Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/24894

Comparte esta pagina

Título : Reconhecimento de instâncias guiado por algoritmos de atenção visual
Autor : MESQUITA, Rafael Galvão de
Palabras clave : Reconhecimento de padrão; Processamento de imagens
Fecha de publicación : 24-feb-2017
Editorial : Universidade Federal de Pernambuco
Resumen : Atenção visual é o processo pelo qual o cérebro humano prioriza e controla o processamento de estímulos visuais e é, dentre outras características do sistema visual, responsável pela forma rápida com que seres humanos interagem com o meio ambiente, mesmo considerando uma grande quantidade de informações a ser processada. A atenção visual pode ser direcionada pelo mecanismo bottom-up, em que estímulos de baixo nível da cena, como cor, guiam o foco atentivo para aquelas regiões mais salientes, ou seja, que se distinguam da sua vizinhança ou do restante da cena; ou pelo mecanismo top-down, em que fatores cognitivos, como expectativas do indivíduo ou o objetivo de concluir certa tarefa, definem a região de atenção. Esta Tese investiga o uso de algoritmos de atenção visual para guiar (e acelerar) a busca por objetos em imagens digitais. Inspirado no funcionamento do mecanismo bottom-up, um algoritmo de detecção de saliências baseado na estimativa do background da cena combinado com o resultado de um operador Laplaciano, denominado de BLS (Background Laplacian Saliency), é proposto. Além disso, uma modificação no detector/descritor de características locais SURF (Speeded-UpRobust Features), denominado depatch-based SURF, é desenvolvida para que o reconhecimento ocorra iterativamente em certos locais em foco da cena, ao invés de executar o modo clássico de reconhecimento (busca clássica), em que toda a cena é analisada de uma só vez. O modo de busca em que opatch-based SURF é aplicado e a ordem das regiões analisadas da imagem é definida por um algoritmo de detecção de saliência é referenciado como Busca Guiada por Mapa de Saliência (BGMS). O BLS e outros nove algoritmos de detecção de saliências são experimentados na BGMS. Resultados indicam, em média, uma redução para (i) 73% do tempo de processamento da busca clássica apenas pela aplicação do patch-based SURF em uma busca aleatória, (ii) e para 53% desse tempo quando a busca é guiada pelo BLS. Utilizando outros algoritmos de detecção de saliências do estado da arte, entre 55% e 133% do tempo da busca clássica são necessários para o reconhecimento. Além disso, inspirado pelo mecanismo top-down, é proposta a Busca Guiada por Características do Objeto (BGCO) por meio da priorização de descritores extraídos da cena em função da distância Hamming para os descritores de um determinado objeto alvo. A BGCO utiliza filtros de Bloom para representar vetores de características similares aos descritores do objeto buscado e possui complexidade de espaço e tempo constantes em relação ao número de elementos na base de descritores do alvo. Experimentos demonstram uma redução do tempo de processamento para 80% do tempo necessário quando a busca clássica é executada. Concluindo, a partir da integração entre a BGMS e a BGCO (BGMS+BGCO) é possível reduzir o tempo de execução da busca para 44% do tempo da busca clássica.
URI : https://repositorio.ufpe.br/handle/123456789/24894
Aparece en las colecciones: Teses de Doutorado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Rafael Galvão de Mesquita.pdf3,06 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons