Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/64644
Compartilhe esta página
Título: | Estimates for the first eigenvalue of the p-Laplacian on Riemannian manifolds |
Autor(es): | SOARES, Matheus Nunes |
Palavras-chave: | Closed and compact submanifolds; Minimal submanifolds; First eigenvalue p-Laplacian; 4. Warped products; Bochner's formula |
Data do documento: | 2025 |
Editor: | Universidade Federal de Pernambuco |
Citação: | SOARES, Matheus Nunes. Estimates for the first eigenvalue of the p-Laplacian on Riemannian manifolds. Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2025. |
Abstract: | The following thesis aims to study estimates of the first eigenvalue of the p-Laplacian operator on compact Riemannian manifolds and complete non-compact manifolds. We established a linearized operator for the divergence-type p-Laplacian, which resulted in a Bochner-type formula. From this, we initially obtained lower bounds for the first eigen- value of the p-Laplacian through the norm of the second fundamental form for p ≥ 2, with characterization of equality. Next, we demonstrated a similar result for submanifolds with prescribed scalar curvature and for submanifolds with constant mean curvature. In each case reported above, we presented a generalization for manifolds with non-empty bound- ary through a Reilly-type formula for the linearized operator. Additionally, we presented an analytical version of the previous results for the singular case with 3 2 < p < 2. Finally, we developed a Liouville-type theorem for complete non-compact manifolds, with appli- cations in warped products. |
URI: | https://repositorio.ufpe.br/handle/123456789/64644 |
Aparece nas coleções: | Teses de Doutorado - Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE Matheus Nunes Soares.pdf | 592,59 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons