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RESUMO 
 

Aplicações de visão computacional em tempo real executadas em campo fazem uso 

frequente de computadores vestíveis, os quais apresentam uma restrição crítica na 

quantidade de processamento que podem suportar, uma vez que a maior parte da aplicação 

(se não sua totalidade) deverá executar na plataforma vestível. É fundamental um esquema 

de balanceamento de carga capaz de permitir que a aplicação utilize mais poder de 

processamento quando os cenários de entrada apresentam mais restrições visuais, por 

exemplo, referentes ao objeto a ser rastreado, e diminua tal processamento com o objetivo de 

economizar bateria e tempo de CPU em aplicações quando o vídeo capturado é mais 

controlado (mais acessível). 

O fato de aplicações de visão computacional executarem em uma variedade de 

plataformas justifica se definir um modelo que ajuste automaticamente o rastreador em uso 

em aplicações com restrições de recursos computacionais. A degradação de desempenho em 

plataformas vestíveis pode ser maior do que a esperada, uma vez que plataformas desktop e 

móvel apresentam diferentes níveis de configurações de hardware, e consequentemente, 

diferentes restrições de desempenho. 

Esta tese de doutorado soluciona o problema do rastreamento de objetos usando um 

modelo de decisão, objetivando utilizar o algoritmo menos custoso sempre que possível. 

Como objetivos específicos têm-se: investigar e implementar diferentes técnicas de 

rastreamento, para escolher/definir uma métrica de referência que possa ser usada para 

detectar interferência na imagem (oclusão, ruído, etc.), propor um modelo de decisão que 

permita chaveamento automático entre diferentes rastreadores visando balancear o 

desempenho da aplicação baseado na métrica escolhida, e diminuir a quantidade de 

processamento requerida pela aplicação sem comprometer a qualidade do rastreamento 

envolvido. 

A eficiência do sistema será verificada através de estudos de caso sintéticos que 

compreendem diferentes classes de objetos que podem ser rastreados, focando em aplicações 

de realidade aumentada que executam em plataformas vestíveis. Diferentes algoritmos de 

rastreamento farão parte do modelo de decisão e através do chaveamento entre eles, será 

demonstrado que é possível atingir uma melhoria no desempenho de até três vezes, 

mantendo uma qualidade mínima definida como erro de reprojeção de até 10 pixels quando 

comparado à utilização apenas do algoritmo que gera a melhor qualidade de rastreamento, 

independente do seu custo computacional. O impacto desse trabalho implicará em uma 

melhor qualidade de aplicações com restrições de quantidade de memória, carga de baterias, 

entre outras.  

Palavras-chave: Realidade Aumentada, Visão Computacional, Alto Desempenho.
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ABSTRACT 
 

Real-time computer vision applications that run on the field and make frequent use of 

wearable computers have a critical restriction on the amount of processing they can perform, 

because of the fact that most (if not all) of the application runs on the wearable platform. A 

balancing scheme capable of allowing the application to use more processing power is 

fundamental both when input scenarios present more visual restrictions regarding, for 

example, the object to be tracked, and also to reduce processing in order to save battery and 

CPU time for other applications when the captured video is better controlled (more 

accessible). 

The fact that computer vision applications may run on a variety of platforms justifies 

the need for defining a model that automatically adjusts the tracker being used in 

applications with hard performance constraints. Performance degradation in wearable 

platforms can be greater than expected, as desktop and mobile platforms present different 

levels of hardware capabilities, and consequently, different performance restrictions. 

This doctoral thesis addresses the object tracking problem using a decision model, in 

such a way that prioritizes using the least computationally intensive algorithm whenever 

possible. It has the following specific objectives: to investigate and implement different 

tracking techniques, to choose/define a reference metric that can be used to detect image 

interference (occlusion, image noise, etc.), to propose a decision model that allows automatic 

switching of different trackers in order to balance the application's performance, and to 

reduce the application's workload without compromising tracking quality. 

The effectiveness of the system will be verified by synthetic case studies that comprise 

different object classes that can be tracked, focusing on augmented reality applications that 

can run on wearable platforms. Different tracking algorithms will be part of the proposed 

decision model. It will be shown that by switching among these algorithms, it is possible to 

reach a performance improvement of a factor of three, while keeping a minimum quality 

defined by a reprojection error of 10 pixels when compared to the use of only the best 

algorithm independent of its computational cost. This work results in better performance of 

applications with memory and battery restrictions. 

Keywords: Augmented Reality, Computer Vision, High Performance.
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CHAPTER 1 INTRODUCTION 

The term “vision” does not simply refer to the ability of capturing visual information, 

but also refers to the possibility of understanding content being viewed. It is not enough to 

see the environment; one must understand it. The information that comes from vision can be 

used to perform, among others, the acts of positioning and detection. Vision is only relevant 

when those actions are achieved. For example, one can imagine a scenario containing a 

corridor with a transparent glass wall that blocks the way of a person. The glass, depending 

on the point of view, may not be noticed due to its level of transparency. In this case, vision 

fails, since it was not possible to generate enough information about the environment that 

would allow for the viewer to change position. Another interesting example is a mirror maze - 

the excess of visual information results in a loss of spatial reference, and, accordingly, 

mobility becomes a challenge. 

Computer vision seeks to understand the environment, with the analogous objective 

of using the acquired information to guide user actions[1]. One way of understanding the 

environment is to analyze the objects inserted in it and how they move. Through observation 

of objects, their location and their behavior, it is possible to know what happens and which 

action to take at a specific moment. This is achieved by the use of object trackers, which are 

capable of following the movement of an object even when it is not entirely visible to the 

capture sensor[2]. 

There is a large number of object tracking algorithms. The basic differences between 

them resides in their precision, performance, and applicability. Some trackers have 

particularities and are intended to be used in specific controlled environments with low noise 

rate, uniform illumination, etc. Other tracking algorithms are more precise and more robust 

to occlusions and extra interferences on the tracking process, therefore demanding more 

computational effort. 

1.1 STATEMENT OF THE PROBLEM 

Despite the large number of tracking techniques found in the literature, it is not clear 

that a tracker exists that provides the best performance ratio in many different scenarios 

while still maintaining a pre-defined tracking quality. Trackers already exist that are better 

applied to specific cases[3][4][5]. Depending on the tracker chosen, the application (the 

system as a whole) can perform poorly under certain conditions. Applications that show 

strong computational power limitations work with fixed restrictions on tracking precision 

and processing speed[96]. At present, to the best knowledge of the author, there is no real-

time balancing scheme of instantaneous application needs, and no further analysis of the 
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control factor for tracking precision and performance ratio of the application. 

Real-time computer vision applications that run on the field, frequently making use of 

wearable computers, have a critical restriction on the amount of processing they can perform. 

This is generally due to the fact that most parts of the application run on the wearable 

platform[97][98]. It is fundamental a balancing scheme capable of allowing the application to 

use more processing power when input scenarios present more visual restrictions regarding 

the object to be tracked. By diminishing such processing will allow the solution to save 

battery and CPU time for other applications when the captured video is more controlled 

(more accessible). 

1.2 MOTIVATION 

The nature of this thesis is directed to planar object tracking algorithms and how they 

can be applied to systems with critical processing power restrictions. To “track an object” 

means to follow its movement, or in other words, to be able to identify its position and 

orientation in a specific image frame. This objective may be reached using one of two 

approaches: either by following the object from the starting frame to the current one or by 

searching the entire current frame for the object. The first case represents pure object 

tracking. The second case uses object detection to perform object tracking. Pure object 

tracking restricts the search area, minimizing the effort needed for finding the object over the 

image. Pure object tracking cannot support wide-baseline displacements, which can be 

necessary in certain scenarios. Object detection does not present such limitation, but 

presents the onus of having to search a broader area of the image and using other image 

matching techniques for finding the target object[1]. 

It is said that texture-based tracking has good quality when it is capable of mapping 

the template image to the one given as input in a coherent way, in other words, both are 

superimposed accordingly. This means that the tracking algorithm can find a transformation 

that performs a satisfactory geometric alignment between the template used as reference and 

the object from the input image[6]. 

This research considers improving the tracking process by using a decision model in a 

way that the goal is to minimize the computational load while maintaining the tracking 

quality. The creation of a decision model involves the selection of both input parameters that 

will impact the decision and also a utility function capable of measuring how well it 

performs[7]. This work intends to analyze different planar object and image characteristics in 

order to extract the parameters to be used in the proposed model and to develop different 

error measures that can be used as a utility function. We also intend to find methods to 

diminish or balance the workload in computer vision applications running over wearable 
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platforms. 

Therefore, this thesis has the following specific objectives: 

 To investigate and implement different techniques applied to texture-based 

tracking of planar objects; 

 To choose/define a reference metric that can be used to detect image 

interference: occlusion, image noise, and others; 

 To create a decision model that allows automatic switching of different planar 

object trackers in order to balance the performance of the application based on 

the chosen metric; 

 To diminish the workload of the application without compromising tracking 

quality. 

1.3 RELEVANCY 

The fact that computer vision applications run on a variety of platforms justifies the 

need for defining a model that automatically adjusts the tracker to use with applications with 

hard performance constraints. Performance degradation in wearable platforms can be 

greater than expected. For instance, desktop and mobile platforms present different levels of 

hardware capabilities, and consequently, different performance restrictions. 

Whenever possible, the decision model should choose the simplest tracker given that 

the quality (with the threshold specified by the developer) is not harmed. It will be shown 

that every time quality cannot be assured, the decision model selects the algorithm with 

highest probability of tracking the object (usually the most complex one). 

The tracking phase is one of the most performance demanding phases in computer 

vision applications. Because of that, a solution that saves processing time, guaranteeing 

quality of application (through the preservation of the tracking quality), can allow the 

execution of computer vision applications in restricted platforms, such as wearable 

computers. 

1.4 RESEARCH DESIGN 

AR applications work through the understanding of the environment and later 

addition of content located coherently in space. Such understanding is done through the use 

of image processing and computer vision techniques to recognize the template information 

used as reference to position the virtual content. This processing phase can be divided into 

two separate steps: detection and tracking. Once the object is detected, a tracking algorithm 

can be applied in order to follow the object throughout the scene, without having to detect it 
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again. Both detection and tracking algorithms usually demand a high computational cost, 

and should be chosen and implemented carefully in order to take advantage of all available 

computational resources. 

The problem of lack of resources is magnified when the goal is to develop AR 

applications that have mobility as a requirement. In this case, the user must use the 

application on the field through some mobile platform, such as a wearable computer, which 

has hard energy consumption and computational power restrictions. A great challenge in this 

area is how to maximize the available resources in a way that allows for a better experience 

with the application. 

A solution to this problem is the modification or construction of a “scheduling” 

scheme for the tracking algorithms. Without the need to modify existing tracking algorithms, 

the idea is to define comparison criteria in order to enable their switching according to the 

input scenario in which the application is inserted. This way, simply by adequately choosing 

which tracking algorithm to use in real time, it is possible to obtain better application 

efficiency. 

The proposed methodology used in this work is comprised of the following phases: 

 Studying of the existing different object tracking approaches (advantages, 

limitations, scenarios); 

 Definition of comparison criteria in order to enable tracking algorithms 

switching according to the input scenario; 

 Analysis of different warp functions; 

 Definition of the test scenarios (occlusion and scene luminance variations, 

camera movement); 

 Selection of different object trackers; 

 Definition of a tracker-switching decision model; 

 Validation of the decision model with training and test scenarios. 

Chapter 2 defines the context in which this work is inserted into. Chapter 3 consists of 

studying the existing different object tracking approaches. Chapter 4 refers to comparison 

criteria that enable tracking switching according to the input scenario and also examines how 

speedup and error measurements are calculated in this work. 

After the study of tracking techniques, the problem of choosing the best suited 

tracking algorithm was defined as problem of optimization, mainly based on two 

components: warp function, which maps to the object movement over the image (it includes 

its rotation, scale and deformation), and visibility aspects of the object, which includes 

luminance variations and occlusions by the scene the object is inserted into. Different warp 
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functions were analyzed in chapter 5 so that it was possible to verify what information each 

component provided to the application and its adequacy for generic AR applications. 

The application scenarios for the proposed approach include image sequences 

commonly found in AR applications, i.e., images that have some type of object susceptible to 

being tracked as content and the accompanying problems regarding their correct tracking. A 

study of the problems that eventually hinder tracking performance showed that the two most 

important issues are occlusion and scene luminance variations. Based on this information, 

the test scenarios were defined in chapter 6. The selection of input data for the tests should 

parallel characteristics commonly found on real-world scenarios, which are: occlusion 

between objects, luminance variance, and camera movement. Different image sequences 

varying the levels of occlusion and luminance will also be tested, due to their influence on the 

change of tracker to be used. The data used in both training and test phases will come from 

public image datasets widely available and used by the scientific community, which allows 

the repeatability of this work. 

In chapter 7, different combinations of feature detectors and extractors are selected, 

leading to the selection of tracking options to be used while the application is executed. The 

switching between different trackers should be defined by a metric capable of pointing the 

most adequate tracker given the information possessed up to that moment. 

Chapter 8 takes into consideration the trackers and the metrics defined for comparing 

them and defines a tracker-switching decision model for automatically choosing the most 

adequate tracker at a given moment.  

Chapter 9 validates the proposed work by applying the designed model to both 

training and test scenarios, and finally, chapter 10 lists the contributions and directions for 

future work. 

  



 

 19 

CHAPTER 2 STATE OF THE ART AND RESEARCH 

DESIGN 

This chapter describes how computer vision algorithms are applied to augmented 

reality applications and the different tracking approaches used to perform visual tracking. In 

sequence, a brief overview is given about a technique used for determining the best algorithm 

for feature selection, focusing on tracking quality. The major differences between this method 

and the technique proposed in this thesis will be highlighted. This chapter also provides the 

reader with an introduction to Decision Theory, a concept widely used on the conception of 

the proposed model. 

2.1 VISUAL TRACKING 

Tracking an object of interest in a video sequence means continuously identifying its 

position and orientation despite movement of either the camera or the object [8][10]. A 

variety of approaches can be used for this task depending on the type of object being tracked 

and the degrees of freedom inherent to the object and camera [8]. Figure 1 illustrates the 

accurate tracking of a face despite its level of occlusion by another object that is not of 

interest for the tracking. 

 Target being tracked: 

 

 

 
Tracking results: 

 

Frame #0 Frame #1 Frame #2 

Figure 1. Example of an accurate object tracking robust to occlusion [11]. 

When 2D tracking is used, the goal is to retrieve a 2D transformation from the object 

projected on the captured image that best represents the motion that occurred [9]. Many 

models can be applied in order to handle appearance changes due to perspective effects or 

deformations. The homography is one of the most used transformations regarding 2D 

tracking of planar objects, since it is generic enough to deal with all possible perspective 

effects [12]. This thesis focuses on tracking of planar objects since it serves as basis for more 
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complex tracking approaches (for example, 3D tracking). As it will be shown in section 5.2, 

almost every object can be considered locally planar. Alternatively to planar objects, 

deformable templates are one approach that can be used in order to track deformable meshes 

[13], as shown in Figure 2. 

 
Figure 2. Face tracking using a deformable template [13]. 

In computer vision, general video analysis can be broken down into three different 

steps: detection of interesting moving objects, frame to frame tracking of those objects and 

analysis of their tracks to recognize possible behaviors [2]. Because of such use in computer 

vision, object tracking is important in the following major areas: 

 3D reconstruction [99]; 

 motion-based recognition [14]; 

 automated surveillance [15]; 

 video indexing [16]; 

 human-computer interaction [17]; 

 traffic monitoring [18]; 

 vehicle navigation [19]. 

Figure 3 illustrates examples of computer vision applications in each of the previously 

described areas. Besides these areas, object tracking algorithms can also be used in 

Augmented Reality systems that require real-time registration of the object to be augmented. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 3. Computer vision applications: a) motion-based recognition [20]; b) automated 

surveillance [15]; c) video indexing [21]; d) human-computer interaction [22]; e) traffic 

monitoring [23]; f) vehicle navigation [24]. 

2.1.1 TRACKING IN AUGMENTED REALITY APPLICATIONS 

Augmented Reality (AR) applications involve superimposing computer-generated 

content on real scenes in real-time [25]. Tracking is a critical component of most AR 

applications, since the objects in both real and virtual worlds must be properly aligned with 

respect to each other in order to preserve the idea of the two worlds coexisting. 

Medical visualization [26], maintenance and repair [27][100], annotation [28], 

entertainment [29], navigation and targeting [30] and collaboration [101] are some examples 

of areas that were already explored by AR applications. 

Traditionally used in AR, vision-based tracking described as two main steps: extract 

information from the input video using image processing algorithms and perform the pose 

estimation itself, or, in other words, find the transformation that best maps the object model 

from one frame to the next one. 

The information that comes from the input image is basically composed of image 

features that are easy to extract from the scene. Both Marker-based AR and Markerless AR 

[33] are based on this principle, with the difference that the first one adds some templates 

that do not originally belong in the scene in order to enable the tracking. These templates are 
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often called fiducials and they constitute image features easy to extract as well as reliable 

measurements for the pose estimation. In the case of Markerless AR, the template to be used 

is the object to be tracked itself, using its natural features. Because of that, not every object 

can be tracked easily, due to the fact that its texture should have a certain level of 

differentiability compared to the rest of the scene [32]. 

Other tracking approaches can be used as well, such as approaches that rely on edge 

information [33], feature information [34] and those that do not consider any object model a 

priori[8][35]. This thesis will provide more detail regarding the template-based approaches. 

The template-based tracking techniques do not necessarily rely on local features such 

as edges or other features, but rather on global region tracking through the use of the whole 

pattern of the object to be tracked. These methods can be useful in handling more complex 

objects that are difficult to model using local features due to their repeatability, for example. 

Such scenarios can be computationally expensive, but in some cases effectively formulated 

[2]. 

2.2 DECISION THEORY 

Making decisions in face of uncertainty is part of our lives. In economics, psychology, 

philosophy, mathematics, statistics, among other areas, one must act without knowing the 

consequences from the action taken. In order to deal with these problems on a rational basis, 

a theoretical structure for decision making that includes uncertainty must be used. Decision 

theory provides such structure, in the form of a framework in which all available information 

is used to deduce which of the decision alternatives is best according to the decision maker’s 

preferences [7]. It distinguishes between decisions and outcomes. Not every time a good 

decision results in a good outcome. The procedure that comes from decision theory will allow 

us to obtain the best possible logical solution. In other words, it will minimize the 

consequences of getting an unfavorable outcome. 

Common sense can be formalized by decision theory. It can be represented in an 

unambiguous way when a mathematical language is used. Two streams of thought serve as 

the foundations of decision theory: utility theory, which focuses on values, and probability 

theory, which focuses on information. This work will deal with the decision making problem 

as an instance of the first one, utility theory [92]. 

The first step for structuring a decision making process is to define numerical values 

to the possible outcomes, which falls within the area covered by modern utility theory. The 

basic assumption to be made is that two possible outcomes can be compared. This way, 

preference over outcomes can be stated and one of the possible paths to the solution can be 

elected. A common tool from utility theory, the utility function [93], provides a means of 
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consistently describing the decision maker’s preferences through a scale of real numbers. It is 

no more than a means to logical deduction based on the preferences regarding the problem. 
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CHAPTER 3 STUDY OF EXISTING TRACKING 

APPROACHES 

Tracking is a difficult computer vision task due to the potential variability of the 

images of the object that is to be tracked over time. Such variability arises from three main 

causes: variation in target pose or deformations, illumination changes and target 

occlusion[102]. Thus, the two main challenges for visual tracking are to develop accurate 

models of image variability and also to design computationally efficient algorithms that use 

those models [44]. This chapter focuses on studying some of the existing tracking approaches 

used in AR applications. 

3.1 DIFFERENT TRACKING APPROACHES 

Numerous approaches to object tracking have been proposed over the years. They 

primarily differ from each other based on object representation, image features or motion 

model [2]. This section will briefly introduce different major tracking techniques for a variety 

of scenarios. 

3.1.1 MEAN SHIFT 

Comaniciu et al. [36] introduced an efficient tracking scheme for nonrigid objects. 

The target model is represented by an ellipsoidal region in the image. The influence of 

different target dimensions is eliminated by normalizing targets to a unit circle. Since the 

target model comprehends a probability distribution function in the feature space, an 

isotropic kernel is used in order to assign different weights to the pixels, being the smallest 

one the farthest away from the center. This way, the robustness of the density estimation is 

increased, as the peripheral pixels are least reliable due to often being affected by occlusions 

or interference from the background. 

The Mean Shift tracker maximizes the appearance similarity iteratively, which is 

based on the Bhattacharyya coefficient[42], by comparing the histograms of the object and 

the window around the hypothesized object location. For each iteration, a Mean Shift vector 

is computed such that the histogram similarity is increased. The process is increased until 

convergence is achieved. 

An obvious advantage of the Mean Shift tracker over a standard template matching 

approach is the elimination of a brute force search and the computation of the translation of 

the object path (plus scale) in a small number of iterations. The main disadvantage is that it 

cannot compute the entire object pose – only a simple motion model (translation and scale) 

is supported. 
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3.1.2 CAMSHIFT 

The Camshift (Continuously Adaptive Mean Shift Algorithm) [37] appeared as an 

improvement to the original Mean Shift algorithm. Since the Mean Shift operates on 

probability distributions, color histograms are used. The problem with the original approach 

is that color distributions derived from video image sequences change over time, so the 

algorithm must be modified to adapt dynamically to the probability distribution it is tracking. 

Instead of a set or externally adapted window size, Camshift relies on the zeroth 

moment information, which is the distribution area found under the search window. Thus, 

window radius is set to a function of the zeroth moment found during search. The problem 

with a fixed window size is that a value that works at one distribution scale is not suitable for 

another scale as the object moves closer to or farther from the camera. While small fixed-size 

windows may get lost entirely for large object translation on the scene, large fixed-size 

windows may include distractors (objects that should not be tracked) and/or too much noise. 

One of the disadvantages of Camshift is that it relies on color distributions alone, so 

that errors in color (colored lighting, extremes in illumination) could cause errors in tracking. 

A solution to this problem could be to adopt other approaches such as feature tracking and 

motion analysis, which would add more complexity to the algorithm. 

3.1.3 KALMAN FILTER 

The Kalman Filter is a predictor-corrector type estimator that minimizes the error 

covariance of the system [38][39]. It has been used extensively for tracking in interactive 

computer graphics, and has two major characteristics: it maintains both the mean vector for 

the state and also the covariance matrix of the uncertainty state. 

The process is estimated using a form of feedback control: the filter estimates the 

process state at a certain time and then gathers feedback in the form of measurements. 

Kalman Filter equations are divided into two groups: time update and measure update 

equations. The first group of equations is responsible for projecting forward both the current 

state and error covariance while the second is responsible for the feedback. 

The discrete Kalman Filter time update equations are described as follows: 

  ̂     ̂        (1) 

                (2) 

Where  ̂   represents the a priori state estimate,  ̂   is the a posteriori state estimate from 

previous state and    the control input state.   and   are the matrices that refer to the state 

and control input state from a previous time step     to the current time step, respectively. 
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    and      are the a priori estimate error covariance for the current state and the a 

posteriori estimate error covariance for the previous state, respectively. Q represents the 

process noise covariance. 

In sequence, the discrete Kalman Filter measurement update equations are also 

listed: 

         ሺ        ሻ   (3) 

  ̂   ̂     ሺ     ̂  ሻ (4) 

    ሺ     ሻ    (5) 

where   is the Kalman gain or blending factor that minimizes the a posteriori error 

covariance equation.   is the measurement equation that relates the state to the 

measurement   . R is the measurement noise covariance matrix.   is the identity matrix of 

corresponding size. 

One of the drawbacks of the Kalman Filter is that it performs the probability density 

propagation for problems in which the system can be described through a linear model and in 

which both system and measurement noises are white and Gaussian. Most 2D tracking 

applications involve a nonlinear motion model, which means that the original Kalman Filter 

implementation cannot be used. In order to solve this problem, an extension of the Kalman 

Filter (called Extended Kalman Filter, or EKF) can be adopted [40]. The nonlinear functions 

are linearized using Taylor series expansion. As with the original Kalman Filter, the extended 

version also assumes that the state is distributed by a Gaussian. 

3.1.4 PARTICLE FILTER 

The most noticeable limitation from Kalman filtering is the assumption that the state 

variables follow a Normal (Gaussian) distribution. Consequently, the Kalman filter provides 

poor estimations for state variables that do not follow a Gaussian distribution [2]. This 

limitation can be solved by the use of particle filters. With particle filters, the conditional 

state density is represented at each time   by a set of samples (particles) with different 

weights (sampling probability), that map the importance of the sample [41]. 

Particle filtering’s most common sampling scheme is the importance sampling 

method. It is composed of three distinct phases: 

 Selection:   random samples are selected; 

 Prediction: for each selected sample, a new sample is generated using a zero-

mean Gaussian error and a non-negative function; 

 Correction: the weights for the new samples are computed using the 
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measurements found. The probability can be modeled as a Gaussian density. 

3.1.5 HARMONY FILTER 

The Harmony Filter uses the Harmony Search approach in order to optimize the 

tracking function based on the Bhattacharyya coefficient as distance measure[42][43]. 

The Harmony Filter uses color histograms to model the targets. As a result, it is 

possible to define a fitness function by comparing the histogram of the target with other 

histograms generated from different regions in the image. The histogram with best fitness 

function value represents the optimal point in the search space, corresponding to the most 

likely location of the target. 

The Harmony Filter uses a two dimensional histogram based on the   (hue) and   

(saturation) of the HSV color space. The   (value) channel is discarded. By ignoring the third 

channel, the filter becomes more robust to changing lighting conditions between frames. It 

also reduces the overall complexity of the system and consequently increases its 

performance. 

Every time the tracking is required, the harmony memory is initialized using the 

current frame information along with the target’s previous location. The previous location 

information is used to predict the five-dimensional state vector containing position, velocity, 

and scale data. A simple motion model is adopted and a new state vector is created by using 

randomly generated acceleration in the   and   directions. The Harmony Search is then 

applied until the solution converges or a maximum number of iterations are reached. Trials 

have demonstrated that better results are obtained using the Harmony Filter in comparison 

with standard Kalman Filter and Particle Filter approaches [43]. 

3.1.6 OPTICAL FLOW 

Optical flow algorithms consider a set of points pertaining to object to be tracked and 

assume that they move coherently in space. This way, it is possible to estimate both motion 

and illumination parameters through observations of the image variations. Region-based 

methods make use of all available image intensity information, eliminating the need to 

identify and model a special set of features to track. Region-based methods can be considered 

an effective complement to local feature-based algorithms. 

Optical flow can be estimated by different means: phase correlation, block-based 

methods, differential methods, and discrete optimization methods, among others. A well-

known example of differential method for estimating optical flow, based on partial 

derivatives of the image is the KLT (Kanade Lucas Tomasi) [45], which uses image patches 

and an affine model for the flow field. 
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The optical flow computational load is very high and, consequently, a number of 

precautions should be taken in order to improve performance. One such precaution, for 

example, is to perform the tracking at multiple levels of resolution. A coarse-to-fine tracking 

decreases the search area and therefore speeds the tracking stage. 

3.1.7 ESM 

Many minimization algorithms could be used to estimate the transformation 

parameters involved in the tracking process. The Newton method has the highest local 

convergence rate as it is based on a second-order Taylor series of the SSD (Sum of Squared 

Differences) with the disadvantage of being time consuming. Another disadvantage is that if 

the Hessian is not positive definite, convergence problems can occur. 

The efficient second-order minimization tracker (ESM) [46] solves both speed and 

convergence problems [47]. It has a high convergence rate compared to the Newton method 

without the need to compute the Hessian. 

The ESM can be applied in tracking a planar object using, for instance, a homography 

H. A total of 8 parameters are needed to define this warp function up to a scale factor. The 

homography parameterization is done by choosing its determinant to be equal to one. An 

additional constraint is that H is inserted in the Special Linear group of dimension 3, which is 

the group of     matrices that have the determinant equal to 1. This parameterization 

simplifies the computation of the Jacobian, improving ESM’s performance. 

Another work has extended the ESM tracker to handle motion blur in 3D object 

tracking [48]. They have introduced an image formation model that considers the possibility 

of blur and applies such a model in a generalization of the original ESM algorithm. This 

allows a faster convergence and a more accurate/robust tracking even under a large amount 

of blur. 

3.1.8 MUTUAL INFORMATION BASED TRACKER 

Mutual information is an alignment function that was first introduced in the context 

of information theory [50]. It represents the quantity of information shared between two 

random variables. If the two variables/images are aligned then their mutual information is 

maximal. It can be calculated by using the following formulas: 

                  ሺ   ሻ  ∑   ሺ   ሻ     ቆ    ሺ   ሻ  ሺ ሻ    ሺ ሻቇ     
                                    , (6) 
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with 

   ሺ ሻ     ∑ ሺ   ሺ ሻሻ  (7) 

and 

    ሺ   ሻ      ∑  ሺ   ሺ ሻሻ   ሺ   ሺ ሻሻ , (8) 

where    is the number of pixels in the images. 

In [50], a mutual information based tracker is proposed, in which the formulas are 

applied to grayscale values, such that the color information from the three channels has to be 

converted to a single gray one. The   function used is a    -order  -spline, in order to 

smooth the images and get a better alignment. 

3.2 BEST ALGORITHM SELECTION 

The MuFeSaC algorithm (Multi-Feature Sample Consensus) works as an adaptive and 

automatic procedure to choose a reliable feature detector when there is more than one 

available[49]. Since its goal is to be used with self-localizing mobile platforms, it focuses on 

finding the best features (feature detector selection) over a video sequence. Moreover, it only 

considers improving the quality of the detected features, not considering the complexity of 

the algorithms involved. 

MuFeSaC’s algorithm pipeline can be divided into 5 different phases. The first phase 

consists on the individual analysis of the feature detection methods (FD). For each                  (being   the number of feature detectors available), this phase starts by 

extracting features from two successive frames. In sequence, the putative matches are found 

using proximity and cross correlation. By performing RANSAC and iterating to a 

convergence, the  -estimated parameters   of model   fitted during the iterations of 

RANSAC are collected. Then, the  -variate probability distribution    based on   (      ) 

iterations of parameter estimates collected (        ) are estimated. 

The second phase consists in calculating the score single feature outlier consensus 

(     ) using the model selection criterion (     ) described in sequence. 

     is the inverse Fisher information matrix,    and ∑  are the maximum likelihood estimates 

                                              
(9) 

        ሺ                ሻ     ሺ   ሺ∑ ሻሻ 
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of the mean and covariance computed as the first two moments of   . The    measure and the     are computed using the two following equations: 

   ሺ   ሺ∑ ሻሻ       [  ሺ   ሺ∑ ሻሻ ]       |   ሺ∑ ሻ| (10) 

and 

    ሺ∑ ሻ  [∑      ሺ∑  ∑ ሻ    ], (11) 

with   being the rank of    , | | refers to the determinant and    refers to the trace of the 

matrix.     is the Moore-Penrose inverse of vectorized ∑  and   represents the Kronecker 

product. The    measure for penalizing uncertainty is obtained by maximizing mutual 

information in  -dimensions.  

The third phase is responsible for computing the competing feature consensus score 

(     ) by evaluating competing distributions    for different hypotheses and then choosing 

the optimal consensus combinatorial cluster among the competing feature detectors. The 

Akaike information criterion (AIC) is used to score the different hypotheses as follows: 

 

    ሺ    ∑   ሻ   ሺ                             ሻ                                      
(12) 

In the fourth phase, the optimal feature detector is chosen to be the one with 

minimum             . After this phase, the entire process is repeated every   frames, 

where   can be adapted based on scene complexity (typically a   value of 300 is used). 

It can be said that the work proposed in this thesis is an evolution of the MuFeSaC 

algorithm, in the sense that it also takes information from the scene to automatically decide 

which tracking algorithm to use. In addition, it guarantees that the chosen algorithm is the 

least complex one given a certain error threshold. 

3.3 DISCUSSION 

Some considerations must be made about the trackers listed above. Both Mean Shift 

and Camshift use a blob of color information to aid in keeping track of the object. It relies on 

the use of 1D histograms, which lack spatial information. Their use is indicated when the 

object to be tracked will change drastically over time, such as rotating or deformable objects. 

These trackers are considered robust against some occlusion but are not as precise in 

comparison to other approaches, such as Kalman and Particle Filters, for determining 

specific point positions. 
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Kalman and Particle Filters provide a precise estimate for the points and objects being 

tracked. The drawback resides in their recursive nature, which is responsible for causing a 

problem of error accumulation over time. In order to get better results with the particle filter, 

in comparison to the Kalman model, it is possible to increase the number of particles used. 

This results in a higher computational load, however, since the computer must process more 

hypotheses in every iteration. 

The Harmony Filter can converge more accurately and more quickly than the Particle 

Filter does as it relies heavily on the most current observational information to improve the 

initial improvisations, in contrast to the Particle Filter that only uses it to score particles 

without changing their initial position in search space. Its performance directly depends on 

the objective function complexity, since it makes use of a direct search method (Harmony 

Search), and can be applied to any optimization problem (linear or nonlinear). The 

parameters may be tuned in order to speed up the convergence process. 

A tracking approach using optical flow information relies on image variations from 

frame to frame. The variations must be small in order to guarantee that the tracker works 

well. Depending on how erratic and fast the movement of the target object is, ambiguity can 

arise. This problem can occur when using textures with high repeatability. Motion cannot be 

estimated well in textures with areas of poor gradient. Out of all the tracking approaches 

cited before, the ESM tracker is the one that presents the best results in terms of balance 

between accuracy and speed. 

Significant progress in object tracking has been made in recent years [2]. Different 

robust trackers were developed and can track objects in real-time for simple and well-defined 

scenarios. By “well-defined scenarios” we mean that some assumptions are made, such as 

approximations of the centroid of the object, smoothness of motion, few occluded areas and 

quasi-constant illumination. Some of the presented trackers fail when used in realistic 

scenarios, such as automated surveillance, human computer interaction or vehicle 

navigation, for example, due to either their lack of precision or their computational load. New 

solutions are continuously being proposed to deal with these problems. 

The next great challenge in object tracking development is to create algorithms for 

tracking objects in unconstrained videos: noisy, compressed, unstructured, and acquired 

from moving cameras or from multiple views. The use of mutual information is one 

interesting approach that tackles these problems, since it is capable of finding a relation 

between multimodal data (data acquired from different sensors, for instance, relating a 

drawing with a picture or a map with an aerial view of certain location) [50]. This advantage 

comes with the drawback of high computational cost. The problem now becomes how to 

balance the use of the most adequate tracking techniques depending on the input scenarios 
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and the platforms’ computational power. 
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CHAPTER 4 DEFINITION OF COMPARISON CRITERIA 

FOR TRACKING ALGORITHMS SWITCHING 

Given the goal of the proposed model of maintaining tracking quality while 

minimizing processing demand, the following question arises: how to measure tracking 

quality? This chapter is dedicated to such topic. 

4.1 MEASURING TRACKING QUALITY 

The simplest approach is to perform a direct comparison of specific points of the 

template being tracked and the tracked result, given that ground-truth data is available. This 

can only be used during the model training phase, because at the time of execution there is no 

ground-truth data to be based on. The first error measure (namely reprojection error) used to 

evaluate the tracking quality in this work was calculated using the difference between the 

four template corners projected using the homography found by the algorithm, as follows: 

       √  ∑ ‖      ‖     . (13) 

In the previous equation,    and    represent the reference point and the imaged 

reference point, respectively. 

This approach only considers the homography, in other words, the object motion. A 

second approach free from ground-truth information relies solely on the texture information 

resulting from the tracking process. Different approaches were analyzed, such as ZNCC[88], 

MI [89], and SSIM [90]. All of them are very robust to luminance variations. Of the three 

approaches listed, the SSIM showed to be more adequate in measuring the tracking quality, 

due to the fact that it is based on three image components: luminance, contrast and structure. 

The next equations show how it is calculated: 

  ሺ   ሻ                     (14) 

      ∑   
    (15) 

  ሺ   ሻ                     (16) 

    (     ∑ሺ     ሻ  
   )  

 (17) 
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  ሺ   ሻ                (18) 

         ∑ሺ     ሻሺ     ሻ 
    (19) 

     ሺ   ሻ   ሺ   ሻ   ሺ   ሻ   ሺ   ሻ (20) 

In the previous equations,   and   represent two non negative image signals,    and    
represent pixel intensities,   corresponds to the number of pixels in the images and   ,    

and    are constants placed in order to avoid instability. 

Both reprojection error and SSIM are directly related. The difference between them is 

that while the first varies from 0 to infinity, the second is bounded by the [0,1] interval. The 

relationship between them will be further explored in the analysis chapter (chapter 9). Since 

the SSIM value will be used as the utility function of the decision model proposed, all 

comparisons regarding tracking quality will refer to this metric. 

4.2 SPEEDUP AND ERROR DEFINITION 

As previously stated, the main goal of the proposed decision model is to identify when 

it is possible to change the employed tracking algorithm to a computationally less demanding 

one without significantly harming tracking quality. In order to guarantee the minimum 

amount of error, one should use the most complex tracking algorithm. While this diminishes 

the rate of error, it demands more processing power. That being said, the speedup of the 

proposed model is calculated based on the processing time of the most complex algorithm, 

which, out of the tests performed, was the SIFT-SIFT combination. In the worst case 

scenario, whenever the model cannot find a suitable algorithm for the current frame 

characteristics, the algorithm to be used will be the most complex one. 

The processing time in milliseconds for each algorithm combination used is shown in 

Table 1. It describes the time spent for calculating a single feature, considering detection, 

extraction and matching phases. 
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Table 1. Mean execution times per feature for each tracking phase. 

 SIFT-SIFT SURF-SURF FAST-SIFT FAST-SURF ORB-ORB 

Detection 0.1199 0.1048 0.0003 0.0003 0.0121 

Extraction 0.1883 0.1539 0.1025 0.0367 0.0118 

Match 0.0308 0.0269 0.0224 0.0230 0.0125 

Overall 0.3390 0.2857 0.1253 0.0602 0.0364 

 

For a sequence composed of 5000 frames (1000 for each of the five parameters), the 

speedup is calculated according to the following equation: 

                                              (21) 

                ∑                             
                  (22) 

                               (23) 

                   refers to the total time required (considering detection, 

description and matching) of the most complex algorithm. As shown in Table 1, this points to 

the SIFT-SIFT combination.             is the total number of frames used on the 

sequence, which in our case is     .                is the total time (considering detection, 

description and matching) of a certain algorithm. Since five different combinations are being 

considered,               is  . At last,              corresponds to the number of 

frames chosen by the decision model for a specific algorithm. 

According to Lieberknecht et al.[81], an image is considered to be successfully tracked 

when the mean of the sum of the reprojection errors of its four corners is not higher than 10 

pixels. As with the speedup calculation, the original amount of frames not detected by the 

SIFT-SIFT combination is calculated, to be used as reference error. The SIFT algorithm was 

chosen to be the reference due to its broad utilization in visual tracking applications, despite 

the SURF-SURF combination showing a lower general SSIM result for the tested sequences. 

After that, for each of the four models generated, the number of not detected frames is also 

calculated. Both base error and proposed error are calculated as follows: 

                                            (24) 
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                 ∑                                                 (25) 

It is important to note that the reprojection error can only be used when ground truth 

data is available. Since this is not the case when executing tracking applications in real time, 

SSIM must be used instead. Using the same training data captured earlier, it is possible to 

establish a relationship between reprojection error and SSIM. As shown in Figure 4, the 

frames can be considered “tracked successfully” when the reprojection error is no higher than 

10 pixels. This leads to a confidence level of 99.04% when the SSIM value is higher than 

0.267. 

 

Figure 4. Correlation between SSIM and reprojection error. Points above the   axis map 

to sucessfully detected frames (reprojection error threshold equals 10 pixels). 
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CHAPTER 5 ANALYSIS OF DIFFERENT WARP 

FUNCTIONS 

This chapter focuses on a classification of target objects according to their texture 

information and on how the motion of an object can be mathematically represented. In this 

work, the tracking process is performed based on the texture data acquired from the target 

object[103]. 

5.1 OBJECT CLASSES 

Tracking algorithms work by analyzing the visual features of images and then 

computing their relative motion along frames. In [81], the authors propose a dataset and 

evaluation methodology for template-based tracking algorithms. Their motivation in creating 

such a dataset was to create a fair comparison between a wide range of template-based 

algorithms. Some use corners, edges and even whole regions of the image. The dataset 

originates from planar objects, which comprise one of the most fundamental ways of finding 

relative position and orientation of a camera with respect to different objects in real time. 

They consider that most tracking algorithms assume objects as at least locally planar. In 

order to represent all possible planar targets, they proposed four different object classes, 

namely “Low Texture”, “High Texture”, “Normal Texture” and “Repetitive Texture”. Each 

class is represented by two targets, as shown in Figure 5. 

Low Texture High Texture Normal Texture Repetitive Texture 

    
#1 #2 #3 #4 

    
#5 #6 #7 #8 

Figure 5. Four different object classes: The “Low Texture” group consists of images of 

road signs which are composed of two distinct colors and large uniform areas, thus 

large edges are visible. In the “High Texture” group there are images of electronic 

boards, one image with mainly large components, and another with mainly small ones. 

Images of a car and of a cityscape are in the “Normal Texture” object class. Finally, the 

group of “Repetitive Texture” based images is composed of an image of a wall made of 
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different sized stones and of an image with English lawn which features many extremely 

small structures everywhere [81]. 

In this work, four different models were generated, based on each available planar 

object class. Since each class has two targets, the first object of each class was used for 

training the model, while the second one was used to evaluate the results obtained. The 

template size used for all models was        , while the full image resolution to be tracked 

was        . 

5.2 INPUT PARAMETERS 

According to the previous section, a key characteristic was used to classify the objects 

into different classes: its texture. In order for the model to be as generic as possible, it would 

be wise not to depend exclusively on object texture itself. Thus, other parameters had to be 

used as inputs for the model. After some research, we decided to extract parameters from 

both object movement and scene influence over the tracked object. A total of five different 

parameters were selected, three of them pertaining to the tracking warp function 

(transformation from one frame of the sequence to another) and the other two related to the 

object illumination and occlusion. 

The object motion generally occurs in the form of a parametric motion [82]. 

Depending on the object itself and its motion in 3D space, different warp functions can be 

defined. A warp function’s general notation can be 

           , (26) 

in which w is the warp function that takes a 2D point and takes it to another 2D point.   is 

the number of parameters of the considered motion model that corresponds to the number of 

DOF that defines the image transformation. 

Four different warp functions commonly used in object tracking are: Translation, 

Similitude, Affine and Homography, respectively with 2, 4, 6 and 8 parameters [82]. Table 2 

illustrates the main differences between these four parametric motion models. 

Table 2. Parametric motion models commonly used in planar object tracking. 

Model Parameters Formula 

Translation   ሺ ሻ (2)  ሺ   ሻ      

Similitude   ሺ     ሻ (4)  ሺ   ሻ  ሺ   ሻ ሺ ሻ    

Affine   ሺ                 ሻ (6)  ሺ   ሻ       

Homography   ሺ                               ሻ (8)  ሺ   ሻ     
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In the previous table,   represents a translation in   and   directions,   is the set of 

parameters used by the warp function,   maps to the scale and   to the rotation angle used.   

and   are affine and homography transforms, respectively. 

As the homography motion model is less restrictive, it was chosen to represent the 

motions in this work. The first three input parameters, namely Rotation, Scale and 

Distortion, are extracted directly from the homography. Figure 6 illustrates the homography 

in matrix form and highlights which part is used in each parameter estimation. 

 

Figure 6. Homography sections: the section highlighted in red contains rotation and 

scale information; the green section stores translation information; the orange section 

provides the values used in the projective distortion computation The white part is 

typically equal to 1. 

According to Hartley and Zisserman[82], every projective transformation can be 

decomposed into the product of three matrices, such as 

          [      ] [      ] [      ]  [      ], (27) 

in which   represents the affine part of the transform,   relates to the anisotropic scale and    to the distortion parameters.   is a     identity matrix and   is a scalar that can be used 

to make the homography be represented by 8 parameters up to a scaling factor, for    . 

The first two input parameters, rotation and scale, are extracted from the affine part 

of the homography. Both rotation and scale can be retrieved using SVD (Singular Value 

Decomposition), as follows: 

   [            ]   ሺ ሻ ሺ  ሻ  ሺ ሻ  (28) 

 with   [      ], (29) 

 and      ሺ   ሻሺ    ሻ   ሺ ሻሺ ሺ  ሻ  ሺ ሻሻ  (30) 

Some algorithms are more invariant to rotation than others. Thus, rotation can be 

considered as an important parameter to compare tracking algorithms. Scaling can be dealt 

with by the use of image pyramids, so that scaling’s influence over image tracking is not as 

significant as rotation. The important scenarios related to scaling occur when the object is so 
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small or so big that features are lost, since the image sensor is not capable of capturing the 

entire object information. 

The third parameter, distortion, represents the module of the vector formed by the     and     values, as shown in equation (31). The higher this value, the more biased the 

object, meaning it is more difficult to track it. This way, more robust trackers should fail less 

with the increase of the distortion value than simpler ones. 

            √          (31) 

Illuminance variation can occur for different reasons. Its main consequence is that it 

can modify the appearance of either the whole scene or perhaps just isolated parts of it. In the 

first case, this is usually known as global illumination variation, while in the second case, 

local illumination variation. The main difference between these two varying scenarios is that 

in the global case, the pixels of the whole image are affected coherently. That does not happen 

in the local variation case, when only parts of the image are affected by the light. As shown 

in[83], local lighting variations are more complex to deal with and can generate more 

tracking failures than global variations. 

Assuming that the object was tracked previously and the result of this tracking 

process is an image with the same dimensions of the object image being tracked, the 

luminance variation is calculated according to equation (32): 

             ∑ (     )                       (32) 

in which           corresponds to the number of pixels pertaining to the reference image,     is a pixel value (luminance) from the input image and    is a pixel value (luminance) from 

the reference image. 

The input parameter representing occlusion is not so simple to calculate[104]. One 

may think that a simple color comparison is enough, meanwhile other authors state that it is 

safer to use both color and gradient information [84][85][86]. We make use of LBP (Local 

Binary Pattern) to find which parts of the image are really occluded [87]. This makes the 

occlusion detection process more robust to luminance variations. The occlusion parameter is 

then calculated as follows: 

      ∑  ሺ         ሻ    ሺ ሻ  {           
    (33) 

           ∑    ሺ                 ሻ                       (34) 
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      ሺ   ሻ  { 
   ቌ∑ሺሺ        ሻ     ሺ        ሻሻ    

   ቍ               (35) 

In the previous equations,      represents the     pixel of an equally spaced circular 

neighborhood of pixel   (     coresponds to the center pixel),           maps to the number 

of pixels on the reference image, and         and           are the LBP value of a pixel in 

the reference image and input image, respectively. Both     and     are bitwise operators 

and   is the shift-right operator. The calculation of the occlusion rate involves comparing the 

LBP values of all pixels; when the similarity between them is lower than four, the pixel is 

considered occluded. In the end, the amount of occluded pixels is divided by the total amount 

of image pixels. 

That being said, the key point of the proposed model is to find the cases where each 

algorithm performs well, and switch to the one that demands less computational power 

whenever possible. “Performing well” means that an algorithm gives as output an acceptable 

result, respecting a previously defined error threshold. 
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CHAPTER 6 DEFINITION OF THE TEST SCENARIOS 

This chapter describes how the training sequences were generated and performs a 

comparison regarding different background scenarios in order to justify the approach chosen. 

6.1 TRAINING SEQUENCES 

The training phase of each object class model starts with the generation of control 

image sequences. Each sequence corresponds to the variation of a single parameter, so that 

the error measurements can be computed and later combined by the model. 20 sequences 

were generated, which corresponds to five parameters against four objects classes. A total of 

1000 frames were generated for each parameter, with the values linearly distributed through 

a minimum and maximum value. The ranges used for each of the parameters are shown in 

Table 3. 

All four image classes were used in the generation of the control image sequences. In 

order to illustrate how the parameters varied, Figure 7 to 11show the parameters applied to 

some of the dataset images. 

Table 3. Parameter ranges used (rotation values are in radians). 

 Rotation Scale Distortion Luminance Occlusion           0 0.25 0 0.092057 0              5 0.005768 3.246554 0.338867 

The rotation sequence was comprised of a full 360º rotation over the object plane, as 

shown in Figure 7. Since the other parameters should remain unaltered, the center of mass of 

the object stays on the same place during the entire sequence. 

     
Frame #000 Frame #100 Frame #200 Frame #300 Frame #400 

     

     
Frame #500 Frame #600 Frame #700 Frame #800 Frame #900 

Figure 7. Samples from the rotation sequence. 

The scale sequence started representing 25% of the original object size and increases 
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until reaching 500%. Despite the fact that only the scale varies, with the increase of this 

parameter, some parts of the object start to fall out of the camera’s view, representing an 

effect similar to an occlusion. Figure 8 shows samples from the scale sequence. 

     
Frame #000 Frame #100 Frame #200 Frame #300 Frame #400 

     

     
Frame #500 Frame #600 Frame #700 Frame #800 Frame #900 

Figure 8. Samples from the scale sequence. 

The distortion sequence was divided in two parts. The first included a distortion 

resulting from a horizontal rotating movement, while the second part was based in a vertical 

rotation. In both cases, the object was rotated from 0º to approximately 80º, when the planar 

object was almost not visible. Figure 9 presents some samples from the distortion sequence. 

     
Frame #000 Frame #100 Frame #200 Frame #300 Frame #400 

     

     
Frame #500 Frame #600 Frame #700 Frame #800 Frame #900 

Figure 9. Samples from the distortion sequence. 

The illumination sequence alters the object from a 9.2% illumination compared to the 

original object to 324.65%. The structural information of the object starts to change when 

some of its pixels reach the maximum possible white value. Figure 10 illustrates some 

examples from the luminance sequence. 
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Frame #000 Frame #100 Frame #200 Frame #300 Frame #400 

     

     
Frame #500 Frame #600 Frame #700 Frame #800 Frame #900 

Figure 10. Samples from the luminance sequence. 

At last, the occlusion sequence starts consuming the object from a state of complete 

visibility to an occlusion rate of 0.3388. It is important to note that this value does not 

directly correspond to a 33% visual occlusion, because it is calculated using LBP 

correspondences. Since the LBP threshold used was 50%, fewer different pixels are 

considered as occluded pixels. According to the tests performed, the 0.3388 occlusion rate 

maps to an 80% visual occlusion approximately. Figure 11 shows some examples from the 

occlusion sequence. 

     
Frame #000 Frame #100 Frame #200 Frame #300 Frame #400 

     

     
Frame #500 Frame #600 Frame #700 Frame #800 Frame #900 

Figure 11. Samples from the occlusion sequence. 

Note that the training sequences are composed by the template placed in a black 

background, varying according to the parameter being processed. Due to the nature of the 

trackers used, which are keypoint-based trackers, this specific test configuration should 

present similar results in the case of a different background color. Different backgrounds 

could generate false matches, but the number of outliers is not sufficient enough to make the 

results differ from the original approach. In order to analyze such a proposition, we have 

calculated the SSIM value using the SIFT algorithm for three different backgrounds, shown 
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in Figure 12. They were chosen because they correspond to common scenarios of application 

of AR systems. The first one represents an outdoor environment, in which the user is free to 

move in the open space while observing his/her surroundings; the second background refers 

to an indoor scenario, located inside a house; the last scenario is in the context of AR 

supporting maintenance of electrical equipment, and represents a maintenance laboratory of 

a local Electricity production company. Samples of the generated sequences are illustrated in 

Figure 13, Figure 14 and Figure 15. 

   

(a) (b) (c) 

Figure 12. Three different backgrounds used in AR applications: a) outdoor 

environment; b) indoor environment; c) laboratory for maintenance of electrical 

equipments. 

Table 4 lists the correlation values of the SSIM regarding each of the three 

backgrounds and the original (black) one. It is possible to notice that, for all parameters, the 

correlation among the values found was higher than 0.934028. Statistically, this fact 

(correlation higher than 0.9) is enough to say that the tests present similar behaviour and 

one background can be used in the place of the others [95]. 

Table 4. Correlation values for the SSIM values using different backgrounds. 

 Black vs 

background #1 

Black vs 

background #2 

Black vs 

background #3 

Rotation 0.961186 0.934028 0.975594 

Scale 0.974302 0.976893 0.971979 

Distortion 0.963291 0.959513 0.962330 

Lumminance 0.970602 0.968853 0.973633 

Occlusion 0.993852 0.993632 0.994141 

Another statistical test was performed based on the P-value of the T-test. Table 7 lists 

the values found for the second analysis. The T-test analyzes the concentration of the mean 

value for the sequences, stating that the more the sequences are alike the more the p-value is 
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closer to 0.5 [95]. 

Table 5. P-value of the T-test regarding SSIM values using different backgrounds. 

 Black vs 

background #1 

Black vs 

background #2 

Black vs 

background #3 

Rotation 0.506973 0.450660 0.504166 

Scale 0.508148 0.508981 0.508311 

Distortion 0.506125 0.520940 0.506277 

Lumminance 0.520480 0.518283 0.518876 

Occlusion 0.594415 0.618615 0.570997 
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Figure 13. Image sequences corresponding to the five parameter variations generated by 

mixing the template to be tracked with outdoor background. 
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Figure 14. Image sequences corresponding to the five parameter variations generated by 

mixing the template to be tracked with indoor background. 
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Figure 15. Image sequences corresponding to the five parameter variations generated by 

mixing the template to be tracked with a maintenance laboratory context. 
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CHAPTER 7 SELECTION OF DIFFERENT OBJECT 

TRACKERS 

Pattern recognition methods can be classified in two different areas, according to [6]: 

decision-theoretic and structural. The first category deals with patterns described using 

quantitative descriptors, such as length, area and texture. The second category identifies 

patterns best described by qualitative descriptors, such as shape and boundary. 

An image feature can be defined as an “interesting” part of an image and serves as 

starting point for computer vision applications. In pattern recognition literature, the name 

feature is often used to denote a descriptor [6]. The two most common operations regarding 

image features are feature selection and feature extraction. The former selects the most 

interesting parts of a certain image, while the latter describes these parts by filling its 

corresponding descriptor array. 

Several criteria must be taken into consideration when selecting proper detector-

descriptor combinations. Two of them are the repeatability rate and information content. The 

first one evaluates how the geometric stability behaves under different transformations, while 

the second one measures the distinctiveness of the features [51]. 

Since this work makes use of different combinations of feature detectors and 

extractors, this chapter will give a brief description about those used in this thesis. The 

selected algorithms are the ones with best results (best tracking quality) found in literature. 

