Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/11842
Comparte esta pagina
Título : | Descritor de voz invariante ao ruído |
Autor : | Viana, Hesdras Oliveira |
Palabras clave : | Processamento de voz; Descritores de voz; MFCC; PNCC; RASTA-PLP |
Fecha de publicación : | 26-feb-2013 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | VIANA, Hesdras Oliveira. Descritor de voz invariante ao ruído. Recife, 2013. 62 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.. |
Resumen : | Extrair características da fala é uma etapa fundamental para os sistemas de reconhecimento de voz. É através dos descritores que extraímos a energia do sinal, a frequência fundamental (pitch) e a estrutura dos formantes que serão utilizados como identificadores para cada palavra pronunciada. Descritores como MFCC (Mel-Frequency Cepstral Coefficient), RASTA-PLP (RelAtive SpecTrAl - Perceptual Linear Predictive) e PNCC (Power Normalized Cepstral Coefficient) são muitos utilizados no estado da arte na área de reconhecimento de voz, porém, essas técnicas não conseguem apresentar bons resultados quando expostos a amostras com presença de ruído, variabilidade de locutor e fala contínua. O objetivo deste trabalho é desenvolver um descritor para a fala que seja invariante ao ruído, ambiente e locução. Para isso, fizemos um estudo dos descritores de voz mais utilizados na literatura, identificando as vantagens e desvantagens, expondo a situações variadas. Para avaliação das técnicas, utilizamos a base NOIZEUS (Noisy Speech Corpus) e dois classificadores: HMM (Hidden Markov Models) e SVM (Support Vector Machine). Essa base tem como característica a presença de ruído variando de 0dB, 5dB, 10dB e 15dB, gravada em diversos ambientes. A utilização dos classificadores serviu para validar os descritores de voz. O descritor proposto, chamado de MINERS (Model Invariant to Noise and Environment and Robust for Speech), apresentou melhores resultados entre todos os descritores avaliados (MFCC, MFCC combinado com Wavelet Denoising, RASTAPLP e PNCC). A abordagem que obteve maior sucesso foi a utilização do MINERS com o classificador SVM. |
URI : | https://repositorio.ufpe.br/handle/123456789/11842 |
Aparece en las colecciones: | Dissertações de Mestrado - Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Dissertaçao Hesdras Viana.pdf | 2,93 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons