Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/10891

Compartilhe esta página

Título: Rabbit: A novel approach to find data-races during state-space exploration
Título(s) alternativo(s): Rabbit: A novel approach to find data-races during state-space exploration
Autor(es): Oliveira, João Paulo dos Santos
Palavras-chave: Concorrency; Software Verification; Model Checking; Race conditions
Data do documento: 30-Ago-2012
Editor: Universidade Federal de Pernambuco
Citação: OLIVEIRA, João Paulo dos Santos. Rabbit: a novel approach to find data-races during state-space exploration. Recife, 2012. 48 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2012.
Abstract: Data-races are an important kind of error in concurrent shared-memory programs. Software model checking is a popular approach to find them. This research proposes a novel approach to find races that complements model-checking by efficiently reporting precise warnings during state-space exploration (SSE): Rabbit. It uses information obtained across different paths explored during SSE to predict likely racy memory accesses. We evaluated Rabbit on 33 different scenarios of race, involving a total of 21 distinct application subjects of various sources and sizes. Results indicate that Rabbit reports race warnings very soon compared to the time the model checker detects the race (for 84.8% of the cases it reports a true warning of race in <5s) and that the warnings it reports include very few false alarms. We also observed that the model checker finds the actual race quickly when it uses a guided-search that builds on Rabbit’s output (for 74.2% of the cases it reports the race in <20s).
URI: https://repositorio.ufpe.br/handle/123456789/10891
Aparece nas coleções:Dissertações de Mestrado - Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
jpso-master_rabbit_complete.pdf1,42 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons