Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/58289
Comparte esta pagina
Título : | Robust Video Plagiarism Detection Using Word Embeddings from Audio Transcriptions |
Autor : | BARROS SILVA, Lucas Leonardo |
Palabras clave : | Video plagiarism detection; Word embeddings; Audio transcription; Semantic Similarity; Multimedia Content Protection |
Fecha de publicación : | 22-oct-2024 |
Citación : | BARROS SILVA, L.L. Robust Video Plagiarism Detection Using Word Embeddings from Audio Transcriptions. 2024. Trabalho de Conclusão do Curso de Ciência da Computação - Universidade Federal de Pernambuco, Recife, 2024. |
Resumen : | Video piracy presents a significant challenge in the digital era, requiring effective detection methods to protect intellectual property. This paper proposes a novel approach for detecting video plagiarism by leveraging word embeddings derived from audio transcriptions. Our method begins by extracting audio streams from videos and transcribing the audio content. We then generate semantic embeddings, storing these embeddings in a vector store for efficient similarity searches. To identify potential plagiarism, query videos are processed through the same pipeline, and their embeddings are compared against reference embeddings. A Euclidean distance below a predefined threshold indicates possible plagiarism, enabling accurate classification and identification of plagiarized videos. Experimental evaluations demonstrate the method’s scalability and efficiency, particularly in detecting complete video copies with explicit English speech content. This approach offers a robust and scalable solution against joint video manipulations, providing a practical framework for combating video piracy in large-scale content environments. |
URI : | https://repositorio.ufpe.br/handle/123456789/58289 |
Aparece en las colecciones: | (TCC) - Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
tg-llbs.pdf | 866,17 kB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons