Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/24578

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorCRIBARI NETO, Francisco-
dc.contributor.authorLIMA, Fábio Pereira-
dc.date.accessioned2018-05-10T17:06:08Z-
dc.date.available2018-05-10T17:06:08Z-
dc.date.issued2017-02-23-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/24578-
dc.description.abstractO método bootstrap, introduzido por Efron (1979), tornou-se uma importante ferramenta estatística para contornar problemas inferenciais em pequenas amostras ou quando a teoria assintótica é intratável, podendo ser utilizado, por exemplo, na construção de intervalos de confiança, para realizar correção de viés de estimadores e para realizar testes de hipóteses. Quando se trata da classe de modelos de regressão beta proposta em Ferrari e Cribari- Neto (2004), utilizada na modelagem de variáveis contínuas no intervalo (0,1), o método tem um importante papel na construção de intervalos de predição e na realização de testes de hipóteses. A presente tese tem como objetivo abordar os principais métodos bootstrap utilizados para realizar inferências sobre os parâmetros dessa classe de modelos, avaliando os desempenhos das principais variantes de tal método. Para tanto, inicialmente são expostas adaptações do método bootstrap tendo como objetivo a realização de testes de hipóteses encaixadas e não encaixadas. Nesse cenário, propomos uma versão bootstrap duplo rápido para os testes com o objetivo de obter maior precisão nos resultados sem alto custo computacional. Adicionalmente, um estudo sobre a construção de intervalos de predição em modelos de regressão beta é realizado. Levando em conta os métodos percentil e BCa adaptados em Espinheira et al. (2014), propomos uma adaptação do método t-bootstrap e as versões bootstrap duplo do mesmo e do método percentil. O desempenho de cada método é então avaliado na busca de determinar a melhor abordagem para cada situação.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectAnálise de regressãopt_BR
dc.subjectRegressão betapt_BR
dc.titleInferência bootstrap em modelos de regressão betapt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/2167429953546645pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/2225977664095899pt_BR
dc.publisher.programPrograma de Pos Graduacao em Estatisticapt_BR
dc.description.abstractxIntroduced by Efron (1979), the bootstrap became an important statistical tool, being used to overcome inference problems on small samples or when the asymptotic theory is intractable. The method can be used, for example, for constructing conhdence intervals, for performing bias correction of estimators and for carrying out hypothesis testing inference. In the beta regression model, proposed by Ferrari and Cribari-Neto (2004) which is used to model continuous variables in (0,1), the bootstrap method plays an important role in the construction of prediction intervals and hypothesis testing. This thesis deals with the use of bootstrap methods for perfoming statistical inference in beta regression models. We present adaptations of the bootstrap method for perfoming nested and nonnested hypothesis testing inference. Next, we propose fast double bootstrap variants of the tests in order to achieve more accurate inferences without the high computational cost required by the Standard double bootstrap. Additionally, a study of prediction intervals in the class of beta regression models is performed. We introduce f-bootstrap prediction interval and the double bootstrap versions of the percentil and f-bootstrap prediction intervals. The performance of each method is then evaluated in the quest to determine the best approach for each situation.pt_BR
Aparece nas coleções:Teses de Doutorado - Estatística

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Fabio Pereira Lima.pdf4,91 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons