e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Carlos Henrique Caloete Pena

An Ensemble Learning Method for Segmentation Fusion

Recife
2022



Carlos Henrique Caloete Pena

An Ensemble Learning Method for Segmentation Fusion

Trabalho apresentado ao Programa de Pés-
graduacdo em Ciéncia da Computacdo do Centro
de Informatica da Universidade Federal de Pernam-
buco, como requisito parcial para obtencao do grau
de Mestre em Ciéncia da Computacdo.

Area de Concentracdo: Inteligéncia Computa-
cional.

Orientador: Tsang Ing Ren

Recife
2022



Catalogacéao na fonte
Bibliotecéria Monick Raquel Silvestre da S. Portes, CRB4-1217

P397e

Pena, Carlos Henrique Caloete

An ensemble learning method for segmentation fusion / Carlos Henrique
Caloete Pena. — 2022.

55 f.:il., fig., tab.

Orientador: Tsang Ing Ren.
Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacao, Recife, 2022

Inclui referéncias.

1. Inteligéncia computacional. 2. Segmentacdo de imagens. 3.
Aprendizagem profunda |. Ren, Tsang Ing (orientador). Il. Titulo.

006.31 CDD (23. ed.) UFPE - CCEN 2022-168




Carlos Henrique Caloete Pena

“An Ensemble Learning Method for Segmentation Fusion”

Dissertagdo de Mestrado apresentada ao
Programa de Po6s-Graduagdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Mestre em Ciéncia da
Computagio. Area de Concentragio:
Inteligéncia Computacional.

Aprovado em: 25 de agosto de 2022.

BANCA EXAMINADORA

Prof. Dr. Carlos Alexandre Barros de Mello
Centro de Informatica / UFPE

Prof. Dr. Luiz Filipe Alves Pereira
Departamento de Ciéncia da Computagdao / UFAPE

Prof. Dr. Tsang Ing Ren
Centro de Informatica / UFPE
(Orientador)



ACKNOWLEDGEMENTS

| would like to thank my family for providing all the necessary support. To the Professors and
Doctors of COSE, Tsang Ren, Pedro Diamel, Fidel Pena, and Alexandre Cunha. To my friends
who helped in the revision of this dissertation: Marcus Vinicius, Mariana Barros, Gustavo
Mascarenhas, Gabriel Bandeira, Heitor Rapela, Natalia Nascimento, Douglas Vasconcelos,
Eduarda Pontual. To pets, Bela, Fliper, Ariel, Pucca, Bob, Arya, Plush, and Vic. Finally, |
thank the groups E.S.T.U.F.A, RoboClIn team, and FCX Labs.



ABSTRACT

The segmentation of cells present in microscope images is an essential step to automate
many tasks, including cell counting, analysis of the cell-division cycle, determining protein
concentration, and analysis of gene expression per cell. In single-cell genomics studies, cell
segmentations are vital to assess the genetic makeup of individual cells and their relative spatial
location. Deep learning models are currently the most promising approaches among the various
techniques and tools that have been developed to provide robust segmentation. We propose a
learning ensemble strategy that aggregates many independent candidate segmentations of the
same image to produce a single consensus segmentation as an alternative to developing another
cell segmentation targeted model. We are particularly interested in learning how to ensemble
crowdsourced image segmentations created by experts and non-experts in laboratories and
data houses. Hence, these image segmentations are subject to high potential annotation errors
created on purpose or by chance. We compare our trained ensemble model with other fusion
methods adopted by the biomedical community, such as SIMPLE and STAPLE, and assess
the robustness of the results on three aspects: fusion with outliers, missing data, and synthetic
deformations. Our approach outperforms these methods in efficiency and quality, especially

when there is a high disagreement among candidate segmentations of the same image.

Keywords: image segmentation fusion; image segmentation; deep neural networks; computer

vision.