7.1 FEATURE DETECTORS 

The most widely used interest point detector is likely the Harris corner detector [52], 

proposed back in 1988, based on the eigenvalues of the second-moment matrix. However, 

Harris corners are not scale-invariant. Lindeberg introduced the concept of automatic scale 

selection [53]. This allows for detecting interest points in an image, each with their own 

characteristic scale. He experimented with both the determinant of the Hessian matrix as 

well as the Laplacian (which corresponds to the trace of the Hessian matrix) to detect blob-

like structures. Mikolajczyk and Schmid refined this method, creating robust and scale-

invariant feature detectors with high repeatability[55], which they coined Harris-Laplace and 

Hessian-Laplace [54]. They used a (scale-adapted) Harris measure or the determinant of the 

Hessian matrix to select the location, and the Laplacian to select the scale. Focusing on 

speed, Lowe [56] approximated the Laplacian of Gaussian (LoG) by a Difference of Gaussians 

(DoG) filter. 

Beyond the Harris model and it’s variants, several other scale-invariant interest point 
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detectors have been proposed. Examples are the salient region detector proposed by Kadir 

and Brady [57], which maximizes the entropy within the region, and the edge-based region 

detector proposed by Jurie et al. [58]. 

Research on existing detectors [59][60] concludes that Hessian-based detectors are 

more stable and repeatable than their Harris-based counterparts. Using the determinant of 

the Hessian matrix rather than its trace (the Laplacian) seems advantageous, as it fires lesson 

elongated, ill-localized structures. Also, approximations like the DoG can bring speed at a low 

cost in terms of lost accuracy. 

Four different feature detectors are used in this work: FAST, ORB, SURF and SIFT. 

They were selected mainly because of their code availability and their performance. It is 

important to notice that these four feature detectors are those most widely used by the 

scientific community. 

7.1.1 FAST 

The FAST algorithm (Features from Accelerated Segment Test[61]) takes into 

consideration the local neighborhood information of pixels and makes use of a 16 pixel ring 

around the interest point being analyzed, as shown in Figure 16. 

 

Figure 16. Neighborhood information used by the FAST algorithm. 

The FAST algorithm works as follows. The central point is considered a corner if there 

is a sequence of   pixels on the ring in which all of them are brighter than the central pixel 

plus a threshold. By taking   equal to 12, it is possible to exclude a high number of non-

corner pixels, since the test only needs to verify at most four pixels (1, 3, 5 and 9), 

corresponding to the compass orientations (north, south, east and west, respectively). 

If the central point, which is the point being analyzed, is indeed a corner, at least three 

of the four tested pixels should be brighter than the central pixel plus a threshold or darker 

than the central pixel minus a threshold. After applying this initial filtering process to all 

pixels, the complete test can be applied to the remaining ones. 
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Despite presenting high performance due to this test optimization, the algorithm 

described shows a series of weaknesses: 

 The optimized non-corners filtering does not generalize well for       ; 

 The choice for the specific order for testing the surrounding pixels requires 

existing knowledge about the image features (an optimal order and rotation 

should be different); 

 The knowledge acquired from the initial four tests is not used on the complete 

test after the first filtering processing; 

 The process performed detects multiple near features. 

Through the use of machine learning, it is possible to significantly improve the 

performance of the FAST feature detector. The complete process can be divided into two 

phases. At first, in order to build a feature detector for a specific   value, all the corners 

contained in a trainning image set are detected (preferably, these images pertain to the same 

application domain in which the application will be used). This corner detection for the entire 

set uses the complete test (checking the values of all 16 surrounding pixels). For each of the 

16 positions, the analyzed pixel can have one of the following states: 

 

 

      

{  
   
 
 
 

             (darker)                   (similar) 

             (brighter). 

(36) 

In the previous formula,      corresponds to the pixel intensity on neighborhood 

position  ,    is the central pixel being analyzed and   is the threshold used. 

By choosing a specific   value and computing      for every   pertaining to the 

training images, it is possible to partition the central pixels into the three distinct sets   ,    

and   , according to the result of the     test. 

Let    be a boolean variable that is true whenever   is a corner and false otherwise. 

The algorithm’s second phase consists of using the algorithm described in ID3 (Induction of 

Decision Trees) [62] and starts by selecting the location of the neighborhood that detains the 

most relevant information about the decision if a pixel is really a corner, measured through 

the    entropy. 

The    entropy level is calculated as follows: 

  ሺ ሻ  ሺ   ̅ሻ     ሺ   ̅ሻ          ̅     ̅, (37) 
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where   |{ |         }| (number of corners) 

and  ̅  |{ |          }| ሺ                     ሻ  
The choice of   then yields the information: 

  ሺ ሻ   ሺ  ሻ   ሺ  ሻ   ሺ  ሻ. (38) 

After determining which neighborhood position represents the highest amount of 

information, the process is recursively applied in all three subsets and a new   is chosen for 

each of them, with the goal of maximizing the information obtained from all three. The entire 

process reaches an end when the entropy of the entire set reaches zero. This means that all 

analyzed central pixels have the same    value, i.e., they are all corners or non-corners. Given 

that the process was finalized, there is a decision tree capable of correctly classifying all the 

pixels of the training set, according to the test criteria of the chosen FAST configuration. 

Because of the fact that the segment test is not based on a corner response function, it 

is not possible to directly apply a non-maximum suppression scheme to the selected features. 

It is necessary to compute a score value   for each detected corner, and use such value to 

eliminate neighbor corners with a lower   score. 

The   value is calculated based on the sum of absolute differences between the pixels 

in the contiguous arch, as follows: 

      ቀ∑ |       |             ∑ |       |          ቁ. (39) 

7.1.2 ORB 

The ORB algorithm [63] is built based on the well-known FAST keypoint detector [61] 

and the BRIEF descriptor [64]. For this reason, it is called ORB (Oriented FAST and Rotated 

BRIEF). Figure 17 shows a typical matching result using ORB for real-world images with 

viewpoint change. Green lines are valid matches; red circles indicate unmatched points. 
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Figure 17. ORB detector in action. 

The advantages of ORB are that it: 

 Adds a fast and accurate orientation component to FAST; 

 Develops an efficient computation of oriented BRIEF features; 

 Analyzes the variance and correlation of oriented BRIEF features; 

 Makes use of a learning method for de-correlating BRIEF features under 

rotational invariance, leading to better performance in nearest-neighbor 

applications. 

The ORB detector makes use of the FAST-9 variation (circular radius of 9), due to its 

proven good performance record [63]. As FAST does not produce a measure of cornerness, 

ORB employs a Harris corner measure [65] to order its keypoints. For a target number   of 

keypoints, ORB first sets the threshold low enough so that it will be possible to get more than   keypoints, then they are ordered according to the Harris measure and only the  top   

points are picked up. FAST also does not produce multi-scale features. ORB employs a scale 

pyramid of the image, thus producing FAST features (filtered by Harris) at each level in the 

pyramid. 

ORB’s approach for calculating the keypoint orientation uses a simple but effective 

measure of corner orientation, the intensity centroid [65]. It assumes that a corner’s intensity 

is offset from its center, and this vector may be used to impute an orientation. The moments 

of a patch can be defined as follows: 

     ∑      ሺ   ሻ   . (40) 

And by using these moments, the centroid is calculated as: 

   ቀ             ቁ. (41) 

Therefore, a vector can be constructed from the corner’s center,  , to the centroid,   . The 

orientation of the patch is calculated as 
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        ሺ       ሻ. (42) 

7.1.3 SURF 

The SURF detector (Speeded Up Robust Features) [66] is based on the Hessian 

matrix, but uses a very basic approximation, just as DoG [67] is a very basic Laplacian-based 

detector. It relies on integral images to reduce the computation time and therefore it is also 

known as the "Fast-Hessian" detector. 

Given a point    ሺ   ሻ in an image  , the Hessian matrix  ሺ   ሻ at scale   is defined 

as follows: 

  ሺ   ሻ  [   ሺ   ሻ    ሺ   ሻ   ሺ   ሻ    ሺ   ሻ], (43) 

where    ሺ   ሻ is the convolution of the Gaussian second order derivative 
      ሺ ሻ with the 

image   in point  , and similarly for    ሺ   ሻ and    ሺ   ሻ. 

The     box filters in Figure 18 are approximations for the Gaussian second order 

derivatives with       previously described and represent the lowest scale possible (i.e. 

highest spatial resolution). The approximations are denoted by    ,     and    . The weights 

applied to the rectangular regions are kept simple for computational efficiency, but it is 

needed to further balance the relative weights in the expression for the Hessian’s 

determinant with 
|   ሺ   ሻ| |   ሺ ሻ| |   ሺ   ሻ| |   ሺ ሻ|           , where | |  is the Frobenius norm. This 

yields: 

    ሺ       ሻ         ሺ      ሻ . (44) 

 

Figure 18. Left to right: the (discretized and cropped) Gaussian second order partial 

derivatives in  -direction and   -direction, and their approximations using box filters. 

Gray regions are equal to zero. 

The keypoint selection for the SURF algorithm is described as follows. At first, an 

integral image is built based on the original image. Such an integral image is used for 

speeding up the process of computing filters over the input image. The scale-space analysis 

starts with the SURF algorithm using image pyramids of filters (not images) to approximate 
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the Laplacian of Gaussian (LoG), and, for this reason, it runs faster than SIFT, which uses 

DoG for approximation. The filters used by SURF span several octaves with a fixed number of 

scales in each, similar to SIFT. One of the advantages of using integral images is that it helps 

to keep the running speed constant as it is insensitive to increasing filter sizes. SURF uses 

box filters to calculate the Hessian determinant. The size of the box filter used is a multiple of 

its current scale. All filters passes occur on the original image, instead of iteratively like SIFT, 

which allows for parallel execution. The feature points are maxima of the determinants in the 

adjacent scale and points (     ), similar to SIFT. 

After selecting the feature points, orientation assignment is the next step. At first, the 

responses from the 2 first-order Haar wavelet filters (1,-1), in both    and    orientations, 

are collected on each feature point. These responses are put on a 2D plane as vectors        . 
Once more, the integral image is used with this box filter. An orientation window of 60 

degrees is slid around the origin at the    plane. Each angle will have a corresponding sum of 

magnitudes for every vector inside that window. The dominant orientation would be the 

angle of the largest sum. The results for the SURF detector can be seen in Figure 19. 

 

Figure 19. SURF detector in action. 

7.1.4 SIFT 

The SIFT algorithm (Scale Invariant Feature Transform) is the oldest of all four object 

detectors described in this chapter. It works in a way that the features detected by it are 

invariant to scale, rotation, translation, and partially invariant to illumination changes and 

affine projections. In sequence, a brief description will give information about how SIFT is 

able to support each of its main capabilities. 

The scale invariance capability is supported through the use of successive applications 

of Gaussian filters and their derivatives, since this is the only kernel that allows scale space 

analysis, according to Lindeberg [68]. 

The rotation invariance is obtained by selecting points of maximum and minimum 
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based on the DoG applied over scale space. Such point selection can be efficiently computed 

through the construction of image pyramids with resampling between each pyramid level. 

This process finds keypoints in regions and scale with high variation, which makes such 

regions stable and effectively representative of the image being described. 

The smoothing operations are performed using   √  and two 1D kernel passes (due 

to the fact that the 2D Gaussian is a separable filter), which allows the application of the filter 

using only 7 points for each pass. The successive pyramid levels are generated using bilinear 

interpolation with pixel spacing of 1.5 in each direction. This 1.5 spacing means that each new 

pixel is generated based on the combination of four adjacent pixels. Whenever a point of 

maximum or minimum is found in a certain pyramid level, the location corresponding to the 

pixel on the next level is calculated. In case it continues to be a pixel of maximum or 

minimum, regarding its eight neighbors, the pixel follows as a feature candidate. Otherwise, 

the pixel is discarded. 

Each pyramid level is processed in order to extract both the gradients and the 

orientations. For each pixel    , the gradient magnitude     and the orientation     are 

calculated using the following differences: 

     √(          )  (          ) 
 (45) 

          ሺ                     ሻ (46) 

Each point successfully classified as feature has a main orientation, which enables the 

rotation invariance aspect of the algorithm. This orientation is determined by the peak found 

on the local image gradient orientations histogram. The histogram is created using a 

weighted Gaussian window with     times the values used during the pyramid generation. 

The weights are multiplied by the gradient threshold and then accumulated on the histogram 

in positions according to the     orientation value. The histogram possesses 36 bins, covering 

360 degrees of rotation (using intervals of 10 degrees each). 

Figure 20 illustrates some features detected using the SIFT algorithm. The image at 

the top corresponds to the original image, without any modifications. The second image was 

generated from the first by the application of rotation, scale and stretching transformations, 

brightness and contrast changes and noise addition. Despite those modifications, 78% of the 

features found in the second image show a strong correspondence to the features found in the 

first image. In both images, each detected feature is represented by a square region and its 

orientation through a line that has its origin in the feature center and goes to the region’s 

border. 



 

 58 

 

Figure 20. Features detected using the SIFT algorithm in two different images. 

7.2 FEATURE EXTRACTORS 

There is an even larger number of feature descriptors that have been proposed, 

including Gaussian derivatives [68], moment invariants [69], complex features [70][71], 

steerable filters [72], phase-based local features [73], and descriptors representing the 

distribution of smaller-scale features within the interest point neighborhood. The latter, 

introduced by Lowe [56], has been shown to outperform the others [75]. This can be 

explained by the fact that they capture a substantial amount of information about the spatial 

intensity patterns, while at the same time are resistant to small deformations or localization 

errors. The descriptor in [56], called SIFT for short, computes a histogram of local oriented 

gradients around the interest point and stores the bins in a 128-dimensional vector 

(8orientation bins for each of the     location bins). 

Various refinements on this basic scheme have been proposed. Ke and 

Sukthankar[76] applied PCA (Principal Component Analysis) on the gradient image. This 

PCA-SIFT yields a 36-dimensional descriptor which is fast for matching, but has proved to be 

less distinctive than SIFT in a second comparative study by Mikolajczyk et al. [60]. 

Additionally, a slower feature computation reduces the effect of fast matching. In the same 

paper [60], the authors have proposed a variant of SIFT, called GLOH, which was proven to 
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be even more distinctive with the same number of dimensions. However, GLOH is 

computationally more expensive. 

Three different descriptor extractors are used in this work: ORB, SURF and SIFT. 

They were selected because of their code availability and high quality of performance. It is 

important to note that these feature extractors are the ones most widely used by the scientific 

community. FAST use is specific for feature detection, since it does not define a way for 

representing the neighborhood of the feature. Because of that, FAST is commonly used in 

conjunction with a feature extractor (such as ORB, SURF or SIFT, for example). 

7.2.1 ORB 

As described above, the ORB algorithm bases its descriptor extraction phase on the 

BRIEF descriptor [64]. This descriptor is composed of a binary string that represents an 

image patch constructed from a set of binary intensity tests. Considering a smoothed image 

patch  , a binary test   is defined by: 

  ሺ     ሻ  {    ሺ ሻ     ሺ ሻ                 , (47) 

where  ሺ ሻ is the intensity of   at a point  . The feature is then defined as a vector of   binary 

tests: 

   ሺ ሻ   ∑           ሺ       ሻ  (48) 

Different test distributions were considered by the ORB algorithm. One of the 

distributions that showed good performance occurred with a Gaussian distribution around 

the center of the patch. The vector length was chosen to be      . 

In order to make BRIEF invariant to  in-plane rotation, ORB steers the BRIEF 

descriptor according to the orientation of keypoints. For any feature set of   binary tests at 

location ሺ     ሻ, define the     matrix 

   ቀ              ቁ. (49) 

Using the patch orientation   and the corresponding rotation matrix   , it is possible to 

construct a “steered” version    of  : 

         (50) 

Consequently, the steered BRIEF operator becomes: 

   ሺ   ሻ    ሺ ሻ|ሺ     ሻ     . (51) 

The angles are discretized to increments of 
     (12 degrees), and a lookup table of 
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precomputed BRIEF patterns is constructed. As long as the keypoint orientation is consistent 

across views, the correct set of points    will be used to compute its descriptor. 

7.2.2 SURF 

One of the challenges for the SURF algorithm is to try to reduce its descriptor’s 

dimension and complexity, while keeping it sufficiently distinctive. By mixing crudely 

localized information and the distribution of gradient related features yields good distinctive 

power while it fends off the effects of localization errors in terms of scale or space. The use of 

relative strengths and orientations of gradients reduces the effect of photometric changes. 

The first step in the construction of a SURF descriptor is to fix a reproducible orientation 

based on information from a circular region around the interest point. Then, a square region 

is constructed in alignment with the selected orientation and the SURF descriptor is 

extracted from it. 

The Haar-wavelet responses in   and y directions are calculated for a circular 

neighborhood of radius    around the interest point, with   being the scale at which the 

interest point was detected. The sampling step is scale dependent and chosen to be  . Since 

integral images are used for computing the wavelet responses, only six operations are 

needed, regardless of the wavelet size. Once the wavelet responses are calculated and 

weighted with a Gaussian (      ) centered at the interest point, the responses are 

represented as vectors. The dominant orientation is estimated by calculating the sum of all 

responses within a sliding orientation window covering an angle of 
  .radians The horizontal 

and vertical responses with the window are summed and then yield a new vector. The longest 

vector found lends its orientation to the interest point. 

The construction of the square region for capturing the descriptor components starts 

by splitting up the window (with size equal to    ) into smaller     square sub-regions. For 

each sub-region, a few simple features at     regularly spaced sample points are computed. 

The wavelet responses are summed up over each sub-region and form a first set of entries to 

the feature vector. This way, each sub-region has a four-dimensional descriptor vector   as 

follows: 

   ሺ∑   ∑   ∑|  | ∑|  |ሻ, (52) 

which corresponds to the summation of horizontal and vertical responses and the summation 

of the absolute horizontal and vertical responses. The absolute responses are added to the 

vector in order to bring information about the polarity of the intensity changes. This results 

in a descriptor vector for all     sub-regions of length   . 
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7.2.3 SIFT 

Once there is information available about the location, scale and orientation for each 

feature, the SIFT descriptor can describe the local image region in a manner invariant to 

these transformations. In addition, such representation must be robust against small shifts in 

local geometry, similar to the ones that occur from affine of 3D projections. This robustness 

to local geometric distortions can be obtained by representing the local image region using 

multiple images, each representing a number of orientations (also known as orientation 

planes). Each orientation plane contains only the gradients corresponding to that orientation, 

with linear interpolation used whenever there are intermediate orientations. Each plane is 

blurred and resampled in order to support larger shifts in positions of the gradients. 

In order to efficiently implement the previous approach, the same precomputed 

gradients and orientations for the pyramid levels (used before for orientation selection) can 

be used again. For each detected keypoint, the pixel sampling from the pyramid level in 

which the feature was detected is taken into consideration. Pixels in a radius of 8 pixels 

around the keypoint are inserted in the orientation planes. 

The global orientation is always measured relative to the one of the keypoint by 

subtracting the keypoint original orientation. Usually SIFT's default configuration adopts 

eight orientation planes, each sampled over a     grid of locations, with a sample spacing 

equal to the pixel spacing used for gradient detection. The blurring process is achieved by 

allocating the gradient of each pixel among its eight closest neighbors in the sample grid, 

using linear interpolation in orientation and the two spatial dimensions. 

For sampling the image at a larger scale, the same process is repeated for a second 

level of the pyramid one octave higher. This time, a     rather than a     sample region is 

used. Using this value, approximately the same image region will be examined at both scales, 

so that any nearby occlusions will not affect one scale more than the other. Therefore, the 

total number of samples in the SIFT key vector, from both scales, is             or 

160 elements, which gives enough measurements for high specificity. 

The matching of SIFT features can be performed by using nearest neighbors search 

[77]. To speed up the search, a modified version of the k-d tree algorithm, called the best bin 

first search method, can be applied [78]. The efficiency of the search can also be improved by 

giving the samples generated at a larger scale twice the weight of those at the smaller scale. 

This means that the larger scale is in effect able to filter the most likely neighbors for 

checking at the smaller scale. It also improves recognition performance by giving more 

weight to the least-noisy scale. Additionally, an efficient way to cluster reliable model 

hypotheses is to use the Hough transform [79][80]to search for keys that agree to a particular 
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model pose. 

7.3 DISCUSSION 

Some considerations must be made regarding the feature detectors and descriptors 

listed before. In both sections, the algorithms are listed according to their complexity, from 

the simplest to the most complex one. Regardless of its age, the SIFT algorithm is still the one 

that presents the best repeatability and distinctiveness results, due to the information it takes 

into consideration for selecting the features and the size of its descriptor. In comparison to 

the SURF algorithm, SIFT shows less approximations and therefore is more robust to 

rotations than SURF, as demonstrated in chapter 5. While ORB constructs its descriptor 

using a string of binary information, the SIFT algorithm stores an array of floats that describe 

the complete neighborhood of the feature. 

In order to take advantage of the particular benefit of each feature detector and 

descriptor described, this thesis works with different combinations of them. Such detector-

extractor pairs will be detailed in the following sections. 

7.4 TRACKING ALGORITHMS 

This work used five different tracking algorithms so that the proposed model could 

vary between them. All of them are tracking-by-detection algorithms, which means that the 

tracking task is based on detection, which enables large displacements of the target object 

among sequential frames. The tracking-by-detection algorithms were composed of both a 

feature detector and a feature extractor. Thus, five pairs of algorithms were analyzed (the first 

algorithm of the pair corresponds to the detector, the second to the extractor): SIFT-SIFT, 

SURF-SURF, FAST-SIFT, FAST-SURF, and ORB-ORB. The SIFT-SIFT, SURF-SURF and 

ORB-ORB are well known combinations, while the other two related to the FAST feature 

detector were chosen so that their performance stayed in the middle of the others. This way, 

it was possible to have a set of different tracking algorithms distributed based on their 

performance. 

By observing each training sequence separately for each algorithm pair, it was 

possible to notice the cases where one should be prioritized in place of the others. Figures 17 

to 21 show the comparison of SSIM results for the five training sequences generated from the 

third model (first image of the High Texture object class), given that each of the five 

algorithms was tested. The SSIM was chosen to be illustrated on the figures, instead of the 

reprojection error, simply due to the fact that its value is restricted to the [0,1] interval, as 

described before. This way, the SSIM is easier to visualize. A total of 25 thousand frames were 

used to generate these images. Table 6 lists the mean SSIM values for each parameter tested. 
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The way in which SSIM relates to the reprojection error will be detailed in section 6.1. 

Table 6. Mean SSIM values for the five parameters tested. 

  SIFT-SIFT SURF-SURF FAST-SIFT FAST-SURF ORB-ORB 

Rotation 0.682 0.848 0.237 0.443 0.833 

Scale 0.524 0.467 0.285 0.219 0.374 

Distortion 0.651 0.572 0.607 0.403 0.514 

Luminance 0.583 0.565 0.613 0.557 0.393 

Occlusion 0.472 0.49 0.482 0.484 0.461 

Overall Mean 0.583 0.588 0.445 0.421 0.515 

 
Figure 21. SSIM results for all algorithms, applied on the first image of the High Texture 

object class and varying the rotation parameter. 

From Figure 21, it is noted that the ORB-ORB combination is very robust against 

object rotations, second only to the SURF-SURF combination, which is far more 

computationally complex. In this scenario, because of the fact that only rotations are applied 

to the object being tracked (there are no luminance, occlusion, distortion or scale variations), 

its texture does not change during the entire sequence. Thus, in this case, one could raise the 

SSIM threshold and consider as good tracking results the situations in which the SSIM value 

is higher than 0.6. Chapter 9 shows that when considering an error threshold of 10 pixels, a 

much lower SSIM threshold needs to be applied. 
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Figure 22. SSIM results for all algorithms, applied on the first image of the High Texture 

object class and varying the scale parameter. 

Regarding the scale scenario, the SIFT-SIFT combination obtained the best results, 

followed by SURF-SURF and ORB-ORB. As the scale value gets closer to one (100% of the 

original size) the SSIM value increases. The tolerance for scale variation of both FAST-SIFT 

and FAST-SURF is very low. As shown in Figure 22, they achieve their best results only for 

the interval between frames #106 and #246 where the scale variation was between 75 and 

141% of the original object size. 

 

Figure 23. SSIM results for all algorithms, applied on the first image of the High Texture 

object class and varying the distortion parameter. 
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According to Table 6, the SIFT extractor seems to be the most robust against image 

distortions. From Figure 23, it is clear that the best results were generated by the SIFT-SIFT 

and FAST-SIFT combinations. 

 

Figure 24. SSIM results for all algorithms, applied on the first image of the High Texture 

object class and varying the luminance parameter. 

Similarly to the  scale scenario, Figure 24 shows that all five algorithms tend to show 

better results when they are closer to the original image luminance. The best results were 

obtained by the FAST-SIFT combination, followed by SIFT-SIFT and SURF-SURF. The decay 

in tracking quality regarding the ORB-ORB combination is perceptible in Figure 24, when its 

SSIM values start to go down earlier than the other algorithms, from frame #316 to #561, 

where the luminance variation increases from 108 to 186% of the original image brightness. 
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Figure 25. SSIM results for all algorithms, applied on the first image of the High Texture 

object class and varying the occlusion parameter. 

The occlusion scenario represented by Figure 25 showed similar results for all 

algorithms. Since there is no significant difference between them, this parameter could be 

easily removed from the model without prejudicing the overall model decision by 

classification. One important aspect to observe is the impact its removal could have in both 

speed and quality of tracking results. 
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CHAPTER 8 DEFINITION OF A TRACKER-SWITCHING 

DECISION MODEL 

Tracking objects using wearable computing platforms can be considered a typical 

example of trade-off in the computing area. As with many situations, one aspect is lost so that 

something is gained in return. In our case, the trade-off occurs between computational power 

(which relates to the speed of the algorithm being executed) and tracking accuracy (which 

relates to the amount of error after registering the object against the template being search). 

In order to create the decision process that controls such a trade-off, there must be a 

full comprehension of all possible consequences of a particular choice. To perform this 

process automatically, so that the computer can select autonomously the best algorithm for a 

specific situation, the computer must be able to decide when to switch between the available 

algorithms. In the following sections, we describe a model that acts like a decision maker with 

the goal to preserve quality and improve the processing speed of object tracking applications. 

8.1 THE OTS DECISION MODEL 

The proposed model can be defined as a “decision model” because it maps the 

relationships between elements of the decision and the forecasted results in order to better 

understand or control the tracking problem. In our case, the “elements of the decision” can 

be considered the model inputs, while the results serve as the model’s corresponding outputs. 

We propose a general solution to the problem of optimizing the planar object tracking 

task using texture information without applying significant changes to the computer vision 

application code. This means that the tracking algorithms themselves are not modified. 

Instead, different options of algorithms are selected on-the-fly according to the input scene. 

The approach described here is generic enough as its results depend mainly on the 

algorithms available. Any set of algorithms can be used, provided that the model information 

is generated following the same sequence of steps listed in the methodology previously 

described in section 1.4. The proposed decision model is called OTS, since it works as an 

Object Tracking Switcher that changes the algorithm in use according to external input that 

comes from the image frames. 

“La fille aux yeux d'or” (the girl with golden eyes) or simply the best reachable model 

should be able to provide good results when applied to any type of object being tracked. In 

this thesis, the term “good results” means that quality is maintained according to a threshold 

and processing speed is improved against the proposed decision model overhead. 

Unfortunately, object appearance may vary in a way that a simple and concise model would 

not be simple enough if it has to support every existing object. Because of that fact, there is 



 

 68 

some effort by the scientific community in trying to classify objects according to their visual 

features, so that simple models can be created focusing each category. These so called object 

categories or object classes will be discussed further in sequence. 

8.2 MODEL WORKFLOW 

The training phase of the model was responsible for acquiring information regarding 

how each algorithm is supposed to work when facing a specific input. After such a phase, 

there was available data representing an error approximation for the 5 input parameters 

analyzed independently. For each parameter, a range between MIN_VALUE and 

MAX_VALUE was specified. The parameter values were evenly distributed from 

MIN_VALUE to MAX_VALUE, in a way that their growth was linear. A total of 1000 samples 

for each pair Parameter/Algorithm were stored for each parameter, containing the 

corresponding error values. For the tests performed in this work, 25 arrays of 1000 elements 

each were stored, in order to be later used in the decision process. 

It is important to save data separately because this allows us to choose which 

parameters to take into consideration while performing the algorithm switch decision. In 

order to simplify the decision model construction, each parameter was trained separately 

from the others, allowing them to be treated independently during the decision process. As it 

will be explained, the decision process functions like a cascade of tests. 

The test cascade means that each set of parameters extracted in real time has to pass 

through five different evaluations (one for each parameter), so that the algorithm is 

considered a valid option. At first, all five algorithms are inserted on a queue according to 

their processing demand, from the simplest to the most complex one (e.g., from ORB-ORB to 

SIFT-SIFT). The time required for each algorithm to process a single image feature was 

shown in chapter 4. The order of the test cascade is also influenced by the training phase. It is 

ordered from the most restrictive to the less one. The restrictive grade of an algorithm is 

calculated based on the amount of frames that do not pass the test. It was possible to perceive 

the following order from the training phase: 

Light > Scale > Distortion > Occlusion > Rotation 

By applying the most restrictive tests first it is possible to optimize the entire testing 

phase, since more algorithms are eliminated and fewer tests have to be performed. After each 

test, the algorithms that show an error higher than the specified error threshold are 

eliminated from the algorithm queue. In the end, the first algorithm that remains on that 

queue is chosen by the decision model. In case there is no remaining algorithm on the queue, 

the model outputs the most complex one. This happens due to the fact that the most complex 

algorithm has a higher probability of finding the object missing on the frame sequence. 
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Figure 26 illustrates the OTS workflow from input image acquisition to algorithm 

response by the model. The process starts by extracting the model parameters used as input 

to the decision model. The results from the last successful frame tracked are used in tandem 

with the template information to obtain both movement (scale, distortion and rotation) and 

texture-related (occlusion, luminance) parameters. After that, the obtained values are passed 

to a cascade of tests, each of them corresponding to a specific parameter. 

For every test, a set of available tracking algorithms is passed as input, along with the 

tracking threshold to be used. The model accesses the table of values generated by the 

training phase and gives as output all the algorithms that satisfy the given threshold. In the 

example of Figure 26, the first test, regarding luminance, receives the five available 

algorithms and gives as output only the four algorithms that satisfied the threshold. In this 

case, the FAST-SURF failed to reach the desired quality and will not be used as input to the 

following tests. Since the FAST-SIFT algorithm did not pass the Scale test, it was also 

removed from the set of possible algorithm choices. 

The following test, for distortion, removed the SURF-SURF algorithm, leaving only 

two possible options available: SIFT-SIFT and ORB-ORB. Both remaining algorithms passed 

Occlusion and Rotation tests. In the end, these two algorithms were able to satisfy the quality 

threshold for all tests. Since the ORB-ORB combination corresponds to the less complex 

algorithm that satisfies the desired constraints, it is given as output of the decision model. 
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Figure 26. Diagram for the OTS workflow. 

The OTS will be evaluated and the results obtained with the proposed approach will 

be discussed in the next chapter. 
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CHAPTER 9 VALIDATION OF THE DECISION MODEL 

The execution platform for both generating the data for the training phase and 

validating the proposed scheme was an Intel Core i7 – 3720QM CPU (@2.6GHz), with 16 GB 

of RAM memory and running Windows 8 Professional 64 bits. Despite the fact this CPU has 

4 physical processors (8 logical ones), a single one was used due to the original 

implementation of the algorithms that comes from the single-threaded OpenCV library [94]. 

The OpenCV implementation of the algorithms (both feature detectors and 

extractors), follows the FeatureDetector and DescriptorExtractor interfaces, which facilitates 

the testing process. It is important to note that some implementations provided by OpenCV 

are not fully optimized versions of the algorithms. 

This chapter performs an analysis regarding the speedup obtained with the proposed 

model and the effect it has over the tracking quality. It shows how each of the four generated 

models, corresponding to the four planar object classes discussed in section 5.2, behaves 

when applied to different classes of objects, in respect to both speedup and error. After 

performing a more complete time analysis of the entire process, including the parameter 

extraction phase, a selective scheme of the model is also proposed, in order to further 

diminish its computational load. 

9.1 SPEEDUP AND PRECISION RESULTS  

The created models were tested against both training and evaluation sequences, in 

order to assess the speedup obtained and their behaviour when applied to objects from other 

classes. Four different models were constructed, one for each texture class. Each of the four 

models was based on the first images of each object class, Low Texture, High Texture, 

Normal Texture and Repetitive Texture, representing models #1, #3, #5 and #7, respectively. 

Despite being only four models, they were named so it is easier to reference their original 

image sequence. 

It is also relevant that, due to the nature of the algorithms, which are mainly based on 

texture processing, objects with low texture will not have the same tracking quality as the 

other object classes and should behave as outliers. 

The speedup results were calculated as described in section 6.1 and they are shown in 

Table 7. In each column, the result with the best speedup is highlighted. The second model 

created, based on the first image of the High Texture object class, showed the greatest results 

for most of the cases, as listed in the last column of the table. The only scenarios in which the 

top model is not the best performer were those in which it was applied to both images of the 

Low Texture object class, but only by a very small difference. Such a result means that the 
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second model is more general to support all other image scenarios and should be used when 

the application being developed focus no particular image template. 

Table 7. Speedup obtained with the proposed approach. The four different models 

generated were applied to each of the eight available scenarios. 

 #1 #2 #3 #4 #5 #6 #7 #8 Mean 

#1 

(low texture) 1.18 1.28 1.23 1.23 1.20 1.17 1.22 1.16 1.21 

#3 

(high texture) 3.31 3.26 2.91 2.99 3.25 3.16 2.94 3.15 3.12 

#5 

(normal texture) 3.33 3.27 2.53 2.59 3.12 2.67 2.53 2.44 2.81 

#7 

(repetitive texture) 3.00 2.92 2.75 2.76 2.88 2.86 2.77 2.96 2.86 

The error rates obtained are shown in Table 8. They result from applying an error 

threshold of 10 pixels. As expected, the fewest error situations happened when the specific 

models where applied to their respective sequences, as can be observed for image sequences 

number #1, #3, #5 and #7. 

Table 8. Error rate obtained with the proposed approach. The four different models 

generated were applied to each of the eight available scenarios. The error threshold 

used was 10 pixels. The first line shows the original error values, without using the 

proposed approach (we consider the original error values the ones from the SIFT-SIFT 

combination). 

 82.86% 14.24% 20.06% 12.40% 26.24% 12.82% 22.44% 22.34% 

 #1 #2 #3 #4 #5 #6 #7 #8 

#1 66.18% 14.20% 18.16% 12.66% 25.60% 12.92% 13.34% 21.80% 

#3 74.60% 20.14% 15.82% 14.90% 21.78% 19.64% 19.82% 25.52% 

#5 74.38% 15.42% 19.26% 14.84% 15.04% 15.80% 13.98% 27.34% 

#7 74.30% 15.22% 17.50% 13.98% 17.92% 16.76% 11.68% 26.06% 

9.2 VARYING THE ERROR THRESHOLD 

One of the advantages of the proposed decision model is that it can be used, even after 

constructed, in tandem with different threshold values. For example, the model based on 

image sequence number #3, which presented the best speedup results, was used to show how 
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the speedup varies according to the error threshold change. The evolution of speedup is 

shown in Figure 27. As expected, it increases as the threshold value increases, as less complex 

algorithms are used for a longer period of time during tracking. 

 

Figure 27. Analysis of speedup evolution according to error threshold increase. The 

highest relative increase in speedup occurs between error interval [5, 10]. 

It is important to notice that the speedup increase is not linear if compared to the 

threshold error increase. This means that at some point it is not advisable anymore to keep 

increasing the threshold, since the losses with error will be higher than the gains in speed. It 

is suggested that error threshold is kept at a maximum of 10 pixels, since this value shows the 

higher variation compared to the previous threshold value. 

9.3 TIME ANALYSIS 

The proposed model works based on parameters that come from the input image 

frames. While the mean execution time of the algorithms is known, the time necessary to 

extract such parameters must be known as well. With this information, it will be possible to 

identify when it is advantageous to use the proposed approach. The only additional overhead 

in processing that comes from the scheme proposed regards the parameter extraction phase, 

error evaluation (SSIM computation) and the decision cost itself. The time involved in the 

execution of the decision is not significant, since for each frame, just a few memory accesses 

are needed (e.g., for the tested scenario when five algorithms and five parameters are used, 

there were only 25 memory accesses). 

The mean time for each frame to extract the parameters is shown in Table 11. The 

rotation and scale parameters extraction time were grouped together since they are part of 

the same process. 
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Table 9. Mean time spent per frame in each processing step. 

 Execution times (ms) 

Rotation + Scale 0.0107640 

Distortion 0.000202 

Luminance 0.1623920 

Occlusion 4.0899950 

SSIM 3.1674500 

It can be observed from Table 9 that the computation times for both occlusion 

parameter and error evaluation (SSIM) are orders of magnitude higher than the other 

parameters (rotation + scale, distortion and luminance). While some of them just require a 

few arithmetic calculations, those two parameters involve processing the entire object image, 

making comparisons against the reference image and using additional algorithms (as 

happens to occlusion calculation, using LBP calculations). This time analysis is relevant 

because even if the decision model processing can be executed in a parallel thread, the 

occlusion parameter calculation demands about 55.04% of the entire model processing time, 

while the SSIM calculation takes 42.62% of it. Because SSIM is used in the error evaluation, it 

cannot be removed. The only alternative, when necessary, is to make a selective decision, by 

using only selected parameters, instead of always employing all parameters. 

9.4 SELECTIVE SPEEDUP AND PRECISION RESULTS 

A different way of adopting the proposed model is to specifically select which 

parameters will be used to evaluate the algorithm decision. As shown in the previous section, 

the occlusion parameter calculation is expensive if compared to the others, so it can be 

necessary to remove it from the decision process. This means that it does not need to be 

extracted in real time, because it is not being considered anymore. This change will surely 

have an impact on both speedup and error results compared to the previous attempts. Since 

the model is now less restrictive (i.e., performs less tests in the decision process), it should 

show an increase in speedup in detriment of a higher error. Table 10 and Table 11 show the 

new speedup and error values obtained by using the model without considering the occlusion 

parameter evaluation. 
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Table 10. Speedup obtained with the selective approach (not considering the occlusion 

parameter). The four different models generated were applied to each of the eight 

available scenarios. 

 #1 #2 #3 #4 #5 #6 #7 #8 Mean 

#1 1.82 1.82 1.81 1.81 1.81 1.81 1.81 1.82 1.81 

#3 3.43 3.38 3.24 3.26 3.37 3.37 3.35 3.43 3.35 

#5 3.70 3.55 3.40 3.41 3.49 3.49 3.42 3.70 3.52 

#7 3.16 3.06 2.95 2.95 3.03 3.03 2.97 3.16 3.04 

 

Table 11. Error rate obtained with the selective approach. The four different models 

generated were applied to each of the eight available scenarios. The error threshold 

used was 10 pixels. The first line shows the original error values, without using the 

proposed approach (only the SIFT-SIFT combination is used). 

 82.86% 14.24% 20.06% 12.40% 26.24% 12.82% 22.44% 22.34% 

 #1 #2 #3 #4 #5 #6 #7 #8 

#1 61.84% 14.40% 18.06% 12.48% 18.20% 12.90% 12.74% 14.10% 

#3 74.52% 19.88% 18.82% 15.38% 22.40% 21.32% 20.80% 27.52% 

#5 74.00% 16.46% 20.46% 18.04% 17.82% 17.42% 16.10% 29.10% 

#7 74.34% 14.62% 17.62% 15.68% 18.08% 18.14% 13.42% 26.46% 

 

After the modification, the model generated by image sequence number #5 obtained 

the new best speedups. Besides that, by comparing both original and new speedup results 

and doing the same regarding error, it is possible to verify a mean increase in speedup of 

17.21% and a mean error increase of just 0.83%. For this reason, the removal of the occlusion 

test showed to be very promising, since it enhances more the speedup than it harms tracking 

quality. 

This chapter presented the results obtained with the decision model proposed, using 

the methodology described in chapter 4. We showed that both speedup and error values vary 

according to the model choice. In general, it is possible to obtain a speedup of a factor of 3, 

while keeping the error below a specific threshold (10 pixels). We also showed that the 

execution time of the model decision process can be optimized by not considering all 

parameters while searching for the best suitable tracking algorithm. By eliminating the most 
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expensive parameter calculation (occlusion), we were able to improve the speedup while still 

maintaining the error bellow the initial threshold. 
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CHAPTER 10 CONCLUSION 

This thesis had as its main objective to propose a decision model capable of 

optimizing the tracking quality vs. computational demand by choosing the most suitable 

algorithm according to the object being tracked. To accomplish this, different tracking 

algorithms, image features, similarity measures and image datasets had to be carefully 

analyzed. 

The problem of performance optimization in AR applications operating in constrain ed 

mobile platforms was addressed. Sometimes, due to the lack of computational resources, the 

application execution is prohibitive because the computational load of the algorithm does not 

match the available processing power, making real-time processing difficult. 

The proposed decision model was created based on the correlation between five 

different algorithms. Whenever the scenario also involves memory consumption, the number 

of algorithms supported by the model can be diminished. For example, one may use the 

proposed decision model to select when is advisable to switch from SIFT-SIFT (the most 

expensive) combination to ORB-ORB (the least expensive), and then when to come back to 

the initial setup. Fewer algorithms supported by the model imply fewer decision options and 

reduced memory need. What happens in this case is that the computational load changes 

abruptly from these two combinations. When more algorithms are available, the change is 

more subtle, and a higher speedup can be achieved. 

10.1 CONTRIBUTIONS 

This thesis gave birth to several different contributions, listed in the following 

sections. 

