

Federal University of Pernambuco
Computer Science Center

Post-graduation in Computer Science

ANALYSIS AND EVALUATION OF
OPTIMIZATION TECHNIQUES FOR TRACKING

IN AUGMENTED REALITY APPLICATIONS

João Marcelo Xavier Natário Teixeira

PHD THESIS

Recife
March, 2013

 2

Federal University of Pernambuco
Computer Science Center

João Marcelo Xavier Natário Teixeira

ANALYSIS AND EVALUATION OF OPTIMIZATION
TECHNIQUES FOR TRACKING IN AUGMENTED REALITY

APPLICATIONS

Thesis presented to the Computer Science
Post-Graduation Program of the Federal
University of Pernambuco in partial
fulfillment of the requirements for the Degree
of PhD in Computer Science.

Advisor: Judith Kelner
Co-advisor: Veronica Teichrieb

Recife
March, 2013

Catalogação na fonte

Bibliotecária Jane Souto Maior, CRB4-571

Teixeira, João Marcelo Xavier Natário
 Analysis and evaluation of optimization techniques for tracking in
augmented reality applications / João Marcelo Xavier Natário Teixeira.
- Recife: O Autor, 2013.
 93 f.: il., fig., tab.

 Orientador: Judith Kelner.
 Tese (doutorado) - Universidade Federal de Pernambuco.

CIn, Ciência da Computação, 2013.

 Inclui bibliografia.

 1. Ciência da computação. 2. Visão computacional. I.

Processamento de imagem. I. Kelner, Judith (orientadora). II. Título.

 004 CDD (23. ed.) MEI2013 – 089

Tese de Doutorado apresentada por João Marcelo Xavier Natário Teixeira à Pós

Graduação em Ciência da Computação do Centro de Informática da Universidade

Federal de Pernambuco, sob o título “ANALYSIS AND EVALUATION OF

OPTIMIZATION TECHNIQUES FOR TRACKING IN AUGMENTED

REALITY APPLICATIONS” orientada pela Profa. Judith Kelner e aprovada pela

Banca Examinadora formada pelos professores:

Prof. Rafael Dueire Lins

Centro de Informática / UFPE

Prof. Silvio de Barros Melo

Centro de Informática / UFPE

Prof. Breno Ramos Sampaio

Departamento de Economia / UFPE

Prof. Eduardo Simões de Albuquerque

Instituto de Informática / UFG

Prof. Luciano Pereira Soares

Departamento de Informática / PUC/RJ

Visto e permitida a impressão.

Recife, 1 de março de 2013.

__

Profa. Edna Natividade da Silva Barros

Coordenadora da Pós-Graduação em Ciência da Computação do

Centro de Informática da Universidade Federal de Pernambuco

 3

RESUMO

Aplicações de visão computacional em tempo real executadas em campo fazem uso

frequente de computadores vestíveis, os quais apresentam uma restrição crítica na

quantidade de processamento que podem suportar, uma vez que a maior parte da aplicação

(se não sua totalidade) deverá executar na plataforma vestível. É fundamental um esquema

de balanceamento de carga capaz de permitir que a aplicação utilize mais poder de

processamento quando os cenários de entrada apresentam mais restrições visuais, por

exemplo, referentes ao objeto a ser rastreado, e diminua tal processamento com o objetivo de

economizar bateria e tempo de CPU em aplicações quando o vídeo capturado é mais

controlado (mais acessível).

O fato de aplicações de visão computacional executarem em uma variedade de

plataformas justifica se definir um modelo que ajuste automaticamente o rastreador em uso

em aplicações com restrições de recursos computacionais. A degradação de desempenho em

plataformas vestíveis pode ser maior do que a esperada, uma vez que plataformas desktop e

móvel apresentam diferentes níveis de configurações de hardware, e consequentemente,

diferentes restrições de desempenho.

Esta tese de doutorado soluciona o problema do rastreamento de objetos usando um

modelo de decisão, objetivando utilizar o algoritmo menos custoso sempre que possível.

Como objetivos específicos têm-se: investigar e implementar diferentes técnicas de

rastreamento, para escolher/definir uma métrica de referência que possa ser usada para

detectar interferência na imagem (oclusão, ruído, etc.), propor um modelo de decisão que

permita chaveamento automático entre diferentes rastreadores visando balancear o

desempenho da aplicação baseado na métrica escolhida, e diminuir a quantidade de

processamento requerida pela aplicação sem comprometer a qualidade do rastreamento

envolvido.

A eficiência do sistema será verificada através de estudos de caso sintéticos que

compreendem diferentes classes de objetos que podem ser rastreados, focando em aplicações

de realidade aumentada que executam em plataformas vestíveis. Diferentes algoritmos de

rastreamento farão parte do modelo de decisão e através do chaveamento entre eles, será

demonstrado que é possível atingir uma melhoria no desempenho de até três vezes,

mantendo uma qualidade mínima definida como erro de reprojeção de até 10 pixels quando

comparado à utilização apenas do algoritmo que gera a melhor qualidade de rastreamento,

independente do seu custo computacional. O impacto desse trabalho implicará em uma

melhor qualidade de aplicações com restrições de quantidade de memória, carga de baterias,

entre outras.

Palavras-chave: Realidade Aumentada, Visão Computacional, Alto Desempenho.

 4

ABSTRACT

Real-time computer vision applications that run on the field and make frequent use of

wearable computers have a critical restriction on the amount of processing they can perform,

because of the fact that most (if not all) of the application runs on the wearable platform. A

balancing scheme capable of allowing the application to use more processing power is

fundamental both when input scenarios present more visual restrictions regarding, for

example, the object to be tracked, and also to reduce processing in order to save battery and

CPU time for other applications when the captured video is better controlled (more

accessible).

The fact that computer vision applications may run on a variety of platforms justifies

the need for defining a model that automatically adjusts the tracker being used in

applications with hard performance constraints. Performance degradation in wearable

platforms can be greater than expected, as desktop and mobile platforms present different

levels of hardware capabilities, and consequently, different performance restrictions.

This doctoral thesis addresses the object tracking problem using a decision model, in

such a way that prioritizes using the least computationally intensive algorithm whenever

possible. It has the following specific objectives: to investigate and implement different

tracking techniques, to choose/define a reference metric that can be used to detect image

interference (occlusion, image noise, etc.), to propose a decision model that allows automatic

switching of different trackers in order to balance the application's performance, and to

reduce the application's workload without compromising tracking quality.

The effectiveness of the system will be verified by synthetic case studies that comprise

different object classes that can be tracked, focusing on augmented reality applications that

can run on wearable platforms. Different tracking algorithms will be part of the proposed

decision model. It will be shown that by switching among these algorithms, it is possible to

reach a performance improvement of a factor of three, while keeping a minimum quality

defined by a reprojection error of 10 pixels when compared to the use of only the best

algorithm independent of its computational cost. This work results in better performance of

applications with memory and battery restrictions.

Keywords: Augmented Reality, Computer Vision, High Performance.

 5

ACKNOWLEDGEMENTS

To God, thanks for all the blessings that allowed me to be a better person every day.

To my parents and family, thanks for all the support.

To my grandparents, thanks for still teaching me important life lessons.

To Alline, thanks for all patience, love and support over all these years.

To JK, thanks for being responsible for what I am today regarding my academic life. You

know you can always count on me.

To VT, thanks for making me keep focus on the important things. Also, thanks for being a

model to me, even in distance. I wish one day I can the be half of what you are.

To Javier, thanks for all the support while I was in Chile. Also, thanks to the friends from

UChile, specially Patricio, Marcelo, Jaime, Francisco and Wilma.

Thanks to my colleagues from GRVM, specially the “old school” friends Bernardo, Daliton,

Guilherme, Saulo, Gabriel, Crystian and Mouse.

Thanks to CAPES and CNPq for partially funding this research.

 6

CONTENTS

CHAPTER 1 INTRODUCTION .. 14

1.1 STATEMENT OF THE PROBLEM .. 14

1.2 MOTIVATION ... 15

1.3 RELEVANCY ... 16

1.4 RESEARCH DESIGN ... 16

CHAPTER 2 STATE OF THE ART AND RESEARCH DESIGN ... 19

2.1 VISUAL TRACKING .. 19

2.1.1 TRACKING IN AUGMENTED REALITY APPLICATIONS .. 21

2.2 DECISION THEORY .. 22

CHAPTER 3 STUDY OF EXISTING TRACKING APPROACHES .. 24

3.1 DIFFERENT TRACKING APPROACHES ... 24

3.1.1 MEAN SHIFT .. 24

3.1.2 CAMSHIFT .. 25

3.1.3 KALMAN FILTER .. 25

3.1.4 PARTICLE FILTER ... 26

3.1.5 HARMONY FILTER ... 27

3.1.6 OPTICAL FLOW ... 27

3.1.7 ESM ... 28

3.1.8 MUTUAL INFORMATION BASED TRACKER .. 28

3.2 BEST ALGORITHM SELECTION .. 29

3.3 DISCUSSION ... 30

CHAPTER 4 DEFINITION OF COMPARISON CRITERIA FOR TRACKING

ALGORITHMS SWITCHING .. 33

4.1 MEASURING TRACKING QUALITY .. 33

4.2 SPEEDUP AND ERROR DEFINITION ... 34

CHAPTER 5 ANALYSIS OF DIFFERENT WARP FUNCTIONS .. 37

 7

5.1 OBJECT CLASSES ... 37

5.2 INPUT PARAMETERS .. 38

CHAPTER 6 DEFINITION OF THE TEST SCENARIOS ... 42

6.1 TRAINING SEQUENCES .. 42

CHAPTER 7 SELECTION OF DIFFERENT OBJECT TRACKERS 50

7.1 FEATURE DETECTORS .. 50

7.1.1 FAST ... 51

7.1.2 ORB ... 53

7.1.3 SURF ... 55

7.1.4 SIFT ... 56

7.2 FEATURE EXTRACTORS .. 58

7.2.1 ORB ... 59

7.2.2 SURF ... 60

7.2.3 SIFT ... 61

7.3 DISCUSSION ... 62

7.4 TRACKING ALGORITHMS .. 62

CHAPTER 8 DEFINITION OF A TRACKER-SWITCHING DECISION MODEL 67

8.1 THE OTS DECISION MODEL .. 67

8.2 MODEL WORKFLOW ... 68

CHAPTER 9 VALIDATION OF THE DECISION MODEL .. 71

9.1 SPEEDUP AND PRECISION RESULTS .. 71

9.2 VARYING THE ERROR THRESHOLD .. 72

9.3 TIME ANALYSIS ... 73

9.4 SELECTIVE SPEEDUP AND PRECISION RESULTS ... 74

CHAPTER 10 CONCLUSION ... 77

10.1 CONTRIBUTIONS .. 77

10.1.1 COMPARISON AMONG DIFFERENT SIMILARITY MEASURES.. 77

 8

10.1.2 COMPARISON AMONG DIFFERENT TRACKING ALGORITHMS .. 78

10.1.3 ANALYSIS OF THE RELATIONSHIP AMONG ERROR MEASURES ... 78

10.1.4 THE PROPOSED DECISION MODEL ... 79

10.1.5 OBJECT TRACKING SWITCHER LIBRARY ... 79

10.1.6 PUBLICATIONS DIRECTLY RELATED TO THIS THESIS .. 79

10.1.7 PUBLICATIONS INDIRECTLY RELATED TO THIS THESIS ... 81

10.2 FUTURE WORKS .. 82

REFERENCES .. 84

LIST OF ABBREVIATIONS ... 93

 9

LIST OF FIGURES

FIGURE 1. EXAMPLE OF AN ACCURATE OBJECT TRACKING ROBUST TO OCCLUSION [11]. 19

FIGURE 2. FACE TRACKING USING A DEFORMABLE TEMPLATE [13]. .. 20

FIGURE 3. COMPUTER VISION APPLICATIONS: A) MOTION-BASED RECOGNITION [20]; B) AUTOMATED

SURVEILLANCE [15]; C) VIDEO INDEXING [21]; D) HUMAN-COMPUTER INTERACTION [22]; E)

TRAFFIC MONITORING [23]; F) VEHICLE NAVIGATION [24]. .. 21

FIGURE 4. CORRELATION BETWEEN SSIM AND REPROJECTION ERROR. POINTS ABOVE THE AXIS MAP

TO SUCESSFULLY DETECTED FRAMES (REPROJECTION ERROR THRESHOLD EQUALS 10 PIXELS). 36

FIGURE 5. FOUR DIFFERENT OBJECT CLASSES: THE “LOW TEXTURE” GROUP CONSISTS OF IMAGES OF

ROAD SIGNS WHICH ARE COMPOSED OF TWO DISTINCT COLORS AND LARGE UNIFORM AREAS,

THUS LARGE EDGES ARE VISIBLE. IN THE “HIGH TEXTURE” GROUP THERE ARE IMAGES OF

ELECTRONIC BOARDS, ONE IMAGE WITH MAINLY LARGE COMPONENTS, AND ANOTHER WITH

MAINLY SMALL ONES. IMAGES OF A CAR AND OF A CITYSCAPE ARE IN THE “NORMAL TEXTURE”

OBJECT CLASS. FINALLY, THE GROUP OF “REPETITIVE TEXTURE” BASED IMAGES IS COMPOSED OF

AN IMAGE OF A WALL MADE OF DIFFERENT SIZED STONES AND OF AN IMAGE WITH ENGLISH

LAWN WHICH FEATURES MANY EXTREMELY SMALL STRUCTURES EVERYWHERE [81]. 37

FIGURE 6. HOMOGRAPHY SECTIONS: THE SECTION HIGHLIGHTED IN RED CONTAINS ROTATION AND

SCALE INFORMATION; THE GREEN SECTION STORES TRANSLATION INFORMATION; THE ORANGE

SECTION PROVIDES THE VALUES USED IN THE PROJECTIVE DISTORTION COMPUTATION THE

WHITE PART IS TYPICALLY EQUAL TO 1. ... 39

FIGURE 7. SAMPLES FROM THE ROTATION SEQUENCE. ... 42

FIGURE 8. SAMPLES FROM THE SCALE SEQUENCE. .. 43

FIGURE 9. SAMPLES FROM THE DISTORTION SEQUENCE.. 43

FIGURE 10. SAMPLES FROM THE LUMINANCE SEQUENCE.. 44

FIGURE 11. SAMPLES FROM THE OCCLUSION SEQUENCE. ... 44

FIGURE 12. THREE DIFFERENT BACKGROUNDS USED IN AR APPLICATIONS: A) OUTDOOR

ENVIRONMENT; B) INDOOR ENVIRONMENT; C) LABORATORY FOR MAINTENANCE OF ELECTRICAL

EQUIPMENTS. .. 45

FIGURE 13. IMAGE SEQUENCES CORRESPONDING TO THE FIVE PARAMETER VARIATIONS GENERATED

BY MIXING THE TEMPLATE TO BE TRACKED WITH OUTDOOR BACKGROUND. 47

FIGURE 14. IMAGE SEQUENCES CORRESPONDING TO THE FIVE PARAMETER VARIATIONS GENERATED

BY MIXING THE TEMPLATE TO BE TRACKED WITH INDOOR BACKGROUND. 48

FIGURE 15. IMAGE SEQUENCES CORRESPONDING TO THE FIVE PARAMETER VARIATIONS GENERATED

BY MIXING THE TEMPLATE TO BE TRACKED WITH A MAINTENANCE LABORATORY CONTEXT. 49

FIGURE 16. NEIGHBORHOOD INFORMATION USED BY THE FAST ALGORITHM. 51

 10

FIGURE 17. ORB DETECTOR IN ACTION. .. 54

FIGURE 18. LEFT TO RIGHT: THE (DISCRETIZED AND CROPPED) GAUSSIAN SECOND ORDER PARTIAL

DERIVATIVES IN -DIRECTION AND -DIRECTION, AND THEIR APPROXIMATIONS USING BOX

FILTERS. GRAY REGIONS ARE EQUAL TO ZERO. .. 55

FIGURE 19. SURF DETECTOR IN ACTION. .. 56

FIGURE 20. FEATURES DETECTED USING THE SIFT ALGORITHM IN TWO DIFFERENT IMAGES. 58

FIGURE 21. SSIM RESULTS FOR ALL ALGORITHMS, APPLIED ON THE FIRST IMAGE OF THE HIGH

TEXTURE OBJECT CLASS AND VARYING THE ROTATION PARAMETER. ... 63

FIGURE 22. SSIM RESULTS FOR ALL ALGORITHMS, APPLIED ON THE FIRST IMAGE OF THE HIGH

TEXTURE OBJECT CLASS AND VARYING THE SCALE PARAMETER... 64

FIGURE 23. SSIM RESULTS FOR ALL ALGORITHMS, APPLIED ON THE FIRST IMAGE OF THE HIGH

TEXTURE OBJECT CLASS AND VARYING THE DISTORTION PARAMETER. 64

FIGURE 24. SSIM RESULTS FOR ALL ALGORITHMS, APPLIED ON THE FIRST IMAGE OF THE HIGH

TEXTURE OBJECT CLASS AND VARYING THE LUMINANCE PARAMETER. 65

FIGURE 25. SSIM RESULTS FOR ALL ALGORITHMS, APPLIED ON THE FIRST IMAGE OF THE HIGH

TEXTURE OBJECT CLASS AND VARYING THE OCCLUSION PARAMETER. 66

FIGURE 26. DIAGRAM FOR THE OTS WORKFLOW. .. 70

FIGURE 27. ANALYSIS OF SPEEDUP EVOLUTION ACCORDING TO ERROR THRESHOLD INCREASE. THE

HIGHEST RELATIVE INCREASE IN SPEEDUP OCCURS BETWEEN ERROR INTERVAL [5, 10]. 73

 11

LIST OF EQUATIONS

EQUATION (1) .. 25

EQUATION (2) .. 25

EQUATION (3) .. 26

EQUATION (4) .. 26

EQUATION (5) .. 26

EQUATION (6) .. 28

EQUATION (7) .. 29

EQUATION (8) .. 29

EQUATION (9) .. 29

EQUATION (10) .. 30

EQUATION (11) .. 30

EQUATION (12) .. 30

EQUATION (13) .. 33

EQUATION (14) .. 33

EQUATION (15) .. 33

EQUATION (16) .. 33

EQUATION (17) .. 33

EQUATION (18) .. 34

EQUATION (19) .. 34

EQUATION (20) .. 34

EQUATION (21) .. 35

EQUATION (22) .. 35

EQUATION (23) .. 35

EQUATION (24) .. 35

EQUATION (25) .. 36

EQUATION (26) .. 38

EQUATION (27) .. 39

EQUATION (28) .. 39

EQUATION (29) .. 39

EQUATION (30) .. 39

EQUATION (31) .. 40

EQUATION (32) .. 40

EQUATION (33) .. 40

EQUATION (34) .. 40

EQUATION (35) .. 41

 12

EQUATION (36) .. 52

EQUATION (37) .. 52

EQUATION (38) .. 53

EQUATION (39) .. 53

EQUATION (40) .. 54

EQUATION (41) .. 54

EQUATION (42) .. 55

EQUATION (43) .. 55

EQUATION (44) .. 55

EQUATION (45) .. 57

EQUATION (46) .. 57

EQUATION (47) .. 59

EQUATION (48) .. 59

EQUATION (49) .. 59

EQUATION (50) .. 59

EQUATION (51) .. 59

EQUATION (52) .. 60

 13

LIST OF TABLES

TABLE 1. MEAN EXECUTION TIMES PER FEATURE FOR EACH TRACKING PHASE. 35

TABLE 2. PARAMETRIC MOTION MODELS COMMONLY USED IN PLANAR OBJECT TRACKING. 38

TABLE 3. PARAMETER RANGES USED (ROTATION VALUES ARE IN RADIANS). 42

TABLE 4. CORRELATION VALUES FOR THE SSIM VALUES USING DIFFERENT BACKGROUNDS. 45

TABLE 5. P-VALUE OF THE T-TEST REGARDING SSIM VALUES USING DIFFERENT BACKGROUNDS. 46

TABLE 6. MEAN SSIM VALUES FOR THE FIVE PARAMETERS TESTED.. 63

TABLE 7. SPEEDUP OBTAINED WITH THE PROPOSED APPROACH. THE FOUR DIFFERENT MODELS

GENERATED WERE APPLIED TO EACH OF THE EIGHT AVAILABLE SCENARIOS. 72

TABLE 8. ERROR RATE OBTAINED WITH THE PROPOSED APPROACH. THE FOUR DIFFERENT MODELS

GENERATED WERE APPLIED TO EACH OF THE EIGHT AVAILABLE SCENARIOS. THE ERROR

THRESHOLD USED WAS 10 PIXELS. THE FIRST LINE SHOWS THE ORIGINAL ERROR VALUES,

WITHOUT USING THE PROPOSED APPROACH (WE CONSIDER THE ORIGINAL ERROR VALUES THE

ONES FROM THE SIFT-SIFT COMBINATION)... 72

TABLE 9. MEAN TIME SPENT PER FRAME IN EACH PROCESSING STEP. .. 74

TABLE 10. SPEEDUP OBTAINED WITH THE SELECTIVE APPROACH (NOT CONSIDERING THE OCCLUSION

PARAMETER). THE FOUR DIFFERENT MODELS GENERATED WERE APPLIED TO EACH OF THE EIGHT

AVAILABLE SCENARIOS... 75

TABLE 11. ERROR RATE OBTAINED WITH THE SELECTIVE APPROACH. THE FOUR DIFFERENT MODELS

GENERATED WERE APPLIED TO EACH OF THE EIGHT AVAILABLE SCENARIOS. THE ERROR

THRESHOLD USED WAS 10 PIXELS. THE FIRST LINE SHOWS THE ORIGINAL ERROR VALUES,

WITHOUT USING THE PROPOSED APPROACH (ONLY THE SIFT-SIFT COMBINATION IS USED). 75

 14

CHAPTER 1 INTRODUCTION

The term “vision” does not simply refer to the ability of capturing visual information,

but also refers to the possibility of understanding content being viewed. It is not enough to

see the environment; one must understand it. The information that comes from vision can be

used to perform, among others, the acts of positioning and detection. Vision is only relevant

when those actions are achieved. For example, one can imagine a scenario containing a

corridor with a transparent glass wall that blocks the way of a person. The glass, depending

on the point of view, may not be noticed due to its level of transparency. In this case, vision

fails, since it was not possible to generate enough information about the environment that

would allow for the viewer to change position. Another interesting example is a mirror maze -

the excess of visual information results in a loss of spatial reference, and, accordingly,

mobility becomes a challenge.

Computer vision seeks to understand the environment, with the analogous objective

of using the acquired information to guide user actions[1]. One way of understanding the

environment is to analyze the objects inserted in it and how they move. Through observation

of objects, their location and their behavior, it is possible to know what happens and which

action to take at a specific moment. This is achieved by the use of object trackers, which are

capable of following the movement of an object even when it is not entirely visible to the

capture sensor[2].

There is a large number of object tracking algorithms. The basic differences between

them resides in their precision, performance, and applicability. Some trackers have

particularities and are intended to be used in specific controlled environments with low noise

rate, uniform illumination, etc. Other tracking algorithms are more precise and more robust

to occlusions and extra interferences on the tracking process, therefore demanding more

computational effort.

1.1 STATEMENT OF THE PROBLEM

Despite the large number of tracking techniques found in the literature, it is not clear

that a tracker exists that provides the best performance ratio in many different scenarios

while still maintaining a pre-defined tracking quality. Trackers already exist that are better

applied to specific cases[3][4][5]. Depending on the tracker chosen, the application (the

system as a whole) can perform poorly under certain conditions. Applications that show

strong computational power limitations work with fixed restrictions on tracking precision

and processing speed[96]. At present, to the best knowledge of the author, there is no real-

time balancing scheme of instantaneous application needs, and no further analysis of the

 15

control factor for tracking precision and performance ratio of the application.

Real-time computer vision applications that run on the field, frequently making use of

wearable computers, have a critical restriction on the amount of processing they can perform.

This is generally due to the fact that most parts of the application run on the wearable

platform[97][98]. It is fundamental a balancing scheme capable of allowing the application to

use more processing power when input scenarios present more visual restrictions regarding

the object to be tracked. By diminishing such processing will allow the solution to save

battery and CPU time for other applications when the captured video is more controlled

(more accessible).

1.2 MOTIVATION

The nature of this thesis is directed to planar object tracking algorithms and how they

can be applied to systems with critical processing power restrictions. To “track an object”

means to follow its movement, or in other words, to be able to identify its position and

orientation in a specific image frame. This objective may be reached using one of two

approaches: either by following the object from the starting frame to the current one or by

searching the entire current frame for the object. The first case represents pure object

tracking. The second case uses object detection to perform object tracking. Pure object

tracking restricts the search area, minimizing the effort needed for finding the object over the

image. Pure object tracking cannot support wide-baseline displacements, which can be

necessary in certain scenarios. Object detection does not present such limitation, but

presents the onus of having to search a broader area of the image and using other image

matching techniques for finding the target object[1].

It is said that texture-based tracking has good quality when it is capable of mapping

the template image to the one given as input in a coherent way, in other words, both are

superimposed accordingly. This means that the tracking algorithm can find a transformation

that performs a satisfactory geometric alignment between the template used as reference and

the object from the input image[6].

This research considers improving the tracking process by using a decision model in a

way that the goal is to minimize the computational load while maintaining the tracking

quality. The creation of a decision model involves the selection of both input parameters that

will impact the decision and also a utility function capable of measuring how well it

performs[7]. This work intends to analyze different planar object and image characteristics in

order to extract the parameters to be used in the proposed model and to develop different

error measures that can be used as a utility function. We also intend to find methods to

diminish or balance the workload in computer vision applications running over wearable

 16

platforms.

Therefore, this thesis has the following specific objectives:

 To investigate and implement different techniques applied to texture-based

tracking of planar objects;

 To choose/define a reference metric that can be used to detect image

interference: occlusion, image noise, and others;

 To create a decision model that allows automatic switching of different planar

object trackers in order to balance the performance of the application based on

the chosen metric;

 To diminish the workload of the application without compromising tracking

quality.

1.3 RELEVANCY

The fact that computer vision applications run on a variety of platforms justifies the

need for defining a model that automatically adjusts the tracker to use with applications with

hard performance constraints. Performance degradation in wearable platforms can be

greater than expected. For instance, desktop and mobile platforms present different levels of

hardware capabilities, and consequently, different performance restrictions.

Whenever possible, the decision model should choose the simplest tracker given that

the quality (with the threshold specified by the developer) is not harmed. It will be shown

that every time quality cannot be assured, the decision model selects the algorithm with

highest probability of tracking the object (usually the most complex one).

The tracking phase is one of the most performance demanding phases in computer

vision applications. Because of that, a solution that saves processing time, guaranteeing

quality of application (through the preservation of the tracking quality), can allow the

execution of computer vision applications in restricted platforms, such as wearable

computers.

1.4 RESEARCH DESIGN

AR applications work through the understanding of the environment and later

addition of content located coherently in space. Such understanding is done through the use

of image processing and computer vision techniques to recognize the template information

used as reference to position the virtual content. This processing phase can be divided into

two separate steps: detection and tracking. Once the object is detected, a tracking algorithm

can be applied in order to follow the object throughout the scene, without having to detect it

 17

again. Both detection and tracking algorithms usually demand a high computational cost,

and should be chosen and implemented carefully in order to take advantage of all available

computational resources.

The problem of lack of resources is magnified when the goal is to develop AR

applications that have mobility as a requirement. In this case, the user must use the

application on the field through some mobile platform, such as a wearable computer, which

has hard energy consumption and computational power restrictions. A great challenge in this

area is how to maximize the available resources in a way that allows for a better experience

with the application.

A solution to this problem is the modification or construction of a “scheduling”

scheme for the tracking algorithms. Without the need to modify existing tracking algorithms,

the idea is to define comparison criteria in order to enable their switching according to the

input scenario in which the application is inserted. This way, simply by adequately choosing

which tracking algorithm to use in real time, it is possible to obtain better application

efficiency.

The proposed methodology used in this work is comprised of the following phases:

 Studying of the existing different object tracking approaches (advantages,

limitations, scenarios);

 Definition of comparison criteria in order to enable tracking algorithms

switching according to the input scenario;

 Analysis of different warp functions;

 Definition of the test scenarios (occlusion and scene luminance variations,

camera movement);

 Selection of different object trackers;

 Definition of a tracker-switching decision model;

 Validation of the decision model with training and test scenarios.

Chapter 2 defines the context in which this work is inserted into. Chapter 3 consists of

studying the existing different object tracking approaches. Chapter 4 refers to comparison

criteria that enable tracking switching according to the input scenario and also examines how

speedup and error measurements are calculated in this work.

After the study of tracking techniques, the problem of choosing the best suited

tracking algorithm was defined as problem of optimization, mainly based on two

components: warp function, which maps to the object movement over the image (it includes

its rotation, scale and deformation), and visibility aspects of the object, which includes

luminance variations and occlusions by the scene the object is inserted into. Different warp

 18

functions were analyzed in chapter 5 so that it was possible to verify what information each

component provided to the application and its adequacy for generic AR applications.

The application scenarios for the proposed approach include image sequences

commonly found in AR applications, i.e., images that have some type of object susceptible to

being tracked as content and the accompanying problems regarding their correct tracking. A

study of the problems that eventually hinder tracking performance showed that the two most

important issues are occlusion and scene luminance variations. Based on this information,

the test scenarios were defined in chapter 6. The selection of input data for the tests should

parallel characteristics commonly found on real-world scenarios, which are: occlusion

between objects, luminance variance, and camera movement. Different image sequences

varying the levels of occlusion and luminance will also be tested, due to their influence on the

change of tracker to be used. The data used in both training and test phases will come from

public image datasets widely available and used by the scientific community, which allows

the repeatability of this work.

In chapter 7, different combinations of feature detectors and extractors are selected,

leading to the selection of tracking options to be used while the application is executed. The

switching between different trackers should be defined by a metric capable of pointing the

most adequate tracker given the information possessed up to that moment.

Chapter 8 takes into consideration the trackers and the metrics defined for comparing

them and defines a tracker-switching decision model for automatically choosing the most

adequate tracker at a given moment.

Chapter 9 validates the proposed work by applying the designed model to both

training and test scenarios, and finally, chapter 10 lists the contributions and directions for

future work.

 19

CHAPTER 2 STATE OF THE ART AND RESEARCH

DESIGN

This chapter describes how computer vision algorithms are applied to augmented

reality applications and the different tracking approaches used to perform visual tracking. In

sequence, a brief overview is given about a technique used for determining the best algorithm

for feature selection, focusing on tracking quality. The major differences between this method

and the technique proposed in this thesis will be highlighted. This chapter also provides the

reader with an introduction to Decision Theory, a concept widely used on the conception of

the proposed model.

2.1 VISUAL TRACKING

Tracking an object of interest in a video sequence means continuously identifying its

position and orientation despite movement of either the camera or the object [8][10]. A

variety of approaches can be used for this task depending on the type of object being tracked

and the degrees of freedom inherent to the object and camera [8]. Figure 1 illustrates the

accurate tracking of a face despite its level of occlusion by another object that is not of

interest for the tracking.

 Target being tracked:

Tracking results:

Frame #0 Frame #1 Frame #2

Figure 1. Example of an accurate object tracking robust to occlusion [11].

When 2D tracking is used, the goal is to retrieve a 2D transformation from the object

projected on the captured image that best represents the motion that occurred [9]. Many

models can be applied in order to handle appearance changes due to perspective effects or

deformations. The homography is one of the most used transformations regarding 2D

tracking of planar objects, since it is generic enough to deal with all possible perspective

effects [12]. This thesis focuses on tracking of planar objects since it serves as basis for more

 20

complex tracking approaches (for example, 3D tracking). As it will be shown in section 5.2,

almost every object can be considered locally planar. Alternatively to planar objects,

deformable templates are one approach that can be used in order to track deformable meshes

[13], as shown in Figure 2.

Figure 2. Face tracking using a deformable template [13].

In computer vision, general video analysis can be broken down into three different

steps: detection of interesting moving objects, frame to frame tracking of those objects and

analysis of their tracks to recognize possible behaviors [2]. Because of such use in computer

vision, object tracking is important in the following major areas:

 3D reconstruction [99];

 motion-based recognition [14];

 automated surveillance [15];

 video indexing [16];

 human-computer interaction [17];

 traffic monitoring [18];

 vehicle navigation [19].

Figure 3 illustrates examples of computer vision applications in each of the previously

described areas. Besides these areas, object tracking algorithms can also be used in

Augmented Reality systems that require real-time registration of the object to be augmented.

 21

(a) (b) (c)

(d) (e) (f)

Figure 3. Computer vision applications: a) motion-based recognition [20]; b) automated

surveillance [15]; c) video indexing [21]; d) human-computer interaction [22]; e) traffic

monitoring [23]; f) vehicle navigation [24].

2.1.1 TRACKING IN AUGMENTED REALITY APPLICATIONS

Augmented Reality (AR) applications involve superimposing computer-generated

content on real scenes in real-time [25]. Tracking is a critical component of most AR

applications, since the objects in both real and virtual worlds must be properly aligned with

respect to each other in order to preserve the idea of the two worlds coexisting.

Medical visualization [26], maintenance and repair [27][100], annotation [28],

entertainment [29], navigation and targeting [30] and collaboration [101] are some examples

of areas that were already explored by AR applications.

Traditionally used in AR, vision-based tracking described as two main steps: extract

information from the input video using image processing algorithms and perform the pose

estimation itself, or, in other words, find the transformation that best maps the object model

from one frame to the next one.

The information that comes from the input image is basically composed of image

features that are easy to extract from the scene. Both Marker-based AR and Markerless AR

[33] are based on this principle, with the difference that the first one adds some templates

that do not originally belong in the scene in order to enable the tracking. These templates are

 22

often called fiducials and they constitute image features easy to extract as well as reliable

measurements for the pose estimation. In the case of Markerless AR, the template to be used

is the object to be tracked itself, using its natural features. Because of that, not every object

can be tracked easily, due to the fact that its texture should have a certain level of

differentiability compared to the rest of the scene [32].

Other tracking approaches can be used as well, such as approaches that rely on edge

information [33], feature information [34] and those that do not consider any object model a

priori[8][35]. This thesis will provide more detail regarding the template-based approaches.

The template-based tracking techniques do not necessarily rely on local features such

as edges or other features, but rather on global region tracking through the use of the whole

pattern of the object to be tracked. These methods can be useful in handling more complex

objects that are difficult to model using local features due to their repeatability, for example.

Such scenarios can be computationally expensive, but in some cases effectively formulated

[2].

2.2 DECISION THEORY

Making decisions in face of uncertainty is part of our lives. In economics, psychology,

philosophy, mathematics, statistics, among other areas, one must act without knowing the

consequences from the action taken. In order to deal with these problems on a rational basis,

a theoretical structure for decision making that includes uncertainty must be used. Decision

theory provides such structure, in the form of a framework in which all available information

is used to deduce which of the decision alternatives is best according to the decision maker’s

preferences [7]. It distinguishes between decisions and outcomes. Not every time a good

decision results in a good outcome. The procedure that comes from decision theory will allow

us to obtain the best possible logical solution. In other words, it will minimize the

consequences of getting an unfavorable outcome.

Common sense can be formalized by decision theory. It can be represented in an

unambiguous way when a mathematical language is used. Two streams of thought serve as

the foundations of decision theory: utility theory, which focuses on values, and probability

theory, which focuses on information. This work will deal with the decision making problem

as an instance of the first one, utility theory [92].

The first step for structuring a decision making process is to define numerical values

to the possible outcomes, which falls within the area covered by modern utility theory. The

basic assumption to be made is that two possible outcomes can be compared. This way,

preference over outcomes can be stated and one of the possible paths to the solution can be

elected. A common tool from utility theory, the utility function [93], provides a means of

 23

consistently describing the decision maker’s preferences through a scale of real numbers. It is

no more than a means to logical deduction based on the preferences regarding the problem.

 24

CHAPTER 3 STUDY OF EXISTING TRACKING

APPROACHES

Tracking is a difficult computer vision task due to the potential variability of the

images of the object that is to be tracked over time. Such variability arises from three main

causes: variation in target pose or deformations, illumination changes and target

occlusion[102]. Thus, the two main challenges for visual tracking are to develop accurate

models of image variability and also to design computationally efficient algorithms that use

those models [44]. This chapter focuses on studying some of the existing tracking approaches

used in AR applications.

3.1 DIFFERENT TRACKING APPROACHES

Numerous approaches to object tracking have been proposed over the years. They

primarily differ from each other based on object representation, image features or motion

model [2]. This section will briefly introduce different major tracking techniques for a variety

of scenarios.

3.1.1 MEAN SHIFT

Comaniciu et al. [36] introduced an efficient tracking scheme for nonrigid objects.

The target model is represented by an ellipsoidal region in the image. The influence of

different target dimensions is eliminated by normalizing targets to a unit circle. Since the

target model comprehends a probability distribution function in the feature space, an

isotropic kernel is used in order to assign different weights to the pixels, being the smallest

one the farthest away from the center. This way, the robustness of the density estimation is

increased, as the peripheral pixels are least reliable due to often being affected by occlusions

or interference from the background.

The Mean Shift tracker maximizes the appearance similarity iteratively, which is

based on the Bhattacharyya coefficient[42], by comparing the histograms of the object and

the window around the hypothesized object location. For each iteration, a Mean Shift vector

is computed such that the histogram similarity is increased. The process is increased until

convergence is achieved.

An obvious advantage of the Mean Shift tracker over a standard template matching

approach is the elimination of a brute force search and the computation of the translation of

the object path (plus scale) in a small number of iterations. The main disadvantage is that it

cannot compute the entire object pose – only a simple motion model (translation and scale)

is supported.

 25

3.1.2 CAMSHIFT

The Camshift (Continuously Adaptive Mean Shift Algorithm) [37] appeared as an

improvement to the original Mean Shift algorithm. Since the Mean Shift operates on

probability distributions, color histograms are used. The problem with the original approach

is that color distributions derived from video image sequences change over time, so the

algorithm must be modified to adapt dynamically to the probability distribution it is tracking.

Instead of a set or externally adapted window size, Camshift relies on the zeroth

moment information, which is the distribution area found under the search window. Thus,

window radius is set to a function of the zeroth moment found during search. The problem

with a fixed window size is that a value that works at one distribution scale is not suitable for

another scale as the object moves closer to or farther from the camera. While small fixed-size

windows may get lost entirely for large object translation on the scene, large fixed-size

windows may include distractors (objects that should not be tracked) and/or too much noise.

One of the disadvantages of Camshift is that it relies on color distributions alone, so

that errors in color (colored lighting, extremes in illumination) could cause errors in tracking.

A solution to this problem could be to adopt other approaches such as feature tracking and

motion analysis, which would add more complexity to the algorithm.

3.1.3 KALMAN FILTER

The Kalman Filter is a predictor-corrector type estimator that minimizes the error

covariance of the system [38][39]. It has been used extensively for tracking in interactive

computer graphics, and has two major characteristics: it maintains both the mean vector for

the state and also the covariance matrix of the uncertainty state.

The process is estimated using a form of feedback control: the filter estimates the

process state at a certain time and then gathers feedback in the form of measurements.

Kalman Filter equations are divided into two groups: time update and measure update

equations. The first group of equations is responsible for projecting forward both the current

state and error covariance while the second is responsible for the feedback.

The discrete Kalman Filter time update equations are described as follows:

 ̂ ̂ (1)

 (2)

Where ̂ represents the a priori state estimate, ̂ is the a posteriori state estimate from

previous state and the control input state. and are the matrices that refer to the state

and control input state from a previous time step to the current time step, respectively.

 26

 and are the a priori estimate error covariance for the current state and the a

posteriori estimate error covariance for the previous state, respectively. Q represents the

process noise covariance.

In sequence, the discrete Kalman Filter measurement update equations are also

listed:

 ሺ ሻ (3)

 ̂ ̂ ሺ ̂ ሻ (4)

 ሺ ሻ (5)

where is the Kalman gain or blending factor that minimizes the a posteriori error

covariance equation. is the measurement equation that relates the state to the

measurement . R is the measurement noise covariance matrix. is the identity matrix of

corresponding size.

One of the drawbacks of the Kalman Filter is that it performs the probability density

propagation for problems in which the system can be described through a linear model and in

which both system and measurement noises are white and Gaussian. Most 2D tracking

applications involve a nonlinear motion model, which means that the original Kalman Filter

implementation cannot be used. In order to solve this problem, an extension of the Kalman

Filter (called Extended Kalman Filter, or EKF) can be adopted [40]. The nonlinear functions

are linearized using Taylor series expansion. As with the original Kalman Filter, the extended

version also assumes that the state is distributed by a Gaussian.

3.1.4 PARTICLE FILTER

The most noticeable limitation from Kalman filtering is the assumption that the state

variables follow a Normal (Gaussian) distribution. Consequently, the Kalman filter provides

poor estimations for state variables that do not follow a Gaussian distribution [2]. This

limitation can be solved by the use of particle filters. With particle filters, the conditional

state density is represented at each time by a set of samples (particles) with different

weights (sampling probability), that map the importance of the sample [41].

Particle filtering’s most common sampling scheme is the importance sampling

method. It is composed of three distinct phases:

 Selection: random samples are selected;

 Prediction: for each selected sample, a new sample is generated using a zero-

mean Gaussian error and a non-negative function;

 Correction: the weights for the new samples are computed using the

 27

measurements found. The probability can be modeled as a Gaussian density.

3.1.5 HARMONY FILTER

The Harmony Filter uses the Harmony Search approach in order to optimize the

tracking function based on the Bhattacharyya coefficient as distance measure[42][43].

The Harmony Filter uses color histograms to model the targets. As a result, it is

possible to define a fitness function by comparing the histogram of the target with other

histograms generated from different regions in the image. The histogram with best fitness

function value represents the optimal point in the search space, corresponding to the most

likely location of the target.

The Harmony Filter uses a two dimensional histogram based on the (hue) and

(saturation) of the HSV color space. The (value) channel is discarded. By ignoring the third

channel, the filter becomes more robust to changing lighting conditions between frames. It

also reduces the overall complexity of the system and consequently increases its

performance.

Every time the tracking is required, the harmony memory is initialized using the

current frame information along with the target’s previous location. The previous location

information is used to predict the five-dimensional state vector containing position, velocity,

and scale data. A simple motion model is adopted and a new state vector is created by using

randomly generated acceleration in the and directions. The Harmony Search is then

applied until the solution converges or a maximum number of iterations are reached. Trials

have demonstrated that better results are obtained using the Harmony Filter in comparison

with standard Kalman Filter and Particle Filter approaches [43].

3.1.6 OPTICAL FLOW

Optical flow algorithms consider a set of points pertaining to object to be tracked and

assume that they move coherently in space. This way, it is possible to estimate both motion

and illumination parameters through observations of the image variations. Region-based

methods make use of all available image intensity information, eliminating the need to

identify and model a special set of features to track. Region-based methods can be considered

an effective complement to local feature-based algorithms.

Optical flow can be estimated by different means: phase correlation, block-based

methods, differential methods, and discrete optimization methods, among others. A well-

known example of differential method for estimating optical flow, based on partial

derivatives of the image is the KLT (Kanade Lucas Tomasi) [45], which uses image patches

and an affine model for the flow field.

 28

The optical flow computational load is very high and, consequently, a number of

precautions should be taken in order to improve performance. One such precaution, for

example, is to perform the tracking at multiple levels of resolution. A coarse-to-fine tracking

decreases the search area and therefore speeds the tracking stage.

3.1.7 ESM

Many minimization algorithms could be used to estimate the transformation

parameters involved in the tracking process. The Newton method has the highest local

convergence rate as it is based on a second-order Taylor series of the SSD (Sum of Squared

Differences) with the disadvantage of being time consuming. Another disadvantage is that if

the Hessian is not positive definite, convergence problems can occur.

The efficient second-order minimization tracker (ESM) [46] solves both speed and

convergence problems [47]. It has a high convergence rate compared to the Newton method

without the need to compute the Hessian.

The ESM can be applied in tracking a planar object using, for instance, a homography

H. A total of 8 parameters are needed to define this warp function up to a scale factor. The

homography parameterization is done by choosing its determinant to be equal to one. An

additional constraint is that H is inserted in the Special Linear group of dimension 3, which is

the group of matrices that have the determinant equal to 1. This parameterization

simplifies the computation of the Jacobian, improving ESM’s performance.

Another work has extended the ESM tracker to handle motion blur in 3D object

tracking [48]. They have introduced an image formation model that considers the possibility

of blur and applies such a model in a generalization of the original ESM algorithm. This

allows a faster convergence and a more accurate/robust tracking even under a large amount

of blur.

3.1.8 MUTUAL INFORMATION BASED TRACKER

Mutual information is an alignment function that was first introduced in the context

of information theory [50]. It represents the quantity of information shared between two

random variables. If the two variables/images are aligned then their mutual information is

maximal. It can be calculated by using the following formulas:

 ሺ ሻ ∑ ሺ ሻ ቆ ሺ ሻ ሺ ሻ ሺ ሻቇ
 , (6)

 29

with

 ሺ ሻ ∑ ሺ ሺ ሻሻ (7)

and

 ሺ ሻ ∑ ሺ ሺ ሻሻ ሺ ሺ ሻሻ , (8)

where is the number of pixels in the images.

In [50], a mutual information based tracker is proposed, in which the formulas are

applied to grayscale values, such that the color information from the three channels has to be

converted to a single gray one. The function used is a -order -spline, in order to

smooth the images and get a better alignment.

3.2 BEST ALGORITHM SELECTION

The MuFeSaC algorithm (Multi-Feature Sample Consensus) works as an adaptive and

automatic procedure to choose a reliable feature detector when there is more than one

available[49]. Since its goal is to be used with self-localizing mobile platforms, it focuses on

finding the best features (feature detector selection) over a video sequence. Moreover, it only

considers improving the quality of the detected features, not considering the complexity of

the algorithms involved.

MuFeSaC’s algorithm pipeline can be divided into 5 different phases. The first phase

consists on the individual analysis of the feature detection methods (FD). For each (being the number of feature detectors available), this phase starts by

extracting features from two successive frames. In sequence, the putative matches are found

using proximity and cross correlation. By performing RANSAC and iterating to a

convergence, the -estimated parameters of model fitted during the iterations of

RANSAC are collected. Then, the -variate probability distribution based on ()

iterations of parameter estimates collected () are estimated.

The second phase consists in calculating the score single feature outlier consensus

() using the model selection criterion () described in sequence.

 is the inverse Fisher information matrix, and ∑ are the maximum likelihood estimates

(9)

 ሺ ሻ ሺ ሺ∑ ሻሻ

 30

of the mean and covariance computed as the first two moments of . The measure and the are computed using the two following equations:

 ሺ ሺ∑ ሻሻ [ሺ ሺ∑ ሻሻ] | ሺ∑ ሻ| (10)

and

 ሺ∑ ሻ [∑ ሺ∑ ∑ ሻ], (11)

with being the rank of , | | refers to the determinant and refers to the trace of the

matrix. is the Moore-Penrose inverse of vectorized ∑ and represents the Kronecker

product. The measure for penalizing uncertainty is obtained by maximizing mutual

information in -dimensions.

The third phase is responsible for computing the competing feature consensus score

() by evaluating competing distributions for different hypotheses and then choosing

the optimal consensus combinatorial cluster among the competing feature detectors. The

Akaike information criterion (AIC) is used to score the different hypotheses as follows:

 ሺ ∑ ሻ ሺ ሻ
(12)

In the fourth phase, the optimal feature detector is chosen to be the one with

minimum . After this phase, the entire process is repeated every frames,

where can be adapted based on scene complexity (typically a value of 300 is used).

It can be said that the work proposed in this thesis is an evolution of the MuFeSaC

algorithm, in the sense that it also takes information from the scene to automatically decide

which tracking algorithm to use. In addition, it guarantees that the chosen algorithm is the

least complex one given a certain error threshold.

3.3 DISCUSSION

Some considerations must be made about the trackers listed above. Both Mean Shift

and Camshift use a blob of color information to aid in keeping track of the object. It relies on

the use of 1D histograms, which lack spatial information. Their use is indicated when the

object to be tracked will change drastically over time, such as rotating or deformable objects.

These trackers are considered robust against some occlusion but are not as precise in

comparison to other approaches, such as Kalman and Particle Filters, for determining

specific point positions.

 31

Kalman and Particle Filters provide a precise estimate for the points and objects being

tracked. The drawback resides in their recursive nature, which is responsible for causing a

problem of error accumulation over time. In order to get better results with the particle filter,

in comparison to the Kalman model, it is possible to increase the number of particles used.

This results in a higher computational load, however, since the computer must process more

hypotheses in every iteration.

The Harmony Filter can converge more accurately and more quickly than the Particle

Filter does as it relies heavily on the most current observational information to improve the

initial improvisations, in contrast to the Particle Filter that only uses it to score particles

without changing their initial position in search space. Its performance directly depends on

the objective function complexity, since it makes use of a direct search method (Harmony

Search), and can be applied to any optimization problem (linear or nonlinear). The

parameters may be tuned in order to speed up the convergence process.

A tracking approach using optical flow information relies on image variations from

frame to frame. The variations must be small in order to guarantee that the tracker works

well. Depending on how erratic and fast the movement of the target object is, ambiguity can

arise. This problem can occur when using textures with high repeatability. Motion cannot be

estimated well in textures with areas of poor gradient. Out of all the tracking approaches

cited before, the ESM tracker is the one that presents the best results in terms of balance

between accuracy and speed.

Significant progress in object tracking has been made in recent years [2]. Different

robust trackers were developed and can track objects in real-time for simple and well-defined

scenarios. By “well-defined scenarios” we mean that some assumptions are made, such as

approximations of the centroid of the object, smoothness of motion, few occluded areas and

quasi-constant illumination. Some of the presented trackers fail when used in realistic

scenarios, such as automated surveillance, human computer interaction or vehicle

navigation, for example, due to either their lack of precision or their computational load. New

solutions are continuously being proposed to deal with these problems.

The next great challenge in object tracking development is to create algorithms for

tracking objects in unconstrained videos: noisy, compressed, unstructured, and acquired

from moving cameras or from multiple views. The use of mutual information is one

interesting approach that tackles these problems, since it is capable of finding a relation

between multimodal data (data acquired from different sensors, for instance, relating a

drawing with a picture or a map with an aerial view of certain location) [50]. This advantage

comes with the drawback of high computational cost. The problem now becomes how to

balance the use of the most adequate tracking techniques depending on the input scenarios

 32

and the platforms’ computational power.

 33

CHAPTER 4 DEFINITION OF COMPARISON CRITERIA

FOR TRACKING ALGORITHMS SWITCHING

Given the goal of the proposed model of maintaining tracking quality while

minimizing processing demand, the following question arises: how to measure tracking

quality? This chapter is dedicated to such topic.

4.1 MEASURING TRACKING QUALITY

The simplest approach is to perform a direct comparison of specific points of the

template being tracked and the tracked result, given that ground-truth data is available. This

can only be used during the model training phase, because at the time of execution there is no

ground-truth data to be based on. The first error measure (namely reprojection error) used to

evaluate the tracking quality in this work was calculated using the difference between the

four template corners projected using the homography found by the algorithm, as follows:

 √ ∑ ‖ ‖ . (13)

In the previous equation, and represent the reference point and the imaged

reference point, respectively.

This approach only considers the homography, in other words, the object motion. A

second approach free from ground-truth information relies solely on the texture information

resulting from the tracking process. Different approaches were analyzed, such as ZNCC[88],

MI [89], and SSIM [90]. All of them are very robust to luminance variations. Of the three

approaches listed, the SSIM showed to be more adequate in measuring the tracking quality,

due to the fact that it is based on three image components: luminance, contrast and structure.

The next equations show how it is calculated:

 ሺ ሻ (14)

 ∑
 (15)

 ሺ ሻ (16)

 (∑ሺ ሻ
)

 (17)

 34

 ሺ ሻ (18)

 ∑ሺ ሻሺ ሻ
 (19)

 ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ (20)

In the previous equations, and represent two non negative image signals, and
represent pixel intensities, corresponds to the number of pixels in the images and ,

and are constants placed in order to avoid instability.

Both reprojection error and SSIM are directly related. The difference between them is

that while the first varies from 0 to infinity, the second is bounded by the [0,1] interval. The

relationship between them will be further explored in the analysis chapter (chapter 9). Since

the SSIM value will be used as the utility function of the decision model proposed, all

comparisons regarding tracking quality will refer to this metric.

4.2 SPEEDUP AND ERROR DEFINITION

As previously stated, the main goal of the proposed decision model is to identify when

it is possible to change the employed tracking algorithm to a computationally less demanding

one without significantly harming tracking quality. In order to guarantee the minimum

amount of error, one should use the most complex tracking algorithm. While this diminishes

the rate of error, it demands more processing power. That being said, the speedup of the

proposed model is calculated based on the processing time of the most complex algorithm,

which, out of the tests performed, was the SIFT-SIFT combination. In the worst case

scenario, whenever the model cannot find a suitable algorithm for the current frame

characteristics, the algorithm to be used will be the most complex one.

The processing time in milliseconds for each algorithm combination used is shown in

Table 1. It describes the time spent for calculating a single feature, considering detection,

extraction and matching phases.

 35

Table 1. Mean execution times per feature for each tracking phase.

 SIFT-SIFT SURF-SURF FAST-SIFT FAST-SURF ORB-ORB

Detection 0.1199 0.1048 0.0003 0.0003 0.0121

Extraction 0.1883 0.1539 0.1025 0.0367 0.0118

Match 0.0308 0.0269 0.0224 0.0230 0.0125

Overall 0.3390 0.2857 0.1253 0.0602 0.0364

For a sequence composed of 5000 frames (1000 for each of the five parameters), the

speedup is calculated according to the following equation:

 (21)

 ∑
 (22)

 (23)

 refers to the total time required (considering detection,

description and matching) of the most complex algorithm. As shown in Table 1, this points to

the SIFT-SIFT combination. is the total number of frames used on the

sequence, which in our case is . is the total time (considering detection,

description and matching) of a certain algorithm. Since five different combinations are being

considered, is . At last, corresponds to the number of

frames chosen by the decision model for a specific algorithm.

According to Lieberknecht et al.[81], an image is considered to be successfully tracked

when the mean of the sum of the reprojection errors of its four corners is not higher than 10

pixels. As with the speedup calculation, the original amount of frames not detected by the

SIFT-SIFT combination is calculated, to be used as reference error. The SIFT algorithm was

chosen to be the reference due to its broad utilization in visual tracking applications, despite

the SURF-SURF combination showing a lower general SSIM result for the tested sequences.

After that, for each of the four models generated, the number of not detected frames is also

calculated. Both base error and proposed error are calculated as follows:

 (24)

 36

 ∑ (25)

It is important to note that the reprojection error can only be used when ground truth

data is available. Since this is not the case when executing tracking applications in real time,

SSIM must be used instead. Using the same training data captured earlier, it is possible to

establish a relationship between reprojection error and SSIM. As shown in Figure 4, the

frames can be considered “tracked successfully” when the reprojection error is no higher than

10 pixels. This leads to a confidence level of 99.04% when the SSIM value is higher than

0.267.

Figure 4. Correlation between SSIM and reprojection error. Points above the axis map

to sucessfully detected frames (reprojection error threshold equals 10 pixels).

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

R
e

p
ro

je
ct

io
n

 e
rr

o
r

SSIM value

SSIM vs reprojection error

 37

CHAPTER 5 ANALYSIS OF DIFFERENT WARP

FUNCTIONS

This chapter focuses on a classification of target objects according to their texture

information and on how the motion of an object can be mathematically represented. In this

work, the tracking process is performed based on the texture data acquired from the target

object[103].

5.1 OBJECT CLASSES

Tracking algorithms work by analyzing the visual features of images and then

computing their relative motion along frames. In [81], the authors propose a dataset and

evaluation methodology for template-based tracking algorithms. Their motivation in creating

such a dataset was to create a fair comparison between a wide range of template-based

algorithms. Some use corners, edges and even whole regions of the image. The dataset

originates from planar objects, which comprise one of the most fundamental ways of finding

relative position and orientation of a camera with respect to different objects in real time.

They consider that most tracking algorithms assume objects as at least locally planar. In

order to represent all possible planar targets, they proposed four different object classes,

namely “Low Texture”, “High Texture”, “Normal Texture” and “Repetitive Texture”. Each

class is represented by two targets, as shown in Figure 5.

Low Texture High Texture Normal Texture Repetitive Texture

#1 #2 #3 #4

#5 #6 #7 #8

Figure 5. Four different object classes: The “Low Texture” group consists of images of

road signs which are composed of two distinct colors and large uniform areas, thus

large edges are visible. In the “High Texture” group there are images of electronic

boards, one image with mainly large components, and another with mainly small ones.

Images of a car and of a cityscape are in the “Normal Texture” object class. Finally, the

group of “Repetitive Texture” based images is composed of an image of a wall made of

 38

different sized stones and of an image with English lawn which features many extremely

small structures everywhere [81].

In this work, four different models were generated, based on each available planar

object class. Since each class has two targets, the first object of each class was used for

training the model, while the second one was used to evaluate the results obtained. The

template size used for all models was , while the full image resolution to be tracked

was .

5.2 INPUT PARAMETERS

According to the previous section, a key characteristic was used to classify the objects

into different classes: its texture. In order for the model to be as generic as possible, it would

be wise not to depend exclusively on object texture itself. Thus, other parameters had to be

used as inputs for the model. After some research, we decided to extract parameters from

both object movement and scene influence over the tracked object. A total of five different

parameters were selected, three of them pertaining to the tracking warp function

(transformation from one frame of the sequence to another) and the other two related to the

object illumination and occlusion.

The object motion generally occurs in the form of a parametric motion [82].

Depending on the object itself and its motion in 3D space, different warp functions can be

defined. A warp function’s general notation can be

 , (26)

in which w is the warp function that takes a 2D point and takes it to another 2D point. is

the number of parameters of the considered motion model that corresponds to the number of

DOF that defines the image transformation.

Four different warp functions commonly used in object tracking are: Translation,

Similitude, Affine and Homography, respectively with 2, 4, 6 and 8 parameters [82]. Table 2

illustrates the main differences between these four parametric motion models.

Table 2. Parametric motion models commonly used in planar object tracking.

Model Parameters Formula

Translation ሺ ሻ (2) ሺ ሻ

Similitude ሺ ሻ (4) ሺ ሻ ሺ ሻ ሺ ሻ

Affine ሺ ሻ (6) ሺ ሻ

Homography ሺ ሻ (8) ሺ ሻ

 39

In the previous table, represents a translation in and directions, is the set of

parameters used by the warp function, maps to the scale and to the rotation angle used.

and are affine and homography transforms, respectively.

As the homography motion model is less restrictive, it was chosen to represent the

motions in this work. The first three input parameters, namely Rotation, Scale and

Distortion, are extracted directly from the homography. Figure 6 illustrates the homography

in matrix form and highlights which part is used in each parameter estimation.

Figure 6. Homography sections: the section highlighted in red contains rotation and

scale information; the green section stores translation information; the orange section

provides the values used in the projective distortion computation The white part is

typically equal to 1.

According to Hartley and Zisserman[82], every projective transformation can be

decomposed into the product of three matrices, such as

 [] [] [] [], (27)

in which represents the affine part of the transform, relates to the anisotropic scale and to the distortion parameters. is a identity matrix and is a scalar that can be used

to make the homography be represented by 8 parameters up to a scaling factor, for .

The first two input parameters, rotation and scale, are extracted from the affine part

of the homography. Both rotation and scale can be retrieved using SVD (Singular Value

Decomposition), as follows:

 [] ሺ ሻ ሺ ሻ ሺ ሻ (28)

 with [], (29)

 and ሺ ሻሺ ሻ ሺ ሻሺ ሺ ሻ ሺ ሻሻ (30)

Some algorithms are more invariant to rotation than others. Thus, rotation can be

considered as an important parameter to compare tracking algorithms. Scaling can be dealt

with by the use of image pyramids, so that scaling’s influence over image tracking is not as

significant as rotation. The important scenarios related to scaling occur when the object is so

 40

small or so big that features are lost, since the image sensor is not capable of capturing the

entire object information.

The third parameter, distortion, represents the module of the vector formed by the and values, as shown in equation (31). The higher this value, the more biased the

object, meaning it is more difficult to track it. This way, more robust trackers should fail less

with the increase of the distortion value than simpler ones.

 √ (31)

Illuminance variation can occur for different reasons. Its main consequence is that it

can modify the appearance of either the whole scene or perhaps just isolated parts of it. In the

first case, this is usually known as global illumination variation, while in the second case,

local illumination variation. The main difference between these two varying scenarios is that

in the global case, the pixels of the whole image are affected coherently. That does not happen

in the local variation case, when only parts of the image are affected by the light. As shown

in[83], local lighting variations are more complex to deal with and can generate more

tracking failures than global variations.

Assuming that the object was tracked previously and the result of this tracking

process is an image with the same dimensions of the object image being tracked, the

luminance variation is calculated according to equation (32):

 ∑ () (32)

in which corresponds to the number of pixels pertaining to the reference image, is a pixel value (luminance) from the input image and is a pixel value (luminance) from

the reference image.

The input parameter representing occlusion is not so simple to calculate[104]. One

may think that a simple color comparison is enough, meanwhile other authors state that it is

safer to use both color and gradient information [84][85][86]. We make use of LBP (Local

Binary Pattern) to find which parts of the image are really occluded [87]. This makes the

occlusion detection process more robust to luminance variations. The occlusion parameter is

then calculated as follows:

 ∑ ሺ ሻ ሺ ሻ {
 (33)

 ∑ ሺ ሻ (34)

 41

 ሺ ሻ {
 ቌ∑ሺሺ ሻ ሺ ሻሻ

 ቍ (35)

In the previous equations, represents the pixel of an equally spaced circular

neighborhood of pixel (coresponds to the center pixel), maps to the number

of pixels on the reference image, and and are the LBP value of a pixel in

the reference image and input image, respectively. Both and are bitwise operators

and is the shift-right operator. The calculation of the occlusion rate involves comparing the

LBP values of all pixels; when the similarity between them is lower than four, the pixel is

considered occluded. In the end, the amount of occluded pixels is divided by the total amount

of image pixels.

That being said, the key point of the proposed model is to find the cases where each

algorithm performs well, and switch to the one that demands less computational power

whenever possible. “Performing well” means that an algorithm gives as output an acceptable

result, respecting a previously defined error threshold.

 42

CHAPTER 6 DEFINITION OF THE TEST SCENARIOS

This chapter describes how the training sequences were generated and performs a

comparison regarding different background scenarios in order to justify the approach chosen.

6.1 TRAINING SEQUENCES

The training phase of each object class model starts with the generation of control

image sequences. Each sequence corresponds to the variation of a single parameter, so that

the error measurements can be computed and later combined by the model. 20 sequences

were generated, which corresponds to five parameters against four objects classes. A total of

1000 frames were generated for each parameter, with the values linearly distributed through

a minimum and maximum value. The ranges used for each of the parameters are shown in

Table 3.

All four image classes were used in the generation of the control image sequences. In

order to illustrate how the parameters varied, Figure 7 to 11show the parameters applied to

some of the dataset images.

Table 3. Parameter ranges used (rotation values are in radians).

 Rotation Scale Distortion Luminance Occlusion 0 0.25 0 0.092057 0 5 0.005768 3.246554 0.338867

The rotation sequence was comprised of a full 360º rotation over the object plane, as

shown in Figure 7. Since the other parameters should remain unaltered, the center of mass of

the object stays on the same place during the entire sequence.

Frame #000 Frame #100 Frame #200 Frame #300 Frame #400

Frame #500 Frame #600 Frame #700 Frame #800 Frame #900

Figure 7. Samples from the rotation sequence.

The scale sequence started representing 25% of the original object size and increases

 43

until reaching 500%. Despite the fact that only the scale varies, with the increase of this

parameter, some parts of the object start to fall out of the camera’s view, representing an

effect similar to an occlusion. Figure 8 shows samples from the scale sequence.

Frame #000 Frame #100 Frame #200 Frame #300 Frame #400

Frame #500 Frame #600 Frame #700 Frame #800 Frame #900

Figure 8. Samples from the scale sequence.

The distortion sequence was divided in two parts. The first included a distortion

resulting from a horizontal rotating movement, while the second part was based in a vertical

rotation. In both cases, the object was rotated from 0º to approximately 80º, when the planar

object was almost not visible. Figure 9 presents some samples from the distortion sequence.

Frame #000 Frame #100 Frame #200 Frame #300 Frame #400

Frame #500 Frame #600 Frame #700 Frame #800 Frame #900

Figure 9. Samples from the distortion sequence.

The illumination sequence alters the object from a 9.2% illumination compared to the

original object to 324.65%. The structural information of the object starts to change when

some of its pixels reach the maximum possible white value. Figure 10 illustrates some

examples from the luminance sequence.

 44

Frame #000 Frame #100 Frame #200 Frame #300 Frame #400

Frame #500 Frame #600 Frame #700 Frame #800 Frame #900

Figure 10. Samples from the luminance sequence.

At last, the occlusion sequence starts consuming the object from a state of complete

visibility to an occlusion rate of 0.3388. It is important to note that this value does not

directly correspond to a 33% visual occlusion, because it is calculated using LBP

correspondences. Since the LBP threshold used was 50%, fewer different pixels are

considered as occluded pixels. According to the tests performed, the 0.3388 occlusion rate

maps to an 80% visual occlusion approximately. Figure 11 shows some examples from the

occlusion sequence.

Frame #000 Frame #100 Frame #200 Frame #300 Frame #400

Frame #500 Frame #600 Frame #700 Frame #800 Frame #900

Figure 11. Samples from the occlusion sequence.

Note that the training sequences are composed by the template placed in a black

background, varying according to the parameter being processed. Due to the nature of the

trackers used, which are keypoint-based trackers, this specific test configuration should

present similar results in the case of a different background color. Different backgrounds

could generate false matches, but the number of outliers is not sufficient enough to make the

results differ from the original approach. In order to analyze such a proposition, we have

calculated the SSIM value using the SIFT algorithm for three different backgrounds, shown

 45

in Figure 12. They were chosen because they correspond to common scenarios of application

of AR systems. The first one represents an outdoor environment, in which the user is free to

move in the open space while observing his/her surroundings; the second background refers

to an indoor scenario, located inside a house; the last scenario is in the context of AR

supporting maintenance of electrical equipment, and represents a maintenance laboratory of

a local Electricity production company. Samples of the generated sequences are illustrated in

Figure 13, Figure 14 and Figure 15.

(a) (b) (c)

Figure 12. Three different backgrounds used in AR applications: a) outdoor

environment; b) indoor environment; c) laboratory for maintenance of electrical

equipments.

Table 4 lists the correlation values of the SSIM regarding each of the three

backgrounds and the original (black) one. It is possible to notice that, for all parameters, the

correlation among the values found was higher than 0.934028. Statistically, this fact

(correlation higher than 0.9) is enough to say that the tests present similar behaviour and

one background can be used in the place of the others [95].

Table 4. Correlation values for the SSIM values using different backgrounds.

 Black vs

background #1

Black vs

background #2

Black vs

background #3

Rotation 0.961186 0.934028 0.975594

Scale 0.974302 0.976893 0.971979

Distortion 0.963291 0.959513 0.962330

Lumminance 0.970602 0.968853 0.973633

Occlusion 0.993852 0.993632 0.994141

Another statistical test was performed based on the P-value of the T-test. Table 7 lists

the values found for the second analysis. The T-test analyzes the concentration of the mean

value for the sequences, stating that the more the sequences are alike the more the p-value is

 46

closer to 0.5 [95].

Table 5. P-value of the T-test regarding SSIM values using different backgrounds.

 Black vs

background #1

Black vs

background #2

Black vs

background #3

Rotation 0.506973 0.450660 0.504166

Scale 0.508148 0.508981 0.508311

Distortion 0.506125 0.520940 0.506277

Lumminance 0.520480 0.518283 0.518876

Occlusion 0.594415 0.618615 0.570997

 47

 Rotation Scale Distortion Lumminance Occlusion

Frame

#0000

Frame

#0100

Frame

#0200

Frame

#0300

Frame

#0400

Frame

#0500

Frame

#0600

Frame

#0700

Frame

#0800

Frame

#0900

Figure 13. Image sequences corresponding to the five parameter variations generated by

mixing the template to be tracked with outdoor background.

 48

 Rotation Scale Distortion Lumminance Occlusion

Frame

#0000

Frame

#0100

Frame

#0200

Frame

#0300

Frame

#0400

Frame

#0500

Frame

#0600

Frame

#0700

Frame

#0800

Frame

#0900

Figure 14. Image sequences corresponding to the five parameter variations generated by

mixing the template to be tracked with indoor background.

 49

 Rotation Scale Distortion Lumminance Occlusion

Frame

#0000

Frame

#0100

Frame

#0200

Frame

#0300

Frame

#0400

Frame

#0500

Frame

#0600

Frame

#0700

Frame

#0800

Frame

#0900

Figure 15. Image sequences corresponding to the five parameter variations generated by

mixing the template to be tracked with a maintenance laboratory context.

 50

CHAPTER 7 SELECTION OF DIFFERENT OBJECT

TRACKERS

Pattern recognition methods can be classified in two different areas, according to [6]:

decision-theoretic and structural. The first category deals with patterns described using

quantitative descriptors, such as length, area and texture. The second category identifies

patterns best described by qualitative descriptors, such as shape and boundary.

An image feature can be defined as an “interesting” part of an image and serves as

starting point for computer vision applications. In pattern recognition literature, the name

feature is often used to denote a descriptor [6]. The two most common operations regarding

image features are feature selection and feature extraction. The former selects the most

interesting parts of a certain image, while the latter describes these parts by filling its

corresponding descriptor array.

Several criteria must be taken into consideration when selecting proper detector-

descriptor combinations. Two of them are the repeatability rate and information content. The

first one evaluates how the geometric stability behaves under different transformations, while

the second one measures the distinctiveness of the features [51].

Since this work makes use of different combinations of feature detectors and

extractors, this chapter will give a brief description about those used in this thesis. The

selected algorithms are the ones with best results (best tracking quality) found in literature.

7.1 FEATURE DETECTORS

The most widely used interest point detector is likely the Harris corner detector [52],

proposed back in 1988, based on the eigenvalues of the second-moment matrix. However,

Harris corners are not scale-invariant. Lindeberg introduced the concept of automatic scale

selection [53]. This allows for detecting interest points in an image, each with their own

characteristic scale. He experimented with both the determinant of the Hessian matrix as

well as the Laplacian (which corresponds to the trace of the Hessian matrix) to detect blob-

like structures. Mikolajczyk and Schmid refined this method, creating robust and scale-

invariant feature detectors with high repeatability[55], which they coined Harris-Laplace and

Hessian-Laplace [54]. They used a (scale-adapted) Harris measure or the determinant of the

Hessian matrix to select the location, and the Laplacian to select the scale. Focusing on

speed, Lowe [56] approximated the Laplacian of Gaussian (LoG) by a Difference of Gaussians

(DoG) filter.

Beyond the Harris model and it’s variants, several other scale-invariant interest point

 51

detectors have been proposed. Examples are the salient region detector proposed by Kadir

and Brady [57], which maximizes the entropy within the region, and the edge-based region

detector proposed by Jurie et al. [58].

Research on existing detectors [59][60] concludes that Hessian-based detectors are

more stable and repeatable than their Harris-based counterparts. Using the determinant of

the Hessian matrix rather than its trace (the Laplacian) seems advantageous, as it fires lesson

elongated, ill-localized structures. Also, approximations like the DoG can bring speed at a low

cost in terms of lost accuracy.

Four different feature detectors are used in this work: FAST, ORB, SURF and SIFT.

They were selected mainly because of their code availability and their performance. It is

important to notice that these four feature detectors are those most widely used by the

scientific community.

7.1.1 FAST

The FAST algorithm (Features from Accelerated Segment Test[61]) takes into

consideration the local neighborhood information of pixels and makes use of a 16 pixel ring

around the interest point being analyzed, as shown in Figure 16.

Figure 16. Neighborhood information used by the FAST algorithm.

The FAST algorithm works as follows. The central point is considered a corner if there

is a sequence of pixels on the ring in which all of them are brighter than the central pixel

plus a threshold. By taking equal to 12, it is possible to exclude a high number of non-

corner pixels, since the test only needs to verify at most four pixels (1, 3, 5 and 9),

corresponding to the compass orientations (north, south, east and west, respectively).

If the central point, which is the point being analyzed, is indeed a corner, at least three

of the four tested pixels should be brighter than the central pixel plus a threshold or darker

than the central pixel minus a threshold. After applying this initial filtering process to all

pixels, the complete test can be applied to the remaining ones.

 52

Despite presenting high performance due to this test optimization, the algorithm

described shows a series of weaknesses:

 The optimized non-corners filtering does not generalize well for ;

 The choice for the specific order for testing the surrounding pixels requires

existing knowledge about the image features (an optimal order and rotation

should be different);

 The knowledge acquired from the initial four tests is not used on the complete

test after the first filtering processing;

 The process performed detects multiple near features.

Through the use of machine learning, it is possible to significantly improve the

performance of the FAST feature detector. The complete process can be divided into two

phases. At first, in order to build a feature detector for a specific value, all the corners

contained in a trainning image set are detected (preferably, these images pertain to the same

application domain in which the application will be used). This corner detection for the entire

set uses the complete test (checking the values of all 16 surrounding pixels). For each of the

16 positions, the analyzed pixel can have one of the following states:

{

 (darker) (similar)

 (brighter).

(36)

In the previous formula, corresponds to the pixel intensity on neighborhood

position , is the central pixel being analyzed and is the threshold used.

By choosing a specific value and computing for every pertaining to the

training images, it is possible to partition the central pixels into the three distinct sets ,

and , according to the result of the test.

Let be a boolean variable that is true whenever is a corner and false otherwise.

The algorithm’s second phase consists of using the algorithm described in ID3 (Induction of

Decision Trees) [62] and starts by selecting the location of the neighborhood that detains the

most relevant information about the decision if a pixel is really a corner, measured through

the entropy.

The entropy level is calculated as follows:

 ሺ ሻ ሺ ̅ሻ ሺ ̅ሻ ̅ ̅, (37)

 53

where |{ | }| (number of corners)

and ̅ |{ | }| ሺ ሻ
The choice of then yields the information:

 ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ. (38)

After determining which neighborhood position represents the highest amount of

information, the process is recursively applied in all three subsets and a new is chosen for

each of them, with the goal of maximizing the information obtained from all three. The entire

process reaches an end when the entropy of the entire set reaches zero. This means that all

analyzed central pixels have the same value, i.e., they are all corners or non-corners. Given

that the process was finalized, there is a decision tree capable of correctly classifying all the

pixels of the training set, according to the test criteria of the chosen FAST configuration.

Because of the fact that the segment test is not based on a corner response function, it

is not possible to directly apply a non-maximum suppression scheme to the selected features.

It is necessary to compute a score value for each detected corner, and use such value to

eliminate neighbor corners with a lower score.

The value is calculated based on the sum of absolute differences between the pixels

in the contiguous arch, as follows:

 ቀ∑ | | ∑ | | ቁ. (39)

7.1.2 ORB

The ORB algorithm [63] is built based on the well-known FAST keypoint detector [61]

and the BRIEF descriptor [64]. For this reason, it is called ORB (Oriented FAST and Rotated

BRIEF). Figure 17 shows a typical matching result using ORB for real-world images with

viewpoint change. Green lines are valid matches; red circles indicate unmatched points.

 54

Figure 17. ORB detector in action.

The advantages of ORB are that it:

 Adds a fast and accurate orientation component to FAST;

 Develops an efficient computation of oriented BRIEF features;

 Analyzes the variance and correlation of oriented BRIEF features;

 Makes use of a learning method for de-correlating BRIEF features under

rotational invariance, leading to better performance in nearest-neighbor

applications.

The ORB detector makes use of the FAST-9 variation (circular radius of 9), due to its

proven good performance record [63]. As FAST does not produce a measure of cornerness,

ORB employs a Harris corner measure [65] to order its keypoints. For a target number of

keypoints, ORB first sets the threshold low enough so that it will be possible to get more than keypoints, then they are ordered according to the Harris measure and only the top

points are picked up. FAST also does not produce multi-scale features. ORB employs a scale

pyramid of the image, thus producing FAST features (filtered by Harris) at each level in the

pyramid.

ORB’s approach for calculating the keypoint orientation uses a simple but effective

measure of corner orientation, the intensity centroid [65]. It assumes that a corner’s intensity

is offset from its center, and this vector may be used to impute an orientation. The moments

of a patch can be defined as follows:

 ∑ ሺ ሻ . (40)

And by using these moments, the centroid is calculated as:

 ቀ ቁ. (41)

Therefore, a vector can be constructed from the corner’s center, , to the centroid, . The

orientation of the patch is calculated as

 55

 ሺ ሻ. (42)

7.1.3 SURF

The SURF detector (Speeded Up Robust Features) [66] is based on the Hessian

matrix, but uses a very basic approximation, just as DoG [67] is a very basic Laplacian-based

detector. It relies on integral images to reduce the computation time and therefore it is also

known as the "Fast-Hessian" detector.

Given a point ሺ ሻ in an image , the Hessian matrix ሺ ሻ at scale is defined

as follows:

 ሺ ሻ [ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ], (43)

where ሺ ሻ is the convolution of the Gaussian second order derivative
 ሺ ሻ with the

image in point , and similarly for ሺ ሻ and ሺ ሻ.

The box filters in Figure 18 are approximations for the Gaussian second order

derivatives with previously described and represent the lowest scale possible (i.e.

highest spatial resolution). The approximations are denoted by , and . The weights

applied to the rectangular regions are kept simple for computational efficiency, but it is

needed to further balance the relative weights in the expression for the Hessian’s

determinant with
| ሺ ሻ| | ሺ ሻ| | ሺ ሻ| | ሺ ሻ| , where | | is the Frobenius norm. This

yields:

 ሺ ሻ ሺ ሻ . (44)

Figure 18. Left to right: the (discretized and cropped) Gaussian second order partial

derivatives in -direction and -direction, and their approximations using box filters.

Gray regions are equal to zero.

The keypoint selection for the SURF algorithm is described as follows. At first, an

integral image is built based on the original image. Such an integral image is used for

speeding up the process of computing filters over the input image. The scale-space analysis

starts with the SURF algorithm using image pyramids of filters (not images) to approximate

 56

the Laplacian of Gaussian (LoG), and, for this reason, it runs faster than SIFT, which uses

DoG for approximation. The filters used by SURF span several octaves with a fixed number of

scales in each, similar to SIFT. One of the advantages of using integral images is that it helps

to keep the running speed constant as it is insensitive to increasing filter sizes. SURF uses

box filters to calculate the Hessian determinant. The size of the box filter used is a multiple of

its current scale. All filters passes occur on the original image, instead of iteratively like SIFT,

which allows for parallel execution. The feature points are maxima of the determinants in the

adjacent scale and points (), similar to SIFT.

After selecting the feature points, orientation assignment is the next step. At first, the

responses from the 2 first-order Haar wavelet filters (1,-1), in both and orientations,

are collected on each feature point. These responses are put on a 2D plane as vectors .
Once more, the integral image is used with this box filter. An orientation window of 60

degrees is slid around the origin at the plane. Each angle will have a corresponding sum of

magnitudes for every vector inside that window. The dominant orientation would be the

angle of the largest sum. The results for the SURF detector can be seen in Figure 19.

Figure 19. SURF detector in action.

7.1.4 SIFT

The SIFT algorithm (Scale Invariant Feature Transform) is the oldest of all four object

detectors described in this chapter. It works in a way that the features detected by it are

invariant to scale, rotation, translation, and partially invariant to illumination changes and

affine projections. In sequence, a brief description will give information about how SIFT is

able to support each of its main capabilities.

The scale invariance capability is supported through the use of successive applications

of Gaussian filters and their derivatives, since this is the only kernel that allows scale space

analysis, according to Lindeberg [68].

The rotation invariance is obtained by selecting points of maximum and minimum

 57

based on the DoG applied over scale space. Such point selection can be efficiently computed

through the construction of image pyramids with resampling between each pyramid level.

This process finds keypoints in regions and scale with high variation, which makes such

regions stable and effectively representative of the image being described.

The smoothing operations are performed using √ and two 1D kernel passes (due

to the fact that the 2D Gaussian is a separable filter), which allows the application of the filter

using only 7 points for each pass. The successive pyramid levels are generated using bilinear

interpolation with pixel spacing of 1.5 in each direction. This 1.5 spacing means that each new

pixel is generated based on the combination of four adjacent pixels. Whenever a point of

maximum or minimum is found in a certain pyramid level, the location corresponding to the

pixel on the next level is calculated. In case it continues to be a pixel of maximum or

minimum, regarding its eight neighbors, the pixel follows as a feature candidate. Otherwise,

the pixel is discarded.

Each pyramid level is processed in order to extract both the gradients and the

orientations. For each pixel , the gradient magnitude and the orientation are

calculated using the following differences:

 √() ()
 (45)

 ሺ ሻ (46)

Each point successfully classified as feature has a main orientation, which enables the

rotation invariance aspect of the algorithm. This orientation is determined by the peak found

on the local image gradient orientations histogram. The histogram is created using a

weighted Gaussian window with times the values used during the pyramid generation.

The weights are multiplied by the gradient threshold and then accumulated on the histogram

in positions according to the orientation value. The histogram possesses 36 bins, covering

360 degrees of rotation (using intervals of 10 degrees each).

Figure 20 illustrates some features detected using the SIFT algorithm. The image at

the top corresponds to the original image, without any modifications. The second image was

generated from the first by the application of rotation, scale and stretching transformations,

brightness and contrast changes and noise addition. Despite those modifications, 78% of the

features found in the second image show a strong correspondence to the features found in the

first image. In both images, each detected feature is represented by a square region and its

orientation through a line that has its origin in the feature center and goes to the region’s

border.

 58

Figure 20. Features detected using the SIFT algorithm in two different images.

7.2 FEATURE EXTRACTORS

There is an even larger number of feature descriptors that have been proposed,

including Gaussian derivatives [68], moment invariants [69], complex features [70][71],

steerable filters [72], phase-based local features [73], and descriptors representing the

distribution of smaller-scale features within the interest point neighborhood. The latter,

introduced by Lowe [56], has been shown to outperform the others [75]. This can be

explained by the fact that they capture a substantial amount of information about the spatial

intensity patterns, while at the same time are resistant to small deformations or localization

errors. The descriptor in [56], called SIFT for short, computes a histogram of local oriented

gradients around the interest point and stores the bins in a 128-dimensional vector

(8orientation bins for each of the location bins).

Various refinements on this basic scheme have been proposed. Ke and

Sukthankar[76] applied PCA (Principal Component Analysis) on the gradient image. This

PCA-SIFT yields a 36-dimensional descriptor which is fast for matching, but has proved to be

less distinctive than SIFT in a second comparative study by Mikolajczyk et al. [60].

Additionally, a slower feature computation reduces the effect of fast matching. In the same

paper [60], the authors have proposed a variant of SIFT, called GLOH, which was proven to

 59

be even more distinctive with the same number of dimensions. However, GLOH is

computationally more expensive.

Three different descriptor extractors are used in this work: ORB, SURF and SIFT.

They were selected because of their code availability and high quality of performance. It is

important to note that these feature extractors are the ones most widely used by the scientific

community. FAST use is specific for feature detection, since it does not define a way for

representing the neighborhood of the feature. Because of that, FAST is commonly used in

conjunction with a feature extractor (such as ORB, SURF or SIFT, for example).

7.2.1 ORB

As described above, the ORB algorithm bases its descriptor extraction phase on the

BRIEF descriptor [64]. This descriptor is composed of a binary string that represents an

image patch constructed from a set of binary intensity tests. Considering a smoothed image

patch , a binary test is defined by:

 ሺ ሻ { ሺ ሻ ሺ ሻ , (47)

where ሺ ሻ is the intensity of at a point . The feature is then defined as a vector of binary

tests:

 ሺ ሻ ∑ ሺ ሻ (48)

Different test distributions were considered by the ORB algorithm. One of the

distributions that showed good performance occurred with a Gaussian distribution around

the center of the patch. The vector length was chosen to be .

In order to make BRIEF invariant to in-plane rotation, ORB steers the BRIEF

descriptor according to the orientation of keypoints. For any feature set of binary tests at

location ሺ ሻ, define the matrix

 ቀ ቁ. (49)

Using the patch orientation and the corresponding rotation matrix , it is possible to

construct a “steered” version of :

 (50)

Consequently, the steered BRIEF operator becomes:

 ሺ ሻ ሺ ሻ|ሺ ሻ . (51)

The angles are discretized to increments of
 (12 degrees), and a lookup table of

 60

precomputed BRIEF patterns is constructed. As long as the keypoint orientation is consistent

across views, the correct set of points will be used to compute its descriptor.

7.2.2 SURF

One of the challenges for the SURF algorithm is to try to reduce its descriptor’s

dimension and complexity, while keeping it sufficiently distinctive. By mixing crudely

localized information and the distribution of gradient related features yields good distinctive

power while it fends off the effects of localization errors in terms of scale or space. The use of

relative strengths and orientations of gradients reduces the effect of photometric changes.

The first step in the construction of a SURF descriptor is to fix a reproducible orientation

based on information from a circular region around the interest point. Then, a square region

is constructed in alignment with the selected orientation and the SURF descriptor is

extracted from it.

The Haar-wavelet responses in and y directions are calculated for a circular

neighborhood of radius around the interest point, with being the scale at which the

interest point was detected. The sampling step is scale dependent and chosen to be . Since

integral images are used for computing the wavelet responses, only six operations are

needed, regardless of the wavelet size. Once the wavelet responses are calculated and

weighted with a Gaussian () centered at the interest point, the responses are

represented as vectors. The dominant orientation is estimated by calculating the sum of all

responses within a sliding orientation window covering an angle of
 .radians The horizontal

and vertical responses with the window are summed and then yield a new vector. The longest

vector found lends its orientation to the interest point.

The construction of the square region for capturing the descriptor components starts

by splitting up the window (with size equal to) into smaller square sub-regions. For

each sub-region, a few simple features at regularly spaced sample points are computed.

The wavelet responses are summed up over each sub-region and form a first set of entries to

the feature vector. This way, each sub-region has a four-dimensional descriptor vector as

follows:

 ሺ∑ ∑ ∑| | ∑| |ሻ, (52)

which corresponds to the summation of horizontal and vertical responses and the summation

of the absolute horizontal and vertical responses. The absolute responses are added to the

vector in order to bring information about the polarity of the intensity changes. This results

in a descriptor vector for all sub-regions of length .

 61

7.2.3 SIFT

Once there is information available about the location, scale and orientation for each

feature, the SIFT descriptor can describe the local image region in a manner invariant to

these transformations. In addition, such representation must be robust against small shifts in

local geometry, similar to the ones that occur from affine of 3D projections. This robustness

to local geometric distortions can be obtained by representing the local image region using

multiple images, each representing a number of orientations (also known as orientation

planes). Each orientation plane contains only the gradients corresponding to that orientation,

with linear interpolation used whenever there are intermediate orientations. Each plane is

blurred and resampled in order to support larger shifts in positions of the gradients.

In order to efficiently implement the previous approach, the same precomputed

gradients and orientations for the pyramid levels (used before for orientation selection) can

be used again. For each detected keypoint, the pixel sampling from the pyramid level in

which the feature was detected is taken into consideration. Pixels in a radius of 8 pixels

around the keypoint are inserted in the orientation planes.

The global orientation is always measured relative to the one of the keypoint by

subtracting the keypoint original orientation. Usually SIFT's default configuration adopts

eight orientation planes, each sampled over a grid of locations, with a sample spacing

equal to the pixel spacing used for gradient detection. The blurring process is achieved by

allocating the gradient of each pixel among its eight closest neighbors in the sample grid,

using linear interpolation in orientation and the two spatial dimensions.

For sampling the image at a larger scale, the same process is repeated for a second

level of the pyramid one octave higher. This time, a rather than a sample region is

used. Using this value, approximately the same image region will be examined at both scales,

so that any nearby occlusions will not affect one scale more than the other. Therefore, the

total number of samples in the SIFT key vector, from both scales, is or

160 elements, which gives enough measurements for high specificity.

The matching of SIFT features can be performed by using nearest neighbors search

[77]. To speed up the search, a modified version of the k-d tree algorithm, called the best bin

first search method, can be applied [78]. The efficiency of the search can also be improved by

giving the samples generated at a larger scale twice the weight of those at the smaller scale.

This means that the larger scale is in effect able to filter the most likely neighbors for

checking at the smaller scale. It also improves recognition performance by giving more

weight to the least-noisy scale. Additionally, an efficient way to cluster reliable model

hypotheses is to use the Hough transform [79][80]to search for keys that agree to a particular

 62

model pose.

7.3 DISCUSSION

Some considerations must be made regarding the feature detectors and descriptors

listed before. In both sections, the algorithms are listed according to their complexity, from

the simplest to the most complex one. Regardless of its age, the SIFT algorithm is still the one

that presents the best repeatability and distinctiveness results, due to the information it takes

into consideration for selecting the features and the size of its descriptor. In comparison to

the SURF algorithm, SIFT shows less approximations and therefore is more robust to

rotations than SURF, as demonstrated in chapter 5. While ORB constructs its descriptor

using a string of binary information, the SIFT algorithm stores an array of floats that describe

the complete neighborhood of the feature.

In order to take advantage of the particular benefit of each feature detector and

descriptor described, this thesis works with different combinations of them. Such detector-

extractor pairs will be detailed in the following sections.

7.4 TRACKING ALGORITHMS

This work used five different tracking algorithms so that the proposed model could

vary between them. All of them are tracking-by-detection algorithms, which means that the

tracking task is based on detection, which enables large displacements of the target object

among sequential frames. The tracking-by-detection algorithms were composed of both a

feature detector and a feature extractor. Thus, five pairs of algorithms were analyzed (the first

algorithm of the pair corresponds to the detector, the second to the extractor): SIFT-SIFT,

SURF-SURF, FAST-SIFT, FAST-SURF, and ORB-ORB. The SIFT-SIFT, SURF-SURF and

ORB-ORB are well known combinations, while the other two related to the FAST feature

detector were chosen so that their performance stayed in the middle of the others. This way,

it was possible to have a set of different tracking algorithms distributed based on their

performance.

By observing each training sequence separately for each algorithm pair, it was

possible to notice the cases where one should be prioritized in place of the others. Figures 17

to 21 show the comparison of SSIM results for the five training sequences generated from the

third model (first image of the High Texture object class), given that each of the five

algorithms was tested. The SSIM was chosen to be illustrated on the figures, instead of the

reprojection error, simply due to the fact that its value is restricted to the [0,1] interval, as

described before. This way, the SSIM is easier to visualize. A total of 25 thousand frames were

used to generate these images. Table 6 lists the mean SSIM values for each parameter tested.

 63

The way in which SSIM relates to the reprojection error will be detailed in section 6.1.

Table 6. Mean SSIM values for the five parameters tested.

 SIFT-SIFT SURF-SURF FAST-SIFT FAST-SURF ORB-ORB

Rotation 0.682 0.848 0.237 0.443 0.833

Scale 0.524 0.467 0.285 0.219 0.374

Distortion 0.651 0.572 0.607 0.403 0.514

Luminance 0.583 0.565 0.613 0.557 0.393

Occlusion 0.472 0.49 0.482 0.484 0.461

Overall Mean 0.583 0.588 0.445 0.421 0.515

Figure 21. SSIM results for all algorithms, applied on the first image of the High Texture

object class and varying the rotation parameter.

From Figure 21, it is noted that the ORB-ORB combination is very robust against

object rotations, second only to the SURF-SURF combination, which is far more

computationally complex. In this scenario, because of the fact that only rotations are applied

to the object being tracked (there are no luminance, occlusion, distortion or scale variations),

its texture does not change during the entire sequence. Thus, in this case, one could raise the

SSIM threshold and consider as good tracking results the situations in which the SSIM value

is higher than 0.6. Chapter 9 shows that when considering an error threshold of 10 pixels, a

much lower SSIM threshold needs to be applied.

0

0.2

0.4

0.6

0.8

1

1.2

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

S
S

IM
 v

a
lu

e

Frame number

SSIM vs Rotation

Sift-Sift

Surf-Surf

Fast-Sift

Fast-Surf

Orb-Orb

 64

Figure 22. SSIM results for all algorithms, applied on the first image of the High Texture

object class and varying the scale parameter.

Regarding the scale scenario, the SIFT-SIFT combination obtained the best results,

followed by SURF-SURF and ORB-ORB. As the scale value gets closer to one (100% of the

original size) the SSIM value increases. The tolerance for scale variation of both FAST-SIFT

and FAST-SURF is very low. As shown in Figure 22, they achieve their best results only for

the interval between frames #106 and #246 where the scale variation was between 75 and

141% of the original object size.

Figure 23. SSIM results for all algorithms, applied on the first image of the High Texture

object class and varying the distortion parameter.

0

0.2

0.4

0.6

0.8

1

1.2
1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

S
S

IM
 v

a
lu

e

Frame number

SSIM vs Scale

Sift-Sift

Surf-Surf

Fast-Sift

Fast-Surf

Orb-Orb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

S
S

IM
 v

a
lu

e

Frame number

SSIM vs Distortion

Sift-Sift

Surf-Surf

Fast-Sift

Fast-Surf

Orb-Orb

 65

According to Table 6, the SIFT extractor seems to be the most robust against image

distortions. From Figure 23, it is clear that the best results were generated by the SIFT-SIFT

and FAST-SIFT combinations.

Figure 24. SSIM results for all algorithms, applied on the first image of the High Texture

object class and varying the luminance parameter.

Similarly to the scale scenario, Figure 24 shows that all five algorithms tend to show

better results when they are closer to the original image luminance. The best results were

obtained by the FAST-SIFT combination, followed by SIFT-SIFT and SURF-SURF. The decay

in tracking quality regarding the ORB-ORB combination is perceptible in Figure 24, when its

SSIM values start to go down earlier than the other algorithms, from frame #316 to #561,

where the luminance variation increases from 108 to 186% of the original image brightness.

0

0.2

0.4

0.6

0.8

1

1.2

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

S
S

IM
 v

a
lu

e

Frame number

SSIM vs Lumminance

Sift-Sift

Surf-Surf

Fast-Sift

Fast-Surf

Orb-Orb

 66

Figure 25. SSIM results for all algorithms, applied on the first image of the High Texture

object class and varying the occlusion parameter.

The occlusion scenario represented by Figure 25 showed similar results for all

algorithms. Since there is no significant difference between them, this parameter could be

easily removed from the model without prejudicing the overall model decision by

classification. One important aspect to observe is the impact its removal could have in both

speed and quality of tracking results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

S
S

IM
 v

a
lu

e

Frame number

SSIM vs Occlusion

Sift-Sift

Surf-Surf

Fast-Sift

Fast-Surf

Orb-Orb

 67

CHAPTER 8 DEFINITION OF A TRACKER-SWITCHING

DECISION MODEL

Tracking objects using wearable computing platforms can be considered a typical

example of trade-off in the computing area. As with many situations, one aspect is lost so that

something is gained in return. In our case, the trade-off occurs between computational power

(which relates to the speed of the algorithm being executed) and tracking accuracy (which

relates to the amount of error after registering the object against the template being search).

In order to create the decision process that controls such a trade-off, there must be a

full comprehension of all possible consequences of a particular choice. To perform this

process automatically, so that the computer can select autonomously the best algorithm for a

specific situation, the computer must be able to decide when to switch between the available

algorithms. In the following sections, we describe a model that acts like a decision maker with

the goal to preserve quality and improve the processing speed of object tracking applications.

8.1 THE OTS DECISION MODEL

The proposed model can be defined as a “decision model” because it maps the

relationships between elements of the decision and the forecasted results in order to better

understand or control the tracking problem. In our case, the “elements of the decision” can

be considered the model inputs, while the results serve as the model’s corresponding outputs.

We propose a general solution to the problem of optimizing the planar object tracking

task using texture information without applying significant changes to the computer vision

application code. This means that the tracking algorithms themselves are not modified.

Instead, different options of algorithms are selected on-the-fly according to the input scene.

The approach described here is generic enough as its results depend mainly on the

algorithms available. Any set of algorithms can be used, provided that the model information

is generated following the same sequence of steps listed in the methodology previously

described in section 1.4. The proposed decision model is called OTS, since it works as an

Object Tracking Switcher that changes the algorithm in use according to external input that

comes from the image frames.

“La fille aux yeux d'or” (the girl with golden eyes) or simply the best reachable model

should be able to provide good results when applied to any type of object being tracked. In

this thesis, the term “good results” means that quality is maintained according to a threshold

and processing speed is improved against the proposed decision model overhead.

Unfortunately, object appearance may vary in a way that a simple and concise model would

not be simple enough if it has to support every existing object. Because of that fact, there is

 68

some effort by the scientific community in trying to classify objects according to their visual

features, so that simple models can be created focusing each category. These so called object

categories or object classes will be discussed further in sequence.

8.2 MODEL WORKFLOW

The training phase of the model was responsible for acquiring information regarding

how each algorithm is supposed to work when facing a specific input. After such a phase,

there was available data representing an error approximation for the 5 input parameters

analyzed independently. For each parameter, a range between MIN_VALUE and

MAX_VALUE was specified. The parameter values were evenly distributed from

MIN_VALUE to MAX_VALUE, in a way that their growth was linear. A total of 1000 samples

for each pair Parameter/Algorithm were stored for each parameter, containing the

corresponding error values. For the tests performed in this work, 25 arrays of 1000 elements

each were stored, in order to be later used in the decision process.

It is important to save data separately because this allows us to choose which

parameters to take into consideration while performing the algorithm switch decision. In

order to simplify the decision model construction, each parameter was trained separately

from the others, allowing them to be treated independently during the decision process. As it

will be explained, the decision process functions like a cascade of tests.

The test cascade means that each set of parameters extracted in real time has to pass

through five different evaluations (one for each parameter), so that the algorithm is

considered a valid option. At first, all five algorithms are inserted on a queue according to

their processing demand, from the simplest to the most complex one (e.g., from ORB-ORB to

SIFT-SIFT). The time required for each algorithm to process a single image feature was

shown in chapter 4. The order of the test cascade is also influenced by the training phase. It is

ordered from the most restrictive to the less one. The restrictive grade of an algorithm is

calculated based on the amount of frames that do not pass the test. It was possible to perceive

the following order from the training phase:

Light > Scale > Distortion > Occlusion > Rotation

By applying the most restrictive tests first it is possible to optimize the entire testing

phase, since more algorithms are eliminated and fewer tests have to be performed. After each

test, the algorithms that show an error higher than the specified error threshold are

eliminated from the algorithm queue. In the end, the first algorithm that remains on that

queue is chosen by the decision model. In case there is no remaining algorithm on the queue,

the model outputs the most complex one. This happens due to the fact that the most complex

algorithm has a higher probability of finding the object missing on the frame sequence.

 69

Figure 26 illustrates the OTS workflow from input image acquisition to algorithm

response by the model. The process starts by extracting the model parameters used as input

to the decision model. The results from the last successful frame tracked are used in tandem

with the template information to obtain both movement (scale, distortion and rotation) and

texture-related (occlusion, luminance) parameters. After that, the obtained values are passed

to a cascade of tests, each of them corresponding to a specific parameter.

For every test, a set of available tracking algorithms is passed as input, along with the

tracking threshold to be used. The model accesses the table of values generated by the

training phase and gives as output all the algorithms that satisfy the given threshold. In the

example of Figure 26, the first test, regarding luminance, receives the five available

algorithms and gives as output only the four algorithms that satisfied the threshold. In this

case, the FAST-SURF failed to reach the desired quality and will not be used as input to the

following tests. Since the FAST-SIFT algorithm did not pass the Scale test, it was also

removed from the set of possible algorithm choices.

The following test, for distortion, removed the SURF-SURF algorithm, leaving only

two possible options available: SIFT-SIFT and ORB-ORB. Both remaining algorithms passed

Occlusion and Rotation tests. In the end, these two algorithms were able to satisfy the quality

threshold for all tests. Since the ORB-ORB combination corresponds to the less complex

algorithm that satisfies the desired constraints, it is given as output of the decision model.

 70

Figure 26. Diagram for the OTS workflow.

The OTS will be evaluated and the results obtained with the proposed approach will

be discussed in the next chapter.

Quality threshold: 10 pixels

Cascade of tests

Lu
m

in
a

n
ce

 t
e

st

S
ca

le
 t

e
st

D
is

to
rt

io
n

 t
e

st

O
cc

lu
si

o
n

 t
e

st

R
o

ta
ti

o
nSIFT-SIFT

SURF-SURF

FAST-SIFT

FAST-SURF

ORB-ORB

SIFT-SIFT

SURF-SURF

FAST-SIFT

FAST-SURF

ORB-ORB

SIFT-SIFT

SURF-SURF

FAST-SIFT

FAST-SURF

ORB-ORB

SIFT-SIFT

SURF-SURF

FAST-SIFT

FAST-SURF

ORB-ORB

SIFT-SIFT

SURF-SURF

FAST-SIFT

FAST-SURF

ORB-ORB

SIFT-SIFT

SURF-SURF

FAST-SIFT

FAST-SURF

ORB-ORB

Available

algorithms

OTS

Output

Parameter extraction

Luminance Scale Distortion Occlusion Rotation

Template Input image

 71

CHAPTER 9 VALIDATION OF THE DECISION MODEL

The execution platform for both generating the data for the training phase and

validating the proposed scheme was an Intel Core i7 – 3720QM CPU (@2.6GHz), with 16 GB

of RAM memory and running Windows 8 Professional 64 bits. Despite the fact this CPU has

4 physical processors (8 logical ones), a single one was used due to the original

implementation of the algorithms that comes from the single-threaded OpenCV library [94].

The OpenCV implementation of the algorithms (both feature detectors and

extractors), follows the FeatureDetector and DescriptorExtractor interfaces, which facilitates

the testing process. It is important to note that some implementations provided by OpenCV

are not fully optimized versions of the algorithms.

This chapter performs an analysis regarding the speedup obtained with the proposed

model and the effect it has over the tracking quality. It shows how each of the four generated

models, corresponding to the four planar object classes discussed in section 5.2, behaves

when applied to different classes of objects, in respect to both speedup and error. After

performing a more complete time analysis of the entire process, including the parameter

extraction phase, a selective scheme of the model is also proposed, in order to further

diminish its computational load.

9.1 SPEEDUP AND PRECISION RESULTS

The created models were tested against both training and evaluation sequences, in

order to assess the speedup obtained and their behaviour when applied to objects from other

classes. Four different models were constructed, one for each texture class. Each of the four

models was based on the first images of each object class, Low Texture, High Texture,

Normal Texture and Repetitive Texture, representing models #1, #3, #5 and #7, respectively.

Despite being only four models, they were named so it is easier to reference their original

image sequence.

It is also relevant that, due to the nature of the algorithms, which are mainly based on

texture processing, objects with low texture will not have the same tracking quality as the

other object classes and should behave as outliers.

The speedup results were calculated as described in section 6.1 and they are shown in

Table 7. In each column, the result with the best speedup is highlighted. The second model

created, based on the first image of the High Texture object class, showed the greatest results

for most of the cases, as listed in the last column of the table. The only scenarios in which the

top model is not the best performer were those in which it was applied to both images of the

Low Texture object class, but only by a very small difference. Such a result means that the

 72

second model is more general to support all other image scenarios and should be used when

the application being developed focus no particular image template.

Table 7. Speedup obtained with the proposed approach. The four different models

generated were applied to each of the eight available scenarios.

 #1 #2 #3 #4 #5 #6 #7 #8 Mean

#1

(low texture) 1.18 1.28 1.23 1.23 1.20 1.17 1.22 1.16 1.21

#3

(high texture) 3.31 3.26 2.91 2.99 3.25 3.16 2.94 3.15 3.12

#5

(normal texture) 3.33 3.27 2.53 2.59 3.12 2.67 2.53 2.44 2.81

#7

(repetitive texture) 3.00 2.92 2.75 2.76 2.88 2.86 2.77 2.96 2.86

The error rates obtained are shown in Table 8. They result from applying an error

threshold of 10 pixels. As expected, the fewest error situations happened when the specific

models where applied to their respective sequences, as can be observed for image sequences

number #1, #3, #5 and #7.

Table 8. Error rate obtained with the proposed approach. The four different models

generated were applied to each of the eight available scenarios. The error threshold

used was 10 pixels. The first line shows the original error values, without using the

proposed approach (we consider the original error values the ones from the SIFT-SIFT

combination).

 82.86% 14.24% 20.06% 12.40% 26.24% 12.82% 22.44% 22.34%

 #1 #2 #3 #4 #5 #6 #7 #8

#1 66.18% 14.20% 18.16% 12.66% 25.60% 12.92% 13.34% 21.80%

#3 74.60% 20.14% 15.82% 14.90% 21.78% 19.64% 19.82% 25.52%

#5 74.38% 15.42% 19.26% 14.84% 15.04% 15.80% 13.98% 27.34%

#7 74.30% 15.22% 17.50% 13.98% 17.92% 16.76% 11.68% 26.06%

9.2 VARYING THE ERROR THRESHOLD

One of the advantages of the proposed decision model is that it can be used, even after

constructed, in tandem with different threshold values. For example, the model based on

image sequence number #3, which presented the best speedup results, was used to show how

 73

the speedup varies according to the error threshold change. The evolution of speedup is

shown in Figure 27. As expected, it increases as the threshold value increases, as less complex

algorithms are used for a longer period of time during tracking.

Figure 27. Analysis of speedup evolution according to error threshold increase. The

highest relative increase in speedup occurs between error interval [5, 10].

It is important to notice that the speedup increase is not linear if compared to the

threshold error increase. This means that at some point it is not advisable anymore to keep

increasing the threshold, since the losses with error will be higher than the gains in speed. It

is suggested that error threshold is kept at a maximum of 10 pixels, since this value shows the

higher variation compared to the previous threshold value.

9.3 TIME ANALYSIS

The proposed model works based on parameters that come from the input image

frames. While the mean execution time of the algorithms is known, the time necessary to

extract such parameters must be known as well. With this information, it will be possible to

identify when it is advantageous to use the proposed approach. The only additional overhead

in processing that comes from the scheme proposed regards the parameter extraction phase,

error evaluation (SSIM computation) and the decision cost itself. The time involved in the

execution of the decision is not significant, since for each frame, just a few memory accesses

are needed (e.g., for the tested scenario when five algorithms and five parameters are used,

there were only 25 memory accesses).

The mean time for each frame to extract the parameters is shown in Table 11. The

rotation and scale parameters extraction time were grouped together since they are part of

the same process.

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

0 5 10 15 20 25 30 35

S
p

e
e

d
u

p

Error threshold

Error threshold vs Speedup

 74

Table 9. Mean time spent per frame in each processing step.

 Execution times (ms)

Rotation + Scale 0.0107640

Distortion 0.000202

Luminance 0.1623920

Occlusion 4.0899950

SSIM 3.1674500

It can be observed from Table 9 that the computation times for both occlusion

parameter and error evaluation (SSIM) are orders of magnitude higher than the other

parameters (rotation + scale, distortion and luminance). While some of them just require a

few arithmetic calculations, those two parameters involve processing the entire object image,

making comparisons against the reference image and using additional algorithms (as

happens to occlusion calculation, using LBP calculations). This time analysis is relevant

because even if the decision model processing can be executed in a parallel thread, the

occlusion parameter calculation demands about 55.04% of the entire model processing time,

while the SSIM calculation takes 42.62% of it. Because SSIM is used in the error evaluation, it

cannot be removed. The only alternative, when necessary, is to make a selective decision, by

using only selected parameters, instead of always employing all parameters.

9.4 SELECTIVE SPEEDUP AND PRECISION RESULTS

A different way of adopting the proposed model is to specifically select which

parameters will be used to evaluate the algorithm decision. As shown in the previous section,

the occlusion parameter calculation is expensive if compared to the others, so it can be

necessary to remove it from the decision process. This means that it does not need to be

extracted in real time, because it is not being considered anymore. This change will surely

have an impact on both speedup and error results compared to the previous attempts. Since

the model is now less restrictive (i.e., performs less tests in the decision process), it should

show an increase in speedup in detriment of a higher error. Table 10 and Table 11 show the

new speedup and error values obtained by using the model without considering the occlusion

parameter evaluation.

 75

Table 10. Speedup obtained with the selective approach (not considering the occlusion

parameter). The four different models generated were applied to each of the eight

available scenarios.

 #1 #2 #3 #4 #5 #6 #7 #8 Mean

#1 1.82 1.82 1.81 1.81 1.81 1.81 1.81 1.82 1.81

#3 3.43 3.38 3.24 3.26 3.37 3.37 3.35 3.43 3.35

#5 3.70 3.55 3.40 3.41 3.49 3.49 3.42 3.70 3.52

#7 3.16 3.06 2.95 2.95 3.03 3.03 2.97 3.16 3.04

Table 11. Error rate obtained with the selective approach. The four different models

generated were applied to each of the eight available scenarios. The error threshold

used was 10 pixels. The first line shows the original error values, without using the

proposed approach (only the SIFT-SIFT combination is used).

 82.86% 14.24% 20.06% 12.40% 26.24% 12.82% 22.44% 22.34%

 #1 #2 #3 #4 #5 #6 #7 #8

#1 61.84% 14.40% 18.06% 12.48% 18.20% 12.90% 12.74% 14.10%

#3 74.52% 19.88% 18.82% 15.38% 22.40% 21.32% 20.80% 27.52%

#5 74.00% 16.46% 20.46% 18.04% 17.82% 17.42% 16.10% 29.10%

#7 74.34% 14.62% 17.62% 15.68% 18.08% 18.14% 13.42% 26.46%

After the modification, the model generated by image sequence number #5 obtained

the new best speedups. Besides that, by comparing both original and new speedup results

and doing the same regarding error, it is possible to verify a mean increase in speedup of

17.21% and a mean error increase of just 0.83%. For this reason, the removal of the occlusion

test showed to be very promising, since it enhances more the speedup than it harms tracking

quality.

This chapter presented the results obtained with the decision model proposed, using

the methodology described in chapter 4. We showed that both speedup and error values vary

according to the model choice. In general, it is possible to obtain a speedup of a factor of 3,

while keeping the error below a specific threshold (10 pixels). We also showed that the

execution time of the model decision process can be optimized by not considering all

parameters while searching for the best suitable tracking algorithm. By eliminating the most

 76

expensive parameter calculation (occlusion), we were able to improve the speedup while still

maintaining the error bellow the initial threshold.

 77

CHAPTER 10 CONCLUSION

This thesis had as its main objective to propose a decision model capable of

optimizing the tracking quality vs. computational demand by choosing the most suitable

algorithm according to the object being tracked. To accomplish this, different tracking

algorithms, image features, similarity measures and image datasets had to be carefully

analyzed.

The problem of performance optimization in AR applications operating in constrain ed

mobile platforms was addressed. Sometimes, due to the lack of computational resources, the

application execution is prohibitive because the computational load of the algorithm does not

match the available processing power, making real-time processing difficult.

The proposed decision model was created based on the correlation between five

different algorithms. Whenever the scenario also involves memory consumption, the number

of algorithms supported by the model can be diminished. For example, one may use the

proposed decision model to select when is advisable to switch from SIFT-SIFT (the most

expensive) combination to ORB-ORB (the least expensive), and then when to come back to

the initial setup. Fewer algorithms supported by the model imply fewer decision options and

reduced memory need. What happens in this case is that the computational load changes

abruptly from these two combinations. When more algorithms are available, the change is

more subtle, and a higher speedup can be achieved.

10.1 CONTRIBUTIONS

This thesis gave birth to several different contributions, listed in the following

sections.

10.1.1 COMPARISON AMONG DIFFERENT SIMILARITY MEASURES

Image registration is the process of overlaying two or more images of the same scene

taken at different times, from different viewpoints, and/or by different sensors [91]. The goal

with registration is to geometrically align two images (the reference and the captured

images). In this work, in order to select a utility function good enough to correctly judge the

decision of the model, a broad research project was undertaken. It started with a particular

family of image registration methods, namely those that are area-based. These methods deal

with the images without attempting to detect salient objects, trying to establish a

correspondence by considering the image information in its entirety. Twelve different

distance measures were analyzed, the majority of them using histogram comparisons. From

those twelve, the mutual information was the only one robust to illumination changes. Due to

 78

its complexity and instability when dealing with structural distortions on the image, it was

also discarded. In the end, the SSIM value was used as utility function, due to its robustness

when comparing structural, brightness and intensity information from the image.

10.1.2 COMPARISON AMONG DIFFERENT TRACKING ALGORITHMS

Chapter 2 and 3 discussed several algorithms that can be used in object tracking

applications. It is possible to use this information as a guide for deciding which algorithm to

use according to the desired application scenario. Chapter 3 focused on algorithms that can

be used in texture-based tracking approaches and the methods currently showing the best

results were described and analyzed. A deeper analysis regarding their performance while

varying the model parameters can be found in Chapters 5 and 6. The study regarding tracking

algorithms in this thesis gave birth to an improvement of an existing tracking algorithm,

known as FERNS[105]. Usually, the processing power of the GPU is explored in order to

improve tracking algorithms whenever such resources are available [106][107].

10.1.3 ANALYSIS OF THE RELATIONSHIP AMONG ERROR MEASURES

In order to use SSIM as utility function for the proposed model, it was necessary to

find a clear relationship between both SSIM and the reprojection error. While the meaning of

a SSIM is only clear when it is 1, which represents two completely equal images being

compared, it is not clear how different the images are for values different than one. While the

reprojection error is an amount measured in pixels, the SSIM value does not have a unit and

varies on the interval [0,1]. In order to comprehend how the SSIM values worked, a direct

relationship between these two error measurements was studied.

Since one must know ground truth data before utilizing the reprojection error, this

was not possible to do with unknown data. For that reason, all 25k frames from the training

phase of the model were used in order to acquire error measurements information, SSIM and

the reprojection error. It is obvious that when the reprojection decreases, the SSIM value

tends to get closer to 1. The main problem here is how to represent a SSIM value that

corresponds to a specific reprojection error of, for example, 10 pixels. The SSIM value was

varied from 0 to 1 using intervals of 0.001, in a way that 1000 different SSIM values were

generated. After that, a spatial hash-like structure was computed so that it was possible to

know the mean reprojection error for each of the SSIM values. After that, a function was

implemented so that it received as input the reprojection error and provides as output the

corresponding SSIM value along with its confidence interval. This function is used by the

model and is also available on the OTS library.

 79

10.1.4 THE PROPOSED DECISION MODEL

The proposed model was generated and tested with success against synthetic data. It

showed a significant improvement over the original execution environment without

modifying the tracking algorithms, just by switching them; it was possible to obtain a mean

improvement in performance of about 3 times.

The results were satisfactory for the four object classes tested and the selective

capability of the model allows it to be completely configurable by the user, deciding which

tests will contribute to the algorithm decision. Since the model is completely modular, new

parameters can easily be added to it. This work does not require the user to correctly classify

the object he/she intends to track into one of the four object classes. Indeed, he/she can test

the four models generated against the available input data to see which gives the best results.

In fact, this could be used as an automatic classification process for determining the class of

the object.

10.1.5 OBJECT TRACKING SWITCHER LIBRARY

The proposed decision model was fully implemented using the C++ language and is

available as an open-source library at the link http://sourceforge.net/p/otslibrary. It can be

customized according to the application needs and also modified to support different

algorithms that do not comply with OpenCV object tracking interfaces.

10.1.6 PUBLICATIONS DIRECTLY RELATED TO THIS THESIS

This thesis produced some contributions in the form of academic publications that are

directly related to the object of study. They are listed as follows:

 Teixeira, João Marcelo Xavier Natário; Kelner, Judith; Teichrieb, Veronica. A planar

object tracking approach robust to total occlusion. In: Workshop de Realidade Virtual

e Aumentada, 2012. Anais do WRVA 2012, 2012.

 Emerenciano, T.; Tenório, L.; Moura, Guilherme; Teixeira, João Marcelo; Almeida,

Gabriel; Kelner, Judith. Um Protocolo para Auxílios Visuais em Aplicações de

Realidade Aumentada Colaborativa. In: 14th Symposium on Virtual and Augmented

Reality, 2012, Niterói. Proceedings of the 14th Symposium on Virtual and Augmented

Reality, 2012.

 Santos, R.; Silva, Daliton; Teixeira, João Marcelo; Kelner, Judith. Rastreamento de

Objetos Usando Template Matching e Variação de Iluminação. In: 14th Symposium

on Virtual and Augmented Reality, 2012, Niterói. Proceedings of the 14th Symposium

on Virtual and Augmented Reality, 2012.

 Vasconcelos, L.; Breyer, Felipe; Teixeira, João Marcelo Xavier Natário; Kelner,

 80

Judith; Teichrieb, Veronica. Desenvolvimento de uma Plataforma Móvel para

Inspeção Termal de Equipamentos Baseada em Realidade Aumentada. In:

ERGODESIGN USIHC, 2011, Manaus. Proceedings of the USIHC 2011, 2011.

 Teixeira, Joao Marcelo; Teichrieb, Veronica; Kelner, Judith. The influence of partial

occlusion on object tracking 2011. In V Latin American Summer School on Robotics,

Santiago, Chile (Poster).

 Leão, C. W. M.; Reis, B.; Teixeira, João Marcelo; Kelner, Judith. Mivamain: A

Platform for Assisting Maintenance with Augmented Reality 2011. In V Latin

American Summer School on Robotics, Santiago, Chile (Poster).

 Teixeira, João Marcelo Xavier Natário; Reis, Bernardo; Teichrieb, Veronica; Kelner,

Judith. An optimized label-broadcast parallel algorithm for connected components

labeling. In Programmable Logic Conference (SPL), 2010, Ipojuca. p. 99-104.

 Reis, Bernardo; Oliveira Filho, P. S. B.; Vasconcelos, L.; Teixeira, João Marcelo Xavier

Natário; Teichrieb, Veronica; Kelner, Judith. MarkerMatch: an Embedded

Augmented Reality case study. In: Symposium on Virtual and Augmented Reality,

2010, Natal. Proceedings of the SVR 2010, 2010.

 Reis, Bernardo; Teixeira, João Marcelo Xavier Natário; Albuquerque, E.; Teichrieb,

Veronica; Kelner, Judith. Análise de técnicas de limiarização adaptativa para

realidade aumentada embarcada. In: Workshop de Realidade Virtual e Aumentada,

2010, São Paulo. Anais do WRVA 2010, 2010.

 Leão, Crystian Wendel M.; Teixeira, João Marcelo Xavier Natário; Albuquerque, E.;

Teichrieb, Veronica; Kelner, Judith. Melhorando o desempenho do rastreamento de

pontos de interesse em imagens através do paralelismo em GPU. In: Workshop de

Realidade Virtual e Aumentada, 2010, São Paulo. Anais do WRVA 2010, 2010.

 Teixeira, João Marcelo; Roberto, R. A.; Simões, F. P. M.; Teichrieb, Veronica; Kelner,

Judith. Reconstrução 3D usando luzes estruturadas. Tendências e Técnicas. In

Symposium on Virtual Reality, 2010.

 Farias, Thiago; Teixeira, João Marcelo; Leite, Pedro; Almeida, Gabriel; Almeida,

Mozart Williams S.; Teichrieb, Veronica; Kelner, Judith. High Performance

Computing: CUDA as a Supporting Technology for Next Generation Augmented

Reality Applications. Revista de Informática Teórica e Aplicada, v. XVI, p. 63-88,

2009.

 Farias, Thiago; Teixeira, João Marcelo Xavier Natário; Almeida, Gabriel Fernandes

de; Leite, Pedro; Teichrieb, Veronica; Kelner, Judith. A CUDA-enabled KLT Tracker

for High Definition Images. In: Symposium on Virtual and Augmented Reality, 2009,

Porto Alegre. Anais do SVR2009, 2009.

 Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica; Kelner, Judith. Finding

 81

an adequate escape pod to real time Augmented Reality applications. In: Brazilian

Symposium on Computer Graphics and Image Processing, 2009, Rio de Janeiro.

Anais do SIBGRAPI 2009, 2009.

 Reis, Bernardo; Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica; Kelner,

Judith. Detecção de Marcadores para Realidade Aumentada em FPGA. In: Brazilian

Symposium on Computer Graphics and Image Processing, 2009, Rio de Janeiro.

Anais do SIBGRAPI 2009, 2009.

 Reis, Bernardo; Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica; Kelner,

Judith. Detecção de Marcadores para Realidade Aumentada em FPGA. In: Simpósio

em Sistemas Computacionais - Workshop de Iniciação Científica, 2009, São Paulo.

Anais do WSCAD-WIC 2009, 2009.

10.1.7 PUBLICATIONS INDIRECTLY RELATED TO THIS THESIS

This thesis produced some contributions in the form of academic publications that are

indirectly related to the object of study. They are listed as follows:

 Leite, Pedro; Teixeira, João Marcelo; Farias, Thiago; Reis, Bernardo; TEICHRIEB,

Veronica; Kelner, Judith. Nearest Neighbor Searches on the GPU. International

Journal of Parallel Programming, v. 40, p. 313-330, 2012; ISSN/ISBN: 08857458;

 Santos, Artur; Teixeira, João Marcelo; Farias, Thiago; Teichrieb, Veronica; Kelner,

Judith. Understanding the Efficiency of kD-tree Ray-Traversal Techniques over a

GPGPU Architecture. International Journal of Parallel Programming, v. 40, p. 331-

352, 2012; ISSN/ISBN: 08857458.

 Reis, Bernardo; Teixeira, João Marcelo; Breyer, Felipe; Vasconcelos, Luis Arthur;

Cavalcanti, Aline; Ferreira, André; Kelner, Judith. Increasing kinect application

development productivity by an enhanced hardware abstraction. In: The 4th ACM

SIGCHI Symposium on Engineering Interactive Computing Systems, 2012,

Copenhagen. Proceedings of the 4th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems - EICS '12. New York: ACM Press, 2012. p. 5-14.

 Teixeira, João Marcelo; Reis, Bernardo; Macedo, Samuel; KELNER, Judith.

Open/Closed Hand Classification Using Kinect Data. In: 14th Symposium on Virtual

and Augmented Reality (SVR), 2012, Rio de Janiero. Proceedings of the 14th

Symposium on Virtual and Augmented Reality, 2012. p. 18-25.

 Reis, Bernardo; Teixeira, J. M. X. N.; Kelner, Judith. An open-source tool for

distributed viewing of kinect data on the web. In: Workshop de Realidade Virtual e

Aumentada, 2011, Uberaba. Anais do Workshop de Realidade Virtual e Aumentada,

2011.

 82

 Teixeira, João Marcelo Xavier Natário; Albuquerque, E.; Santos, Artur Lira dos;

Teichrieb, Veronica; Kelner, Judith. Improving ray tracing anti-aliasing performance

through image gradient analysis. In: Simpósio em Sistemas Computacionais, 2010,

Petrópolis. Anais do WSCAD-SSC 2010, 2010.

 Souza, Eduardo Antonio; Vasconcelos, L.; Teixeira, João Marcelo Xavier Natário;

Albuquerque, E.; Kelner, Judith; Teichrieb, Veronica. Evaluating the CapCam: a

device for thermal inspection of electrical equipment. In: Workshop de Realidade

Virtual e Aumentada, 2010, São Paulo. Anais do WRVA 2010, 2010.

 Santos, Artur Lira dos; Teixeira, João Marcelo Xavier Natário; Farias, Thiago;

Teichrieb, Veronica; Kelner, Judith. kD-Tree Traversal Implementations for Ray

Tracing on Massive Multiprocessors: a Comparative Study. In: International

Symposium on Computer Architecture and High Performance Computing, 2009, São

Paulo. Anais do SBAC-PAD2009. New York: IEEE Computer Society, 2009. p. 41-48.

 Leite, Pedro; Teixeira, João Marcelo Xavier Natário; Farias, Thiago; Teichrieb,

Veronica; Kelner, Judith. Massively Parallel Nearest Neighbor Queries for Dynamic

Point Clouds on the GPU. In: International Symposium on Computer Architecture

and High Performance Computing, 2009, São Paulo. Anais do SBAC-PAD2009. New

York: IEEE Computer Society, 2009. p. 19-25.

 Figueiredo, Lucas Silva; Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica;

Kelner, Judith. An Open-Source Framework for Air Guitar Games. In: Brazilian

Symposium on Games and Digital Entertainment, 2009, Rio de Janeiro. Anais do

SBGames 2009, 2009. p. 74-82.

 Carvalho Jr., A.; Farias, Thiago; Teixeira, Joao Marcelo; Teichrieb, Veronica; Kelner,

Judith. Aplicando Model-Driven Development à Plataforma GPGPU. In: Simpósio em

Sistemas Computacionais, 2009, São Paulo. Anais do WSCAD-SSC 2009, 2009.

10.2 FUTURE WORKS

This research has raised many possibilities of use for the proposed decision model.

Some alternatives to enhance the work produced by this thesis are also explained bellow.

 To test the model with real data and evaluate its performance in a real-time

application will be important in proving the validity of the concepts developed

during this work. Testing is already being carried out using two sponsored

projects that make use of mobile platforms for executing AR applications.

 A detailed time analysis regarding the impact of the model utilization over

applications is also planned. This will identify cases in which the proposed

decision model should run in a separate thread, so that the application

 83

execution will not be harmed.

 The definition of a tracking interface generic enough to represent both model-

based and texture-based trackers would allow the inclusion of new algorithms

to the model in an easy way.

Finally, we plan to extend the proposed model to track 3D objects. This topic involves

a series of new studies since different motion parameters can be taken into consideration. An

inverse approach of the parameter estimation can be used, by considering camera pose

parameters instead of only object parameters.

 84

REFERENCES

[1] Richard Szeliski. 2010. Computer Vision: Algorithms and Applications (1st ed.).

Springer-Verlag New York, Inc., New York, NY, USA.

[2] Yilmaz, A., Javed, O., and Shah, M. Object tracking: A survey. ACM Comput. Surv.,

38, December 2006.

[3] Czyzewski, A., Dalka, P. "Examining Kalman Filters Applied to Tracking Objects in

Motion", Image Analysis for Multimedia Interactive Services, 2008. WIAMIS '08.

Ninth International Workshop on , vol., no., pp.175-178, 7-9 May 2008.

[4] Huang, C., Wu, B., and Nevatia, R. Robust Object Tracking by Hierarchical

Association of Detection Responses. In Proceedings of the 10th European Conference

on Computer Vision: Part II (ECCV '08), David Forsyth, Philip Torr, and Andrew

Zisserman (Eds.). Springer-Verlag, Berlin, Heidelberg, 788-801.

[5] Zhou, Q., Aggarwal, J.K. "Object tracking in an outdoor environment using fusion of

features and cameras". Image Vision Comput. 24(11): 1244-1255 (2006).

[6] Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd

Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[7] North, D.W. "A Tutorial Introduction to Decision Theory," Systems Science and

Cybernetics, IEEE Transactions on , vol.4, no.3, pp.200-210, Sept. 1968.

[8] Lepetit, V. and Fua, P. "Monocular model-based 3d tracking of rigid objects: A

survey". In Foundations and Trends in Computer Graphics and Vision, pages 1-89,

2005.

[9] Wang, T., Gu, I.Y.H., Shi, P. Object Tracking using Incremental 2D-PCA Learning

and ML Estimation. Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.

IEEE International Conference on , vol.1, no., pp.I-933-I-936, 15-20 April 2007

[10]Wang, Y., Van Dyck, R. E., and Doherty, J. F. Tracking moving objects in video

sequences. Conference on Information Sciences and Systems. Vol. 2. 2000.

[11] Teixeira, J. M. X. N., Kelner, J., Teichrieb, V. A planar object tracking approach

robust to total occlusion. In: Workshop de Realidade Virtual e Aumentada. Anais do

WRVA 2012, Paranavaí, Paraná.

[12]Mei, C., Benhimane, S., Malis, E., and Rives, P. "Efficient homography based

tracking and 3-d reconstruction for single-viewpoint sensors". IEEE Transactions on

Robotics, 24(6):1352-1364, Dec. 2008.

[13]Zhong, Y. and Jain, A. K. "Object tracking using deformable templates". IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22:544-549, 2000.

[14]Cedras, C. and Shah, M. "Motion-Based Recognition: A Survey". IVC, 13(2):129-155,

March 1995.

 85

[15]Javed, O. and Shah, M. Tracking and object classification for automated surveillance.

In Proceedings of the 7th European Conference on Computer Vision-Part IV, ECCV

'02, pages 343-357, London, UK, UK, 2002. Springer-Verlag.

[16]Visser, R., Sebe, N., and Bakker, E. Object recognition for video retrieval. In

Proceedings of the International Conference on Image and Video Retrieval, pages

262-270, 2002.

[17]Ren, J., Vlachos, T., and Argyriou, V. Immersive and perceptual human-computer

interaction using computer vision techniques, IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010,pages 66-72.

2010.

[18]Gloyer, B., Aghajan, H. K., Siu, K., and Kailath, T. "Vehicle detection and tracking for

freeway traffic monitoring". In Signals, Systems and Computers, 1994. 1994

Conference Record of the Twenty-Eighth Asilomar Conference on, volume 2, pages

970 -974 vol.2, oct-2 nov 1994.

[19]Jia, Z., Balasuriya, A., and Challa, S. "Vision based target tracking for autonomous

land vehicle navigation: A brief survey". Recent Patents on Computer Science,

2(1):32-42, 2009.

[20]Heisele, B., Woehler, C. Motion-based recognition of pedestrians. Proceedings of the

Fourteenth International Conference on Pattern Recognition, vol.2, no., pp.1325-

1330 vol.2, 16-20 Aug 1998.

[21]Gagnon, L., Foucher,S., Laliberte, F., Lalonde, M., Beaulieu, M. Toward an

Application of Content-Based Video Indexing to Computer- Assisted Descriptive

Video, Computer and Robot Vision, 2006. The 3rd Canadian Conference on , vol.,

no., pp.8, 0-0 0.

[22]Reis, B., Teixeira, J. M. X. N., Breyer, F., Vasconcelos, L. A., Cavalcanti, A., Ferreira,

A., Kelner, J. Increasing kinect application development productivity by an enhanced

hardware abstraction. In: The 4th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, 2012, Copenhagen. Proceedings of the 4th ACM

SIGCHI Symposium on Engineering Interactive Computing Systems - EICS '12. New

York: ACM Press, 2012. p. 5-14.

[23]Kun, A.J., Vamossy, Z. Traffic monitoring with computer vision, 7th International

Symposium on Applied Machine Intelligence and Informatics, 2009. SAMI 2009.

pp.131-134, 30-31 Jan. 2009.

[24]Pinto, C. "How Autonomous Vehicle Policy in California and Nevada Addresses

Technological and Non-Technological Liabilities". Intersect: The Stanford Journal of

Science, Technology and Society; Vol 5 (2012).

[25]Azuma, R. T. "A survey of augmented reality". Presence: Teleoperators and Virtual

 86

Environments, 6(4):355-385, August 1997.

[26]Zhang, X., Gunther, M., and Bongers, A. Real-time organ tracking in ultrasound

imaging using active contours and conditional density propagation. In Proceedings

of the 5th international conference on Medical imaging and augmented reality,

MIAR'10, pages 286-294, Berlin, Heidelberg, 2010. Springer-Verlag.

[27]Henderson, S. J. and Feiner, S. K. Augmented reality in the psychomotor phase of a

procedural task. In Proceedings of the 2011 10th IEEE International Symposium on

Mixed and Augmented Reality, ISMAR '11, pages 191-200, Washington, DC, USA,

2011. IEEE Computer Society.

[28]Wither, J., DiVerdi, S., and Hollerer, T. "Annotation in outdoor augmented reality".

Computers & Graphics, 33(6):679-689, December 2009.

[29]Lyu, M. R., King, I., Wong, T. T., Yau, E., and Chan, P. W. Arcade: Augmented

reality computing arena for digital entertainment. 2005 IEEE Aerospace Conference,

pages 1-9, 2005.

[30]Narzt, W., Pomberger, G., Ferscha, A., Kolb, D., Muller, R., Wieghardt, J., Hortner,

H. and Lindinger, C. "Augmented reality navigation systems". Univers. Access Inf.

Soc., 4:177-187, February 2006.

[31]Teichrieb, V., Lima, J. P. S. M., Apolinario, E. L., Farias, T. S. M. C., Bueno, M. A. S.,

Kelner, J. and Santos, I. H. F. "A Survey of Online Monocular Markerless

Augmented Reality". International Journal of Modeling and Simulation for the

Petroleum Industry, vol. 1, no. 1, August 2007.

[32]Lin, L., Wang, Y., Liu, Y., Xiong, C., and Zeng, K. "Marker-less registration based on

template tracking for augmented reality". Multimedia Tools and Applications,

41(2):235-252, 2009.

[33]Lima, J. P., Teichrieb, V., Kelner, J., and Lindeman, R. W. Standalone edge-based

markerless tracking of fully 3-dimensional objects for handheld augmented reality.

In Proceedings of the 16th ACM Symposium on Virtual Reality Software and

Technology, VRST '09, pages 139-142, New York, NY, USA, 2009. ACM.

[34]Wendt, F. L., Bres, S., Tellez, B. and Laurini, R. Markerless outdoor localisation

based on sift descriptors for mobile applications. In Proceedings of the 3rd

international conference on Image and Signal Processing, ICISP '08, pages 439-446,

Berlin, Heidelberg, 2008. Springer-Verlag.

[35]Schweighofer, G., Segvic, S. and Pinz, A. Online/realtime structure and motion for

general camera models. In Proceedings of the 2008 IEEE Workshop on Applications

of Computer Vision, pages 1-6, Washington, DC, USA, 2008. IEEE Computer

Society.

[36]Comaniciu, D., Ramesh, V., and Meer, P. "Kernel-based object tracking". IEEE

 87

Trans. Pattern Anal. Mach. Intell., 25:564-575, May 2003.

[37]Bradski, G. R., Santa Clara, and Intel Corporation. "Computer vision face tracking

for use in a perceptual user interface". Interface, 2(2):1221, 1998.

[38]Welch, G. and Bishop, G. An introduction to the kalman filter. Technical report,

Chapel Hill, NC, USA, 1995.

[39]Beymer, D. and Konolige, K. Real-time tracking of multiple people using continuous

detection. In Proc. ICCV Frame-rate Workshop, 1999.

[40]Davison, A. J., Civera, J. and Montiel, J. M. M. "Structure from Motion using the

Extended Kalman Filter". Springer Tracts in Advanced Robotics. Springer, 2012.

[41]Kitagawa, G. "Non-gaussian state-space modeling of nonstationary time series".

Journal of the American Statistical Association, 82(400):1032, 1987.

[42]Kailath, T. "The Divergence and Bhattacharyya Distance Measures in Signal

Selection". IEEE Trans. On Comm. Technology 15(1), 52-60 (1967).

[43]Geem, Z. W. "Recent Advances In Harmony Search Algorithm", volume 270 of

Studies in Computational Intelligence. Springer, 2010.

[44]Fourie, J., Mills, S. and Green, R. "Harmony filter: A robust visual tracking system

using the improved harmony search algorithm". Image Vision Comput., 28:1702-

1716, December 2010.

[45]Hager, G. D. and Belhumeur, P. N. "Efficient region tracking with parametric models

of geometry and illumination". Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 20(10):1025-1039, 1998.

[46]Tomasi, C. and Kanade, T. Detection and Tracking of Point Features. Technical

Report CMU-CS-91-132, Carnegie Mellon University, April 1991.

[47]Benhimane, S. and Malis, E. Real-time image-based tracking of planes using

efficient second-order minimization. 2004 IEEERSJ International Conference on

Intelligent Robots and Systems IROS IEEE, 1(x):943-948, 2004.

[48]Benhimane, S. and Malis, E. "Homography-based 2d visual tracking and servoing".

Int. J. Rob. Res., 26:661-676, July 2007.

[49]Park, Y., Lepetit, V., and Woo, W. Esm-blur: Handling & rendering blur in 3d

tracking and augmentation. In Proceedings of the 2009 8th IEEE International

Symposium on Mixed and Augmented Reality, ISMAR '09, pages 163-166,

Washington, DC, USA, 2009. IEEE Computer Society.

[50]Sukumar, S. R., Page, D. L., Bozdogan, H., Koschan, A. F., Abidi, M. A. "MuFeSaC:

Learning When to Use Which Feature Detector," Image Processing, 2007. ICIP 2007.

IEEE International Conference on , vol.6, no., pp.VI-149-VI-152, Sept. 16 2007-Oct.

19 2007.

[51]Dame, A. and Marchand, E. Accurate real-time tracking using mutual information.

 88

In ISMAR, pages 47-56, 2010.

[52]Schmid, C., Mohr, R., and Bauckhage, C. "Evaluation of Interest Point Detectors".

Int. J. Comput. Vision 37, 2 (June 2000), 151-172.

[53]Harris, C., Stephens, M. A combined corner and edge detector. In: Proceedings of

the Alvey Vision Conference. (1988) 147 - 151.

[54]Lindeberg, T. "Feature detection with automatic scale selection". IJCV 30(2) (1998)

79 - 116.

[55]Mikolajczyk, K. and Schmid, C. Indexing based on scale invariant interest points. In:

ICCV. Volume 1. (2001) 525 - 531.

[56]Lowe, D. Object recognition from local scale-invariant features. In: ICCV. (1999).

[57]Kadir, T. and Brady, M. "Scale, saliency and image description". IJCV 45(2) (2001)

83 - 105.

[58]Jurie, F., Schmid, C. Scale-invariant shape features for recognition of object

categories. In: CVPR. Volume II. (2004) 90 - 96.

[59]Mikolajczyk, K. and Schmid, C. "Scale and affine invariant interest point detectors".

IJCV 60 (2004) 63 - 86.

[60]Mikolajczyk, K. and Schmid, C. A performance evaluation of local descriptors. PAMI

27 (2005) 1615-1630.

[61]Rosten, E. and Drummond, T. Machine learning for highspeed corner detection. In

European Conference on Computer Vision, volume 1, 2006.

[62]Quinlan, J. R. "Induction of decision trees". Machine Learning 1 (1986) 81-106.

[63]Rublee, E., Rabaud, V., Konolige, K., Bradski, G. ORB: An efficient alternative to

SIFT or SURF, Computer Vision (ICCV), 2011 IEEE International Conference on ,

vol., no., pp.2564-2571, 6-13 Nov. 2011.

[64]Calonder, M., Lepetit, V., Strecha, C., and Fua, P. Brief: Binary robust independent

elementary features. In European Conference on Computer Vision, 2010.

[65]Rosin, P. L. "Measuring corner properties". Computer Vision and Image

Understanding, 73(2):291 - 307, 1999.

[66]Bay, H., Tuytelaars, T. and Van Gool, L. Surf: Speeded up robust features. In

European Conference on Computer Vision, May 2006.

[67]Lowe, D. "Distinctive image features from scale-invariant keypoints, cascade

filtering approach". IJCV 60 (2004) 91 - 110.

[68]Lindeberg, T. "Scale-space theory: A basic tool for analysing structures at different

scales", Journal of Applied Statistics, 21, 2 (1994), pp. 224-270.

[69]Brown, M., Lowe, D. G. Invariant features from interest point groups. In: 13th

British Machine Vision Conference, Cardiff, British Machine Vision Assosciation

(2002) 656-665.

 89

[70]Schaffalitzky, F., Zisserman, A. Multi-view matching for unordered image sets, or

How do I organise my holiday snaps? In: 7th Euproean Conference on Computer

Vision, Springer (2002) 414-431.

[71]Rutkowski, W. S., Rosenfeld, A. A comparison of corner detection techniques for

chain coded curves. Technical Report 623, Maryland University (1978).

[72]Langridge, D. J. "Curve encoding and detection of discontinuities". Computer

Vision, Graphics and Image Processing 20 (1987) 58-71.

[73]Medioni, G., Yasumoto, Y. "Corner detection and curve representation using cubic b-

splines". Computer Vision, Graphics and Image Processing 39 (1987) 279-290.

[74]Mokhtarian, F., Suomela, R. "Robust image corner detection through curvature scale

space". IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998)

1376-1381.

[75]Shi, J., Tomasi, C. Good features to track. In: 9th IEEE Conference on Computer

Vision and Pattern Recognition, Springer (1994).

[76]Ke, Y., Sukthankar, R. PCA-SIFT: A more distinctive representation for local image

descriptors. In: CVPR (2). (2004) 506 - 513.

[77]Leite, P., Teixeira, J. M., Farias, T., Reis, B., Teichrieb, V., Kelner, J. "Nearest

Neighbor Searches on the GPU". International Journal of Parallel Programming, v. 1,

p. 1-18, 2011.

[78]Beis, J., and Lowe, D. G. Shape indexing using approximate nearest-neighbour

search in high-dimensional spaces. Conference on Computer Vision and Pattern

Recognition, Puerto Rico (1997), pp. 1000-1006.

[79]P. V. C. Hough, Method and Means for Recognising Complex Patterns, U.S. Patent

No. 3069654, 1962.

[80]Loncomilla, P. and Del Solar, J. Improving SIFT-Based Object Recognition for

Robot Applications, pages 1084-1092. Springer Berlin / Heidelberg, 2005.

[81]Lieberknecht, S., Benhimane, S., Meier, P. and Navab, N. A dataset and evaluation

methodology for template-based tracking algorithms, 8th IEEE International

Symposium on Mixed and Augmented Reality, 2009. ISMAR 2009, pp.145-151, 19-

22 Oct. 2009.

[82]Richard Hartley and Andrew Zisserman. 2003. Multiple View Geometry in

Computer Vision (2 ed.). Cambridge University Press, New York, NY, USA.

[83]Dame, A. A unified direct approach for visual servoing and visual tracking using

mutual information. PhD thesis, Université de Rennes 1, Mention informatique,

December 2010.

[84]Steger, C. "Occlusion, clutter, and illumination invariant object recognition."

International Archives of Photogrammetry Remote Sensing and Spatial Information

 90

Sciences 34.3/A (2002): 345-350.

[85]Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., and Lepetit, V.

"Gradient Response Maps for Real-Time Detection of Textureless Objects". IEEE

Trans. Pattern Anal. Mach. Intell. 34, 5 (May 2012), 876-888.

[86]Hsiao, E. Occlusion reasoning for object detection under arbitrary viewpoint. In

Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (CVPR '12). IEEE Computer Society, Washington, DC, USA,

3146-3153.

[87]Ojala, T., Pietikainen, M. and Harwood, D. "Performance evaluation of texture

measures with classification based on Kullback discrimination of distributions,"

Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision & Image

Processing., Proceedings of the 12th IAPR International Conference on , vol.1, no.,

pp.582-585 vol.1, 9-13 Oct 1994.

[88]Di Stefano, L., Mattoccia, S., and Tombari, F. "Zncc-based template matching using

bounded partial correlation". Pattern Recogn. Lett., 26:2129-2134, October 2005.

[89]Dowson, N. and Bowden, R. A unifying framework for mutual information methods

for use in non-linear optimisation. In Proceedings of the 9th European conference on

Computer Vision - Volume Part I, ECCV'06, pages 365-378, Berlin, Heidelberg,

2006. Springer-Verlag.

[90]Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. "Image quality

assessment: from error visibility to structural similarity," Image Processing, IEEE

Transactions on , vol.13, no.4, pp.600-612, April 2004.

[91]Zitov, B. and Flusser, J. "Image registration methods: a survey". Image and Vision

Computing, 21:977-1000, 2003.

[92]R. D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical Survey.

New York: Wiley, 1957.

[93]Walsh, W. E., Tesauro, G., Kephart, J. O. and Das, R. Utility functions in autonomic

systems, Autonomic Computing, 2004. Proceedings. International Conference on ,

vol., no., pp. 70- 77, 17-18 May 2004.

[94]Gary Rost Bradski and Adrian Kaehler. 2008. Learning Opencv, 1st Edition (First

ed.). O'Reilly Media, Inc.

[95]Bussab, W. O., & Morettin, P. A. (2010). Estatística Básica (6 ed.) Saraiva.

[96]Teixeira, João Marcelo Xavier Natário; Teichrieb, Veronica; Kelner, Judith. Finding

an adequate escape pod to real time Augmented Reality applications. In: Brazilian

Symposium on Computer Graphics and Image Processing, 2009, Rio de Janeiro.

Anais do SIBGRAPI 2009, 2009.

[97]Reis, Bernardo; Oliveira Filho, P. S. B.; Vasconcelos, L.; Teixeira, João Marcelo

 91

Xavier Natário; Teichrieb, Veronica; Kelner, Judith. MarkerMatch: an Embedded

Augmented Reality case study. In: Symposium on Virtual and Augmented Reality,

2010, Natal. Proceedings of the SVR 2010, 2010.

[98]Vasconcelos, L.; Breyer, Felipe; Teixeira, João Marcelo Xavier Natário; Kelner,

Judith; Teichrieb, Veronica. Desenvolvimento de uma Plataforma Móvel para

Inspeção Termal de Equipamentos Baseada em Realidade Aumentada. In:

ERGODESIGN USIHC, 2011, Manaus. Proceedings of the USIHC 2011, 2011.

[99]Teixeira, João Marcelo; Roberto, R. A.; Simoes, F. P. M.; Teichrieb, Veronica;

Kelner, Judith. Reconstrução 3D usando luzes estruturadas. Tendências e Técnicas.

In Symposium on Virtual Reality, 2010.

[100]Leão, C. W. M.; Reis, B.; Teixeira, João Marcelo; Kelner, Judith. Mivamain: A

Platform for Assisting Maintenance with Augmented Reality 2011. In V Latin

American Summer School on Robotics, Santiago, Chile (Poster).

[101]Emerenciano, T.; Tenorio, L.; Moura, Guilherme; Teixeira, João Marcelo; Almeida,

Gabriel; KELNER, Judith. Um Protocolo para Auxílios Visuais em Aplicações de

Realidade Aumentada Colaborativa. In: 14th Symposium on Virtual and Augmented

Reality, 2012, Niterói. Proceedings of the 14th Symposium on Virtual and

Augmented Reality, 2012.

[102]Reis, Bernardo; Teixeira, João Marcelo Xavier Natário; Albuquerque, E.; Teichrieb,

Veronica; Kelner, Judith. Análise de técnicas de limiarização adaptativa para

realidade aumentada embarcada. In: Workshop de Realidade Virtual e Aumentada,

2010, São Paulo. Anais do WRVA 2010, 2010.

[103]Santos, R.; Silva, Daliton; Teixeira, João Marcelo; Kelner, Judith. Rastreamento de

Objetos Usando Template Matching e Variação de Iluminação. In: 14th Symposium

on Virtual and Augmented Reality, 2012, Niterói. Proceedings of the 14th

Symposium on Virtual and Augmented Reality, 2012.

[104]Teixeira, Joao Marcelo; Teichrieb, Veronica; Kelner, Judith. The influence of

partial occlusion on object tracking 2011. In V Latin American Summer School on

Robotics, Santiago, Chile (Poster).

[105]Leão, Crystian Wendel M.; Teixeira, João Marcelo Xavier Natário; Albuquerque, E.;

Teichrieb, Veronica; Kelner, Judith. Melhorando o desempenho do rastreamento de

pontos de interesse em imagens através do paralelismo em GPU. In: Workshop de

Realidade Virtual e Aumentada, 2010, São Paulo. Anais do WRVA 2010, 2010.

[106]Farias, Thiago; Teixeira, João Marcelo; Leite, Pedro; Almeida, Gabriel; Almeida,

Mozart Williams S.; Teichrieb, Veronica; Kelner, Judith. High Performance

Computing: CUDA as a Supporting Technology for Next Generation Augmented

Reality Applications. Revista de Informática Teórica e Aplicada, v. XVI, p. 63-88,

 92

2009.

[107]Farias, Thiago; Teixeira, João Marcelo Xavier Natário; Almeida, Gabriel Fernandes

de; Leite, Pedro; Teichrieb, Veronica; Kelner, Judith. A CUDA-enabled KLT Tracker

for High Definition Images. In: Symposium on Virtual and Augmented Reality,

2009, Porto Alegre. Anais do SVR2009, 2009.

 93

LIST OF ABBREVIATIONS

AR Augmented Reality

AIC Akaike information criterion

BRIEF Binary robust independent elementary features

CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

CPU Central processing unit

CV Computer Vision

EKF Extended Kalman filter

ESM Efficient Second-order Minimization

FAST Features from Accelerated Segment Test

GLOH Gradient Location and Orientation Histogram

GPU Graphics Processing Unit

GRVM Virtual Reality and Multimedia Research Group

HSV Hue, saturation, and value color model

ID3 Iterative Dichotomiser 3

KLT Kanade–Lucas–Tomasi feature tracker

LBP Local Binary Patterns

MI Mutual Information

ORB Oriented FAST and Rotated BRIEF

OTS Object Tracking Switcher

PCA Principal Component Analysis

RANSAC Random Sample Consensus

SIFT Scale-Invariant Feature Transform

SSD Sum of Squared Differences

SSIM Structural Similarity index

SURF Speeded Up Robust Features

SVD Singular Value Decomposition

ZNCC Zero Normalized Cross-Correlation

