Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/11842

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorMello, Carlos Alexandre Barros de -
dc.contributor.authorViana, Hesdras Oliveira-
dc.date.accessioned2015-03-10T19:43:06Z-
dc.date.available2015-03-10T19:43:06Z-
dc.date.issued2013-02-26-
dc.identifier.citationVIANA, Hesdras Oliveira. Descritor de voz invariante ao ruído. Recife, 2013. 62 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/11842-
dc.description.abstractExtrair características da fala é uma etapa fundamental para os sistemas de reconhecimento de voz. É através dos descritores que extraímos a energia do sinal, a frequência fundamental (pitch) e a estrutura dos formantes que serão utilizados como identificadores para cada palavra pronunciada. Descritores como MFCC (Mel-Frequency Cepstral Coefficient), RASTA-PLP (RelAtive SpecTrAl - Perceptual Linear Predictive) e PNCC (Power Normalized Cepstral Coefficient) são muitos utilizados no estado da arte na área de reconhecimento de voz, porém, essas técnicas não conseguem apresentar bons resultados quando expostos a amostras com presença de ruído, variabilidade de locutor e fala contínua. O objetivo deste trabalho é desenvolver um descritor para a fala que seja invariante ao ruído, ambiente e locução. Para isso, fizemos um estudo dos descritores de voz mais utilizados na literatura, identificando as vantagens e desvantagens, expondo a situações variadas. Para avaliação das técnicas, utilizamos a base NOIZEUS (Noisy Speech Corpus) e dois classificadores: HMM (Hidden Markov Models) e SVM (Support Vector Machine). Essa base tem como característica a presença de ruído variando de 0dB, 5dB, 10dB e 15dB, gravada em diversos ambientes. A utilização dos classificadores serviu para validar os descritores de voz. O descritor proposto, chamado de MINERS (Model Invariant to Noise and Environment and Robust for Speech), apresentou melhores resultados entre todos os descritores avaliados (MFCC, MFCC combinado com Wavelet Denoising, RASTAPLP e PNCC). A abordagem que obteve maior sucesso foi a utilização do MINERS com o classificador SVM.pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectProcessamento de vozpt_BR
dc.subjectDescritores de vozpt_BR
dc.subjectMFCCpt_BR
dc.subjectPNCCpt_BR
dc.subjectRASTA-PLPpt_BR
dc.titleDescritor de voz invariante ao ruídopt_BR
dc.typemasterThesispt_BR
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertaçao Hesdras Viana.pdf2,93 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons