Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/47250
Compartilhe esta página
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | REN, Tsang Ing | - |
dc.contributor.author | PENA, Carlos Henrique Caloete | - |
dc.date.accessioned | 2022-10-26T13:19:14Z | - |
dc.date.available | 2022-10-26T13:19:14Z | - |
dc.date.issued | 2022-08-25 | - |
dc.identifier.citation | PENA, Carlos Henrique Caloete. An ensemble learning method for segmentation fusion. 2022. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. | pt_BR |
dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/47250 | - |
dc.description.abstract | The segmentation of cells present in microscope images is an essential step to automate many tasks, including cell counting, analysis of the cell-division cycle, determining protein concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell segmentations are vital to assess the genetic makeup of individual cells and their relative spatial location. Deep learning models are currently the most promising approaches among the various techniques and tools that have been developed to provide robust segmentation. We propose a learning ensemble strategy that aggregates many independent candidate segmentations of the same image to produce a single consensus segmentation as an alternative to developing another cell segmentation targeted model. We are particularly interested in learning how to ensemble crowdsourced image segmentations created by experts and non-experts in laboratories and data houses. Hence, these image segmentations are subject to high potential annotation errors created on purpose or by chance. We compare our trained ensemble model with other fusion methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic deformations. Our approach outperforms these methods in efficiency and quality, especially when there is a high disagreement among candidate segmentations of the same image. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.publisher | Universidade Federal de Pernambuco | pt_BR |
dc.rights | openAccess | pt_BR |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | * |
dc.subject | Inteligência computacional | pt_BR |
dc.subject | Segmentação de imagens | pt_BR |
dc.subject | Aprendizagem profunda | pt_BR |
dc.title | An ensemble learning method for segmentation fusion | pt_BR |
dc.type | masterThesis | pt_BR |
dc.contributor.authorLattes | https://lattes.cnpq.br/3170539454572232 | pt_BR |
dc.publisher.initials | UFPE | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.degree.level | mestrado | pt_BR |
dc.contributor.advisorLattes | http://lattes.cnpq.br/3084134533707587 | pt_BR |
dc.publisher.program | Programa de Pos Graduacao em Ciencia da Computacao | pt_BR |
dc.description.abstractx | A segmentação de células realizadas em imagens microscópicas é uma etapa essencial para automatizar multiplas tarefas, incluindo a contagem de células, a aferição da concentração de proteínas e a análise da expressão gênica das células. Em estudos de genômica, a segmentação das células é vital para avaliar a composição genética de células individualmente e a sua localização espacial relativa. Vários métodos e ferramentas foram desenvolvidos para oferecer uma segmentação robusta, sendo, atualmente, os modelos de deep learning as soluções mais promissoras. Como alternativa ao desenvolvimento de outro modelo direcionado a segmentação de imagens microscópicas, propomos, nesta dissertação, uma estratégia de aprendizado de fusão que agrega diversas segmentações candidatas independentes provindas de uma mesma imagem para produzir uma única segmentação de consenso. Estamos particularmente interessados em aprender como agrupar segmentações de imagens provindas de ferramentas crowdsourcing, podendo ser criadas por especialistas e não especialistas em laboratórios e data centers. Assim, comparamos nosso modelo de fusão com outros métodos adotados pela comunidade biomédica, tal como SIMPLE e STAPLE, e avaliamos a robustez dos resultados em três aspectos: fusão com outliers, segmentação parcial e deformações sintéticas. Nossa abordagem supera os métodos em eficiência e qualidade, especialmente, quando há uma grande discordância entre as segmentações candidatas da mesma imagem. | pt_BR |
Aparece nas coleções: | Dissertações de Mestrado - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO Carlos Henrique Caloete Pena.pdf | 4,54 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons