Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/24583

Comparte esta pagina

Título : Essays on nonnormal regression modeling
Autor : LUCENA, Sadraque Eneas de Figueiredo
Palabras clave : Análise de regressão; Regressão simplex
Fecha de publicación : 10-feb-2017
Editorial : Universidade Federal de Pernambuco
Resumen : Na modelagem de dados por meio de regressão, há uma ampla variedade modelos que podem ser ajustados para avaliar a relação entre a variável resposta e os regressores. Em algumas situações, a modelagem pode envolver dois ou mais modelos com ajustes semelhantes, embora com especificações distintas. Quando nenhum dos modelos ajustados pode ser obtido por meio de restrições paramétricas impostas aos outros modelos, dizemos que eles são não-encaixados. Dois possíveis métodos para selecionar o mais adequado entre modelos lineares não-encaixados são os testes J e MJ. Nesta tese é apresentada uma adaptação desses testes para a classe de modelos denominada generalized additive models for location, scale and shape (GAMLSS). Evidências obtidas a partir de simulações de Monte Carlo em pequenas amostras e uma aplicação são reportadas. Também é apresentada uma abordagem paramétrica para o modelo de regressão simplex aumentado. Este modelo pode ser ajustado nos casos em que a variável resposta assume valores nos intervalos [0,1), (0,1] ou [0,1]. Aqui o modelo é chamado de modelo de regressão simplex inflacionado em zero e/ou um. Inferência, medidas de diagnóstico e uma aplicação também são apresentados.
URI : https://repositorio.ufpe.br/handle/123456789/24583
Aparece en las colecciones: Teses de Doutorado - Estatística

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE Sadraque Eneas de Figueiredo Lucena.pdf1,59 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons