Please use this identifier to cite or link to this item:
https://repositorio.ufpe.br/handle/123456789/11492
Share on
Title: | Framework para Detecção de Anomalias em Bases de Folha de Pagamento Baseado em Mapas Auto-Organizáveis” |
Authors: | ANDRADE, Anderson de Souza |
Keywords: | Mapas auto-organizáveis; Auditoria assistida por software; SOM; Mineração de Dados; Análise de Trajetória SOM; Folha de pagamento |
Issue Date: | 12-Apr-2013 |
Publisher: | Universidade Federal de Pernambuco |
Citation: | ANDRADE, Anderson de Souza; OLIVEIRA, Adriano Lorena Inácio de. Framework para detecção de anomalias em bases de folha de pagamento baseado em mapas auto-organizáveis. Recife, 2013. 77 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013. |
Abstract: | O aumento na complexidade do ambiente de negócios e o acirramento da competição implicam a necessidade de informações para tomada de decisão em um espaço de tempo cada vez menor. Por outro lado, sistemas de informação mais abrangentes e complexos geram cada vez mais dados, tornando inviável a atividade de auditoria não assistida por métodos computacionais. As técnicas de inteligência artificial, particularmente aprendizagem de máquina, estão entre as mais apropriadas para lidar com esse tipo de problema. Dentre as técnicas de aprendizagem de máquina, as redes neurais artificiais vêm desempenhando um papel comprovadamente eficaz como ferramenta de apoio a atividade de auditoria. Diante desse cenário e alinhado ao estado da arte no uso da tecnologia da informação na atividade de auditoria, essa dissertação propõe a construção de um framework para detecção de anomalias em bases de dados baseado na rede neural artificial Mapas auto-organizáveis - Self-Organizing Maps (SOM). Utilizando as propriedades de mapeamento da Rede SOM, o framework consiste em: (i) demonstrar que dados visualmente distantes da área de influência da rede SOM são anomalias, e (ii) estabelecer um critério, baseado em intervalo de percentil, para classificação dos dados como possíveis anomalias independentemente da região do mapa SOM em que se encontrem. Ademais, este trabalho usa a análise de trajetória SOM na função de classificador de anomalia, a fim de comparar o limiar fixo baseado na vizinhança do neurônio com o limiar baseado em intervalo de percentil. O framework proposto foi aplicado em uma base de dados real de folha de pagamento. Os resultados apresentados na dissertação mostraram que o framework conseguiu obter bons resultados neste problema. |
URI: | https://repositorio.ufpe.br/handle/123456789/11492 |
Appears in Collections: | Dissertações de Mestrado - Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertação Anderson Andrade.pdf | 3 MB | Adobe PDF | ![]() View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License