Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/62606

Comparte esta pagina

Título : ENDLESS: an end-to-end framework for urban synthetic dataset generation
Autor : COTA NETO, Amadeo Tato
Palabras clave : Synthetic Data; Smart Cities; Computer Vision
Fecha de publicación : 4-abr-2025
Citación : COTA NETO, Amadeo Tato. ENDLESS: an end-to-end framework for urban synthetic dataset generation. 2025. 44 f. TCC (Graduação) - Curso de Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2025.
Resumen : Computer vision models are fundamental for smart city applications. These models enable the city to interpret visual data, obtained from sensors such as surveillance cameras, to optimize its tasks and positively impact the citizens’ lives. However, these models require ever-growing amounts of labeled data for training, which is expensive and raises ethical concerns when collected in the real world. Conversely, 3D engines and simulators allow the cheap and largescale generation of automatically annotated synthetic data. This work proposes a synthetic dataset generator for the smart cities field using the CARLA simulator. The proposed generator allows the end-to-end generation of massive datasets with a single command, which includes the simulation of city assets, such as vehicles and pedestrians, and the recording and annotation of visual data. To prove the generator’s competence, a dataset with over 300K annotated frames was generated and compared with others from the state-of-art. The comparison results show that the proposed generator is capable of producing datasets comparable to the state of the art in terms of data volume and number of annotations. It’s expected that the proposed generator could be used to create useful datasets for training and evaluating computer vision models in the smart cities area. It’s also expected that this work bring attention to the synthetic data usage for smart city models.
URI : https://repositorio.ufpe.br/handle/123456789/62606
Aparece en las colecciones: (TCC) - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TCC Amadeo Tato Cota Neto.pdf2,24 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons