Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/10891

Comparte esta pagina

Título : Rabbit: A novel approach to find data-races during state-space exploration
Otros títulos : Rabbit: A novel approach to find data-races during state-space exploration
Autor : Oliveira, João Paulo dos Santos
Palabras clave : Concorrency; Software Verification; Model Checking; Race conditions
Fecha de publicación : 30-ago-2012
Editorial : Universidade Federal de Pernambuco
Citación : OLIVEIRA, João Paulo dos Santos. Rabbit: a novel approach to find data-races during state-space exploration. Recife, 2012. 48 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2012.
Resumen : Data-races are an important kind of error in concurrent shared-memory programs. Software model checking is a popular approach to find them. This research proposes a novel approach to find races that complements model-checking by efficiently reporting precise warnings during state-space exploration (SSE): Rabbit. It uses information obtained across different paths explored during SSE to predict likely racy memory accesses. We evaluated Rabbit on 33 different scenarios of race, involving a total of 21 distinct application subjects of various sources and sizes. Results indicate that Rabbit reports race warnings very soon compared to the time the model checker detects the race (for 84.8% of the cases it reports a true warning of race in <5s) and that the warnings it reports include very few false alarms. We also observed that the model checker finds the actual race quickly when it uses a guided-search that builds on Rabbit’s output (for 74.2% of the cases it reports the race in <20s).
URI : https://repositorio.ufpe.br/handle/123456789/10891
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
jpso-master_rabbit_complete.pdf1,42 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons