Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/12268

Share on

Title: Analysis and evaluation of optimization techniques for tracking in augmented reality applications
Authors: Teixeira, João Marcelo Xavier Natário
Keywords: Realidade aumentada; Visão computacional; Alto desempenho; Augmented reality; Computer vision; High performance
Issue Date: 1-Mar-2013
Publisher: Universidade Federal de Pernambuco
Citation: TEIXEIRA, João Marcelo Xavier Natário. Analysis and evaluation of optmization techniques for tracking in augmentes reality applications. Recife, 2013. 93 f. Tese (doutorado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..
Abstract: Aplicações de visão computacional em tempo real executadas em campo fazem uso frequente de computadores vestíveis, os quais apresentam uma restrição crítica na quantidade de processamento que podem suportar, uma vez que a maior parte da aplicação (se não sua totalidade) deverá executar na plataforma vestível. É fundamental um esquema de balanceamento de carga capaz de permitir que a aplicação utilize mais poder de processamento quando os cenários de entrada apresentam mais restrições visuais, por exemplo, referentes ao objeto a ser rastreado, e diminua tal processamento com o objetivo de economizar bateria e tempo de CPU em aplicações quando o vídeo capturado é mais controlado (mais acessível). O fato de aplicações de visão computacional executarem em uma variedade de plataformas justifica se definir um modelo que ajuste automaticamente o rastreador em uso em aplicações com restrições de recursos computacionais. A degradação de desempenho em plataformas vestíveis pode ser maior do que a esperada, uma vez que plataformas desktop e móvel apresentam diferentes níveis de configurações de hardware, e consequentemente, diferentes restrições de desempenho. Esta tese de doutorado soluciona o problema do rastreamento de objetos usando um modelo de decisão, objetivando utilizar o algoritmo menos custoso sempre que possível. Como objetivos específicos têm-se: investigar e implementar diferentes técnicas de rastreamento, para escolher/definir uma métrica de referência que possa ser usada para detectar interferência na imagem (oclusão, ruído, etc.), propor um modelo de decisão que permita chaveamento automático entre diferentes rastreadores visando balancear o desempenho da aplicação baseado na métrica escolhida, e diminuir a quantidade de processamento requerida pela aplicação sem comprometer a qualidade do rastreamento envolvido. A eficiência do sistema será verificada através de estudos de caso sintéticos que compreendem diferentes classes de objetos que podem ser rastreados, focando em aplicações de realidade aumentada que executam em plataformas vestíveis. Diferentes algoritmos de rastreamento farão parte do modelo de decisão e através do chaveamento entre eles, será demonstrado que é possível atingir uma melhoria no desempenho de até três vezes, mantendo uma qualidade mínima definida como erro de reprojeção de até 10 pixels quando comparado à utilização apenas do algoritmo que gera a melhor qualidade de rastreamento, independente do seu custo computacional. O impacto desse trabalho implicará em uma melhor qualidade de aplicações com restrições de quantidade de memória, carga de baterias, entre outras.
Description: Real-time computer vision applications that run on the field and make frequent use of wearable computers have a critical restriction on the amount of processing they can perform, because of the fact that most (if not all) of the application runs on the wearable platform. A balancing scheme capable of allowing the application to use more processing power is fundamental both when input scenarios present more visual restrictions regarding, for example, the object to be tracked, and also to reduce processing in order to save battery and CPU time for other applications when the captured video is better controlled (more accessible). The fact that computer vision applications may run on a variety of platforms justifies the need for defining a model that automatically adjusts the tracker being used in applications with hard performance constraints. Performance degradation in wearable platforms can be greater than expected, as desktop and mobile platforms present different levels of hardware capabilities, and consequently, different performance restrictions. This doctoral thesis addresses the object tracking problem using a decision model, in such a way that prioritizes using the least computationally intensive algorithm whenever possible. It has the following specific objectives: to investigate and implement different tracking techniques, to choose/define a reference metric that can be used to detect image interference (occlusion, image noise, etc.), to propose a decision model that allows automatic switching of different trackers in order to balance the application's performance, and to reduce the application's workload without compromising tracking quality. The effectiveness of the system will be verified by synthetic case studies that comprise different object classes that can be tracked, focusing on augmented reality applications that can run on wearable platforms. Different tracking algorithms will be part of the proposed decision model. It will be shown that by switching among these algorithms, it is possible to reach a performance improvement of a factor of three, while keeping a minimum quality defined by a reprojection error of 10 pixels when compared to the use of only the best algorithm independent of its computational cost. This work results in better performance of applications with memory and battery restrictions.
URI: https://repositorio.ufpe.br/handle/123456789/12268
Appears in Collections:Teses de Doutorado - Ciência da Computação

Files in This Item:
File Description SizeFormat 
Tese Joao Teixeira.pdf5,68 MBAdobe PDFThumbnail
View/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons