @ A3V = {a + aj23}. Note that 010903 = il and the symbol
I can therefore be viewed as the unit imaginary? ¢ and the combination of a scalar

2The symbol i is an element which commutes with all others, which is not necessarily a property of
I. But, in this case it commutes with all elements and squares to —1. It is therefore a further candidate
for a unit imaginary.
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and a pseudoscalar as a complex number. This implies the center of C/(R3) is
isomorphic to the complex field C, that is,

Z(CUR?)) = NV @ A3V ~C. (2.52)

The correspondences €; ~ o1, €5 ~ 0, and €3 ~ o3 establish the isomorphism
Cl(R3) ~ M(2,C)? with the following correspondences of the basis elements:

M(2,C) CU(R3)
I 1
o (2.53)
01,02,03 €1,€9,€3
0109,0103,0903 €1€3,€]1€3, €2€3
Al I

According to with what was seen above, the Clifford algebra C/(R?®) contains two
subalgebras: the center Z(C/(R3)) which is isomorphic to the complex field C and
C/*(R?) isomorphic to the quaternion algebra H. Now, since the elements of C
and H commute, zq = qz for z € C, g € H and that, as real algebra, C/(R?) is
generated by C and H, noting that (dimC)(dimH) = dimC/(R?), we are left with
the following conclude:

C/R?) ~ C®H. (2.54)

O

2.2.2  Pseudoscalar, Duality Transformation and Hodge Dual

The object I mentioned in the previous example is an important element of C/(V).
This is the highest degree element in a given algebra, the so-called pseudoscalar?.
For a given vector space the highest degree element exists and is unique up to a
multiplicative scalar. The exterior product of n vectors is therefore a multiple of the
unique pseudoscalar for C¢(V). Given an orthonormal basis {e,} (a = 1,2,...,n),
we shall define the pseudoscalar to be I = ejéy...e,. This convention is well-
defined if we do not change the orientation of the basis. Let us consider that the
space V = RPY has dimension n = p + ¢ with p vectors whose square is equal to
1 and ¢ vectors whose square is equal to —1 and s = |p — ¢| the signature of the
inner product. Noting that the p + 1 vector has square —1, the norm of I depends

3 M(2,C) denotes the algebra of 2 x 2 matrices over C
4Directed volume element and volume form are alternative names for the pseudoscalar.
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on the dimension of space and the signature in the following form:

2 ¥ A A A~ A~ A A A A A A A~ ~
I~ = <II>0 = (€4€q—1...€,11€,...€2€1€1€83...€,€ 1 ..., 1€,),
2222 2242 52 42
= ejée...ee . ...e e = (—1)
— [P = (=1)20. (2.55)
In particular |[I|> = 1 if the signature is Euclidean, s = n, and |I|*> = -1
if Lorentzian signature, s = (n — 2) . When a multivector A is homogeneuous

|A]?> = AA. So, immediately we see that the sign of I? is specified by:

I? = (=1)2"0 DT = (—1)2lre=DHn=s)] (2.56)

Another property of the pseudoscalar is that it defines an orientation. Apart from a
sign, the choice of I is independent of the choice of orthonormal basis. Choosing a
sign amounts to choosing an orientation for V which is swapped by exchange of any
pair of vectors. Since the dimension of A, is 1, given any vectors V1, Vo, ...,V it
follows that

ViNnVoAN...AV, = \1, (2.57)

where® A\, € F. Given the independent vectors Vi, Vs, ..., and V,, their exterior
product will either have the same sign as I, or the opposite sign. Those with
the same sign are said to have a positive orientation, otherwise have a negative
orientation. In particular, the pseudoscalar I = é;é,e3 of C/(R?) is always chosen
to be positive orientation.

An important property is that the pseudoscalar commutes with all vectors in odd
dimension while in even dimension it anticomutes with all vectors. Using this, it is
an immediate consequence that in three dimensions Ie; = ésé3. Then, I(éjAey) =
Iéee; = esezey = —e3 = — e X ey where X denote the vector cross product. It
follows that for any two vectors V,U € R? the vector cross product is defined in
Clifford algebra as:

VxU =-I(VAU). (2.58)

Note that, in this case, the result of the product of I € A3V with the 2-vector
A2V is a vector A1V, but this results is not valid in any dimension. This product
only exists in three dimensions. In general we have the product of the pseudoscalar
I € A,V with a homogeneous multivector A, € A,V is another homogeneous
multivector A, € A,_,V. This operation is called a duality transformation. In
this language, the equation (2.58) means that the 2-vector was mapped to a vector
by a duality transformation. Note that this is valid just on n = 3 and by this it is
commom refer to the 2-vector VAU as a pseudovector in three dimensions.

5One can prove that |\,| is the analogous of the volume of a parallelepiped which is generated by the
vectors V1, Vo, ..., V,_1 and V,,, see [16, 1, 4].
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All properties relative to commutation and anticomutation of I are contained in
the following equation:
IA, = (-1)P""VAT. (2.59)

The pseudoscalar can be used to define an important operation, denoted by x,
called Hodge dual. This is a linear map from the space of p-vectors to the space
of (n — p)-vectors:
* 0 AV = An—pV
A, — *A,=A,T.
Note that the Hodge map depends of the choice of orientation. By linearity one
can extend this definition to inhomogeneuos multivectors of the C£(V) [1]

*A = AI, (2.61)

and since the dimension dim(A,V) = (Z) = (n’jp) = dim(A,—,V) we have an
isomorphism between A,V and A,_,V. In particular, in three dimensions, using

(2.61) one finds by anticommutation that:

(2.60)

*x1 =1 = élégég ; *él = égég ) *éz = égél , *x€3 = €1€y9 |
*(élég) = ég ; *(é1é3) = ég ; *(égé:;) = él ; I = 1. (262)
By equation (2.56) it follows the (2.61) can be written as:
*A = (=1)2n=DF =9l AT (2.63)

with this form the above equation makes clear that the Hodge dual map depends
on the signature of the inner product and of the choice of orientation. In particular,
the dual of the dual of a p-vector A € A,V is proportional to identity

ok A = (—1)lPr=p)itzn=s)] 4 (2.64)

Example 2: Maxwell’s equations .

The Clifford algebra treatment is useful in several branches of the physics, since
it provides a more compact formulation, for example, the Eletromagnetism. The
four Maxwell’s equations can be united into a single equation. Let us define the
multivector operator D by

9,
D = 5 + V, (2.65)

where V = élaixl + éga%z + éga%g is the usual gradient. The electromagnetic field
strength is represented by the multivetor F and the two scalar densities charge p
and vectorial charge current J are combined into a single multivector 7 given by

F-E+IB : J=p—J, (2.66)
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where the vector fields E and B are the eletric field and the magnetic induction,
respectively. Since the pseudoscalar commutes with all vectors in three dimensios,
using the equations (2.19) and (2.58), the Clifford action of D on F is:

0
DF = (5 + V)(E+IB)
_ 9B UB)
ot ot
= %—?+(<V,E> +VAE)—|—I[%—?+(<V,B> +V/\B)}

+ VE + V(IB)

= <V,E >+ 8—E—V><B + I 8—B+V><E +
—— ot ot

scalar - -
vector 2—wvector

+ I<V,B>. (2.67)
N————

3—wvector

From above identity, the Maxwell equations can be written as the following compact
formula

DF = J. (2.68)
Indeed, by comparing the both sides we immediately find that:

<V,E> = p,

a—E—VxB = J,
ot
0B
- E =
BT + V x 0,
<V,B> = 0. (2.69)

2.2.3  Periodicity

Now it is useful to introduce the periodicity of the Clifford algebras from which we
can relate any Clifford algebra to a number of low-dimensional Clifford algebras.
The structure of a real Clifford algebra is determined by the dimension of the
vector space and the signature of the metric. Then, we take the field F to be the
real numbers R and let us denote the Clifford algebra of the vector space RP? by
Clyq, i€, Cl,, = CL(RP?). The Clifford algebra Cly is generated by {1, 2} where
ég = —1, it is therefore isomorphic to the algebra of complex numbers

68071 ~ (C, (270)
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but the Clifford algebra Cf; with basis {1,&;} where now & = 1 is not related
to any known algebra. We shall note that the elements f; = %(1 +é;1) and f =

%(1 — él) form a new basis {f17 fg}, with f12 = f17f22 = f2 and flfg = f2f1 = 0, it
follows that f; and f, each span mutually orthogonal one-dimensional subalgebras,
each of which is isomorphic to the field R. Then,

By multiplication of the elements of {1,e;} and {1, &5} we can construct a basis for
Clifford algebra C¢; ; for which a possibility is {1, &, €, é1€2}. Then, the algebra
Cly, can be naturally associated to algebra Cly, which, in its turn, is isomorphic
to M(2,R) [2]. So,

Cl; ~ M(2,R). (2.72)

In particular, one can easily prove that [12, 1, 2]

66072 ~ H.

Actually, these are some general features of associative algebras [1, 14].

The following theorem, called Periodicity theorem and demonstrated in [1], establish
important isomorphisms between different Clifford algebras.

Theorem 1. Let Cl,, be the Clifford algebra for the vector space RP4:

Clytrgr1 = Clii®Cl,
Clyra, = Cloo®Cly,
Clyprs =~ Clos®Cly, .
(2.73)

where p > 0 or g > 0.

This theorem immediately implies the following corollary:

Corollary 1. Any Clifford algebra Cl,, can be determined from the algebras Cl 1,
CELO, C£171, CE()’Q and 66270 .

Clifford algebras admit a periodicity of dimension 8 over the real numbers.
Indeed, using the latter theorem, we obtain the following relations

C£074 ~ 660,2 X CEQ’O s 664,0 ~ C£2’0 X C£072 s Cgo’g ~ 660,4 & 660,4 .
From above identity, we are left with the following final relation
Cgp,q+8 >~ 68074 (059 660,4 X C@M ~ 660’8 (%9 Cgp,q . (274)

thus achieving the periodicity that we were looking for.
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2.3 The Spin Groups

In this section we establish the connection between the Clifford algebra and rota-
tions, which is the most relevant application of the Clifford algebra. Indeed, this
algebra provides a very clear and compact method for performing rotations, which
is considerably more powerful than working with matrices. Let n € V be a non-null
vector, n? =< n,n ># 0. This elements are invertible in C/(}),

nl=_" (2.75)
<n,n>

The set of all the non-null vectors generates a group under Clifford product, this is
called Clifford group

I'={n,...nyn, € CLV)|n; is non-null } . (2.76)
Note that n~! = £n when m is a normalized vector. Any vector V € V can be
decomposed as:
V = Vnn!

= (<V,n>+VAn)n'!
<V.n>n'+ (VAn)n!
= V=V +V, (2.77)

where V|| is the component of V' along of n and V| is the component of V'
orthogonal to n given by

Vi=<V,n>n"' |, V, = (VAnn'. (2.78)

One can easily verify that the above relation has the properties that we desire. In
order to see this, note that the expression for V| is, in fact, the projection of V'
onto vector n, since < V', n > is a constant and the remaining term must be the
perpendicular component. Moreover, from the following inner product

<n,V,y>=nVAnn ') =(VAn") =0,
we check that V| is perpendicular to n. We can rewrite (2.77) as:
V -2V = V, -V,
V-2<Vn>n' = (VAnn'-<V,n>n" (2.79)

If the linear operator SV — V is the reflection in the plane orthogonal to n, we
have that:

~

SVi+Vy) = V.-V,
= V-2<V,n>n"', (2.80)
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and by means of (2.14) and (2.18) we easily obtain that:

S(V) = (VAn—<V,n>)n!
B (VU - UV VU + UV) -
2 2
— S(V) = —nVn! (2.81)

which is valid on spaces of any dimension and S is called reflection operator. It
follows that for V' € V the operation S(V') € V and it is the reflection of the vector
V with respect to the the plane orthogonal to n. Note that for a normalized vector
n? = +1 the action of S with itself is S(S(V)) = SoS(V) = (=1)S(nVn!) =
nnVnn = V., ie., So8 = I We should check that the expression for the
reflection has the desired property of leaving the inner product invariant. A simple
proof is given by:

<S(V),8U)> = S(V)S(U)+SU)S(V) n(VU+UV)n!
, : :

= <V,U>. (2.82)

The reflection operator is therefore a linear transformation that preserves the inner
product. Moreover, it can be proved that this transformation has determinant
—1. In fact, defining the action of S on an arbitrary homogeneous multivector by
S(ViV,...V,) = S(V1)8(Vy)...S8(V,), using the following relation between
the determinant and the pseudoscalar S (I) = det(S’)I , see [4], and the equation
(2.59) we find that:

det(S)I = SI)=38(é18;...8,) =8(e1)S(es)...5(e,)
= (—)"nIn~' =det(S)I = ()" (-1 "I = —I
— det(S) = —1. (2.83)

We say thus that a linear transformation which leaves the inner product invariant
and it has determinant —1 is called reflection.

Now, suppose that the vector U is the reflection of the vector V, Sl(V) = U, with
respect to plane orthogonal to normalized vector n; and the vector X obtained by
reflection of U, So(U) = X, with respect to plane orthogonal to ny. Thus,

X = (508)(V) = —nyUn;' = nynVayingt.
Defining R = mon; we can now write the result of the rotation as:
R(V) = RVR™, (2.84)

where R = 32 o) 51 is a linear operator R :V = V called rotation operator which
represent the rotations. We shall note that in this derivation the dimension of the
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vector space was never specified, so that it must work in all spaces, whatever their
dimension. Analogously equations (2.82) and (2.83) it is simple matter to prove
that the rotation operator preserves the inner product and it has determinant 1.
Although this demonstration is completely analogous to the equation (2.82), let us
do it again using the projection operator. Suppose that 7%(V) = RVR ' and
R(U) = RUR™!, then

<R(V),R(U) >= (RVR'RUR™") = (VU), =< V,U > .

Now, let Ry be a rotation operator such that 7%1(V) = RIVR;' = U and Ry
another rotation operator such that Ro(U) = RyUR;' = X. It follows that:

X = Ro(U) = Ro(Ri(V)) = (Re0oR2)(V) = R(V)
- R,UR,'= R,RVR;'R,'=RVR', (2.85)

where R = RooRi and R = R.R;. In general, for any inhomogeneous multivec-
tor A € C4(V) we have that:

R(A) = RAR™'. (2.86)

We say thus that a linear transformation which leave the inner product invariant
and it has determinant 1 is called rotation. In particular, by what was seen above,
a rotation in the plane generated by two unit vectors mo and m, is achieved by
successive reflections with respect to the planes perpendicular ny, and ny. So, we
can construct all rotations and reflections by application of an even number or an
odd number of successive reflection operators. Moreover, it can be proved that in
n dimensions any rotation can be decomposed as a product of at most n reflections
[3].

The orthogonal group, denoted by O(V), is the group of linear transformations
on (V, <, >) that preserve the inner product and the special orthogonal group,
denoted by SO(V), is the subgroup of O(V) restrict to determinant 1. The theorem
below summarizes the results obtained previously

Theorem 2. Any orthogonal transformation T'€ O(V) can be written as a compo-
sition of reflections with respect to the hyperplanes orthogonal to non-null vectors.
The set of all normalized vectors form a group under Clifford product. Denoted by
Pin(V), this is called pin group

Pin(V) = {R€CIV)|R = n,...nyn;,n; €V andn? = +1}. (2.87)
Due to the Z,-grading, the elements of C£(V) split into those of even degree and

those of odd degree. The even degree elements of the Pin group form a subgroup,
denoted by SPin(V), called the spin group

SPin(V) = {R € Pin(V)|[R = ny,...nony,n; €V and n} = +1}. (2.88)
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Note that SPin(V) = Pin(V)NCLT(V). These groups are naturally defined on the
Clifford algebra and can be used to implement reflections and rotations in arbitrary
vectors V' € V. This can be seen very clear and compact below [12].

Rotation + Reflection : (—1)’)RVR™', R c Pin(V)
Pure Rotation : RVR™' Rc SPin(V) (2.89)

where p is the degree of R. Since the action of the elements of I" on vectors is
quadratic, R and —R generate the same transformation. So there is a two-to-one
map between elements of Pin()) and rotations and reflections. Mathematically,
Pin(V) and SPin(V) providing a double cover representation of the orthogonal
groups O(V) and SO(V), respectively. Then we establish the following relations

_ Pin(V)

. _ SPin(V)
Zy ’ B

o) 7

(2.90)

SOV)

Note that the group Spin()V) is a subgroup of Pin(V) formed by elements of even
degree. One can also define Pin(V) as being the group of the elements R € I' such
that RR = + 1, and SPin(V) as being a subgroup of Pin(V) formed by elements
R € I'" such that RR = +1. It follows that the group Pin(V) has a subgroup,
denoted by Pin(V), whose elements are R € I" such RR = 1. Analogously, the
group SPin(V) has an even subgroup, denoted by Spin,(V), whose elements are
ReT* such RR = 1. Other subgroups can be obtained by restriction to certain
subgroups of Pin(V) and Spin(V). In fact, the group Spin (V) has as its elements
R € I' such that its norm defined by |§| = <§R>O is equal to 1 [8, 2|. By equation
(2.89), an element of the group Spin(V) act in the vector space V and yields an
element on the same vector space. This implies that the vector space V furnish a

representation for the spin groups. But since the action is quadratic, it follows it is
not faithful [12, 14, 1].

2.4  Spinors

In the previous section it was established that the vector space V provides a repre-
sentation for the spins groups, since the action of elements of the spins groups in
elements of V results in element of V. However, since elements of the spin group
which differ by a sign produce the same orthogonal transformation, it follows that
this representation is not faithful. In this section we introduce the so-called spinors,
that generate a vector space that provides a faithful representation for the spin
group. For simplicity, we will only consider the Clifford algebra of an orthogonal
space (V, <, >) whose dimension is even, n = 2r with r € N.
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2.4.1  Minimal Left Ideal

There is an important class of subspaces which are called left ideals. A left ideal
L C Cl(V) of an algebra C/(V) is a subalgebra of C£()) such that:

Ape L ¥V ¢e L, Aec ClUV), (2.91)

i.e, L is invariant under left multiplication of the whole algebra. Since C/(V) has
a Zs-grading, we can use its even subalgebra C/* (V) as the representation space
of C¢(V) and define p : CL(V) +— End(C¢T(V)). By means of (2.27) we can split
any multivector A € C{(V) as A = A, + A_, where 4, = 1(A=+ A) € crEW).
We should establish in what conditions p = py + p_ such that p(A) = pi(Ay) +
p—(A_) will be a representation of C¢(V). Note that A, B € C{T (V) if B € C{H(V),
this implies that py(A4)(B) = AB VB € C{H(V), while A_B € Cl—(V) if
B € Ct*(V), this requires that p_(A_)(B) # A_B when B € C{*(V). If, however,
we can take an odd element C € C/~ (V) and define

p_(A_)(B) = A_BC € VB € Clt (V) (2.92)

such that C? = 1, then p = p, + p_ is a representation in the space C£* (V). One
might then wonder, how can we know if such representation is reducible? Suppose
that there exists an element C; € C¢T (V) such that

=1 ,; CC =CC. (2.93)

Thus we can write C£T (V) = ClT(V) @ _ClT(V), where
LCOH (V) = ceﬂm%u 10 (2.94)

so that, for By € LCl(V) we have BLC; = +B.. Each of these spaces LC/1 (V)
is invariant under the action of p as we can see by the equation (2.93) and it is also
a subalgebra of C¢T (V). If another element C, € C£*(V) such that C3 = 1,CC; =
C1Cy and CoC = CCy can be found, then the subspaces LC¢1 (V) carry no irreducible
representation. So, we define another four subspaces

LCOHY) = icﬁoz)%u L e+ G, (2.95)

each of which invariant under the action of p. We can proceed with this construction
in an analogous fashion if there are other elements C; commuting with the previous
ones.

The regular representation p : C{(V) — End(C{(V)) given by p(A)B = AB pre-
serves certain vector subspaces. The minimal left ideals are just the invariant sub-
spaces S C C{(V) for which the map p : C£(V) — End(S) defined by p(A)y = Ay
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is an irreducible representation. Note that the minimal left ideal contains no left
ideals apart from itself and zero, it provides the least-dimensional faithful represen-
tation of C/()V), the so-called spinorial representation of the Clifford algebra. The
minimal left ideal S is called, as a vector space, the spinor space, and its elements,
denoted by 1, are called spinors. Note also that these minimal left ideals are al-
gebras, the subalgebras of C¢(V). Thus, under Clifford product, the space carrying
a such representation of C/(V) will be called spinorial algebra and the choice of a
different minimal left ideal gives other equivalent representations [1, 11, 14]. We
will therefore establish that the spinor representation of the Clifford algebra induces
a representation of any subset by restricting to left multiplication on the ideal by
elements of that set. In particular it induces a representation of the Clifford group
[1]. When the dimension of V is n = 2r one can prove that the dimension of the
spinor space is 2". When C/(V) is thought of as a matrix algebra, an example of
a minimal left ideal is the subalgebra of matrices with all columns but the first
vanishing [2, 11, 30]. In particular, C¢(V), Pin(V), SPin(V),O(V) and SO(V) can
be faithfully represented by 2" x 2" matrices. In this case spinors are represented
by the column vectors on which these matrices act.

By what was seen above, the minimal left ideals are of great relevance in the study
of the spinors. These can be obtained by action of the whole algebra on the so-
called primitive idempotent of C¢(V), this makes clear the fundamental importance
of the primitive idempotents. An element £ of an any algebra A is said to be an
idempotent if €2 = €& and € # 0. Particularly, such an idempotent generates
a subalgebra £AE. Now, if A is a division algebra, then the single idempotent
is the identity, since if & # 0, then every & has an inverse £ ', it implies that
€ = ¢ ¢ = ¢'¢ = 14 . € = 14 We can split the element £ into a
sum of other two elements &, and &,, & = &, + &,. Hence, £ will be idempotent if
the following relations are satisfied: &2 = £,,£3 = &, and £€,€, = —£,&,. If such
elements satisfying the conditions &£,£, = 0 and & = &, +&, cannot be found, we call
& a primitive idempotent. Therefore, a idempotent £ is primitive if and only if it is
the single idempotent on EAE [2, 14, 17]. Let & be a generic primitive idempotent
in C4(V), then any minimal left ideal S. has the form:

S = ClV)E = {AE|A € CUV)}. (2.96)

When the dimension of V is even the square of I depends only on the signature of
the inner product. So, equation (2.56) is reduced to:

1

P = (—ieDie] oy

— I’=(-1)2, n=2r. (2.97)

Thus, we can express its square as I? = €2, with e = 1 or ¢ = 4. Since I” = +1,
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the action of I on S gives a decomposition [12]
S=8t+85 ; STF={ypeS|Iyp = +ey}, (2.98)

where S* are subspaces of dimension 2"~! whose elements are called semi-spinors.
The semi-spinors are also called Weyl spinors of positive and negative chirality.
These subspaces are invariant under the action of the even subalgebra. Indeed, by
means of the equation (2.59) we have that IA, = A, I for A, € C{T(V) and n
even. Then, due to (2.98) we have:

ATy = Aty
= TA™Y = +cAtyp ¥V A" € Crt(V). (2.99)

This means that the spinorial representation of C£* (V) on S is reducible while the
spinorial representation of C£*(V) on S* is irreducible [12, 1]. In paricular, the
spinorial representation of C¢(V) splits in two blocks of dimension 27! x 21,
It happens that, by equation (2.88), elements of Spin(V) are of degree even. So,
by restriction, the spinorial representation of C/* (V) induce a representation of
dimension 2"~ for Spin(V) [14].

Though we have restricted ourselves to even-dimensional spaces, let us clarify these
concepts with an example in three dimensions following the line of the previous
examples. We will assume that the dimension of S is 2[%/2 where | ] denotes the
integer part of the number inside it.

Example 3: Spinors in the minimal left ideal of C/(R?).

Let {&;,és, €5} be an orthonormal basis for vector space ¥V = R® where é,&; =
égég = égég = 1,éaéb = —ébéa ifa 7é b. The set {1, él, ég, ég, élég, é1é3, égég, I}
span the Clifford algebra C¢(R?) whose the most general element is:

A = a + aié; + azés + azés + az€1€5 + a13€183 + azeses + aiasl,

where I is the pseudoscalar. In three dimensions, we must find a spinor space S of
dimension dim(S) = 2B/2 = 2. Now, consider the element

& = %(1 + €3).

Note that &, £,> = (1 + &3)3(1 + &) = &, is a primitive idempotent. It follows
that the set of the form

S = CURE, = {A€, | A € CURY)},
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is a minimal left ideal of C/(R?). Using the Clifford algebra, one finds after some
manipulations that

A¢ = [(a+ az) + I(aiz + ai23)l€; + [(a1 + aiz) + I(as + ags)]éi€; . (2.100)
Defining £, = e,&,, we obtain that:
A€ = [(a+az) + I(arg + a193)l&; + [(a1 + aws) + I(ag + ag)lé,.  (2.101)

In the same way, we obtain

A&, = [(a1 — a13) — I(ag + a3)é; + [(a — a3) — I(aiz + aiz3)|§,. (2.102)

Note that that the pseudoscalar I commutes with all elements and squares to —1,
then it can be viewed as the unit imaginary i in C/(R?), I€, = i€,. Since the
action of A on &, and &, are both linear combination of the set {&,,&,}, we see
that:

S ={p cClUR’) [P = & + €, YV Uy,¢5 € C}, (2.103)

where ¥, = a7 + if; and ¥, = as + i5,. This space admits no proper left ideal,
so the elements ¥ = 1)4¢, are called spinors and {&,} where A € {1,2} form a
basis for S, the called spinor basis. It is simple to prove that S is invariant by the
action of C/(R3?). In order to prove this explicitly, we only need to act the elements
that span V which are e;, e, and é3 on the elements of S and this implies in the
following spinorial representation for the vectors of the basis:

e = ey + Pabs) = iy + Yoy = & [(f (1)] (2.104)

—1

exth = e(i€) + Py8,) = —ithi1€y +ih§, = ey~ B 0} (2.105)
%¢=:@%§+¢gﬁ:w&—wgzéazﬁ_ﬂy (2.106)

i.e., the action of V on S yield elements on S. Thus, as a matrix algebra, using
these three last equations we can see that the spinor can be represented by:

¢:{$]e@ or ¢:[ﬁ ﬂeﬂﬂl@&, (2.107)
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10
0 0
we are left with a completely analogous relation [2]. Using these matrices we arrive
on the matricial representation of the multivetor A obtained on Example 1.

where £, = [ ] . If we multiply 1 on the left by an arbitrary matrix € M(2, C)

Defining the normalized vectors n; = é;,ny = cosf e; + sinf é;, then we can
construct the following element of the group SPin(V): Ry = mnon; = cos —

sinfé;é,. It follows that an element Ry of Spin(R?) acts on the elements of R? as
R é,R;' (a = 1,2,3). Thus,

él — 7%1(&1) = n2n1é1n1n2 = COS(QQ)él + SlH(Q@)éQ
ég — 7%1(&2) = n2n1é2n1n2 = —Sln(29)é1 + COS(20>é2
é3 — 7%1(&3) = n2n1é3n1n2 = ég . (2108)

The result of the action of Ry is therefore a rotation of 26 on the plane generated
by the two unit vectors €; and é,. Note that from the expression of R; it can be
represented by R, = e %12, But we can implement rotation in any one of the
é.,€, planes. So, we can perform others rotation by R = e~%¢« whose action yields
a rotation of 260 on the e,e, plane. In particular, taking # = 7, we have a rotation
through 260 on the e e, plane. In this case, the vectors remain unchanged while the
spinors change of sign.

O

2.4.2  Pure Spinors

From the geometrical point of view, there exists an important class of spinors which
are associated with maximal isotropic vector subspaces, observed by Cartan [3],
these are the so-called pure spinors. For example, let V' be a null vector, namely
< V,V >= 0. In three dimensions we can write the complex components
(Vi, Va, Vi) of this vector in terms of two elements )y, 15 as:

Vio= =y’
Vo = i(® + ¥2°)
Vi = =211y, (2.109)

which automatically guarantees the isotropic character of the vector. Indeed, the
latter equation immediately implies that V2 + V2 + V22 = 0. Note that these
equations are solved for

2:‘/1_“/2

Vi + V5
Y2 5 : _rrore

2 _
wQ_ 2

(2.110)
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So, using the above equation and that V3 = —2t;1, we obtain that

{le + Vi —iVa)y = 0 & Vi — ZVQ} {@01

, — , = 0,(2.111
(Vi + Vo) — Vathy = 0 {%+% Vs wJ Z4

which is the matrix representation of Vi = 0, with

Vi W-iW][ Vi Vi—i] _[L o0 B
{m+w5 4@}h+ne 4@}‘&)1<Wv>‘0

and < V|,V >= 0. Note that the rotation (2.108) on the vector V' implies,

Vi = Vicos(20) — V,sin(26)
Vi = Visin(20) + V;cos(26)
V. = V. (2.112)

Using this, it is simple matter to prove that:

U U ey
— = |, ) 2.113
{% Uy 1y ( )
Note that taking # = 7 the vector remains unchanged by the action of the rotation
operator, while the elements 1,1, change the sign. Thus, the pair 11,y consti-
tutes the components of a spinor 1) which is associated a null subspace spanned by

the vectors that annihilate it, Vb = 0, whose representation is given by (2.111).
The spinor 1 is an example of a pure spinor.

Now, let us make a rigorous definition of a pure spinor. Formally, given a spinor
1 € S one can construct a subspace of V, denoted by Ny, defined by:

Ny ={VeV|Vy =0}. (2.114)
Note that if ¥ in non-null then for all V,U € N,, we have

2<V,U>¢y = (VU+UV)yp =0
= <V, U>=0. (2.115)

This subspace is clearly totally null, which means that all vectors belonging to it
are orthogonal to each other including to itself.

In what follows, we will only consider the complexified Clifford algebra of an even
dimensional orthogonal space. The complexification of a real orthogonal space
(V, <, >) is the space (V¢, <, >c) whose elements are of the form V' + iU for
some V U € V and 7 the unit imaginary. We can define the sum and multiplication
by a complex scalar (A + i) as:

(V1 -+ iUl) + (V2 + iUg) = (V1 + VQ) -+ i(U1 + Ug)
A+ )V +iU) = (A\V —0U) +i(A\V 4+ 6U). (2.116)
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The complex conjugate of V. = V; 4 iU, € V¢ for V,U; € V is defined by
V* = V; —iU;. Since V¢ can be obtained by the complexification V, Ve = C®V,
we see that the complex dimension of V¢ is n and the real dimension 2n. The inner
product <, > is extended to <, >¢ on V¢ by assuming bilinearity of the inner
product in the complex field. For simplicity, from now on we shall assume that
the complex Clifford algebra associated to V¢ endowed is simply C/(V¢) and the
complexification of C/(V, <, >) is Clc(V). From this, we say that theses algebras
are isomorphic, namely:

where Clc(V) = C®CUV).

We say that a spinor is pure if the null subspace associated to it is maximal [3, 14],
namely when the null subspace has the maximum dimension possible. But, what is
maximum dimension of a null subspace? When the complex dimension is n = 2r,
the maximal dimension that a null subspace can be have is r. For example, given
the vectors ey, ey,.... €., €,11,..., ey, if we define n, = e, + 1 e,,, then we have
a null subspace of dimension r. In this case we say that it is maximal or maximally
null. Therefore, a spinor associated to a null subspace with this dimension is said
to be pure. Apart from a multiplicative factor, there is a one-to-one association
between 1 and N, thus a pure spinor 1 is a representative for IV, if and only if
Vi = 0for all V € Ny.

We should recall that a vector V transforms under rotation as RV R~ while the
spinor v transform as Ri. So, let @ be a pure spinor and V' a null vector that
belongs to Ny, then Vip = 0. If V! = RVR ' and ¢’ = Ra. It follows that

VY = RVR 'Ry = RV
— V' = 0. (2.118)

i.e., we can transform any null subspace N, into any another null subspace N{p
by a rotation or reflection [3]. It is worth stressing that the sum of two pure
spinors is not a pure spinor in general, since the purity condition is quadratic on
the spinor [11, 1]. In practice, given a spinor @ when is it pure? In order to
answer this question, let us workout an example in R3. Let S = {1 € C/(R?) |¢ =
& + Y€y YV 11,19 € C} be the minimal left ideal of the Clifford algebra
CU(R3) where & = (1+é3)/2,&, = €€, and let V' = Vié; + Vaéy + Vsés be a null
vector, i.e., < V,V >= V2 + V? + V2 = 0. Here, the pseudoscalar I = é;é;€3
commutes with all elements and squares equal to —1 and therefore be viewed as
the unit imaginary 7. Indeed I&;, = i€, . Acting V on

Vi = (Vie; + Vaey + Vies) (1€ + 12€,)
(Viya + Vathy — iVarho)&y + (Vi — Vathy + iVoyh )€y = (2.119)
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we obtain the following system to be solved

Vi + Vaihy — iVapy = 0

Vivr — Ve + iVop; = 0
VE+VE+VE =0
whose solution is
Vi= =y’
Vo = i(¥1® + 12°)
Vi = 2. (2.120)

Therefore, if the components of the spinor @ is characterized by a set of quadratic
relations, then the spinor ) is said to be pure. It turns out that pure spinors are
necessarily semi-spinors. Let us prove this. Since the dimension of V¢ is 2r we can
choose the first r vectors to be the set {ej, es,...,e.} such that < e,, e, >= 0.
Thus, this set forms a basis for a maximal null subspace. To complete this basis
we choose the other r as being the set of the vectors {€"™!, e"*2 ... €%} such that
< e% e’ >= 0. Theses two sets form a basis for the whole vector space V¢ and
its elements are such that < e,,e” >= £42. The pseudoscalar of Cfc(V) has the
following proportionality

I < (egne')(eane®)...(e.Ne")
x [e1,e'][es, €?]...[e €], (2.121)

where [e,, €’] = e,e’ — e’e, denote the Clifford commutators. Since the vectors
e, span Ny, by definition that e,3p = 0 . Hence e’e,i) = 0. Thus we only need

to know the action of e, e’ on 1, that is,
(€€’ = (eqe’ + e’el)p = 2 < e, e’ > = 8. (2.122)
Thus, the action of commutator is
leq, €’ = (e.e” — ele,)p = 6bap. (2.123)

Therefore, using (2.121) and (2.123) is trivial show that Iy o 1. It follows that
every pure spinor 1 must be a semi-spinor, or Weyl spinor. It turns out that in
two, four and six dimensions all semi-spinors are pure, while in higher dimensions
not all are semi-spinors.

2.4.3  SPin-Invariant Inner Products

We have referred to a minimal left ideal as the spinor space and its elements as
spinors, we now examine some operations and properties that this space possess
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with respect to products of two of its elements. We shall construct an invariant
product under the action of the spin group. For example, the space of spinors
S = CU(R3)¢, given by

S = {Y eCUR®) [P = & + 1€y Vb1, € C} (2.124)

obtained in the Example 3 can be represented as follows:

S:{[zp] € M(2,C)¢, | [] = m 8} v q/zl,@z)gec}. (2.125)

But since the product £,€, = 0, the set

D = &CIUR)E = {¢n€,,¢1 €C} =~ {[1/61 8] |41 € C} (2.126)

is a subalgebra of C/(R?) with unity &, such that A&, = &\, for all A € D.
According to equation (2.40), none of its elements is invertible as an element of
Cl(R?), however there is a unique Ay € D with AoA; = & if A; is a non-zero
element of D. Thus, D is a division algebra and hence the idempotent &, is primitive
in C/(R3) as expected. The space S has a natural right D-linear structure defined
by

SxD — S

DA o YA (2.127)

The space S endowed with this right D-linear structure is called, more formally, the
spinor space. We must note that on spinorial representation an arbitrary multivec-
tor A € C/(R?) and its reverse are given by (see the Example 1):

[A] = [2 Z] L [A] = [2 Z] ,z €C. (2.128)
Then, given two spinors 1, ¢ € S the product
["Tb][d)] _ {%T wog} {z; 8} _ {¢T¢1 ‘(f)‘ V302 8} cD (2'129)

falls in the division algebra ID. Now, the inner product can be naturally introduced
on the spinor space as

SxS = D N
v, = (Y, 9) = Yo,

if for ¢ € S and A € D the following relation holds:

(2.130)

(PA) = Ay, (2.131)
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where A — X is the complex conjugation of the division algebra ID and the reversion
1 +— 1) is a semi-linear map. Now, let A be an arbitrary element of C/(R?). Then,

(A, Ap) = ApAd = PpAAD

This implies that the elements A € C/(R?) such that AA =1 preserve the inner
product, i.e., this inner product between spinors is invariant under the action of
the group Spin, (R3). In the same way, we can use another involution to define a
different inner product. Indeed, the spinorial representation of A € C¢(R?) furnish
that its Clifford conjugate is:

A = {24 _ZQ] , % €C. (2.132)

—Z3 Z1

We can use this Clifford conjugation to introduce an inner product for spinors.
However, the product

[ @] = [_(;)2 51] {ﬁ; 8] = { b1ds v ot 8] ¢ D (2.133)

does not fall in the division algebra D. But since ¢ = (102 — 1201)E&, its always
possible to find an invertible element V' = e; € C/(R?), in this case, such that the

product é1ppe = (1o — thad1)€1€y = (V1o — Y2¢1)€;. Thus,

VIBIO = [ 0] fonin & e 0] = |70 " 0] €D s

This leads us to the conclusion that,

SxS D B
v, o = (Y,0) = Vo

also defines an inner product. One can easily prove that this latter inner product
between spinors is invariant under the action of the group Spin(R3).

(2.135)

In what follows, we will deal with a general Clifford algebra on which every spinor
space admits a real, complex or quaternion division algebra. Let 1 be some involu-
tion. If £ is any primitive idempotent then £” = J&J ' for some element J with
J" = eJ and e = £1 [1]. Then, if ¥, ¢ € S, we define:

SxS — D
P.p — (P¢) =J PP

If A€ Clc(V) is arbitrary element we find that:

(¥, Ap) = (A", @) (2.137)

(2.136)
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Using the equation (2.127) we find that if A € D,

(¥, PA) = (¥, D), (2.138)
the product is D-linear in the second entry. However if we denote N = J'A"J
for A € D it is straightforward to prove that

(X, @) = N (4, ¢) (2.139)
j is an involution of D and it will reverse the order of terms in the inner product,
that is,

(1, @) = (¢ ). (2.140)

The inner product (, ) can be DY-symmetric or D’-skew-symmetric depending on
the dimension of the space, i.e., when € is plus or minus, respectively. Let us define
the D-linear map f from S to D by the following relation

f)p = (¥, 9). (2.141)
It follows that f(t)) can be naturally identified with J '1)" by
flp) = T ", (2.142)

Note that the function f(1)) depends on the choice of the invertible element J.

There are some elements that play an important role when we are dealing with
spinors. Let us denote by 1 the involution® of Hermitian conjugation, * the invo-
lution of complex conjugate and the composition 7% = t stands transpose. So, the
invertible matrices A, B and C' are related with these involutions by:

AVAT' =_-vi BVB'=V*  CVC'=-V' Vellk)).
(2.143)
In particular the matrix B enables us define the notion of complex conjugation of

a spinor. This is an operation that the spinor space S admits, the so-called charge
conjugation. This is an anti-linear operation given by

c: S — S

b o — By (2.144)

with the property that

(Ap)® = A"Y° VAeClc(V)andyp € S. (2.145)

6Note that the dagger of the representation of an arbitrary multivetor is the reversion itself.
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The charge conjugation has different froms depending on the signature and on the
dimension [12, 11]. In particular, the conjugate of the conjugate can be equal to
identity or equal to minus the identity depending on the signature and on the
dimension. The spinors which satisfy

Y =19, (2.146)

are called Majorana spinors and the spinors satisfying the above equation and I =
+e1)p simultaneously are called Majorana-Weyl spinors [11, 1]. We can use the
matrix C' to rewrite an inner product between spinors. If %, ¢ are two spinors,
then

(1, ¢) = ¢'Cé (2.147)

is also invariant under, for example, rotation. We can also define other products that
are invariant under the action of the connected part to identity of the orthogonal
group, for example, rotation and reflection. These are,

(¥, 1¢) ; (W%¢) ; (¥ 19). (2.148)

In general, no further inner products can be generated in a trivial way and all
these products are diferent and independent [9]. In physics, to make manipulations
explicit and less abstract of the Clifford algebra and of the spinorial formalism we
use the so-called Dirac matrices. In next section we will explain this point.

2.5 Spinors, Gamma Matrices and their Symmetries

In this section we shall introduce a matrix realization for the elements of the Clifford
algebra through the introduction of the Dirac matrices. We will only consider an
even dimensional vector space V of dimension n = 2r. These matrices are the
representation in dimension n of the Clifford algebra generated by n matrices I',
which satisfy the anti-commutation relations

Fan + FbFa = 25ab1[7 a,b = 1,2,. .o, N, (2149)

where I is a 2" X 2" unit matrix and J,; is the Kronecker symbol, since repeated
multiplication of the Dirac matrices leads to a set of 2" matrices I"4:

1—‘A : ]L Fa7 Fal)7 Fabc; SRR (2150)
where,

Ty = F[al“b} (CL < b), Lope = F[anFc] (a <b< C), e (2.151)
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We can define a set of r raising and lowering operators as:
1
ey = §(Pa + i), a=1,2,...,r, (2.152)

which satisfy the following anticommutation relations

{Fa+ara—} = 5ab (2153)
(Toy,Turd = {TTu} = 0. (2.154)

Thus, in particular, note that (I',1)? = 0. Let us first give the usual representation
of the Clifford algebra in terms of the Pauli matrices. In two dimensions, n = 2,
the Pauli matrices o, (a = 1,2, 3) represent faithfully the Clifford algebra by 2 x 2
matrices given by

01 0 —i 1 0
0'1—|:1O:|,O'2—|:Z. O:|,03—[0 _1:|, (2155)
where o109 = 103, they square are equal to I and are hermitian. In this case, we
find that
1 .
[y =04 = 5(01 + i09). (2.156)

If we act I',_ repeatedly times we eventually arrive in a spinor £° such that
I, ¢ =0, Va, (2.157)

it is annihilated by all the T'y,_. Since (I'y;)? = 0, we can act [',, on the spinor
€Y over all possible ways at most once each. In order to perform this, let us label
the spinor with the indices si, $o, ..., s,. If we assume that every index s, can take
the values 1/2 and —1/2, then, starting from &° one obtains a representation of
dimension 2" by action with the elements of the form

(Top ) s T1/2 (T )oY, (2.158)
This action we denote by
581,82 ..... sro_ (Fa+)sr+1/2 o (F1+)51+1/2€0 ) (2159)

Note that £ 1/271/271/2 — €9 ig the our initial spinor. Regarding the spinors, it
is useful to define the following column vectors:

é*z{” , 6‘2[(”. (2.160)
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In terms these column vectors, the spinor £° is written as

@=[§]®[2}®“.®[2y

Vv
r times

and therefore the spinor £°'*2*" can be written as
g =gl g gene. 0Er. (2.161)

Defined this, taking the equation (2.161) as a basis, the matrices I', can be derived
from the definitions and the anticommutation relations. For example, when n = 2
we find that

c£T=0 , o & =¢7 o fr=£ , of=¢
— 0.8 = ¢ (2.162)

=
Nl

For more clearness on notation we shall explicit the dimensionality of the Dirac
matrices, which can be obtained recursively by the relations

rf” = 01 @ Le-y Fgr) =02 ® Loy
I = @I a=3,...n, (2.163)

where [y is a N x N unit matrix and ') are 2" x 27 matrices. We can split it
into those that are even or odd. Explicitly they are

) = 03®..00Q1®...Q1

(a—1) times (r—a) times
I = 039..00,0l8...01. (2.164)
(a—l}ftimes (r—a) times

An important fact is that in even dimensions a complete set of 2" x 2" matrices is

provided by 'y =I,T,, T, . ... The "(n;l) matrices

1

Yab = Z[Fa,rb] , a=12...,n, (2.165)
satisfy the SO(n) algebra
[Zab720d] - 5bczad - 5aczbd - 5bd2ac + 5ad2bca (2166)

and generate a representation of dimension 2" of Spin(n) the double cover of SO(n).
Note that the operator ¥%2¢ is hermitian and can be therefore simultaneously di-
agonalized. It simple a manner to prove from definition below

1
So=Baza = Tl — 5, (2.167)
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that if the spinor £€*} is an eigenspinor of the operator S, its eigenvalues are s, =
+1/2. Indeed, if we denote M, = T',;I',_, using the anticommutation relations
of the raising and lowering operators we find that (M,)> = T',,T[.. = M,, then
M,(M,—1) = 0. If E{S} is also an eigenspinor of the operator M, with eigenvalue
m, for all a, M,(M, — 1)5{5} = my(mg — 1)5{5}, it follows that m, can take just
the value, m, = 0,1. Thus,

1 1
Sut™ = (M, — )g™ = (ma — g™ = 56", (2168)
where s, = m, — % are the eigenvalues of S, with 5{5} as eigenspinor. Note that,
/2 , m, =1
Sq = {_ 12 . m, =0 (2.169)

and the notation {s} introduced previously reflects the Spin(n) properties of the
spinors [33]. The half-integer values of s, show that this is a spinor representation.
Then, the spinors 5{5} form the Dirac representation of the Spin(n) algebra of
dimension 2".

The chiral matrix, denoted by T, is given by
T = (—z)rflf‘gfn = 0'3®...®0'3, (2170)
~—_——
r times

and since Y is not proportional to identity and commute with all ¥, it follows that
the representation &} of Spin(n) with generators £* must be reducible. Indeed,
using (2.163) we find

o0
N = { : EGJ , (2.171)
where both 7, satisfy the commutation rules (2.166). Using that ', I, — 1 =
[',I'9,/2 is straightforward to find
T == 27‘5152 ce. ST y (2172)

and we see that T is diagonal in the basis £}, Since T2 = 1, using (2.172) and
(2.168) we see that the action of T on £V is

Telsh = etsh, (2.173)

The 2! states with eigenvalue 1 form a Weyl representation of the Spin(n) al-
gebra and the 277! states with eigenvalue —1 form a second, inequivalent, Weyl
representation. For example, denoting the representation by dimension, for n = 4

4Dirac =2+ 2I7 (2174)
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the Dirac representation split into two inequivalent Weyl representation of dimen-
sion 2.

Observing that the matrices &+1I',, satisfy the same Clifford algebra obeyed by I,
they must be related to I', by a similarity transformation. In the basis 5{5} the
matrices I'1,I's,...,I',_1 are all real while I'y,I'y,..., I, are all imaginary. This
can be viewed directly by means of the equation (2.164). If we define the product
of r odd Dirac matrices as the following matrices

B, - F1F3 e anl y B+ - T B, 5 (2175)

what is the final result of the operations B_T';B-! and B+FaBJ:1? Let us suppose
that I', is imaginary, hence its is an even element. So, by anticommutation

B.T,B™' = (=1)'T, = (=1)""}(=T,) = (=1)""'T*. (2.176)
Now, if I', is real, hence its is an odd element. So,
B.T,B~' = (=1)7'T, = (=1)'T. (2.177)
Thus, for any element I',, be it even or odd, we have
B.I,B~' = (-1)"'T%. (2.178)
In the same way we can easily prove that
B.T,B:' = (-1)'T%. (2.179)
Performing similar manipulations we obtain the following results,
BiY4Bi' = X%, (2.180)

This relation implies that the charge conjugation of a spinor ¢ = B~ !4)* trans-
forms in the same way as 1. The action of B¥ on the chirality matrix results

BiYB' = (—=1)"'r*, (2.181)

from which we can see that the charge conjugation can change the eigenvalue of T
depending on the parity of r—1. For example, when r is odd (n = 2,6, 10, 14,18, ...
or n = 2 mod 4) each Weyl representation is its own conjugate, while that for r
even (n = 0,4,8,12,16,... or n = 0 mod 4) each Weyl representation is conjugate
to the other. In particular, when n = 4

Apivee = 2 + 2, (2.182)

where 2 is the conjugate of the representation 2. A Majorana spinor is an eigen-
spinor of the charge conjugation operation

P = (2.183)
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which implies that taking the conjugate 9" = B -, (¢*)* = (By)* = B " =
B*B 1) gives a consistent condition if B*B = I. But using the reality and anticom-
mutation properties of I' we find

B'B_ = (-1)'"V1 o BB, = (—1)Uhe-2ey (2.184)

If we use B_ to define the Majorana spinor, then this operation is possible when
r = 1 (mod 4) or r = 4 (mod 4) while using BT only if r = 1 (mod 4) or
r =2 (mod 4). The such so-called Majorana-Weyl spinors are the spinors that are
Majorana and Weyl. In this case, the Majorana condition and Weyl condition only
can be imposed if the Weyl representation is conjugate to itself. In particular when
r is even it is not possible to impose both the Majorana and Weyl conditions on
a spinor. However, when r = 1 (mod 4) a spinor can simultaneously satisfy the
Majorana and Weyl conditions.

The T-matrices are all hermitian, thus we get the hermiticity property I'l = T,.
So, the operation

AT, A7 = T (2.185)

is satisfied if AT', = —I',A. The chirality matrix T anti-commute with the Dirac
matrices. It follows that, in even dimension, we can choose A = 1.

There is always a charge conjugation matrix C' , such that
C.T,Cy' =1t C'= £C. (2.186)
In the representation (2.163) the two possibilities are the following:

C+:UQ®O'1®O'2®01®... (2187)
C_:O'1®O'2®0'1®0'2®... (2188)

where C_ o< C,.T and C = CT = (C~!. By means of the matrix C' we define
invariant inner products between spinors as previously seen.



47

3 Curved Spaces and Spinors

The Euclidean vector space, R", is an n-dimensional vector space endowed with
a positive-definite symmetric metric whose components are 9,,. But, there are
other spaces which we intuitively think of as curved on which we would like to
perform similar operations to those at R": the sphere S?, for example. To treat
of spaces that may be curved and may have a complicated topology we introduce
the notion of manifolds, which are generalizations of our familiar ideas about curves
and surfaces to arbitrary dimensional objects. In this chapter, we describe the basic
elements of differential geometry which is the ideal tool to deal with manifolds. As
we shall see later, Killing vectors, which characterize the symmetries of a manifold,
can be used to construct conserved quantities along geodesics that are curves of
minimum length connecting two points on a manifold. Moreover, we will see the
curvature of a manifold, more precisely of a tangent bundle, is measured by the
Riemann tensor which arises from the commutator of the covariant derivatives.
The covariant derivative, in formal jargon, is called a connection of the tangent
bundle. In particular, we shall uniquely extend it to the spinorial bundle whose
sections are the so-called spinor fields.

3.1  Manifolds and Tensors Fields

Manifolds are one of the most fundamental concepts in mathematics and physics.
Intuitively, we can think on an n-dimensional manifold M, essentially, as a space
that that may be curved, but in local regions looks like Euclidean space, R". For
example, a curve in three-dimensional Euclidean space is parametrized locally by
a single number 7 as (z(7),y(7), 2(7)) and a surface can be parametrized by two
numbers u and v as (z(u, v), y(u,v), z(u,v)). A curve is a one dimensional manifold
since it locally looks like R, while a surface is 2-dimensional manifold since it looks
like R2. In particular, the 2-sphere is a 2-dimensional manifold. The local character
enables us to associate to each point on a manifold a set of n numbers called the
local coordinate. In general, a manifold may be different from R" globally, then
it is possible that a single point has two or more coordinates, since generally we
have to introduce several local coordinates in order to cover the whole manifold.


UFPE
Nota como Carimbo
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To develop the usual calculus on a manifold we require that the transition from
one coordinate to the other be smooth and the entire manifold be constructed by
smoothly sewing together the local regions. More precisely, a manifold of dimension
n is a topological set such that the neighborhood of each point can be mapped into
a patch of R™ by a coordinate system in a way that the overlapping neighborhoods
are consistently joined [12, 18, 16].

The concept of a vector space is well known to most readers, but when we consider
curved geometries the vector space structure is lost. For example, there is no trivial
way of add two points on the 2-sphere and end up with a third point on the 2-
sphere. Nevertheless, we can recover this structure in the limit of infinitesimal
displacements. Imagine curves passing through a point p belonging to the surface
of the 2-sphere. The possible directions that these curves can take generate a plane,
this is called the tangent space of p. The intuitive notion of a tangent vector at a
point p € M of a n-dimensional manifold is a vector lying in the tangent plane at
point p. These vectors generate a vector space of dimension n, denoted by 7,M,
called the tangent space of p. Note that, the term vector refer to a vector at a given
point p of M. The term vector field, denoted by V', refers to a rule for defining
a vector at each point of M. The vector fields generate a new 2n-dimensional
manifold, denoted by T'M, formed by the union of the tangent spaces of all points
of the manifold M,

™™= | T,M, (3.1)

peEM

this is called the tangent bundle. Now, consider the curves A defined in the coordi-
nates x* by the equation

i (r) = at(p)+ Vi1 (n=1,2,...,n), (3.2)

for 7 in some small interval —e < 7 < €. Since a curve has a unique parameter, to
every curve there is a unique set {V*} with

B dzt

VH = —| 3.3

dr (33)
evaluated at 7 = 0 which are the components of a vector field V' tangent to the
curve x#(7) on a coordinate system {z*} in the neighborhood of p € M. The curves
x#(7) are called the integral curves of the vector field V. In this coordinate system,
a vector field V' has the following abstract notation:

0
— H_— = 14
V =1V i V#O, . (3.4)
Sometimes, in a particular problem it might be more convenient to use other coor-

dinate system: spherical coordinate, for example. This is simple to implement. For
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example, under coordinate transformation z# — z'#(z) we find that the compo-
nents of the vector field transform as:

axll/
oz

ox'*

aL) = Vi = VY, (3.5)

—VHYH — K
V=V"9, =V ( B
where V'* are the components of V' on the coordinate system {z’*}. Note that if
f belongs to §(M), the space of the functions over the manifold M, then V(f) =
V#0,f is the derivative of the function f along of the curve whose tangent vector
field is V' and satisfies the Leibnitz rule when operating on products of functions.
Therefore, the vector fields on a manifold define differential operators that act on
the space of the functions over the manifold. In addition, given a local coordinate
system {z*}, then the coordinates define the coordinate frame {0, } for the tangent
space at each point. For example, if the {z#} = {6, ¢} is the usual coordinate
system on the 2-sphere, then it defines the coordinate frame {0y, 04}, with 0 being
the polar angle and ¢ the azimuthal angle.

Since T, M is a vector space, there exists a dual vector space to T,M, denoted by
Ty M, called the co-tangent space at p, whose elements are the linear functionals
from T,M to R, see the section 2.1. A linear functional is called a co-vector, but
in the context of differential forms we always refer to it as 1-form at p € M. The
space of the 1-form fields is the space T'M*, defined in analogy to construction of
TM, by

T™M = | TiM, (3.6)

peEM

called the co-tangent bundle. The simplest example of a 1-form field is the differen-
tial df of a function f € §(M) which, in terms of the coordinate {z#}, is expressed
as df = (0f/0z")dx*. Note that by the equation (2.3), taking e = dz* and
e, = 0,, it follows that:

e(e,) = dz"(0,) = ¢",.
Thus, it is fruitful to regard that the differentials {dz*} provide a local coordinate
frame for the co-tangent space Ty M, which is the dual to the local coordinate basis
provided by the differential operators {0, } for the tangent space T, M. An arbitrary

1-form field w is written as:
w = w,dz", (3.7)

where the w, = w(0,) are the components of w. Now, if we pass from the coordi-
nate system {z*} to the coordinate system {z'*}, we easily find that:

oxr#

axn/

dx”) =W, = Ou W, - (3.8)

7 8'1./“ v

_ Mmoo
w = w,dr —Wu<
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The bases {0,,} and {dz#} are sometimes referred to as the canonical bases for the
tangent and the cotangent spaces. Notice, in particular, that for every f € §(M)
we define the element df € T*M by the relation df (V) = V(f). Indeed, using
(3.7), it is immediate see that the action of df on V' € T'M is given by

of

af (V) = Vi

=VI(f). (3.9)

The equations (3.5) and (3.8) express two types of behavior under the arbitrary
coordinate transformation z# + 2/#(z"). In general, if T""""7, ,, are the compo-
nents of a tensor field T on the coordinate system {x*}, then we shall represent it
on the canonical basis as follows:

T =14 L 0,®. Q0,3d" ®.. . Qd". (3.10)

Its components on the coordinates {z'*} are thus related to its components on the
coordinates system {x*} by the following tensor transformation law

axlul ax/lip axpl aqu
Tty L o To1-0 3.11
V1--Vq ( Ozt 0x» ) ((9le Oxva ) Prepq? ( )
where 7, ., = T(dz",...,dz",d,,,...,0,,). The differential forms are a

relevant class of tensors which has all indices down and totally skew-symmetric.
For instance, wy,, ..., = Wi,...u,) 18 called a p-form and space of all p-form fields over
a manifold M is denoted APM. Note that we can use several results obtained in
the sections 2.1 and 2.2 by letting e = dz*. In particular, a general p-form field
can be written as:

1

F = H Fﬂlmﬂp

daxt* NdxP"? Ao N datr
where A is the exterior product. In this language, functions on the manifold are
called of 0-forms.

In the section 2.2, we introduced the Clifford algebra as an algebra defined on vector
spaces endowed with a symmetric non-degenerate inner product. A metric g on a
manifold M is a tensor field that provides an inner product on the tangent space
at each point p € M, i.e., it is a map which takes two vector fields and yield a
function over the manifold. For example, given two vector fields V,U € T,M, we
have that

gV, U) =<V, U>=g,V'U", (3.12)

where g, = g(0,,0,) are the components of g in coordinate frame. We can expand
the metric g in terms of its components in the coordinate frame as

g = G daz" ®dz”. (3.13)
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Sometimes, the notation ds? is used in the place of g to represent the metric tensor
ds® = g,, dz" dz” . (3.14)

In such case it is called a line element. Intuitivelty, the line element ds? tells us the
infinitesimal distance between two point on manifold. In physics, we almost always
assume that the manifold is endowed with a metric, hence the pair (M,g) will
sometimes be called the manifold. In particular, the model of a spacetime in general
relativity is a differential manifold with a metric g on it [18, 16, 19, 20, 22|. A good
illustration is the Minkowski manifold, (R* n), the manifold of special theory of
relativity. According to this theory, we live on the vector space R* endowed with the
metric ds? = ny, de"dz’ = dt* —dz? —dy* —dz?, where 1, = diag(1,—1,—1,—1)
and {z*} = {t,x,y,z} are the cartesian coordinates. These coordinates define a
coordinate frame {0,} = {0, 0,0y, 0.} in which the components of the metric are
+1. Actually, it is always possible at some point p € M, by a convenient choice of
the coordinates, to put any metric g in a canonical form. In this form the metric
components become

g = diag(1,1,...,1,—1,—1,...,-1,0,0,...,0), (3.15)

where the term diag means that g, is diagonal matrix with the given elements. If
any of the slots are zero, the metric is degenerate, and its inverse will not exist,
otherwise it is non-degenerate. In this last case we can define an inverse metric via
9" 9o, = 0¥, which allows us to raise and lower indices. In its canonical form, we
call signature s of the metric the modulus of its trace, s = | ) i Gyl Denoting by n
the dimension of the manifold then when s = n the metric is said to be Euclidean,
for s = n — 2 the signature is Lorentzian and s = 0 the metric is said to have split
signature. In what follows, when we refer about a manifold (M, g) it will always be
assumed that the metric g is non-degenerate.

Since the tensor fields are geometric objects which are well defined independently of
the frame chosen, any set of equations built from tensors will keep its physical mean-
ing under arbitrary coordinate transformations. But there is one important object
whose transformation under coordinate transformation is not trivial, the derivative
of tensors. The partial derivative of a scalar function, d,f, is a tensor. However,
consider the action of the partial derivative 0, in the components of a vector field
V*# on the coordinate system {z*}, 9, V*. Under a change of coordinates, using the
equations (3.5) and (3.8), this becomes
0z Oz 0z 0%z

p P
oz Oxr 7 * ox'” Ox°0xP Ve, (3.16)

o,V =

obviously, this combination does not transform as a tensor under a arbitrary coor-
dinate transformation, since it is not in accordance with the equation (3.11). This
leads to a natural question: how do we form the derivative of a vector V* in such
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a way that the resulting object is a tensor? To overcome this problem, we define a
connection called Levi-Civita connection or Christoffel symbol

I =

vp

9" (0v9po + OpGvs — OoGup) (3.17)

N | —

with g"” being the inverse of g,,,. This symbol is used to correct the non-tensorial
character of the partial derivative. Indeed, after some algebra, it can be proved
that the combination

V,Vit=9,V" + P“Vp Ve, (3.18)
does transform as tensor, i.e.,
a o 8 m
vy =2 T gy (3.19)

9z Oz °
To ensure that the covariant derivative transforms as a tensor it must transform as

ox'" 9z Ox’ 92 OxY Ox®
it _ g _
P = 0z Ox'v Ox'P s 0xY0x8 Ox'v Ox'P (3.20)

Note that, this is not, of course, a tensor transformation law. To prove that this
occurs, it is enough to use the law of transformation of the metric and the partial
derivative. Thus, the Christoffell symbol is not a tensorial object. They are deliber-
ately constructed to be non-tensorial, but in such a way that the combination (3.18)
transforms as a tensor. The operator V,, in (3.18) is called the covariant derivative.
This operator shares many properties with the usual partial derivative, it is linear
and obeys the Leibniz rule. Particularly, the latter rule can be used to obtain the
expression for covariant derivative of a 1-form w. In order to perform this, it is
enough notice that the action of w on V' provides a scalar, namely, w(V') = w,V*.
Then, acting the operator V, in this scalar, we are left with the following equation

Vo, =0,w, — 17, w,. (3.21)
It is worth note that the same Christoffel symbol was used as for the covariant
derivative of a vector, but now with a minus sign. In general, for an arbitrary
tensor field T' whose components on the coordinate system are 7"'"*%, . for each
upper indice we introduce a term with a +I", and for each lower indice a term with

a —1I"
1. — ML
VUT pl/1...Vq - aUT pyl...yq
1 P P2 Tp 12 1P - fhp
_I_ F O’pT Vi...Vq + F O’pT Vi...Vq +
— P H1---Hp _ 1" H1---Hp —
F ov] T pV2...Vq F oV T vy p...Vq et (322>

One might expect that no reference frame is better than another, all of them are
equally arbitrary. In particular, if a tensor vanishes in a coordinate system, then
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it must vanishes identically in any coordinate system. A tensor field T is said to
be covariantly constant if its covariant derivative vanishes. In its turn, using the
latter formula it is straightforward to prove that V,g,, = 0. Besides, the concept
of moving a tensor along a path, keeping constant all the while, is known as parallel
transport. A tensor field T is thus said to be parallel transported along of a curve
A whose tangent vector field is V' if the equation

VoV, THte =0, (3.23)

1...Vg

is satisfied along the curve. The notion of parallel transport is obviously dependent
on the connection, and different connections lead to different answers. If the con-
nection is metric-compatible, the metric is always parallel transported with respect
to it.

With parallel transport defined, the next logical step is to discuss geodesics. In
Euclidean space, the path of shortest distance is the straight line. When we work
with curved manilfods, the generalization of the notion of a straight line in Eu-
clidean space is provides by the so-called geodesics. For example, suppose that the
components of the tangent vector to curve z*(7) on the coordinate system {x*} is
TH = dz*/dr at 7 = 0. The condition that it be parallel transported is thus

™"V, T" =0 , T' = dz'/dr. (3.24)
Using (3.18), its straightforward to derive the following differential equation:

d?axP , dat dx”
dr? modr dr

=0, (3.25)

known as the geodesic equation. It is the curve of minimum length connecting two
points p; and ps on a manifold (M, g). In other words, it is the curve whose tangent
vector T* is parallel transported along itself. If, however, we had found a curve on
which T#V ,T* is proportional to the tangent vector T*

"V, 1" = f(r)T" , T" = d«"/dr

with f = f(7) being some function on curve, it is easy to show that we can always
reparametrize this curve so that it satisfies the equation (3.24). Thus, without loss
of generality we can consider just such a curve. The parameters 7" such that f =0
are said to be an affine parameters. In this case, we would be free to rescale the
parameter 7 — 7 = a7 + b with a # 0 and b being constant.

To define the covariant derivative we need to put an additional structure on our
manifold: a connection, which is specified in some coordinate system by a set
of n® Christoffel symbols. However, there exists a relevant differential operation
on the space of the forms which does not depends on such a connection, the so-
called exterior differentiation, d. Exterior differentiation is effected by an operator
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d applied to forms. This operator maps p-forms into (p + 1)-forms as:

1
dw = — Oywyy ..y, dx” Ndx? N N dat (3.26)

p!

Note that the differential df of a function f € F(M) is exactly the exterior derivative
of a O-form. The reason why the exterior derivative is so relevant is that it is
a tensor, even in curved manifolds, although we have used the partial derivative.
Note also that we could have used the covariant derivative, since Christoffel symbols
are symmetric in its indices down I'¥, = T . The exterior derivative has some
important properties. It obeys a modified version of the Leibniz rule when applied
to the product of a p-form w and a ¢g-form ¢:

dlwN@p) = dwANp + DNdp, (3.27)

where @ = (—1)?w is the degree involution of the p-form w. Another remarkable
property of the exterior derivative, which is a consequence of the fact that partial
derivatives commute, is that, for any form w,

d(dw) = 0. (3.28)

A p-form are said to be closed if dw = 0, and exact if w = d¢. Clearly, all exact
forms are closed, but not all closed forms are exact.

3.2 The Curvature Tensor

Since coordinates are physically meaningless we should always work with tensorial
objects, because they have well-defined geometrical meaning. The Christoffel sym-
bol is not a tensor, then it cannot be used as a measure of how much our manifold is
curved. For example, in usual vectorial calculus, the laplacian operator V? in carte-
sian coordinates looks different than in spherical coordinates. This happens because
the laplacian operator is written as V? = V,V*, it means that we are implicitly
using the covariant derivative, but when the cartesian coordinate is employed the
Christoffel symbols vanishes and the covariant derivative reduces to partial deriva-
tive. Notice, in particular, that the connection defined by the equations (3.17)
and (3.22) is named the Levi-Civita connection. The curvature is quantified by
the Riemann tensor, which is derived from the connection. Let us investigate the
curvature tensor formed from an arbitrary connection, not necessarily Levi-Civita,
that is, a connection transforming as (3.20) under a change of coordinates. Though
the covariant derivative and the partial derivative has some common properties,
there exist a big difference between them. The partial derivatives always commute,
while the covariant derivative, in general, do not and non-commutativity of the
covariant derivatives implies that the manifold is curved. Then, nothing is fairer
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than trying to characterize the curvature of a manifold by the commutator of the
covariant derivatives. Consider the vector field V', after some algebra, one can be
proved that:

V., V,Jvf = V,V, V-V, V, V7’

= Rpcr,ul/va - TA;U/V)\VP s (329)
where
Rpcfp,u = 8MFgV - aVPg,u + qurgu - FZVF;U, . (330)
A — A
™, = 2T, (3.31)

The objects T’\W are the components of a tensor called the torsion tensor. Since the
left hand side of the equation is a tensor, the object R, , although its definition
was made in terms of a non-tensorial connection symbol, is also a tensor. This is
known as the Riemann tensor. By means of the equation (3.29), we see that the
Riemann tensor measures that part of the commutator of covariant derivatives that
is proportional to the vector field, while the torsion tensor measures the part that
is proportional to the covariant derivative of the vector field. The Riemann tensor
is also called the curvature tensor, because it is the measure of the curvature of
tangent bundle endowed with a connection. In a curved manifold M, in every point
p € M it is always possible choose a coordinate system on which g,, = d,, and
I'*,, = 0 at this point, this is called Riemann normal coordinates. Besides, when
the Riemann tensor vanishes we can always construct a coordinate system in which
the metric components are constant [19, 20, 23]. In particular, a manifold is said
to be flat if, and only if, the Riemann tensor vanishes.

In n dimensions, a general tensor with s indices has n® independent components.
But, if it has symmetries not all these components are independent. For example,
it is immediate see that the torsion and Riemann tensors have symmetries, that are
T AW = =T /\w and R?,,, = —RF To find the additional symmetries is useful to
examine the Riemann tensor with all low indices. Then, defining R, = gpAR)‘m, o
one can prove that this tensor possesses the following symmetry properties:

ovp*

Rpaw/ = R[po'][;w} ) Rpaul/ = R;,LI/,DO’? (332)
Ryop) = 0 5 VisRpopu = 0. (3.33)

These relations are the complete set of symmetries of the Riemann tensor. In par-
ticular, the equation (3.33) is known as the Bianchi identities. These symmetries
reduce the number of independent components of the Riemann tensor. Indeed, in
n dimensions, instead of n*, it has 1—12n2(n2 — 1) independent components. For
instance, in four dimensions, the Riemann tensor has 20 independent components.
There are other important tensors which are constructed out of the Riemann ten-
sor. Let us decompose this tensor into a trace part and a traceless part. By the
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antisymmetry properties, the trace of the Riemman tensor over its first two or last
indices vaninhes. However, the following trace is non-vanishing

Ry,l/ = gpgRowpl/ = Rpup,,- (334)

This is called the Ricci tensor. In particular, as a consequence of the symmetries
of the Riemann tensor, the Ricci tensor associated with the Levi-Civita connection
is automatically symmetric

R,u,l/ - Rl/,u, . (335)

The curvature scalar, R, is defined as the trace of the Ricci tensor:
R =g¢"R, = R',. (3.36)

The Ricci tensor and the curvature scalar contain all of the information about traces
of the Riemann tensor. The traceles part is called the Weyl tensor. It is given in
dimension n > 3 by

2

Cropw = Rpopw — n_o (gp[uRV]o - go[uRl/]p) + (

2
n—1)(n—

2) R 9o[u9vio - (3.37)

This tensor is basically the Riemann tensor with all of its contractions removed
and vanishes for a flat manifold. Particularly, in dimensions 3 the Weyl tensor
vanishes identically, while in dimensions n > 4 it is generally non-null. One of the
most important properties of the Weyl tensor is that it is invariant under conformal
transformations [21|. For instance, if in the neighborhood of a point p of a manifold
(M, g),

G = Q_Q(SW QeF(M), (3.38)

then (M,g) is said to be a conformally flat manifold. Then, by the conformal
invariance of the Weyl tensor, it vanishes on (M, g). This tensor is one among the
most relevant tensors in general relativity. It can be associated to it an algebraic
classification and relate such classification with integrability properties of the field
equations. For instance, the Petrov classification is an algebraic classification for
the Weyl tensor of a 4-dimensional curved manifold which help us on the search of
exact solutions for Einstein’s equation, the most relevant example being the Kerr
metric [23, 12, 25, 27].

3.3  Non-Coordinate Frame and Cartan’s Structure Equations

By what was seen previously, the tangent space T),M and its dual Ty M are spanned
by the coordinate frames {0, } and {dz*}, respectively. However, when the manifold
M is endowed with a metric g it is convenient to use a non-coordinate frame. An
element of this frame is a vector field given by the following linear combination,

e, =elo,, 3.39
a 14
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where the index a = 1,2,...,n is only a label for the n vector fields, it is not a
tensorial index. Moreover, the coefficients of the linear combination are such that
det e, # 0. Under the metric g, we desire that {e,} be orthonormal, that is

g<ea7 eb) - ea# eby gp,y - 5ab , (340)
whose inverse relation is given by
Guv = eau eby 5ab . (341)

where €, is the inverse of e,/ where e, is the inverse of e,/ when we see it as a
n X n matrix. For example, if V' are the components of the a vector field V' with to
respect to non-coordinate frame {e,}, it follows that V¢ = e*(V) = e* V*#, where
V*# are the components on the frame {0J,}. Associated to non-coordinate vector
field frame {e,} is the so-called dual frame of 1-forms {e®}, defined to be such that
its action on the frame e, is: e*(e,) = 0%, the elements of such frame are 1-forms
fields given by

e’ = ¢, dat. (3.42)

The components of a 1-form field w with to respect this frame are w, = w(e,) =
e,fw,. The convenient choose of the non-coordinate frame {e®} enables us work
with the metric on a useful way. Using (3.41), it immediate see that

g = Gw dr" @ dx” = dgp e’ ® e’. (343)

The frames {e,} and its dual {e®} constitute what are called non-coordinate basis.
It is worth note that, on a coordinate frame we have d(dz®) = 0, while that on
a non-coordinate frame we have d(de®) # 0. Once fixed the frame {e,}, we can
define a set of n? spin-connection 1-forms w®, by

ViV et = —w(V)e? ¥V VeTM, (3.44)

where w¢ = w,,°e® Using (3.39)and (3.30), after some algebra, we can prove that
spin connection 1-forms are related with the torsion and curvature by the following
identities [20, 21, 22]

T = de* +w'y Ne’ | RY = dw® +w’, AW, . (3.45)
The object T¢ = %T“bc e’ A e is called the torsion 2-form of the connection V
and R%, = 3R e A e’ the curvature 2-form of the connection V, where T,

and R%,,; are the components of the torsion and Riemann tensors with to respect
to the non-coordinate frame {e*}. We should keep in mind that, for example,
R%, represents the entire Riemann tensor, with Greek indices suppressed. These
equations are known as the Cartan’s structure equations. The coefficients of the
spin connection 1-forms with all indices down, wg. = wabd Jae, are called Ricci
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rotation coefficients. If {e,} is orthonormal then the components of the metric g,
in this frame are constants. We can choose a connection according to which the
metric is covariantly constant tensor, V,g,, = 0. In particular, in considering this,
we can see that coefficients of the spin connection 1-form with all low indices are
antisymmetric in their two last indices, wgpe = —wuep. In terms of spin connection
1-forms wg,, = gac w, this is expressed as

Wep = —Wphy , (346)

which is the antisymmetry condition. Moreover, and foremost, if the connection
satisfies V,¢,, = 0 and the torsion-free condition, which is expressed as

de” +wy Ne’ =0, (3.47)

the connection is uniquely determined. Note that this condition implies immedi-
ately the symmetry of the Christoffel symbols. Actually, one can prove that the
Levi-Civita connection is the unique among the connections which satisfies the two
properties simultaneously. In general relativity, we always assume that the torsion
vanishes. Cartan’s structure equations provides a fruitful and quicker way to com-
pute the Riemann tensor of a manifold, see [20, 28, 21] for some applications or
wait for the next section in which we make an interesting application.

In physics, the relevance of these equations stems from description of the funda-
mental interactions of nature as a gauge theory, more precisely Yang-Mills theory.
This theory is a generalization, with non-abelian symmetry group, of the eletromag-
netism which is, in turn, an abelian gauge theory under the group U(1). Moreover,
the gauge theory is a type of field theory in which the Lagrangian is invariant under
a continuous group of local transformations. This means that the physics should
not depend on how we describe it, which in accordance with the principles of general
relativity [4, 21].

3.4 Symmetries, Killing Vectors and Hidden Symmetries

A manifold (M, g) is said to possess a symmetry if its geometry is invariant under
any transformation that maps M to itself. A map which realizes this transformation,
denoted by ¢, is called a diffeomorphism. Let ¢, be a family of such maps on M,
generated by a vector field V' whose integral curves are dz#(7)/dr = V*,

6.0 M — M

' = o (at) =ak(r). (348)

The set of such maps on M forms an abelian group of M if for each 7 € R we have
a diffeomorphism ¢, satisfying

Gr0¢s = Grys , o is the identity . (3.49)
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A diffeomorphism on the 2-sphere, for example, is given by ¢,(0,¢) = (0,¢ + 7).
This map provides a natural way of comparing tensors at different points on a
manifold. For example, any tensor at initial point 7y is dragged along the curve
x#(7) by this map. The set theses curves fill' the manifold M. If the metric tensor
is the same from one point to another on a manifold (M, g) irrespective of the value
of the coordinate z*, it means that the geometry of (M, g) does not change. When
this happens we say that the diffeomorphism ¢, generated by a vector field V' is
a symmetry of this tensor field. Isometries are diffeomorphisms that preserve the
metric. But, given an isometry, who are its generators? Let us find it now. Let €
be an infinitesimal parameter and K a vector field. Suppose the map ¢, drags the
point z* up to the point ¢ (#) = 2z in the direction of K by a parameter € along
of the integral curves of K. Then,

ox'*

U7 K# 2
x ' + € (:17)+O(e):>8$p

= 0 + €9, K" + O(€). (3.50)
Now, expanding the metric g,,(z') in Taylor series, we have

G (@) = gu(x) + €eK°05g,u + O(€?), (3.51)

and using (3.50) and (3.11), it is easy to prove that the components of the metrics
9, and g, are related by the following equation:

9w (') = gu(x) + € LK g + O(ez), (3.52)

where
Lr 9w = K059 + (8MKU)gW + (&,K")g,w. (3.53)

Suppose now that the manifold (M, g) is symmetric in the direction of the vector
field K = 0, which in component notation is given by K* = (9,)* = 6*. This
means that the components of a metric g,, are invariant by the transformation
at — o™ = ' + eK*(x). Then, from the equation (3.51) we have that:

gMV(x/) = g/ﬂl(x) = £K g,uu = 0 (354)

The operator £k is the so-called Lie derivative along of K. It is worth note that,
in this case, the Lie derivative is simply the partial derivative, d,g,, = 0. A Killing
vector field is defined to be a vector field K along of which the Lie derivative of
the metric vanishes. We say that the vector K generates the isometry, i.e., the
transformation under which the geometry is invariant is expressed infinitesimally
as a motion in the direction of K. Even though the independence of the metric
components on one or more coordinates implies the existence of isometries, the

IFormally, this is the idea of a congruence. A congruence is set of curves that fill the manifold M, or
some part of it, without intersecting and it is such that each point in the region of M is on one and only
one curve [16, 21].
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converse does not necessarily hold. Sometimes the existence of isometries is not
trivial. For instance, the Minkowski manifold (R?%,n7), has 10 independent Killing
vector fields, although only 4 symmetries are obvious from the usual expression of
this metric in Cartesian coordinates. In the next section this will be best illustrated
with an example. In this sense, the Lie derivative characterizes the symmetries of
a manifold without explicitly use coordinates. Moreover, we can rewrite it in a
convenient form. First, note that the operator £g has the remarkable property
that when acting on a tensor it yields another tensor. Its action on a general tensor
is given by |20, 16]

£ Tuluz..-upylmmyq = K”&UT"l“Q"‘“”yly2...uq
— (O KH )Tt
o (&,K’m) TM10~--#pV1V2qu — ...
+ (0, K7) Tkt
+ (&QKU) me"'upyla...uq + ... (355)

Note also that although we have used the partial derivative, we could have used
the covariant derivative and the result would be the same, since all of the terms
that would involve Christoffel symbol would cancel because of its the symmetry,
Iy, =T7,. Therefore,

Lx 9w = K°Vogu + V, K, + VK, (3.56)

and using that the metric is covariantly constant, we obtain that:
Lk 9w = 0=V,K, + V,K, = V,K,) = 0. (3.57)
The above equation is the so-called Killing equation and the vector fields K that

satisfy it are known as Killing vector fields.

The Noether theorem is one important theorem in physics which states that con-
tinuous symmetries are associated to conserved charges. So, since Killing vectors
are generators of symmetries of the space (M, g), we can use it to construct scalars
that are conserved along geodesic curves. For example, if K is Killing vector field
and z(7), with 7 an affine parameter, a geodesic curve whose tangent vector field
is p, then following scalar is conserved along such geodesic.

dat(T)

¢ =pK" = PR, P = (3.58)

Indeed, any vector K* that satisfies V(,/K,) = 0 implies that
P'Vu(Kp”) = p'p"V K,y = 0.

This can be understood physically. In the classical dynamics of particles, suppose
that the potential is independent of the Cartesian coordinate x, a free particle will
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not feel any forces in this direction, then it known that the linear momentum is
conserved along the direction x. Since a Killing vector field generates an isometry,
this shows that symmetry transformations of the metric give rise to conservation
laws.

It is immediate to conclude that a linear combination with constant coefficients
of two Killing vectors is again a Killing vector, that is, the Killing vectors form
a linear space. But, given two Killing vector fields K and H, is the final result
of the operation [K, H] = K H — H K a Killing vector? The answer is yes. In
particular, one can prove that this commutator is also a vector field given by

K, H]" = K"0,H" — H"0,K" . (3.59)

One can easily prove that acting on functions and fields, the Lie derivative along
K, H] satisfy the equation £ix ) = [£k,LHu] = £xfu — Lafk. Applying
this relation to the metric one obtains £k g g = 0. Thus, the commutator
(K, H] is again a Killing vector. This commutator is sometimes called the Lie
bracket. Since the commutator of Lie derivatives is the Lie derivative with respect
to a Lie bracket of vector fields, in the neighbourhood of any point in M the Killing
vector fields form a Lie algebra under the Lie bracket. Let {K;} (i = 1,2,...,7) be
a basis in the linear space of the Killing vectors, then the algebra Lie is completely
characterized in this basis by its structure constants ij defined by the following
relation

(K, K;] = C;"Ky. (3.60)

By the Frobenius theorem, is well-known that a distribution generated by the vector
fields { K;} is integrable if, and only if, there exists a set of structure constants C’ijk
such that the equation (3.60) is satisfied. In particular, when all the structure
constants vanish, the lie algebra is said to be Abelian. Thus, the set of Killing
vectors fields { K;} generates a r-dimensional integrable distribution, that is, they
span a r-dimensional vector subspace A, C T),M on every point p € M and there
exist a smooth family of submanifolds of (M, g) such that the tangent spaces of
these submanifolds are A,,.

3.4.1  Maximally Symmetric Manifolds

A manifold M is said to be homogeneous and isotropic if it is invariant under any
translation along a coordinate and if it is invariant under any rotation of a coor-
dinate into another coordinate, respectively. In general, a manifold will admit no
symmetry, and hence possesses no Killing vectors. Furthermore, there is a maxi-
mum number of linearly independent Killing fields that can exist for any metric on
M. The manifolds with highest degree of symmetry are said to be homogeneous
and isotropic manifolds. A maximally symmetric manifold is a manifold pos-
sessing the maximum number of isometries, which is n(n +1)/2 in n dimensions.
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In particular, as we will see, these manifolds has constant curvature and manifolds
with constant curvature can be shown to be conformally flat. Indeed, in the case
of Euclidean signature, one can find a coordinate system {z*} in which the line
element is: )
e
with a yet unknown arbitrary function Q@ = Q(x*). Often, it is convenient to use a
non-coordinate frame. Identifying the coefficients of the linear combination (3.42)

ds* [(dz')? + (do*)?* + ...+ (dz™)?], (3.61)

with e?, = éé“u, it leads us to introduce the following dual frame
o = L gy (3.62)
e’ = — .
o

from which we find

XY
de® = —% da® A dz® = (9, e* N e’ (3.63)

In this frame, the line element can be written as
ds®> = (e")? + (e?)? + ...+ (e")? = dpe’e’. (3.64)

Since dyy, = g(eq,ep), we do not need to distinguish between raised and lowered
indices. Ordinarily, Cartan’s structure equations surpasses in efficiency every other
known method for calculating the curvature of a manifold. As an exercise let us
compute the curvature in terms of {2 for this space using the Cartan equations and
the fact that maximally symmetric solutions are regarded as solutions of R, =
A go with A = R/n. Manifolds whose Ricci tensor satisfies the latter equation are
called an Einstein manifolds. Let us find the function 2 which provides a solution
for this latter equation. We will assume that the torsion vanishes. Once chosen
the metric and the frame, we should calculate spin connection 1-forms w?,. Using
(3.63), the Cartan’s first equation (3.45) implies the spin connection 1-forms

Waep = (8aQ)eb - (8bQ)ea. (365)
According to Cartan’s second structure equation, the curvature 2-forms are

Rapy = dwep + wee A w5
Q(0,0.02€e“ Ney, — 0,0.00€e°Ne,) — (0000 e, Ney, (3.66)

This implies that the Riemann tensor is given by
Rapeq = 29 (8,18[6(2%1) + 3{,8[51956117) — 2(89)2 dafcOd)p - (3.67)

where (9Q)? = 0°Q9.Q. Contracting the first and third indices we obtain the Ricci
tensor,

Rap = (n—2)Q20,0,Q + 6,[QAQ — (n—1) (89)?]. (3.68)
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Here AQ = 0°0.£). Hence, the trace of the Ricci tensor yields the curvature scalar,
R =2n-1)QAQ — n(n—1)(0Q). (3.69)
Now, using that our manifold is an Einstein manifold, R,, = A d4, this immediately

implies

0.0, = 0 (a#D), (3.70)

thus, 2 must be a sum of functions depending just on the coordinates x®
Q= Wa') + Q@®) +... + Q. (2", (3.71)

because otherwise the mixed derivatives could not vanish. However, for a = b we
should solve the following equation

(n —2)00,0,Q = QAQ — (n—1)(0Q)* + A. (3.72)

Since the right-hand side does not depend on index a, all the second derivative
0,0, must be equal and constant, which we choose conveniently as

0.0.8) = 2k, (3.73)

and Q must be quadratic in 2 with a coefficient of (%) which is independent of
x®. Therefore, we can write
Q=c+ kr?, (3.74)

where r? = [(z!)? + (2%)? + ... + (2")?] = 2%,. Note that if the linear term is
non-null, it can be made zero by translating the coordinate origin, and a constant
factor on € is irrelevant because it simply scales the coordinates, hence we can fix
¢ = 1 without loss of generality. By means of the equation (3.74), we have that
(09)? = 4k%r? and AQ = 2nk. Then, inserting these latter identities into (3.72),
we find that the constant x must be equal to

R
A =4r(n—-1 = — .
kn—1) = & nn—1)’ (3.75)
where we use that A = R/n. The constant x is the so-called the curvature

parameter. Finally, an important property of maximally symmetric manifolds is
that it has constant curvature. Moreover, by substitution of (3.74) on the equation
(3.67) we easily find that:

Rabcd = 4K (5a06db - 5ad60b) . (376)

Conversely, if the Riemann tensor satisfies this condition the manifold (M, g) will
be maximally symmetric. In general, Maximally symmetric manifolds of dimension
n can be classified by their signature, their curvature parameter and discrete in-
formation related to the global topology. But locally, if we ignore questions about
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global topology, maximally symmetric manifolds with Euclidean signature are fully
specified by their curvature parameter of the following form:

s, k >0
M=<R* | kK =0, (3.77)
H* , v <0

where S™ is the n-sphere, R" the Euclidean space and H" the hyperbolic space. Note
that, when considering Lorentzian signature, the maximally symmetric manifold
with £ = 0 is the Minkowski manifold. The metric of maximally symmetric spaces
with other signatures, like de Sitter and Anti-de Sitter spacetimes, can be obtained
from (3.61) by means of analytical continuations of the form z* — iz® [29]. Before
proceeding, let us clarify the previous concepts in this section with an example.

Example 4: The Schwarzschild-AdS black hole in arbitrary dimensions.

In Lorentzian signature, the anti-de Sitter (AdS) manifold is a solution with A < 0,
of the equation R,, = A gq. We want to find the solution in arbitrary dimension
of the latter equation for the Schwarzschild-AdS space whose line element can be
written as follows:

() + (e (d
(1 + kr?)? o

= —e*0dt* + Vdr® + 1?5, 6%¢" (3.78)

ds? = —e*di? 4 2P0 g2 4

where é° (a = 1,2,...,n — 1) is an orthonormal frame on the (n — 1)-sphere.
Note that all metric components are independent of the coordinate ¢, therefore
this metric possesses the Killing vector K = 0,. This is the general form of a
metric describing a static spherically symmetric spacetime geometry. Here follows
the stepwise algorithm we use to determine the components of the Ricci tensor.

1. A suitable orthonormal frame for this a space is given by
e =edt |, e =efdr | et =reét. (3.79)
In this frame, the line element is given by
ds* = —(€")? + (€")? + dupe’e’ = 1. e“e” (a = t,r,a), (3.80)

where 7,3 = diag(—1,1,...,1) is the Minkowski manifold in n + 1 dimensions.

2. Computing the spin connection 1-forms by applying Cartan’s first structure
equation, namely
de® +w Ne’ = 0.
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Taking the exterior derivative of ef, it is simple to show that:
de! = —"Ma/(ret ne” = W', = -/ (r) e,

where o/(r) stands for the derivative of a(r) with respect to its variable r. Con-
tinuing in the same manner, all the non-vanishing spin connection 1-forms are the
following:

W= =P (r) et Wt = — . e’ , wh =Y. (3.81)

3. Determining the curvature 2-forms by use of Cartan’s second structure equation
Rab — dwab + wac /\ wcb .
Let us do the less trivial case. From (3.81), we have that w?, = &%, then

Rab — d(.:)ab + (:)ab /\ L:ch + wat /\ wtb + waT /\ wrb
~Q ~Q ~b 672[8(1“) a b
= do% + @Y N@’, + e‘Ne
—2B(r)

~ e
= R —

r2

e ne’, (3.82)

r2

where 7@“,7 is the curvature 2-forms derived from the connection 1-forms @,, with
respect to the frame of 1-form {é"} defined on the (n — 1)-sphere.

4. By applying the the relation
a 1 a c d
R b - § R bed e /\ e
and using the skew-symmetry of the exterior product, we find that:

Pa —28(r)
Ry _ €
,,aQ 7'2

a .
Rbcd -

(5a05db - 5ad5cb)a

where R“bcd is the Riemann tensor with respect to the frame of 1-forms {é“}. Now,
using the fact that the sphere is a maximally symmetric manifold and therefore its
Riemann tensor satisfies the equation

Rabcd = 4K (5ac(5db - 5ad66b)>

we get the components

1
Rapea = 32 (45 — €)Y (bacbap — Oaddes) -
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Here, we must choose the curvature parameter as being k = 1/4, since this choice
means the term of the metric d,; é*€” is an unit (n — 1)sphere. Thus, the Riemann
tensor is given by

1
Raped = ) (1 - 6725(7")) (0acbap — Oaddeh)
-2
= Rabab - 5aCRabe — (n ) (1 - ei2ﬁ(T)) 5 (383)

r2

where for the index b Einstein’s convention is not being used. Analogously, it is
straightforward obtain the other components of the Riemann tensor that are non-
vanishing, they are,

Rtrtr = €_2B[a//(r) - 6’(7“)0/(7”) + O/(T’>2] ) er’a = 6_265/(7") )
Rtata = _w ) (384)

where for the index a we do not employ Einstein’s convention.

5. Contraction of these components gives the components of the Ricci tensor,
R.s = n°Ru.s5, and using the four symmetries of the Riemann curvature tensor,
we arrive at the following equations:

w} (3.85)

(n — 1)5’(7“)}

Ru = Ri=c[a0) = F00) + 0P +

R, = R*_ =—¢2 [o/’(r) — B'(r)d(r) + o/ (r)* — (3.86)

Ruw = R, = {6—25 5 /(T);alm + (”;22) (1 - 8—25“))} . (3.87)

6. In the end we use the fact that our spacetime is an Einstein manifold, that is,

Ry = —A
Rag = A’I]aﬁ =< R, = A
R = A

Using this condition, the equations (3.85) and (3.86) immediately lead to
d(r)y==p'(r) =a+ 5 =X, (3.88)

where ) is a constant. Note that, by choosing a suitable coordinate time t — e’t,
we can achieve A\ = 0 and it follows that « = —f. Inserting the equation (3.88)
into (3.87) and noting that

[T,n72(1 . 672,8(r))]/ — (n . 2),101173(1 . 672B(r)) + 2’1“”72 6725(r)ﬁ/(7ﬁ) ’



CHAPTER 3. CURVED SPACES AND SPINORS 67

it is straightforward to prove that from R,, = A, it follows the relation:

2
I S L (3.89)
717172 n ’ '

where C'is an arbitrary constant. Therefore, the metric (3.78) becomes

2\ —1
ds* = — <1 = 52 Ar? > dr* + (1 ~ A—r) dr’
T n T n

+ 1?5y e%e (3.90)

This metric, known as the Schwarzschild-AdS metric for A < 0, looks like the
Schwarzschild black hole for small r and approaches the AdS space for large . The
Schwarzschild-AdS black hole is the unique static, spherically symmetric solution
of the equation R,3 = An,gs.

O

3.4.2  Symmetries of Fuclidean Space R™

An example of a space with the highest possible degree of symmetry is R” with the
flat Euclidean metric. Let us examine its symmetries. Consider the n-dimensional
flat space, for which the metric is Euclidean. In cartesian coordinates {z*}, the
metric is given by

0 = diag(1,1,...,1). (3.91)

The Taylor series of a function f(x) : R® — R near the origin of the coordinate
system is a power series of the form

1 1
f(l') =q+ qu$u + Eq;wxuly + 3|q,uugx'ul'yl'g +... + ﬁqulmunl’ﬂl .. .LIZ’M",
where, for simplicity, ¢ means the function evaluated at z* = 0 and ¢, ., its

partial derivatives evaluated at the latter point. In the same way, the Taylor series
expansion for a vector field K = K*J, can be represented near point x as:

vi Un

L

(3.92)
Since that the indices vy, 1s,..., 1, are completely arbitrary, swapping any two
coordiantes, £ and z*? for example, the result must be the same. This, in its turn,
implies that g, ..., is symmetric in the indices v1, ..., v,. The choice of Cartesian
coordinates is very convenient, since all Christoffel symbols vanishes and we may

Ky = Gut Qut” + 5 Qunn ™ 27 +

V1 ,.V2 V3
5 {duvivavs A4+ |Q,ul/1 nl

3!
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replace the covariant derivatives by partial derivatives. Then, the Killing equation

is simply

c%Kl,) = 0.
Substituting (3.92) into the above Killing equation we arrive at the following ex-
pression

) t Qu)n®? + Qs 2™ + 000+ Qs 2?2 =0,

where indices inside round brackets are symmetrized. Since each term in the sum re-
late different powers in the coordinates and that the functions z¥, x*22*3 ... 22 ...
¥ are linearly independent, it follows that for any x* each terms of this sum must
vanishes,

Gy =0 5 Guoywe =0 ooy Quuyvsev, = 0. (3.93)

The symmetry of the first two indices in the above equation implies immediately
that g,, must be antisymmetric, q,, = —¢q,,. Moreover, it is immediate see that
Quvvs...vw = —GQuuvs...vn- 10 particular, this latter symmetry and by means of the
the symmetry of ¢u.,..,, in the indices vy, 15, ..., 1, all the derivative of ¢, except
quv, must vanishes. For example, we know that ¢,.a = —que. However, by the
the previous symmetries we obtain the following relation ¢, = —@uue Which is
satisfied if and only if ¢, = 0. We can continue with this same procedure until
reaching the term g(,,),...,, Which, by the same reason, must also vanishes, as was

previously stated. We can thus conclude that K, must be linear in the coordinates,
Ky = qu + qu =" (3.94)

Since that g, has n independent components and qj,,) has n(n —1)/2, the equation
(3.94) lead us to the conclusion that the Killing vector field has n(n+1)/2 indepen-
dent components. We have, thus, n(n + 1)/2 independent vector fields, each of the
form (3.94) for independent choices of the n(n + 1)/2 constants ¢, and g,,). This
implies that the set of all solutions of the Killing equation forms a vector space of
dimension n(n + 1)/2. We can expand the Killing vector field K in terms of its
components K, on the frame and we arrive at the following equation:

K = K"9, = q¢" 0, + ¢ 2,0,) = ¢"p, + ¢"" L, (3.95)

where p,, = 0, is the linear momentum and L, = 2x(,p,) is the angular momentum.
The basis {p,, L.} is the so-called Killing basis. Once we identify a basis, any
solution of the Killing equation is therefore a linear combination with constant
coeflicients of the elements of this basis. The simplest choice of the n(n + 1)/2
vector fields is obtained taking only the constants g, non-null and letting ¢,, = 0.
In this case, the components of p,, non-null are n constant vector fields of the form

K =0, = K" = (9,)" = . (3.96)

v
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This represents a unit vector in each of the coordinate directions and are called
translational isometries. Indeed, from equation (3.50) we see that x/# = z* +
ed”. Since they are constant, the integral curves are just the Cartesian coordinate
axes, and the metric is indeed independent of each of these coordinates. Now,
setting g, = 0, we have n(n — 1)/2 rotational isometries. Indeed, choosing one
of the n(n — 1)/2 antisymmetric matrices g, ¢12 = 1/2 for example, and all the
rest zero, it is straightforward to prove that:

K = q12 L1Po = TPy — YPx = L:cy’ (397>

where we identify {z', 2%} = {x,y}. One can obtain easily all the n(n —1)/2 Ly,
in analogous ways. In particular, its the algebra is given by the Lie brackets

Ly, L) =90upLve — 0ucLyy, — 0upLys + 0yoL,,. (3.98)

The group of all these, translations and rotations, isometries is known as the
symmetry group of n-dimensional Euclidean space. So, the most general sym-
metry transformation which includes both translations and rotations has the form
ot — 2" = A z¥ + ¥, where a* is a constant and 6,,A? A%, = §,,. Physically,
the equation (3.98) is the angular momentum operator algebra. These operators
perform rotations in a physical system which do not commute. For instance, an
infinitesimal rotation around the 1-axis followed by an infinitesimal rotation around
the 2-axis is not the same as rotating around 2 and then 1. The Lie brakets are
exactly those of SO(n), the group of rotations in n dimensions. This is no coin-
cidence, of course, but we won’t pursue this here. All we need to know here is
that a spherically symmetric manifold is one which possesses n(n + 1)/2 Killing
vector fields with the Lie brakets (3.98) [16, 20, 18|. It is possible to establish
Lie brackets of this sort for all of the Euclidean Killing fields. Indeed, one can
prove that the following relation holds: The group of all these, translations and
rotations, isometries is known as the symmetry group of n-dimensional Euclidean
space. So, the most general symmetry transformation which includes both trans-
lations and rotations has the form z# — 2/ = A* x” + a*, where a* is a constant
and 0,,A” A%, = 0,,. Physically, the equation (3.98) is the angular momentum
operator algebra. These operators perform rotations in a physical system which do
not commute. For instance, an infinitesimal rotation around the 1-axis followed by
an infinitesimal rotation around the 2-axis is not the same as rotating around 2 and
then 1. The Lie brakets are exactly those of SO(n), the group of rotations in n
dimensions. This is no coincidence, of course, but we won’t pursue this here. All we
need to know here is that a spherically symmetric manifold is one which possesses
n(n—+1)/2 Killing vector fields with the Lie brakets (3.98) [16, 20, 18|. It is possible
to establish Lie brackets of this sort for all of the Euclidean Killing fields. Indeed,
one can prove that the following relation holds:

[p;upy} = O ) [L/W?pp} = 5,uppy - 5Vppl/ : (399>
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We therefore find exactly n(n + 1)/2 isometries in Euclidean space R™. Actually,
this is the maximum number of independent solutions to the Killing equation in a
n-dimensional space.

In general relativity, it is well-known that is a manifold admits admits Killing
vectors, in general, the corresponding scalars associated with theses vectors can be
used to find the geodesics trajectories without integrating the non-linear geodesic
equation directly. However, spacetimes with geometries more complicated admits
less Killing vectors than dimensions. In this cases, the work to find the geodesic
trajectories is much harder. For example, 4-dimensional Kerr spacetime has just
two independent Killing vectors and therefore it is not possible to find its geodesics
trajectories using only these symmetries. But, there are other tensors associated
with symmetries of a manifold. For example, differently from the conserved scalars
associated to Killing vectors, which are linear on the momentum, the constant
found by Carter in 1968 which enabled him to solve the geodesic equation of the
Kerr metric is quadratic on the momentum and it is a consequence of the fact that
Kerr metric admits a Killing tensor of order two [26]. This is one example of the
so-called the hidden symmetries. We say that a manifold has a hidden symmetries
if its geodesic equation possess conserved quantities of higher than first order in
momentum. The geometric structure responsible for this kind of symmetry is the
Killing tensor [19, 29]. Killing tensors are symmetric generalizations of the concept
of Killing vectors. There are also anti-symmetric generalizations of the Killing
vectors called Killing-Yano tensors (KY). Theses are more fundamental objects
than the Killing tensors. They can be used to construct Killing tensors, since the
square of a Killing-Yano is a Killing tensor of order two. For scalars conversed along
null geodesic, the tensor responsible for such conservation law is conformal Killing
tensor (CKT). One can also find the so-called conformal Killing-Yano tensor (CKY)
which is completely anti-symmetric tensor that also lead to conserved quantities
along null geodesics.

3.5 Fiber Bundles

In the previous sections it was seen that a manifold is a space which looks locally like
R", not necessarily globally. Now, we will study certain kind of manifolds which
looks locally like a direct product of two manifolds. Such manifolds are called
a fiber bundles. A particularly interesting manifold is formed by combining a
manifold M with all its tangent spaces T,,M. For motivation, let us construct the
fiber bundle T'M, previously called tangent bundle. It was formed by collecting
together all the tangent spaces T,M from all points of M. The manifold M over
which T'M is defined is called the base space. Now, suppose that there exist a
covering {U;} of M by open sets and diffeomorphism {¢;} such that z# = ¢;(p) is
the coordinate on U; to each point p € M at which one calculates the tangent space



CHAPTER 3. CURVED SPACES AND SPINORS 71

T,M. The union of T, M over all points of U; gives

TU; = | T,M . (3.100)

peU;

We specify an element ¢ of TU; by a point p € M and a vector V' € T),M decomposed
on frame {0,} at p. Note that U; can be continuously mapped to an open subset
¢(U;) of R™, and T,,M mapped to R™ and wvice versa. Then, we can think on TU;
as the direct product R™ x R", i.e., TU; is a 2n-dimensional manifold decomposed
into a direct product U; x R™. It means that each point ¢ on T'U; has coordinates
(#,V*) and contains information of a point p € M and of a vector V. € T,M.
Then, we can introduce a map 7 : TU; — U; called projection such that to any
point ¢ € TU; the object m(q) is a point p € U; at which the vector is defined. Now,
we can introduce the idea of fibers of a fiber bundle. A fiber above p is the result
of the action of the map 7~! on point p € M, 7~!(p). In our case, when p is fixed,
it straightforward see that the fibers are exactly the spaces 7—!(p) = T,,M for each
p. Let U; be a chart as U; such that U; N U; # & and 2'* = ¢/(p) its coordinates.
If Ve T,M is a vector at p € U; N Uj, it is then simple matter to arrive at the
following relation

Vo= VR, = VI, = V= ALV, (3.101)

i.e., their components are related by a non-singular matrix A# = 0Jx*/0dx" of
GL(n,R) which act on T,M by the left with the matrix A%. The group GL(n,R) is
then called the structure group of TM. Now, a curve in the fiber bundle identifies a
particular vector at each point p of M, and so the curve defines a vector field on M.
Such a curve which is nowhere parallel to a fiber is called a section o of TM. Note
that it does not make sense to ask for the length, since here we have an example
of a manifold on which is not necessary to define a metric. A local section of TU;
is a smooth map o; : U; — TU; defined on a chart U;. However, the projection
m: TM — M can be defined globally with no reference to local charts, since the
equation 7(q) = p does not depend on a special coordinate chosen. Therefore, we
define a section o of TM as a map o : M — T M such that m o ¢ = e, where e is
the identity on M. The set of sections on M is denoted by I'(T'M). Consider now
two coordinate neighbourhood (U;, ¢;(p)) and (Uj, ¢,(p)). The transition function
ti; € U;NU; : T,M — T,M is given by t;;(p) = (¢; 'o¢;)(p). Since that ¢; 'o¢; is a
diffeomorphism its derivative is invertible, ¢;; € U; N U; € GL(n,R). To summarize
all this informations, one says that T'M is a fiber bundle above M, with fibre T}, M/
and structure group GL(n,R).

The tangent bundle is an example of a more general framework called a fibre bundle.
A fiber bundle E over a smooth manifold M, with fibre F' and structure group G,
is a set (E, M, F,G, ) such that

(i) E is a smooth manifold called the total space.
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(ii) M is a smooth manifold called the base space.

(iii) F' is a smooth manifold called the fibre.

(iv) G is a Lie group acting smoothly on F' on the left, called the struture group.
(

v) 7 is a smooth surjection? from F to M, called the projection. The set 7=1(p),
where p € M, is called the fibre over p, and is denoted by F},.

(vi) There exist a covering {U;} of M by open sets, and diffeomorphisms {¢;}
mapping U; X F to 7=1(U;) such that 7 o ¢;(p, f) = p. The map ¢; is called the
local trivialization since ¢; ' maps 7~!(U;) onto the direct product U; x F.

(vii) If we write ¢;(p, f) = ¢ip(f), the map ¢;,(f) : F — F, is a diffeomorphism.

On U; N U; # @, we require that ¢;;(p) = l_; o ¢jp: F'— F be an element of G.
Then ¢; and ¢; are related by a smooth map t;; : U; N U; — G as

oi(p. f) = dilp,ti;(p)f) -

The maps ¢;; are called the transition functions.

We need to clarify several points about the transition functions. For convenience,
we will often use a shorthand notation 7 : £ — M to denote a fibre bundle. So,
let 7 : E — M be a fibre bundle and U; a chart of the base space M. The local
trivialization ¢; ' : 771(U;) — U; x F is a diffeomorphism. Now, let us take a chart
U, such that U; N U; # @. Then, we have two maps ¢; and ¢; on U; N U;. Let
q € E such p = 7(q) € U; N U;. Each local trivialization ¢; ' and gbj_l carries the
point ¢ to different elements of F:

o7 q) = (. f) . ¢ a) = (pfy). (3.102)

The central role of the transition function ¢;; : U; N U; — G consists on establishing

a relation between these two elements: f; = t;;(p)f;. Since t;;(p) = ¢;, ; o J_; one
can prove that the following consistency conditions are satisfied:
ti(p) = € (p € Us)
tij(p)tjk(p)tki(p) = e (p c UZ N Uj N Uk)

where e : EF — FE is the identity element.

The tangent bundle T'M constructed in the beginning of this section is a fibre bundle
whose fibre is a vector space. These are special types of fibre bundles which are
called vector bundles |21, 16]. Another example of a fibre bundle is the bundle of
linear frames over M which is closely related to T'M, the frame bundle LM . Instead
of using the tangent space T,M as a fibre above a point p of M which was done

2A map f from a set X to a set Y is said to be a surjection, if every element 3 in Y has a corresponding
element x in X such that f(z) = y.
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in the construction of T'M, we can take as a fibre at p the set of all the frames of
T, M. Therefore, a point of the fibre F}, above p is a particular frame of 7, M which
is given by n linearly independent vectors of T,,M. It means that each point g of
LM may be assigned by the coordinates (z*, V}) which contains information of a
point p € M whose coordinates are z* and of n* components V* (a = 1,2,...,n) of
the vectors V, of a frame of 7,,M in the coordinate frame {J,}. Since the element
V# form a frame, it is invertible. Hence, V/ is an element G'L(n,R), so that the
fibre of LM is GL(n,R). Moreover, given any two frames {V,} and {U,} there
exists an element of GL(n,R) that relate them and therefore the structure group of
LM is GL(n,R). Such a bundle is called a principal fiber bundle, which is a fiber
bundle whose fibre F' is the same as the structure group GG. We establish, thus,
that a vector bundle naturally induces a principal fiber bundle over the manifold
by employing the same transition functions. In particular, when the frame {V,} is
orthonormal, the elements V! becomes the coefficients of the non-coordinate frame
and the structure group reduces to O(n). Furthermore, if the frame {V,} has
positive orientation throughout the whole manifold, the corresponding structure
group is SO(n).

3.5.1  Spinorial Bundles and Connections

In the chapter 1 we defined spinors algebraically, which arose within the study of
Clifford algebra, its Clifford group, and some subgroups of the latter, especially
the spin group. It now becomes possible to attack the problem of differentiation of
spinor fields. We shall here construct the spinorial bundles which will immediately
lead to notion of a spinor fields, the concept of covariant derivative of a spinor fields
and at the end we will compute the curvature of the spinorial bundle.

In what follows, the m-dimensional manifold is assumed to have an inner product
defined on the bundle TM. Let 7 : TM — M be a tangent bundle above M, with
structure group O(m) or SO(m) when M is orientable and let LM be the frame
bundle associated with T'M. Given the transition functions t;; € SO(m) of LM, it
is meaningful to consider the set of functions #;; € Spin(m) defined by

where ¢ is the double covering ¢ : Spin(m) — SO(m). Since the transition func-
tions t;; satisfy t;;t;itr; = e and t; = e and that the mapping ¢ is a representa-
tion of the spin group, there are solutions of the equation (3.104) for fij satisfying
fijfjkfh = +e and t; = +e among which we select those t~,~j satisfying

gijtjkrgk’i = ¢ and t“ = €. (3105)

A spin structure on M is defined by the transition functions #;; € Spin(m)
satisfying (3.104) and (3.105). The principal bundle LSM of the spin frames over
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M is defined as that principal bundle with M as base, with Spin(m) as structure
group, and ﬂ-j satisfying (3.105). A spinor above p € M is a linear combination
of the elements of the spin frame given by sections of LSM at p. Now, we can
introduce of a spinor field in a way completely analogous to definition of a vector
field of T"M. Once defined the notion of a spinor at a point p, we can construct the
spinorial bundle SM above p as the bundle which admits as fibre above the point
p of M the set of all spinors at p. A spinor field, denoted by %, over M is then
a map the associates to every point p of the manifold M a spinor, it is a section
of SM. The set of all sections of SM we denote by I'(SM). It is interesting to
note that not all manifolds admit spin structures. For examples of the latter case
of spin structures, see [30, 21]. In our case the manifold M is said to admit a spin
structure.

From now on we are going to work on a manifold (M, g) of dimension m = 2n
endowed with a non-degenerate metric g. Furthermore, the tangent bundle T'M is
assumed to be endowed with a torsion-free and metric-compatible derivative, the
Levi-Civita connection, and it will be assumed that (M, g) admits a spin structure,
namely it has a well-defined spinorial bundle.

Consider {e,} a local frame such that the components of the metric in this frame
are constants,

g(eaaeb) = Gab acgab =0. (3106)

Now, let us introduce a connection V, on the spinorial bundle SM. Let V, be the
the Levi-Civita connection of the tangent bundle 7M. The action of this connection
in the frame vectors {e,} is given by

Vee, = w, e, (3.107)

where w,,° = w(e.). This connection can be uniquely extended to the spinorial
bundle. For such, one might impose for it to satisfy the Leibniz rule with respect
to the Clifford action, here denoted by juxtaposition:

VoVp) = (VoV) o + V(Vep) ¥V V eT(TM) 4 e T(SM), (3.108)

we refer to it as covariant differentiation of Clifford Products. We must also require
it to be compatible with the natural inner products on the spinorial bundle,

Ve <, p>=<Voh,p > + <p,Vop> Y %, ,¢pcT(SM). (3.109)

Let {€4} be a local frame of the spinorial bundle SM, where A = 1,2,...,2"
are spinorial indices. The spinors &, give a linear and faithful representation for
the Clifford algebra, the so-called spinorial representation. Indeed, we can choose
conveniently the spinorial frame so that the Clifford action of the frame {e,} on
the spinors & 4 is constant in a given patch of M,

€, EA = (ea>BA€B ) (311())
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where the matrices (e,)?, are constants. In the physics literature the matrices
(e,)P, are the so-called Dirac matrices. These matrices satisfy the following anti-
commutation relation

(€)' (e0)%c + (e)'p (€a)’c = 29md”c, (3.111)
which is the definition of the Clifford algebra itself. In the same way as (3.107), we
can define the action of the connection on this frame of spinors {£ 4} as

Vo€ = ()65, (3.112)

where €, is the so-called the spinorial connection. We must find a expression for
Q, for which the equation (3.108) and (3.110) holds. Then, computing the action
of V, on e, &, by means of the equations (3.107) and (3.112) we find that

wy'e. = Qe — el (3.113)

on which the spinorial indices have been omitted for simplicity. One can show that,
if we choose the spinorial frame satisfying the equation (3.110), the general solution
for this equation is [9]:
1
Q, = —Zwabc eye.. (3.114)
Thus, if ¢ are the components of 4 on the frame {€ ,}, then an arbitrary spinor
field has the following abstract representation

P = ¢lE,, (3.115)

and its covariant derivative is given by:

@a’l/) - (aawA + (QQ>AB1/JB) €A == (8a 1wabc €y ec> ’l,b (3116)

4
In terms of the components 1 the latter equation is written as
Vap* = 0.9 + () 50" (3.117)

We can also construct a section in a dual spinorial bundle. Let {€} be a frame
for the latter bundle. If x, are the components of a dual spinor field x on frame
{€*}, then its covariant derivative is given by

@aXA = aaXA - (Qa)BA XB - (3118)

Thus, the operator V, when acting on objects with several spinorial indices follows
trivially from the latter equations. Its action on a such object is given by

- Al...Ap . Al...Ap
va \Ij By..Bg T aa \I] Bi1...Bq

A g, CAz.A Ay AICA
+ ()M g, ()T B,

_ )C

Ay Ap
‘I] CBQ..ABq (Qa

Blc...Bq(Qa)CBQ — ... (3.119)

B1
A4
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In particular, using the equations (3.112) and (3.113) one can easily prove that the
action of operator V, on a vector field V' = Ve, lead us to the following result:

VoV = (0.Ve, + Vi Quey — e,Q) = .V + [Q, V]. (3.120)

where [, V] = Q,V — VQ, is the commutator of the Clifford algebra. It means
that, in spinorial language, a vector is an object with two spinorial indices. More
precisely, each vectorial index is equivalent to two spinorial indices, one up and one
down. In particular, in general relativity, the spinorial formalism of 4-dimensional
Lorentzian manifolds furnishes two types of indices, the ones associated with Weyl
spinors of positive chirality and ones related to Weyl spinors of negative chirality.
In this case, a vectorial index is equivalent to the product of two spinorial indices,
one of positive chirality and one of negative chirality. This is the principle of the
Penrose’s method [32, 31, 23].

Now, since the Riemann tensor measures the curvature of a tangent bundle, we can
relate the curvature of the spinorial connection with the Riemann tensor. First, note
that the vector fields e, are written in terms of the coordinate frames e, = 0,. In
this frame, the spinorial representation of the coordinate frame e, will be denoted
by the matrices I',,,

e, 1= ()" &5, (3.121)

Although, sometimes, it is convenient to omit the spinorial indices, when we com-
pute the covariant derivative of I',, we must account for the covariant derivative
of both the vectorial index p as well as the omitted spinorial indices. Taking this
into account and noting that these contributions cancel each other we eventually
obtain: @MFV = 0. The curvature of the spinorial bundle is defined by the action
of the commutator [V, V,] on spinor 4 and its relation with the Riemann tensor
is given by [1]:

[V, 9l = 1R, Toth, (3.122)
where '), = % [I',,I',]. The spinorial space is defined to be the space where an
irreducible and minimal representation of the Clifford algebra acts. Then, if e, is a
section whose spinorial representation is the matrix I',,, we can define an operator
D as D = F“@M, called Dirac operator. A spinor field v satisfy the following
equation:

D = map, (3.123)

where m is some complex constant. What, in fact, determine if the eigenvalue m is
real or imaginary is the nature of the manifold. After some algebra, we can prove
that

D% = (W% - }LR) P, (3.124)
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where R is the curvature scalar. The square of the Dirac operator is known as the
spinorial Laplacian. Finally, if we define the constant « by the following relation:

Vi = al 4 (3.125)

the corresponding spinor field v is a Killing spinor field. The constant « is known
as Killing constant. Note that by means of (3.123), a Killing spinor field is a Dirac
spinor field with m = an, but the converse is not true. In practical terms, the utility
of the Killing spinor fields is that they can be used to generate symmetry tensors
which eventually lead to conservation laws as well as to the integrability of field
equations using the manifold as a background [9]. Indeed, if Y is the chiral matrix,
1 is a Killing spinor and %) its conjugate then each of the tensors [35, 36, 37|

<Y limw® > <Y T 0 T >
< ¢7 F,uluz...upw > ? < 1/)7 Fu1u2...up T’lp > ) (3126>

is either a Killing-Yano (KY) tensor or a closed conformal Killing-Yano (CCKY)
tensor [37, 38|.
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4 Monogenics and Spinors in Curved
Spaces

In the previous chapters the Clifford algebra was introduced in the geometry, that
is the reason why the Clifford algebra is also called the geometric algebra. Now, it is
well known that holomorphic functions, also called conformal maps, are the central
objects of study in complex analysis [39]. Holomorphic functions of complex vari-
ables satisfy Cauchy-Riemann’s equations and, hence, they also satisty Laplace’s
equation [2]. In this chapter we introduce some basic concepts in Clifford analysis,
the Clifford algebra in analysis, which furnish one approach of the complex analysis
in dimensions higher than two. One of the main subjects studied in Clifford analysis
is the function theory of monogenic functions and its interaction with the represen-
tation theory of the group Spin(m). In Clifford analysis one consider multivector
functions that solve Cauchy-Riemann or Dirac equations on some manifolds. In
particular, the idea of higher dimensional holomorphic functions is given by the so-
called monogenic functions which are multivector functions that are annihilated
from the left by the Dirac operator. Also, we will show that the Dirac equation
minimally coupled to an electromagnetic field is separable in spaces that are the
direct product of bidimensional spaces. In particular, we applied on the background
of black holes whose horizons have topology R x S? x ... x S2.

4.1  Monogenics in the Literature

For a review of many of the basic properties of Clifford analysis including some
historical remarks we refer to [42, 43]. Clifford analysis may also be regarded as a
special function theory within harmonic analysis since the Dirac operator factorizes
the Laplace operator, so it may be seen as a refinement of harmonic analysis. One
important tool in the analysis of the Dirac operator is the Cauchy integral for-
mula. This formula allows us to calculate the values of functions in terms of given
boundary data arising from practical measurements. Based on these representa-
tions important existence and uniqueness theorems for the solutions of boundary
value problems on manifolds could be established. The so-called monogenic func-
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tions are those that are in the kernel of the Dirac operator and they can be seen as
higher dimensional holomorphic functions, they also satisfy the Laplace’s equation.
In the simplest case of one dimensional space a monogenic function is a function
with null derivative, that is, a constant with no structure; in two dimensional space
monogenic functions are equivalent to analytic functions of a complex variable and
increasing the space dimensionality one finds that those functions can generate
many kinds of interesting geometrical structures. The monogenic functions were
introduced by F. Brackx, R. Delanghe and F. Sommen in [46] and in the past forty
years have been successfully and intensively studied. The literature is very rich of
results but studies on the topic are ongoing, see [47, 48, 49|. In [50] the monogenic
functions were applied on some conformally flat manifolds such as cylinders, tori
and some conformally flat manifolds of genus bigger or equal to two. Lounesto
obtains in reference 2| the monogenic functions on flat space in arbitrary dimen-
sion and emphasizes that the monogenic functions take their value in a Clifford
algebra which is a natural environment to represent internal degrees of freedom of
elementary particles such as spin.

It is well known that the spherical harmonics play an important role in the har-
monic analysis of the Laplace operator, in Clifford analysis a similar role is played by
spherical monogenics, also called spin weighted spherical harmonics, which are poly-
nomial solutions of the Dirac equation without mass defined on the sphere. These
functions form a complete orthonormal set for each value of spin weight and are a
refinement of the notion of spherical harmonics. In reference [51] was made a study
of the generating functions for the standard orthogonal bases of spherical harmon-
ics and spherical monogenics in arbitrary dimensions. The spin weighted spherical
harmonics were introduced by Newman and Penrose in [53] as a means to describe
certain quantities exhibiting a particular "spin-gauge” behavior. For instance, for
particular choice of spin-gauge, the spin-weighted spherical harmonics reduce to
the monopole harmonics which arise as solutions of the Schrodinger equation for
an electron in the field of a magnetic monopole introduced by Wu and Yangin in
[54], see also [23, 55, 56]. Several angular functions, including scalar, vector, and
tensor spherical harmonics, are used to perform separation of variables in the gen-
eral relativity literature. These functions include the Regge-Wheeler harmonics,
the symmetric, trace-free tensors of Sachs and Pirani, the Newman-Penrose spin
weighted spherical harmonics. A good review article of these functions by Thorne
is the reference [57]. The spin weighted spherical harmonics can be expressed in
terms of the Wigner matrix since its formulas in spherical coordinates are identical
to formulas for Wigner matrices for certain values of Euler angles, also in terms
of the Jacobi Polynomials, the generalized associated Legendre functions and the
hypergeometric functions [58]. Applications of these functions in the solution by
separation of variables of various systems of partial differential equations includes
source-free Maxwell equations in flat space-time and in the Schwarzschild space-
time, the Einstein vacuum field equations linearized about the flat space-time and
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the Dirac equation [59]. Finally, to solve the Teukolsky Master Equation, which
describes the dynamics of various fields of different spins as perturbations to Kerr
metric, by separation of variables there are two non-trivial equations obtained that
are the angular equation and the radial equation whose solutions for the angular
equation are the called spin weighted spheroidal harmonics, see [60, 61, 62, 63, 64]
for more details, introduced by Teukolsky in the context of black hole physics,
which can be reduced to spin weighted spherical harmonics for a particular case.
So, the spin weighted spherical harmonics have innumerable applications in several
branches of the physics as was mentioned.

4.2 Monogenic Multivector Functions : Definitions and Operator
Equalities

Let {ej,es,...,e,} be an orthonormal frame of Euclidean space R of dimension
n = p+ q endowed with a non-degenerate symmetric metric of signature s = |p — q|
and Cl,, the Clifford algebra over R™4. It is possible to extract a certain kind
of square root of the n-dimensional Laplacian operator A and consider instead a
first-order differential operator, called the Dirac operator D. The Dirac operator
gets its name from its appearance in Dirac’s wave equation for the electron. With
respect to this basis, the Dirac operator on R™? is given by

D = e 0, + €0, +... + €,0, = 6%,0, , ab=12....n, (4.1)

where 0, represents the partial derivative with respect to the variable xz®. If we
want the Dirac operator to be the square root of Laplacian, DD = A, the elements
of the frame {e,} must obey the following algebra

e.e, + ee, = g(ea7eb)7 (42>

which is just the very definition of Clifford algebra C¢, . It means that the Dirac
operator is seen as a vector in C/l, o. An important variation of the Dirac operator
which provides a closer contact with the classical function theory, denoted by Dy,
is the Weyl (or Cauchy-Riemann) operator obtained as follows. Let X be a vector
of the Euclidean space R™°, X = X%e,. We can take a special vector of the frame
{e.}, e for example, and then consider its left Clifford multiplication on the vector

X, that is,
Z = e X = X% e,
= X1 + X261€2 + ...+ Xnelen, (43)
where the elements eje, (a = 2,3,...,n) are unit bivetors. The combination of a

scalar and a bivector, which is formed naturally via the Clifford product, is therefore
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a multivector of the CE:;O, the even subalgebra of C¢,, o, which is generated by the set

{1,eies,€e1€3,...,e1e,}. In two dimensions, for example, defining X; = x, Xy = y,
the element Z = z + Iy can be viewed as a complex number, since the bivector
I = ey ey, the pseudoscalar of CE;O, is such that I = —1 and can be viewed as
the unit imaginary 7. The complex number Z = x + iv represents a vector in
the complex plane, with Cartesian components x and y. Since the bivectors e;e,
anticommute and square equal to —1, they form an orthonormal basis for the vector
space R%"~!. Thus, the even subalgebra C/;  is isomorphic to Cly,—1. Defining
1, = €e1€,, a vector X € R™? can be replaced by a sum of a vector and a scalar.
Such an element will be called a paravector Z € R @ R%"1,

Z = X| + Xoio +... + Xpip, = Xi + X4, (4.4)

where X | = Xoty + ... + X,1, is a vector on the vector space R%"~!. Therefore,
there is a natural map between X and Z achieved by means of multiplying the first
by e; the left. The role of the preferred vector e; is clear, it is the "real axis” of
the higher dimensional analogue of complex analysis. From the geometrical point
of view, we could say that when using the paravector formalism, we have chosen a
"real axis” namely the e; axis by multiplying the vector X € C/¢,,, on the left by
e;. This established a correspondence between the following two mappings [2]:

f:R™0 — CE;:O fTReRY™ 1 — Cly, (4.5)
X = f(X) 7’ Z —  f(Z) ’
For convenience, we denote both by f. In this way, the Dirac operator is replaced
by the Weyl operator Dy, on R @ R%"~! defined by

DW = 81 —+ igag -+ ’igag + ...+ ’Lnan == 81 + Dl; (46)

where here D; is the Dirac operator on R%"~!. A function f : U C RPY —
Cl,, is seen as a function f(X) of X € RP?. There are in the literature several
ways to define a notion of generalized holomorphic function with values in the
Clifford algebra. The most successful is the so-called monogenicity which has been
intensively studied during the past forty years. Formally, let V be a vector space
over a real or complex field F. A smooth multivector function f(X) defined on
an open set U C V and having values in the Clifford algebra C¢(V) is said to be
monogenic if and only if it is in the kernel of the Dirac operator on V

Df(X) = 0, (4.7)

for each X € U. The theory of the functions in the kernel of the Dirac operator or
of the Weyl operator are equivalent and the word monogenic is used for functions
in the kernel of either of them. One of the simplest example is the case n = 2 on
which the Clifford algebra C¢;; is isomorphic to the complex field C. In this case,
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the Weyl operator is given explicitly by Dy, = a% + ia% and a multivector function
f(Z) = u(z,y) +tv(x,y) € Clyy of Z = = + iy, which is equivalent to analytic
functions, is monogenic if and only if the following equations of holomorphy hold:

ou_ov L, o0 v as)

ox oy ox dy
These equations are the well-known Cauchy-Riemann equations. The statement
that f(Z) is an analytic function, i.e., a function that satisfies the Cauchy-Riemann
equations, reduces to a monogenic equation. In the case n = 3, the Clifford algebra
Clyo corresponds to the quaternion algebra H. The Weyl operator is given by
Dy, = %—H'a% —I—j%—l—ka%. Then, identifying ¢ = 41,7 = 12, k = 3, the quaternion
Q = ¢ + gt +q.3 + gk € H is monogenic in U if Dy Q = 0, thus giving rise to
a generalized Cauchy-Riemann system. Note that the holomorphic functions
are easily transferable to higher dimensions when considering Clifford algebra.

In the next sections, we will offer an approach of monogenic sections on manifolds
with values in the Clifford bundle or Spinor bundle. A lot of the formulas thus
established for the Dirac operator remain valid in the case of the Weyl operator
Dy, by formally replacing e; by 1 and e, by 2,,a =2,...,n.

4.3  Monogenics in Curved Spaces and Some Results

In the section 2.2 we identified the Clifford algebra with the vector space of multi-
vectors AV with the Clifford product between vectors given in (2.14), namely the
following algebra holds

UV + UV =2g(V,U) YV, UEeV.

In the context of bundles, the vectors are elements of I'()), the space of sections of
the bundle V. So, in this approach a multivector is a multisection of the exterior
bundle AV. Since we are concerned only with local results, we are allowed to identify
the complexified tangent spaces C ® T, M, at point ¢ € M, with a vector space V,
so that all the results of the previous chapters can be used. Thus, it follows that
on a manifold (M, g) we have the structure of a Clifford algebra on each fibre of
AM = Up NpM, the exterior bundle. The exterior bundle AM equipped with the
Clifford product in the fibres will be called the Clifford bundle and denoted by CM.
We use the term Clifford forms refer to the multisections as elements of the Clifford
bundle rather than exterior algebra. The set of the Clifford forms on CM is denoted
by I'(CM).

In a formal way, in curved spaces, the Dirac operator D = e*V, is a first order
differential operator that acts on a vector bundle over the manifold (M, g). The
study of Dirac and Laplace operators on manifolds, in particular on Riemannian



CHAPTER 4. MONOGENICS AND SPINORS IN CURVED SPACES 83

manifolds, has lead to a profound understanding of many geometric aspects related
to these manifolds, in particular some applications for the Dirac operators on man-
ifolds have been developed in [41, 44, 45, 40]. In turn, Riemannian manifolds play
a central role in several branches of modern physics. They appear in important
cosmological models, in general relativity theory, in the standard model of particle
physics, in string theory and in general quantum field theory (23, 19, 33]. Here, we
consider only Clifford forms A whose components are smooth, that is, its partial
derivatives up to a certain order are all continuous in some domain U of (M, g).
Occasionally we will focus on smooth sections V. = V®e, € I'(T M) of the bundle
TM on which V, is the Levi-Civita connection. Saying that a section V' € I'(T'M)
is monogenic, which means that Clifford action of the Dirac operator D on V is
null,
DV =0,

is equivalent to saying that its components V%, (a = 1,...,n) satisfy the following
system of equations

DV = <DV>+DAV =V, V*+ Vlevile, ne, =0
= V,V*=0 and VEeVY =0. (4.9)

When restricted to the flat space, the equations (4.9) are the generalized Cauchy-
Riemann equations 9,V¢ = 0 and 0l*V¥ = 0. Introducing the co-derivative opera-
tor, d : ['(A,M) — I'(A,—1 M), defined by the action on Clifford forms as:

dw =xldx® , wel(AM), (4.10)

with * being the dual Hodge, d the exterior derivative and @ is the degree involution
of a p-vector w € I'(A,M), the equation (4.9) can be conveniently written as follows:

0V.=0 and dV =0. (4.11)

By the Poincaré lemma, locally we can assert that dV = 0 implies that in some
neighborhood of every point p on M there exists a function ¢ such that V' = dg,
hence 6V = dd¢p = 0. Note that, while d increases the degree of a Clifford form
by one, ¢ decreases the degree by one. This implies that dd¢p = 0, since d¢ = 0 by
definition. So, the action of the operator (dd + dd) on ¢ = 0 also vanishes. This
operator is exactly the negative of the Laplacian operator

A = —(dé + od). (4.12)

Thus, the function ¢ is said to be harmonic, that is satisty A¢ = 0. Therefore,
given ¢ € T'(AgM) such that A¢ = 0, any monogenic section V' is obtained by
judiciously choosing

V=dp ¥V VeI(TM). (4.13)
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The previous results about monogenicity can be generalized immediately to higher
dimensions. These generalisations invariably turn out to be of mathematical and
physical importance, and it is no exaggeration to say that equations of the type of
equation (4.7) are amongst the most studied in physics.

Instead of sections V' € I'(T'M), we can be more ambitious and pass to consider
more general elements A € I'(AM) of the Clifford bundle AM. Let us consider
a Clifford form of degree p, F' = F"1%%e, Aey A...Ne, € I'(A,M), with
Faaz-ap = plaaz-a] gotally skew-symmetric a section on T'(A,M). Then, the
element F' is monogenic if the following equation holds:

DF = <D, F> +DAF
= V 12" < ey e Neg N... Neg, >
+ Viepue-ale Ae, A Ae, =0. (4.14)

Using an important relation obtained in the equation (2.23) which we express here
as

< ey, 4 Negy, \... N\e€q, >=
P
(1) < e eq, > €0 A Nl AL Neg,, (4.15)
i=1
where the check on é,, select the term will be removed from the series when the
sum is expanded, we can easily prove that F' € I'(A,M) is said to be a monogenic
section if and only if

V ot =0 & §F =0

V[aFamz‘..,ap] -0 < dF =0 (416)

Many equations in physics can be elegantly formulated in terms of the exterior
derivative d and the co-derivative 9. In particular, letting p = 2 the equations
0F = 0 and dF = 0 are the source-free Maxwell’s equations which rise from the
itself definition of monogenic sections. In this case, the section F = F®e, A
e, € I'(A2 M), which represents the electromagnetic field, is nothing more than the
exterior derivative of the section A = A%, € I'(TM), F = dA.

Instead of sections F € T'(A,M), we could instead consider the sections on the
subset I'(CTM) of I'(CM), the space of the even sections of the even sub-bundle
CtM. The bundle C*M is a direct sum of A,M with even p. If we require an even
section F =3 (F), = > Fp € [(CTM), where F, = F19%% e, Neg, A. .. Aeg,,
to be monogenic,

DF = > DF,
p

= Y (<D,F,> +DAF,) =0, (4.17)

p



CHAPTER 4. MONOGENICS AND SPINORS IN CURVED SPACES 85

then we have a system of coupled equations:
<D, F,>+DANF, =0 , <D, F,o>+DNF,=0, (4.18)

where F,, is the homogeneous part of degree p of F. Note that, if a Clifford form A
contains all grades it is clear that both the homogeneous part of even degree and
odd degree must be monogenics independently. Without loss of generality, we can
therefore assume that A has even degree. Neverless, if we consider an arbitrary
Clifford form A € I'(CM) and its decomposition in pure degree terms

A = A+ A%, + A%qe, + Ae ere. + ... + A e, ... e,

n
n

= ) (A, =) 4, (4.19)

p=0
Then claiming that DA, = 0, we obtain

Y (<D A,>+DAA,) =0. (4.20)

p=0
Hence, A satisfies the condition of monogenicity, DA = 0, if and only if
<D,Ap+1>—|—D/\Ap_1:O , p=01,...,n, (421)

with A ; = A,;1 = 0. The main difference with complex analysis is that we
cannot derive new monogenics simply from power series in this solution, due to
non-commutativity. Instead, we can construct monogenic functions from series of
geometric products, but a more instructive route is to classify monogenics via their
angular properties, but in this dissertation we do not analyze this approach. See
[4, 2, 40, 51] for a more detailed study.

Instead of Clifford forms on the Clifford bundle, in the next section, we will examine
the solutions lying in minimal left ideals, these carrying irreducible representations
of the Clifford algebra.

4.4 Monogenic Equation for Spinor Fields

In section 2.4 spinors were defined as the elements that generate a vector space that
provides a faithful representation for the spin group and carry an irreducible repre-
sentation of the Clifford algebra. Any such irreducible representation is equivalent
to that carried by a minimal left ideal of the Clifford algebra, the called spinorial
representation. Hence we thus took the minimal left ideals as the space of spinors,
see subsection 2.4.1. The Clifford bundle of a manifold (M, g) has as fibre at p, the
Clifford algebra of the tangent space of (M, g) at p the Clifford algebra C¢(T,M).
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Any minimal left ideal of this fibre algebra carries the spinor representation. A
manifold (M, g) is said to be a spin manifold if it has a well-defined spin structure.
However, a spin manifold can allow different spin structures. Then, in the following,
when talking about a d-dimensional spin manifold (M, g) it will always be assumed
that a spin structure is already chosen and fixed. This means that we can smoothly
assign a minimal left ideal of the fibre algebra to each p in (M, g), then we have
a bundle over (M, g) with each fibre carrying an irreducible representation of the
corresponding fibre of the Clifford bundle. This is the spinor bundle SM, sections
being the spinor fields on I'(SM), the space of the sections of SM. Such a bundle of
spinor spaces is a sub-bundle of the Clifford bundle. Note that the spin structure,
the spinor bundle and the Dirac operator depend on the metric g of M.

Below, let us investigate the behavior of the Dirac operator under conformal
transformation. In order to accomplish this, let us introduce a local coordinate
system {z#} (1 = 0,1,...,d) on the manifold (M, g). The line element is written as
ds* = g, dat dx”, where g, = g(d,,0,) are the components of g in the coordinate
frame. However, given an orthonormal tangent frame {e,}, we can define the dual
frame of 1-forms {e“} defined by e*(es) = 0%; and such that the previous line
element can be written as

ds? = d,pee’ a,B=1,....d, (4.22)

where 0,3 = g(e,, ep) are now the constant components of the metric relative to
this orthonormal frame. Now, let g be a metric that is conformally related to the
metric g, i.e., there is a function 2 € F(M) over the manifold with 2 > 0 and
g = Q%g. Then, if {&,} is an orthonormal frame with respect to the metric g the
following relations hold

e, . (4.23)

Remember that, the derivatives of the frame vector fields e, determine the coef-
ficients of the spin connection according to the equation (3.44), namely V,ez =
W, 5565. Since we are dealing with metric-compatible connections, a change of met-
ric leads to a different spin connection. With respect to the metric g it is given by
the following relation

~

Vs = G,5e. . (4.24)

Given the frames of 1-forms {€}, we recall that the connection 1-forms w®; are
determined by the first Cartan structure equation and since the relation between
the frames {€”} and {e®} is known, we can find the relation between the two spin
connection one-forms w®, corresponding to the frame of 1-forms e* and w4 relative
to the frame e®. Indeed, after some algebra, from the equation

de® + &y ne’ =0,
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using (4.23) we eventually arrive at the following expression:
1
0% = w5 + = (90e” — 0,02€”). 4.25
W = W + Q( e e’) (4.25)

Defining w®s(e.) = waﬁg and using the expression e®(eg) = 0, from the equation

(4.25) we see that the coefficients of the spin connection 1-forms @, 55 and w, 55 are
related by

1 2
~ Be Be B S€
wa = ﬁwa + @8[ Q(S L s (426)

where indices inside square brackets are anti-symmetrized.

We now consider a conformal transformation of the Dirac operator, which will
be of future relevance in the next section. Let {e,} be an orthonormal tangent
frame for a bundle carrying the irreducible representation of the Clifford bundle,
g(eq, ep) = dop. The monogenic equation for a spinor field 9 is

Dy =0 , Vel (SM), (4.27)

where D = 5O‘Beavﬁ is the Dirac operator and V,, is the Levi-Civita connection of
the spinor bundle, that is the Levi-Civita connection satisfing the Leibniz rule with
respect to the Clifford product and with respect to the natural inner products on
space of spinorial sections. When we deal with spinors, the physical concepts can
be understood in a less abstract way by making use of the Dirac matrices. In even
dimension d = 2n, the Dirac matrices I',, represent faithfully the Clifford algebra
by 2" x 2™ matrices obeying the relation

ToTs + TsTy = 2005, (4.28)

In this case, the spinors are represented by the column vectors on which these
matrices act and their spinorial covariant derivative are given by:

. 1
Vath = 0uthp — ~w, Tl b, (4.29)

with d, denoting the partial derivative along the vector field e,. We should observe
that the Dirac matrices are unchanged under conformal tranformations, I', = I',.
If ¢ € I'(SM) is a spinor field, let us define

Y =D, (4.30)
with p being a constant parameter that will be conveniently chosen in the sequel.
Then, using the equation (4.26), we obtain that the Dirac operator D = I'*V,,
behaves under conformal transformations as follows

A

Dy = D(@v)
= P 'Dy + (p +n — %) QP2(0, )T . (4.31)
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Thus, choosing p = —n + %, it follows the below relations
Dy = Q2D | = Q2. (4.32)

It means that the monogenic equation is invariant under conformal transformations.
Indeed, if ¢ € T'(SM) is a spinor field satisfying the monogenic equation on the
manifold (M, g) then

Dy =0 = Dy =0, (4.33)

since € is a positive definite function throughout the manifold. Thus, the problem
of finding solutions of the monogenic equation in the manifold (M, g) is reduced to
finding monogenic spinor fields on (M, g).

In the recent years much success has been provided in the particular context of
conformally flat spin manifolds, which are Riemannian manifolds with a vanishing
Weyl tensor. Let (M, g) be a d-dimensional conformally flat manifolds, that is

Jag = D0ap . QEF(M), (4.34)

in the neighborhood of a point p of (M, g). Let us present a simple construction
of a solution to the monogenic equation in this manifold. Due to the conformal
invariance of the monogenic equation, it is sufficient to find the monogenic spinor
fields in the flat space which, in the case of Euclidean signature, is the space R?
generated by the standard basis {ej, es, ..., e4}. In order to accomplish this, let us
use a suitable representation for the Dirac matrices introduced in the section 2.5,
but here with a slight modification. We recall that

01 0 — 1 0
01:[10];02:{1. OZ};@:{O _1}, (4.35)

are the hermitian Pauli matrices and we will denote the 2 x 2 identity matrix by I.
Instead of spliting the representation of the Dirac matrices into those that are even
or odd as I'y, or I'y,_1, let us use the following notation

Fa = ET3®(§%O’1&®]I®®E

(a—l;rtimes (n—a) times
[i = 3®..000l®...31, (4.36)
(a—l;:imes (n—a) times

where a and a are indices that range from 1 to n = d/2. Indeed, we can easily check
that the Clifford algebra given in equation (4.28) is properly satisfied by the above
matrices’. The Euclidean Dirac operator is then represented by

D =) (T, +Ta0:) = > 03 ®...8D.gle . 8l (4.37)
a=1 a=1 . :
(a—1) times (n—a) times

In d = 2n + 1, besides the 2n Dirac matrices I'y and T'; we need to add one further matrix, which
will be denoted by I',, 1 given by 'y, 41 = 03 ® 03... ® 03.
—_———

n times
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where
Da = Ulaa + 0286 ;

is the Dirac operator on R? with coordinates {z%,y*}. Let us assume that the spinor
field @ can be written as the following direct product of two component spinors

Y =909, ®...0%,, (4-38)
where each spinor ¥, (a = 1,2,...,n) has the form
P, = > g, (4.39)

s

with their components % (s, = 4) depending just on the coordinates z® and y®,
that is ¢ = ¢S« (2%, y*). Here, we have introduced as the basis of the spinors the

column vectors
et = {é } L = {2 }. (4.40)

From equation (4.27), using (4.37) we obtain that the spinor field of expression
(4.38) satisfies

Dipy @9, ® ... 0, + 039p, @ Dytp, ® ... QP
+ 03¢, @039, @ ... Q Dpp, = 0, (4.41)

which is satisfied if we choose each 1, such that it belongs to the kernel of the
Dirac operator D, on R? and whose form can be easily obtained. It is given by

Daqpa =0 = ¢a(xa7 ya) = ,l/)a<xa + Z.Saya) :

Thus, the monogenic equation on R? for a spinor fields 1 can be reduced to a
monogenic equations on R? for each spinor field v,. It gives a kind of holomorphicity
conditions and allows us to construct monogenic spinor fields on flat space as tensor
product of spinor fields defined on 2-dimensional flat space with the components of
1 given by holomorphic functions ¥ (z* + is,y®) of the plane coordinates.

The monogenic equations for spinor fields are a particular case of the Dirac equation
with zero eigenvalue, massless Dirac equations. In particular, the relation (4.33)
enables us to investigate the conformal invariance of the massive Dirac equation.
Indeed, if 9 is a spinorial field of mass m that obeys Dirac equation in the manifold
with metric g, that is D1 = map, it is straightforward see that

Dy =myp , m=Q"m. (4.42)

Since, generally, {2 is a non-constant function, it follows that the massive Dirac
equation is not conformally invariant, whereas the massless Dirac equation is in-
variant under conformal transformations. Such massless equations for the Weyl
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spinors are known as Weyl equations. In reference [70] it is made the separation of
the Neutrino Equations in a Kerr Background. The called zero-mode of the Dirac
operator is a non-trivial global solution to the euclidean massless Dirac equation.
In reference [65] it is made a study Dirac operator zero-modes on a torus for gauge
background with uniform field strengths. In particular it is shown that under the
basic translations of the torus coordinates the components of the spinor are sub-
ject to twisted periodic conditions and by a suitable choice of coordinates in the
torus the zero-mode wave functions can be related to holomorphic functions of the
complex torus coordinates and finally it shown that the chirality and the degener-
acy of the zero-modes are uniquely determined by the gauge background and are
consistent with the index theorem.

In the next section we will present the main results of this dissertation. It will be
shown that the Dirac Equation coupled to a gauge field can be decoupled in even-
dimensional manifolds that are the direct product of bidimensional spaces. We use
the conformal invariance of the massless Dirac equation to decouple the equation
of motion of a charged test field of spin 1/2 propagating in a particular black hole
solution background.

4.5  Direct Product Spaces and the Separability of the Dirac Equation

Our goal in this section is to show that the Dirac equation minimally coupled
to an electromagnetic field is separable in spaces that are the direct product of
bidimensional spaces. In order to accomplish this, let us first fix some notations.
The Greek letters from the beginning of the alphabet (a, 8, ¢) run from 1 to d = 2n
and label, as previously, the vector fields of an orthonormal frame {e,}; lowercase
Latin indices with and without tildes (a,b,...,a, l~), ...) range from 1 to n and are
also used to label the vector fields of an orthonormal frame {e,, ez} in a pairwise
form, which will be quite suitable to our intent, as will be clear in the sequel; the
indices (£, ) run from 2 to n and serve to label the angular directions of the black
hole spacetime considered here; finally, the indices (s, s1, S2, .. .) can take the values
+1 and label spinorial degrees of freedom. We continue to use Einstein’s summation
convention, but when equal indices are in the same position, both up or both down,
they should not be summed in principle, unless an explicit sign of sum is included.
In what follows, we shall deal with a d-dimensional spin manifold (M, g) endowed
with a metric g of arbitrary signature.

Using the above notation, if we introduce an orthonormal frame {é,} for I'(T'M)
we have

—~
o
S
o
o
N—
|
%)
S
o

g(és,85) = dop < ) = 0 . (4.43)
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The manifold (M, g) is a direct product of n bidimensional spaces which can be cov-
ered by coordinates {x!,y', 22 4% ... 2" y"} such that the line element is written

as
n

ds? = Z ds? = Z(é“ é" + e e, (4.44)
a=1

a=1
where each 2-dimensional line elements ds?> and the 1-forms é* = é,dx" and
é' = égdx/‘ should depend just on the two coordinates corresponding to their

bidimensional spaces. Actually, this is our hypothesis. Note, for instance, that ds?,

é' and &' depend just on the differentials da! and dy! and their components should
depend just on the coordinates ! and y'. In such a case, the only components of
the spin connection that are potentially non-vanishing are

Waga — — Waaa Waaga = — Waaa - (445)

Thus, for example, w;, = 0 and wza = 0 if a # b. Furthermore, the non-null
spin connections for some index a depend just on the coordinates x® and y®. For
instance, w,7, depends just on z' and y.

In order to accomplish the separability of the Dirac equation, let us use the
convenient representation (4.36) for the Dirac matrices. We can introduce a basis
of this representation by the direct products of spinors £€° (s = £) given in (4.40)
which, under the action of the Pauli matrices, satisfy concisely the relations

& =€° , 08 =1is&° , 03§ = s§&°. (4.46)

The basis in d = 2n dimensions for the spinor space, the space on which the Dirac
matrices act, is then spanned by

£ RETR ... @ET

Once the base is defined, any spinor field can be expanded on this basis as

’(ﬁ - Z 1725132”371 Esl ® 552 ® o ® SSn ’ (447)
{s}
where the sum over {s} means the sum over all possible values of {s1,s9,...,$,}

and 1@3152"'5" stands for the components of {p Remember that every s, can take two
values. It means, in turn, that this sum comprises 2" terms, which is the dimension
of the spinor space in d dimensions as viewed in the section 2.4. This basis is very
convenient, since the action of the Dirac matrices on the spinor fields can be easily
comptuted. Indeed, using the equations (4.36), (4.46) and (4.47) that

Fap = ) (5152 50 €1 Q€@ ... QETRETRET®
{s}
® gsﬂ, _ Z (8182 o Sa) ¢3152--~5a—1(*8a)8a+1mSn 581 ® 552 ®
{s}
®€Sa—l ® £3a ® £3u+1 ® o ® gsn , (448)
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where from the first to the second line we have changed the index s, to —s,, which
does not change the final result, since we are summing over all values of s,, which
comprise the same list of the values of —s,. Moreover, we have used that (s,)? = 1.
Analogously, we have:

1"&1[) = Z (5182 L Sa—l) (isa) 1;5152~--5n 581 ® 582 R...R E’Safl ® £—Sa ® £Sa+1 ®

{s}
®€Sn = —4 Z <5152 o 5(1) Sq ¢5152~~~Sa71(75a)5a+1~--sn ésl ® 532 ®
{s}
RETTREREMN Q... RE. (4.49)

Here, the Dirac operator has the same form of (4.37) just replacing the partial
derivative by the covariant derivative, that is

D =) (I'.V, + I':Va). (4.50)

a=1

All that was seen above are necessary tools to attack our initial problem of sepa-
rating the general equation

A ~

[D ~ (A, + F@Ad)] b = P (4.51)

in its 2-dimensional blocks, where fla,fl@ and m are arbitrary functions of the
coordinates. In order to perform this separation, for the spinor field (4.47) let us
use the ansatz take the following separable form

P = Gy Uty O, (452

From this hypothesis and using the equations (4.48) and (4.49) it follows that the
equation (4.51) is given by

n
DO (srsa.sa) U g

a=1 (s}

. A 1A In A 1A 1 7 (—8q) ¢s s s

1 8q 8a+§waa&—Aa + 8&+§wa&a_14a DT ger . @

= im Y VPO .t REP R, eEm, (4.53)
{s}

where 9, and 9; are the derivatives along the vector fields &, and e, respectively.
Let us write this latter equation in a more convenient form. Factorizing the com-
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ponents zﬁfl A‘Z” e zﬁf;b” of the spinor, we have
= 1 L1 A 1 2\ -
Z Z(Slsg . 8q) = {1 Sa (aa + = Waaz — Aa) + (aa + = Wga — Aa)} s
— wsa 2 2
{s} a=1 a
— iR eI QR ® ... RET =0 dotted

(4.54)

We can thus conclude that

n

1 A 1 N . 1 . R
. A _ oA —Sa)
g ($182...54) 1&3@ {z Sa (6a + 3 Waaa Aa> + <8a + 5 Waia Aa)} @Da(

a=1 a

= im. (4.55)

In order for the latter equation to be separable in blocks depending only on the
coordinates {x,,y,} for each value of a, we assume that the functions A, and 4;
must depend only on the two coordinates {z*, y*} and using this assumption, since
now the left hand side depend only on these pairs of coordinates the function m
must be a sum over a of functions depending also on these pairs of coordinates. We
can summarize these results by the relations

n

Ag = Au(zy) , Ay = Aa(zy) , = Zma(x“, y). (4.56)
a=1

These assumptions lead us to the following equation:

n

1 o
> [(3152...%)@& Dieq)(5e) — zm] =0, (4.57)

where the operator D3+ is defined by

a=1

.1 A N A
D = is, <8a + 5 Gaaa — Aa) + (aa + 5 Waaa — Aa) : (4.58)

Note that each term in the sum over a depends just on the two coordinates {x%, y*}.
In order to the sum of functions depending on distinct variables to be zero, is thus
necessary that each term of these sum be a constant, here called of separation
constant, with the sum of the constants being null. However, it is worth noting
that the separation constants can depend on the choice of {s} = {s1,52,..., 5}
Indeed, the equation (4.57) provides not only one equation but rather a total of 2"
independent equations, since for each choice of {s} = {s1,s9,...,5,} we have one
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equation. Let us denote this separation constant conveniently by inés}. Then, we
find the following set of coupled first orders for ¢J* and @/JCE_S“):

(s152...8q) Dienp () = i (g +inih e >yl =o0. (4.59)
a=1

For each of these equations we can have different separation constants. These
equations enable us to integrate the fields 1&2‘1 and, therefore, find the solutions for
the generalized Dirac equation (4.51). We obtain thus that in the manifold with line
element (4.44) the generalized Dirac equation (4.51) reduces to pair of first order
differential equations. However, although these equations are first order differential
equations, they are coupled in pairs, namely the equations involving the field 1/32“
have @a(*s“) as source and vice-versa. Therefore, we can eliminate @20 or 1%75“) from
the of equations (4.59) to obtain a decoupled second order differential equation for
each component 1/32“, thus achieving the separability that we were looking for.

The second equation of (4.59) are constraints which the separation constants must
obey. Let us solve these constraints. What makes our task nontrivial is that since
each one of the n spinorial indices s, (a = 1,2,...,n) can take two values, the
collective "index" {s} can take 2" values, it follows that the equation

> it =0 (4.60)
a=1

comprise 2" constraints. But, it is worth noting that 7735} cannot depend of 5,11, Sqt2,

..., Sn, since the first equation of (4.59) by consistency is independent on these in-
dices. In particular, by writing the quoted equation in the form
1 ~
inis} = (5152...54)= DZ“¢(_5“) — im, (4.61)

a
Sa
a

we can see that ni{s} depends just on s;, so that we can write it as

771{8} = s1 K}, (4.62)
where k7' is a pair of constants that depends just on s;. Now, multiplying the
equation (4.61) by s;18...5, and using that s> = 1 we can write

1 . .

— D) = i (ssz e sa) (a0 5 (4.63)
Ve

Note that the right hand side depends on s1, s9, ..., s, while the left side depends

only on s,. In order to the right hand side of this equation, likewise, depend just
on s, we must have

M + 105 = (s189...8,) K3, a>2, (4.64)

a
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where differently of k7', here k. is a pair of parameters in principle not constant that
depends just on s, for each a to determine in the sequel. Since nis} are constants,
taking the derivative of both sides of the latter equation, we have

Oyg = (8182...84) OuKy" . (4.65)
Since the left hand side of the latter equation does not depend on the elements
of the set {s}, it follows that 0,k must vanish for the equation to be consis-
tent. This, in turn, implies that m, should be constant for a > 2. But, if
mao(x?,y?), ms(z3,1°), ..., mu(x™, y") are constants we can, without loss of gen-
erality, make all of them zero and absorb these constants in 7 (2!, y'). Therefore,
we can say that a consistent separability process requires that

Once assumed the previous conditions, the equations (4.62) and (4.64) immediately
lead to

nit = (s185...54) K3, (4.67)
where now k¢ is a pair of constants as x7*. Since the sum of the constants nés}
vasinhes, we are left with the following equation

n

Z (s182...8q) K,* = 0, (4.68)

a=1

which must hold for all possible choices of {s}. We thus wish know who are the
constants x3¢. In order to perform this we need manipulate this equation to solve
such constraint. From now on, our task is restricted to identifying on both sides of
the equation their corresponding dependencies with respect to the elements of the
set {s}. Indeed, isolating k3! we obtain that

On the left hand side of the equation we have the term corresponding to the value
of a equal to 1 which depends just on s; and on the right hand side a sum of terms
that, in principle, may be dependent on s;. However, since the sum start counting
from a equal to 2 forward, none of the terms in the sum depend on s;. We can
conclude that this sum is constant, that is

S _ 81 __
E (S9...8q4) kK =¢1 , K'= —c,
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where ¢ is a constant that does not depend on {s}. Following the same reasoning,
let us write the latter equation as follows

n
89 o s
K3t — Sp¢p = — E (S3...8q) K.* .
a=3

Noting that the left hand side of the above equation depends just on s, and that
the sum of the terms on the right hand side clearly do not depend on s, we thus
can conclude that

Z(sg...sa)/sza =y , Ky = S0 — Ca,

a=3

where ¢, is a constant that does not depend on {s}. We can continue with this same
procedure until reaching the term x:». Eventually, we are left with the following
final equation

Ky® = SaCa—1 — Ca , Co = Cp =0, (4.69)

where ¢y, ¢s, ..., ¢, are arbitrary constants. Hence, this problem admits (n — 1)
constants of separation. The latter equation is the general solution that solve the
constraint (4.68). With the results obtained on the equations (4.66), (4.67) and
(4.69), we can use them in the first equation of (4.59) to find, finally, the following
set of coupled first order differential equations:

Dy ™Y = i (syri — o) U

D p (75 = i (sgcar —ca) VS, a>2. (4.70)

We have thus reduced the solution of the generalized Dirac equation (4.51) in the
manifold with line element (4.44) n pairs of first order differential equations. Elimi-
nating ’(/A)Za or @/AJCE_S“) gives us a second order equation for @/}2‘1 and the general solution
can be expressed as a linear combination of the of the particular solutions belong-
ing to the different values of {cy,co,...,¢,_1} which can only take discrete values
for appropriate boundary conditions. In this sense, the constants {c,cs,..., ¢, 1}
can be viewed as eigenvalues and determined by the condition of regularity of the
solutions s

In the next section, we shall use these results to separate the Dirac equation in
some black hole spacetimes

4.6 Black Hole Spacetimes

The study of scalar fields, spin 1/2 fields and gauge fields (abelian and non-abelian)
propagating in curved spacetimes plays a central role on the study of General rela-
tivity and any other theory of gravity. The main reason is that besides the detection
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of gravitational radiation and observation of the direct interaction between objects
via gravitation, the most natural and simple way to probe the gravitational field
permeating our spacetime is by letting other fields interact with it. In this sec-
tion we shall use the previous results to separate the Dirac equation corresponding
to a massive and electrically charged field of spin 1/2 in the background of black
holes described in 78], which is a static black hole whose horizon have topology
R x S§% x ... x 82 These black hole solutions possessing electric and magnetic
charge, have been also obtained in references [87| and [86]. These are spacetimes
whose line element in even dimensions d = 2n is

dr? -
ds* = —f(r)*dt* + f(:)2 + r? Z(d@? + sin®, doy) (4.71)
=2
where f = f(r) is a function of the coordinate r as follows
1 2M Q2(d —3) @ Ar?
_ e _ m — 4.72
) \/d—3 trm P a—yee s aa-se a-1 47

with M, Q. and @), being the mass, the arbitrary electric and magnetic charges,
respectively, of the black hole and A the cosmological constant. The details of this
solution can be consulted in reference [78|. A suitable orthonormal frame of 1-forms
for such spacetime is the following:

7 1

el=if(r)dt , e'= mdr . € =rsinfdo, el = rdf,, (4.73)
r
where the index [ ranges from 2 to n. In this frame, the line element is given by
ds* = Z (e”e” + e"e”). (4.74)
a=1

This spacetime is the solution of Einstein-Maxwell equations with a cosmological
constant A and electromagnetic field F = dA, where the gauge field A given by

A= r%3 dt + Qm Y _ cosbydey,
(=2

which, in the orthonormal frame, can be written as

A=A.e" + Aze' =Aje' + > A, (4.75)
=2
where
1 Qe Qm
Al = — W s Ag = T cot 0@ s A[I =0. (476)
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The Dirac equation is written in the form
Dy =m2, (4.77)

where D = I'*V, is the dirac operator. The field 1) of spin 1/2 with electric charge
¢ and mass m in this spacetime and minimally coupled to the electromagnetic field
obeys the following version of the Dirac equation

(D —iqA)p =m, (4.78)

where A = A,I'* is the representation of the gauge field. Using that A; = 0, it
follows that the above equation is written as

D= (m+iqAJ"). (4.79)

Our goal in this section is integrate this equation. Making a connection with the
previous section, we recall that an equation analogous to this has been separated
when the space is a direct product of bidimensional spaces. Clearly this is not the
case, since in front of the angular part of the black hole line element (4.71) there is
the multiplicative factor 2. However, we can factor out the function 72 in the line
element (4.71) and define ds? that is conformally related to our initial line element

ds?
A2
dS = ?,
where
A2 f2 2 dr? - 2 .9 2 . )
di? = 5 dt* + oo + > (67 + sin®0, def) =y ds?, (4.80)
(=2 a=1
with
A 2 dr? ") - 2 2 2
di? = —ﬁdtQ + i ds; = Z(d@z + sin®0,dg;) .
=2

The conformally transformed space with line element ds? is a direct product of bidi-
mensional spaces. It is worth noting that ds? depends just on the coordinates ¢ and
r, while d37 depends on the angular coordinates §;, and ¢,. A suitable orthonormal
frame of 1-form for this space is given by

. oy )
&= Yy , él= —fdr . é'=sinb,dp, , é'=db,. (4.81)
T T

In this case, the only non-vanishing components of the connection wg,. in the frame
{e,} are

i = —bni=rf—-f, Wegp = — Wyyg = Ot O, (4.82)
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where f’ stands for the derivative of f with respect to its variable r. The conformal
transformation of the Dirac operator given by the equation (4.42) enable us relate
the quantities concerning to the spacetime with line elements ds? to the quantities
defined on ds?. Indeed, we can write the field equation (4.79) in terms of an equation
in the space with line element ds?, so that the separability results of the previous
section can be fully used. In particular, we recall that the relevant conformal
transformations are the following

Dy =Q 0Dy | h=Qi " . =0 m with Q=r"1.
From the latter equation follows that the field equation (4.79) can be written as
D = Q7 m + i gA%) 4 (4.83)
in its turn, defining
m=1n=rm , A,=iqrA, , A;=0, (4.84)
we are left with the following equation
(D —TA,) % = mp, (4.85)

which is exactly the form of equation studied in previous section and we have been
able so separate. Moreover, and foremost, defining the coordinates

=t , yt=r |, 2'=¢ , y =0, (4.86)

it follows that the function m and the gauge field are exactly of the form necessary
to attain separability, namely the constraints (4.56) and (4.66) are obeyed. In
particular, the solutions of the equation (4.79) in the black hole background is
given by

=GN ) U5 (62, 02) . U (00, 00) € R ET @ . @ E . (487)
{s}
From equations (4.58), (4.70), (4.76) and (4.82) - (4.84), it follows that the functions

3+ must be solutions of the following differential equations

s (So- 225+ (rroe g r - 0) |l =iirm— epu

. 1 . 1 —s . Sy
{z Sy (sin G, Op, — 1q Qm cot 94) + (895 + 5 cot 94)] é 0 — (spco—1 —co) ",
(4.88)

where we recall that the constants of separation ¢, co, ..., c,_1 take discrete values
once boundary conditions and regularity requirements are imposed and the con-
stant ¢, is zero. It is fruitful noting that the coefficients of the latter equation are
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independents of the coordinate ¢t and ¢, therefore both the metrics g and g possess
the Killing vector fields d; and d,. This stems from the fact that the coordinates ¢
and ¢, are cyclic coordinates of this metric. It is thus convenient to decompose the
dependence of the fields 152 on these coordinates in the Fourier basis, namely,

) =W () (e, 0p) = € WI(0,) . (4.89)

The final general solution for the field ¥ must, then, include a "sum" over all
values of the Fourier frequencies w and wy with arbitrary Fourier coefficients. While
w can be interpreted as related to the energy of the field, w, are related to angular
momentum. Note that in order to avoid conical singularities in the spacetime, the
coordinates ¢, must have period 27, namely ¢, and ¢, + 27 should be identified
[88]. As it is well-known, a spin 1/2 field changes its sign after a 27 rotation,
which implies that the angular frequencies w, must be half-integers, see 88| for
more details:
1 3 5

we=Fg, kT Eo (4.90)
Finally, inserting the decomposition (4.89) into equation (4.88), we end up with the
following pairwise coupled system of differential equations:

a 1, . wr e —s1 . s
{rf% o f =) +is (7 - fqu;l?_4) +} U =i (sirm =) U
d 1 Wy (—sp) . sp
o+ 30t = s\ g = 4Qmeotler ) | W =i (s — ) W (491)

4.6.1  The angular part of Dirac’s Equation

Since we have been able so separate the generalized Dirac equation into radial and
angular coordinates, we now shall investigate a little further these equations. Let
us start with the angular part of the equations, namely the equations for ¥;*. One
can make a simplification on these equations by performing a field redefinition along
with a redefinition of the separation constants, as we show in the sequel. Instead
of using the (n — 1) separation constants ¢y, ca, ..., ¢,_1, we shall use the constants
A2, A3, ..., A\, defined by

N =/c}, —cF, (4.92)

where we recall that ¢, = 0, by definition. Inverting these relations, we find that
the old constants can be written in terms of the new constants as follows:

Coor= N+ M+ A (4.93)
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Then, defining the parameter

c
(¢ = arctanh <—£> ,
Cr—1

Cp—1 = )\g cosh CZ y Cyp = )\5 sinh CZ )

we find that

so that the following relation holds:
SpCp1— Cp= Sy hpe S
Thus, performing the field redefinition given by
T3 (0) = e /2 D5 (h), (4.94)

it turns out that the angular part of (4.91) can be written in a simpler way in terms
of the fields ®;*(0). Indeed, using the latter equation on the second equation of
(4.91) we find that

d 1 Wy (—s¢)
— + —cotb, — s - — m cot 0 D, =G5, N\ PO 4.95
Ll@ g O f(sm@,Z 1 fﬂ ¢ Poet e (4.95)
Although it may seem that we did not achieve much simplification by the redefini-
tion of the fields and separation constants, it turns out that in the case in which
the black hole has vanishing magnetic charge, ),, = 0, these equations reduce to

d 1 Sy Wy
— 4 Zcoth, —
|:d9g + 2 covoe sin 6,

] D\ = gy N B3 (4.96)

The above equation is exactly the Dirac equation on the 2-sphere S2, that is a
eigenvalue equation Dg2® = 1 A @, where by Dg2 we mean the Dirac operator on
the 2-sphere and ® a 2-component spinor. Indeed, using the frame e! = sinfd¢
e? = df along with the Dirac matrices v! = o, and 4 = 05 one can easily derive
the latter equation. The problem of finding eigenstates of Dirac operator on the
sphere S? is a well posed mathematical problem that can be solved exactly. The
solution @ has its components written in terms of Jacobi polynomials [88, 90| and
geometrically, these solutions can be understood in terms of the Wigner elements of
the group Spin(R?), that give rise to the so-called spin weighted spherical harmonics
[93, 94|, which are tensorial generalizations of the spherical harmonics. Moreover,
not all values are allowed for \,. Indeed, once regularity requirements are impose
on 2-sphere, \; must fulfill the condition to be non-zero integers

Ao=41,42 43, ... . (4.97)

Solutions with non-integer eigenvalues are not well-defined on the whole sphere,
while a vanishing eigenvalue is forbidden by the Lichnerowicz theorem [92], since
the sphere is a compact manifold with positive curvature.
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Regarding the general case in which the black hole magnetic charge is non-vanishing,
Qm # 0, we have tried to make a redefinition of the fields ®;* by means of a
general linear combination of the fields ®; and @, , with non-constant coefficients,
in order to convert equation (4.95) into the eigenvalue equation Dg® = i\ ®.
However, it turns out that the coefficients of the linear combination must obey
fourth-order differential equations, whose solutions seem to be quite dificult to
attain analytically. In spite of this, we can make an important progress regarding
the system of equations (4.95) by decoupling the fields ®; and ®,, which, after all,
is our goal at this section. The final result is that the fields @} satisfy the following
second order differential equation:

1 d iy
—_— (sinﬁgd 4 ) +

sin Qg d@g deg
(14 2qQm) wecosOp 1+ 2qQ,, + 2w} N (1 — 4¢*Q?)) cos? b, 2] o — o
sin? 6, 2sin? 6, 4cos? 0, fee T
(4.98)

It is worth stressing that the latter equation must be supplemented by the require-
ment of regularity of the fields ®;* at the points # = 0 and 6§ = 7, where our
coordinate system breaks down. These regularity conditions transform the task of
solving the latter equation in a Sturm-Liouville problem, so that the possible values
assumed by the separation constants )\; form a discrete set. Since the case @), =0
in equation (4.98) has a known solution, as described above, it follows that we can
look for solutions for the case @,, # 0 by means of perturbation methods, with @,,
being the perturbation parameter. Indeed, in the celebrated paper |74], a similar
path has been taken by Press and Teukolsky in order find the solutions and their
eigenvalues for the angular part of the equations of motion for fields with arbitrary
spin on Kerr spacetime, in which case the angular momentum of the black hole was
the order parameter. In this respect, see also the reference [96].

4.6.2  The radial part of Dirac’s Equation

Now, we shall investigate a little further about the pair of radial equations in expres-
sion (4.91). In order to acomplish to solve such equations we should first decouple
the fields ¥;" and ¥; . The form of radial equation in (4.91) suggests that instead of
the factors inside of the brackets we define the following functions of the coordinate
T?

1 [1 e
By (r) = ﬁ §(Tf/—f)—i31 (%_;T—det)]

Cy (1) = —% (sirm—+c¢p),
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in terms of which the radial equation in (4.91) can be written as
Ay
g = B G (4.99)

Then, deriving this equation with respect to r and eliminating ¥, ' of the above

equation to obtain
1 [dy}?
U= —=+ B, ¥ ),
A ( ar o 1)

using this, we eventually arrive at the following expression:

d>Us 1 dC, AWt
(o ) ()

dr? Cy, dr dr
dBg
(7 — B2 — 0810_51) =0, (4.100)

which is the decoupled second order differential equation for Wi'. An analytical
exact solution of the latter differential equation is, probably, unapproachable. Nev-
ertheless, we can use (4.100) to infer the asymptotic forms of the solution near the
infinity, r — oo, as well as near the horizon » — r, , where 7, is a root of the
function f, namely f(r.) = 0. In order to perform this analysis, we shall write the
equation (4.100) as:
> dv
dr? dr
where functions hj'(r) and hi'(r) can be obtained without great effort by comparing
equations (4.100) and (4.102). Before proceeding, we should note that considering
the solutions of the equation (4.102) in the limit » — oo we must expand the
function A5 (r) up to order r~®*Y and A& (r) up to order r~®+?) if we want to
know Wi' up to order r~P. This ensures that our research in this limit will be
consistent. Once called attention to this important detail, we now can work out the
asymptotic forms of the functions hj'(r) and hg'(r) in the region of interest.

+ B3 (r)

RS (r) T =0, (4.101)

Let us separate the analysis of these two cases. The motivation for this division is
that the function f(r) in the black hole line element (4.71) has a term that multi-
plies A becomes the dominant one as we approach the infinity, » — co. Therefore,
it is natural to guess that the cases of vanishing and non-vanishing A should be
qualitatively different. Let us then consider first the case A # 0. Collecting the
functions that that accompany % and ¥ in equation (4.100) and then expand-
ing them in powers of r~!, we can find, after some algebra, the following asymptotic

forms
_ 2 ; _
B () (d—1)m i(d—1)sjw 0 ( 1 ) ’

Ar? Ar3

T R e T R ) BECEC
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Particularly, if we consider the expansion of hg'(r) up to order r—2 and the expan-
sion of hi'(r) up to order r~1, the integration of the equation (4.102) gives us the
following asymptotic form:

myd— 1
Ut ~ Cysin | —————log (1) + , 4.103
i~ Cosin | 2 log () + (1,103

where Cy and 1)y are arbitrary integration constants.

Now, let us consider the second case on which the cosmological constant is null,
A = 0. In this case, when d > 6 one can see, after performing a subtle algebra, that
the asymptotic forms of the functions Af*'(r) and hg' (r)are the following

h'(r) = [(d—3)"w’ —(d—3)m?]
+ E—i—(d—3)(cf—zwcl)_(d_3) Qnm?  (d—-3)P°Q w1

m 4(d—5) 20d—5) | r?
1
¥ o(_)
s1 1 S1C1 1
hl (T) = _;_mr2+0(7“—3)

Note, however, that the case of vanishing cosmological constant, the well-known case
d = 4 is qualitatively different from the higher-dimensional cases d > 6. Indeed,
these formulas do not apply to the well-studied situation d = 4, in which case hg'(r)
has a term of order 7~! depending on M and Q. and the function corresponding to
the term of order r~2 has additional terms also depending on these constants. A
completely analogous analysis can be done for hf*(r). These considerations lead us
to the following conclusion. For A = 0, the spinor field that represents a charged
particle of spin 1/2 moving in the black hole (4.71) has qualitatively different fall
off properties in the asymptotic infinity depending on whether d =4 or d > 6.

Above, we describe the asymptotic behavior in the limit when the coordinate r
assumes values near the infinity. However, a similar analysis can be done near the
horizon. This is the case of the values of r for which the function f vanishes. In such
case the coordinate r ceases to be reliable and we should change the radial coordi-
nate to tortoise-like coordinates. In 74| these coordinates are useful in the study
of the dynamical stability of the Kerr Metric. Besides such asymptotic behaviours,
one can also look for approximate solutions valid in a broader domain by means
of other approximation methods. In particular the Wentzel-Kramers-Brillouin ap-
proximation method ( WKB ) has been widely used in the pursuit of such solutions.
In [95] the WKB method is used to obtain an approximate solution for the Dirac
field on the Kerr spacetime, while on [99] it is utilized to solve the radial part of
the Dirac equation in the Schwarzschild geometry. In both references, the WKB
method is applied after transforming the radial second order differential equation
into a Schrodinger equation. To know more, consult the references [97, 82.
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