Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/24894
Share on
Title: | Reconhecimento de instâncias guiado por algoritmos de atenção visual |
Authors: | MESQUITA, Rafael Galvão de |
Keywords: | Reconhecimento de padrão; Processamento de imagens |
Issue Date: | 24-Feb-2017 |
Publisher: | Universidade Federal de Pernambuco |
Abstract: | Atenção visual é o processo pelo qual o cérebro humano prioriza e controla o processamento de estímulos visuais e é, dentre outras características do sistema visual, responsável pela forma rápida com que seres humanos interagem com o meio ambiente, mesmo considerando uma grande quantidade de informações a ser processada. A atenção visual pode ser direcionada pelo mecanismo bottom-up, em que estímulos de baixo nível da cena, como cor, guiam o foco atentivo para aquelas regiões mais salientes, ou seja, que se distinguam da sua vizinhança ou do restante da cena; ou pelo mecanismo top-down, em que fatores cognitivos, como expectativas do indivíduo ou o objetivo de concluir certa tarefa, definem a região de atenção. Esta Tese investiga o uso de algoritmos de atenção visual para guiar (e acelerar) a busca por objetos em imagens digitais. Inspirado no funcionamento do mecanismo bottom-up, um algoritmo de detecção de saliências baseado na estimativa do background da cena combinado com o resultado de um operador Laplaciano, denominado de BLS (Background Laplacian Saliency), é proposto. Além disso, uma modificação no detector/descritor de características locais SURF (Speeded-UpRobust Features), denominado depatch-based SURF, é desenvolvida para que o reconhecimento ocorra iterativamente em certos locais em foco da cena, ao invés de executar o modo clássico de reconhecimento (busca clássica), em que toda a cena é analisada de uma só vez. O modo de busca em que opatch-based SURF é aplicado e a ordem das regiões analisadas da imagem é definida por um algoritmo de detecção de saliência é referenciado como Busca Guiada por Mapa de Saliência (BGMS). O BLS e outros nove algoritmos de detecção de saliências são experimentados na BGMS. Resultados indicam, em média, uma redução para (i) 73% do tempo de processamento da busca clássica apenas pela aplicação do patch-based SURF em uma busca aleatória, (ii) e para 53% desse tempo quando a busca é guiada pelo BLS. Utilizando outros algoritmos de detecção de saliências do estado da arte, entre 55% e 133% do tempo da busca clássica são necessários para o reconhecimento. Além disso, inspirado pelo mecanismo top-down, é proposta a Busca Guiada por Características do Objeto (BGCO) por meio da priorização de descritores extraídos da cena em função da distância Hamming para os descritores de um determinado objeto alvo. A BGCO utiliza filtros de Bloom para representar vetores de características similares aos descritores do objeto buscado e possui complexidade de espaço e tempo constantes em relação ao número de elementos na base de descritores do alvo. Experimentos demonstram uma redução do tempo de processamento para 80% do tempo necessário quando a busca clássica é executada. Concluindo, a partir da integração entre a BGMS e a BGCO (BGMS+BGCO) é possível reduzir o tempo de execução da busca para 44% do tempo da busca clássica. |
URI: | https://repositorio.ufpe.br/handle/123456789/24894 |
Appears in Collections: | Teses de Doutorado - Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TESE Rafael Galvão de Mesquita.pdf | 3,06 MB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License