10.1.1 COMPARISON AMONG DIFFERENT SIMILARITY MEASURES 

Image registration is the process of overlaying two or more images of the same scene 

taken at different times, from different viewpoints, and/or by different sensors [91]. The goal 

with registration is to geometrically align two images (the reference and the captured 

images). In this work, in order to select a utility function good enough to correctly judge the 

decision of the model, a broad research project was undertaken. It started with a particular 

family of image registration methods, namely those that are area-based. These methods deal 

with the images without attempting to detect salient objects, trying to establish a 

correspondence by considering the image information in its entirety. Twelve different 

distance measures were analyzed, the majority of them using histogram comparisons. From 

those twelve, the mutual information was the only one robust to illumination changes. Due to 
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its complexity and instability when dealing with structural distortions on the image, it was 

also discarded. In the end, the SSIM value was used as utility function, due to its robustness 

when comparing structural, brightness and intensity information from the image. 

10.1.2 COMPARISON AMONG DIFFERENT TRACKING ALGORITHMS 

Chapter 2 and 3 discussed several algorithms that can be used in object tracking 

applications. It is possible to use this information as a guide for deciding which algorithm to 

use according to the desired application scenario. Chapter 3 focused on algorithms that can 

be used in texture-based tracking approaches and the methods currently showing the best 

results were described and analyzed. A deeper analysis regarding their performance while 

varying the model parameters can be found in Chapters 5 and 6. The study regarding tracking 

algorithms in this thesis gave birth to an improvement of an existing tracking algorithm, 

known as FERNS[105]. Usually, the processing power of the GPU is explored in order to 

improve tracking algorithms whenever such resources are available [106][107]. 

10.1.3 ANALYSIS OF THE RELATIONSHIP AMONG ERROR MEASURES 

In order to use SSIM as utility function for the proposed model, it was necessary to 

find a clear relationship between both SSIM and the reprojection error. While the meaning of 

a SSIM is only clear when it is 1, which represents two completely equal images being 

compared, it is not clear how different the images are for values different than one. While the 

reprojection error is an amount measured in pixels, the SSIM value does not have a unit and 

varies on the interval [0,1]. In order to comprehend how the SSIM values worked, a direct 

relationship between these two error measurements was studied. 

Since one must know ground truth data before utilizing the reprojection error, this 

was not possible to do with unknown data. For that reason, all 25k frames from the training 

phase of the model were used in order to acquire error measurements information, SSIM and 

the reprojection error. It is obvious that when the reprojection decreases, the SSIM value 

tends to get closer to 1. The main problem here is how to represent a SSIM value that 

corresponds to a specific reprojection error of, for example, 10 pixels. The SSIM value was 

varied from 0 to 1 using intervals of 0.001, in a way that 1000 different SSIM values were 

generated. After that, a spatial hash-like structure was computed so that it was possible to 

know the mean reprojection error for each of the SSIM values. After that, a function was 

implemented so that it received as input the reprojection error and provides as output the 

corresponding SSIM value along with its confidence interval. This function is used by the 

model and is also available on the OTS library. 
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10.1.4 THE PROPOSED DECISION MODEL 

The proposed model was generated and tested with success against synthetic data. It 

showed a significant improvement over the original execution environment without 

modifying the tracking algorithms, just by switching them; it was possible to obtain a mean 

improvement in performance of about 3 times. 

The results were satisfactory for the four object classes tested and the selective 

capability of the model allows it to be completely configurable by the user, deciding which 

tests will contribute to the algorithm decision. Since the model is completely modular, new 

parameters can easily be added to it. This work does not require the user to correctly classify 

the object he/she intends to track into one of the four object classes. Indeed, he/she can test 

the four models generated against the available input data to see which gives the best results. 

In fact, this could be used as an automatic classification process for determining the class of 

the object. 

10.1.5 OBJECT TRACKING SWITCHER LIBRARY 

The proposed decision model was fully implemented using the C++ language and is 

available as an open-source library at the link http://sourceforge.net/p/otslibrary. It can be 

customized according to the application needs and also modified to support different 

algorithms that do not comply with OpenCV object tracking interfaces. 

10.1.6 PUBLICATIONS DIRECTLY RELATED TO THIS THESIS 

This thesis produced some contributions in the form of academic publications that are 

directly related to the object of study. They are listed as follows: 

 Teixeira, João Marcelo Xavier Natário; Kelner, Judith; Teichrieb, Veronica. A planar 

object tracking approach robust to total occlusion. In: Workshop de Realidade Virtual 

e Aumentada, 2012. Anais do WRVA 2012, 2012. 

 Emerenciano, T.; Tenório, L.; Moura, Guilherme; Teixeira, João Marcelo; Almeida, 

Gabriel; Kelner, Judith. Um Protocolo para Auxílios Visuais em Aplicações de 

Realidade Aumentada Colaborativa. In: 14th Symposium on Virtual and Augmented 

Reality, 2012, Niterói. Proceedings of the 14th Symposium on Virtual and Augmented 

Reality, 2012. 

 Santos, R.; Silva, Daliton; Teixeira, João Marcelo; Kelner, Judith. Rastreamento de 

Objetos Usando Template Matching e Variação de Iluminação. In: 14th Symposium 

on Virtual and Augmented Reality, 2012, Niterói. Proceedings of the 14th Symposium 

on Virtual and Augmented Reality, 2012. 

 Vasconcelos, L.; Breyer, Felipe; Teixeira, João Marcelo Xavier Natário; Kelner, 
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Judith; Teichrieb, Veronica. Desenvolvimento de uma Plataforma Móvel para 

Inspeção Termal de Equipamentos Baseada em Realidade Aumentada. In: 

ERGODESIGN USIHC, 2011, Manaus. Proceedings of the USIHC 2011, 2011. 

 Teixeira, Joao Marcelo; Teichrieb, Veronica; Kelner, Judith. The influence of partial 

occlusion on object tracking 2011. In V Latin American Summer School on Robotics, 

Santiago, Chile (Poster). 

 Leão, C. W. M.; Reis, B.; Teixeira, João Marcelo; Kelner, Judith. Mivamain: A 

Platform for Assisting Maintenance with Augmented Reality 2011. In V Latin 

American Summer School on Robotics, Santiago, Chile (Poster). 

 Teixeira, João Marcelo Xavier Natário; Reis, Bernardo; Teichrieb, Veronica; Kelner, 

Judith. An optimized label-broadcast parallel algorithm for connected components 

labeling. In Programmable Logic Conference (SPL), 2010, Ipojuca. p. 99-104. 

 Reis, Bernardo; Oliveira Filho, P. S. B.; Vasconcelos, L.; Teixeira, João Marcelo Xavier 

Natário; Teichrieb, Veronica; Kelner, Judith. MarkerMatch: an Embedded 

Augmented Reality case study. In: Symposium on Virtual and Augmented Reality, 

2010, Natal. Proceedings of the SVR 2010, 2010. 

 Reis, Bernardo; Teixeira, João Marcelo Xavier Natário; Albuquerque, E.; Teichrieb, 

Veronica; Kelner, Judith. Análise de técnicas de limiarização adaptativa para 

realidade aumentada embarcada. In: Workshop de Realidade Virtual e Aumentada, 

2010, São Paulo. Anais do WRVA 2010, 2010. 

 Leão, Crystian Wendel M.; Teixeira, João Marcelo Xavier Natário; Albuquerque, E.; 

Teichrieb, Veronica; Kelner, Judith. Melhorando o desempenho do rastreamento de 

pontos de interesse em imagens através do paralelismo em GPU. In: Workshop de 

Realidade Virtual e Aumentada, 2010, São Paulo. Anais do WRVA 2010, 2010. 

 Teixeira, João Marcelo; Roberto, R. A.; Simões, F. P. M.; Teichrieb, Veronica; Kelner, 

Judith. Reconstrução 3D usando luzes estruturadas. Tendências e Técnicas. In 

Symposium on Virtual Reality, 2010. 

 Farias, Thiago; Teixeira, João Marcelo; Leite, Pedro; Almeida, Gabriel; Almeida, 

Mozart Williams S.; Teichrieb, Veronica; Kelner, Judith. High Performance 

Computing: CUDA as a Supporting Technology for Next Generation Augmented 

Reality Applications. Revista de Informática Teórica e Aplicada, v. XVI, p. 63-88, 

2009. 

 Farias, Thiago; Teixeira, João Marcelo Xavier Natário; Almeida, Gabriel Fernandes 

de; Leite, Pedro; Teichrieb, Veronica; Kelner, Judith. A CUDA-enabled KLT Tracker 

for High Definition Images. In: Symposium on Virtual and Augmented Reality, 2009, 

Porto Alegre. Anais do SVR2009, 2009. 

 Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica; Kelner, Judith. Finding 
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an adequate escape pod to real time Augmented Reality applications. In: Brazilian 

Symposium on Computer Graphics and Image Processing, 2009, Rio de Janeiro. 

Anais do SIBGRAPI 2009, 2009. 

 Reis, Bernardo; Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica; Kelner, 

Judith. Detecção de Marcadores para Realidade Aumentada em FPGA. In: Brazilian 

Symposium on Computer Graphics and Image Processing, 2009, Rio de Janeiro. 

Anais do SIBGRAPI 2009, 2009. 

 Reis, Bernardo; Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica; Kelner, 

Judith. Detecção de Marcadores para Realidade Aumentada em FPGA. In: Simpósio 

em Sistemas Computacionais - Workshop de Iniciação Científica, 2009, São Paulo. 

Anais do WSCAD-WIC 2009, 2009. 

10.1.7 PUBLICATIONS INDIRECTLY RELATED TO THIS THESIS 

This thesis produced some contributions in the form of academic publications that are 

indirectly related to the object of study. They are listed as follows: 

 Leite, Pedro; Teixeira, João Marcelo; Farias, Thiago; Reis, Bernardo; TEICHRIEB, 

Veronica; Kelner, Judith. Nearest Neighbor Searches on the GPU. International 

Journal of Parallel Programming, v. 40, p. 313-330, 2012; ISSN/ISBN: 08857458; 

 Santos, Artur; Teixeira, João Marcelo; Farias, Thiago; Teichrieb, Veronica; Kelner, 

Judith. Understanding the Efficiency of kD-tree Ray-Traversal Techniques over a 

GPGPU Architecture. International Journal of Parallel Programming, v. 40, p. 331-

352, 2012; ISSN/ISBN: 08857458. 

 Reis, Bernardo; Teixeira, João Marcelo; Breyer, Felipe; Vasconcelos, Luis Arthur; 

Cavalcanti, Aline; Ferreira, André; Kelner, Judith. Increasing kinect application 

development productivity by an enhanced hardware abstraction. In: The 4th ACM 

SIGCHI Symposium on Engineering Interactive Computing Systems, 2012, 

Copenhagen. Proceedings of the 4th ACM SIGCHI Symposium on Engineering 

Interactive Computing Systems - EICS '12. New York: ACM Press, 2012. p. 5-14. 
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Open/Closed Hand Classification Using Kinect Data. In: 14th Symposium on Virtual 

and Augmented Reality (SVR), 2012, Rio de Janiero. Proceedings of the 14th 

Symposium on Virtual and Augmented Reality, 2012. p. 18-25. 

 Reis, Bernardo; Teixeira, J. M. X. N.; Kelner, Judith. An open-source tool for 

distributed viewing of kinect data on the web. In: Workshop de Realidade Virtual e 

Aumentada, 2011, Uberaba. Anais do Workshop de Realidade Virtual e Aumentada, 

2011. 
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Albuquerque, E.; Kelner, Judith; Teichrieb, Veronica. Evaluating the CapCam: a 

device for thermal inspection of electrical equipment. In: Workshop de Realidade 

Virtual e Aumentada, 2010, São Paulo. Anais do WRVA 2010, 2010. 
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Judith. Aplicando Model-Driven Development à Plataforma GPGPU. In: Simpósio em 

Sistemas Computacionais, 2009, São Paulo. Anais do WSCAD-SSC 2009, 2009. 

10.2 FUTURE WORKS 

This research has raised many possibilities of use for the proposed decision model. 

Some alternatives to enhance the work produced by this thesis are also explained bellow. 

 To test the model with real data and evaluate its performance in a real-time 

application will be important in proving the validity of the concepts developed 

during this work. Testing is already being carried out using two sponsored 

projects that make use of mobile platforms for executing AR applications. 

 A detailed time analysis regarding the impact of the model utilization over 

applications is also planned. This will identify cases in which the proposed 

decision model should run in a separate thread, so that the application 
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execution will not be harmed. 

 The definition of a tracking interface generic enough to represent both model-

based and texture-based trackers would allow the inclusion of new algorithms 

to the model in an easy way. 

Finally, we plan to extend the proposed model to track 3D objects. This topic involves 

a series of new studies since different motion parameters can be taken into consideration. An 

inverse approach of the parameter estimation can be used, by considering camera pose 

parameters instead of only object parameters. 
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LIST OF ABBREVIATIONS 

AR Augmented Reality 

AIC Akaike information criterion  

BRIEF Binary robust independent elementary features 

CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 

CPU Central processing unit 

CV Computer Vision 

EKF Extended Kalman filter 

ESM Efficient Second-order Minimization 

FAST Features from Accelerated Segment Test 

GLOH Gradient Location and Orientation Histogram 

GPU Graphics Processing Unit 

GRVM Virtual Reality and Multimedia Research Group 

HSV Hue, saturation, and value color model 

ID3 Iterative Dichotomiser 3 

KLT Kanade–Lucas–Tomasi feature tracker 

LBP Local Binary Patterns 

MI Mutual Information 

ORB Oriented FAST and Rotated BRIEF 

OTS Object Tracking Switcher 

PCA Principal Component Analysis 

RANSAC Random Sample Consensus 

SIFT Scale-Invariant Feature Transform 

SSD Sum of Squared Differences 

SSIM Structural Similarity index 

SURF Speeded Up Robust Features 

SVD Singular Value Decomposition 

ZNCC Zero Normalized Cross-Correlation 

 

  