RESUMO

A segmentacdo de células realizadas em imagens microscépicas é uma etapa essencial
para automatizar multiplas tarefas, incluindo a contagem de células, a afericio da concen-
tracdo de proteinas e a analise da expressao génica das células. Em estudos de genomica,
a segmentacdo das células é vital para avaliar a composicao genética de células individual-
mente e a sua localizacdo espacial relativa. Varios métodos e ferramentas foram desenvolvidos
para oferecer uma segmentacdo robusta, sendo, atualmente, os modelos de deep learning as
solucdes mais promissoras. Como alternativa ao desenvolvimento de outro modelo direcionado
a segmentacao de imagens microscépicas, propomos, nesta dissertacdo, uma estratégia de
aprendizado de fusdo que agrega diversas segmentacdes candidatas independentes provindas
de uma mesma imagem para produzir uma Unica segmentacdo de consenso. Estamos par-
ticularmente interessados em aprender como agrupar segmentacdes de imagens provindas de
ferramentas crowdsourcing, podendo ser criadas por especialistas e ndo especialistas em lab-
oratérios e data centers. Assim, comparamos nosso modelo de fusdo com outros métodos
adotados pela comunidade biomédica, tal como SIMPLE e STAPLE, e avaliamos a robustez
dos resultados em trés aspectos: fusdo com outliers, segmentacdo parcial e deformacdes sin-
téticas. Nossa abordagem supera os métodos em eficiéncia e qualidade, especialmente, quando

ha uma grande discordancia entre as segmentacdes candidatas da mesma imagem.

Palavras-chaves: fusdo de segmentacdes de imagens; segmentacdo de imagens; redes de

aprendizagem profunda; visdo computacional.
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1 INTRODUCTION

Image segmentation is the partitioning of a given image into several objects, facilitating
the analysis by focusing on each object. These objects varies according to the segmentation
objective. For instance, in a park monitoring system, it is interesting to have each person as
a distinct object; on the other hand, in a driver drowsiness detection, it is interesting that the
objects are the driver's eyes.

An example of image segmentation employed to facilitate analysis is the automatic veri-
fication of compliance with 1SO international standards for facial images in documents. One
of the criteria defined by the International Civil Aviation Organization (ICAQ) is to verify
whether objects are close to the face (ICAO 30). It can be simplified when dividing the image
into regions of homogeneous coloring and performing the score inversely proportional to the
number of regions in the background, as is done in (FERRARA et al., 2012).

There are several methods to perform image segmentation, where the best method will
depend on the defined problem. For instance: thresholds algorithms such as the Otsu (OTSU,
1979), the Li (LI; TAM, 1998), and the Ridler-Calvard (ISODATA) (RIDLER; CALVARD et al.,
1978)) methods; a marker-controlled watershed (MEYER, [1992)); an edge detector such as the

Canny (CANNY, |1986)), and diverse types of deep neural networks approaches.

1.1 MOTIVATION

An essential benefit of image segmentation is in microscopy images of tissue, cells segmen-
tation is crucial for many biological analyses, e.g., cell count, smoothness, reproduction rate
over time, and visualization of cell behavior. For instance, a classic diagnosis system used in
Wisconsin Hospitals (STREET; WOLBERG; MANGASARIAN| |1993) to predict whether the cancer
is malignant or benign performs an image segmentation to extract the boundaries of the shape
of the nuclei of cells. After the segmentation, for each cell is calculated several features, such
as radius, perimeter, area, smoothness, concavity, symmetry, texture, and many others.

However, the image segmentation task is very costly (time and financially) to have a
dedicated professional take note. One of the possible methods to mitigate the annotation
problem is via a crowdsourcing system, in which non-expert people can annotate at a much

lower cost. Although this approach significantly increases the speed and quantity of annotated
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images, it has the disadvantage of losing segmentation quality.

An example of a web crowdsourcing platform is the [COSE] (BARBOSA; REN, 2014)ff] that

allows general collaborators to perform image segmentation with a user-friendly interface as
can be seen in Figure [T The platform has two operation modes. The first one is manual, in
which the collaborator needs to draw every cell outline. The second one is semi-automatic,
where the collaborator needs to choose one of three implemented algorithms (Live Wire, Live-
vessel, or Watershed) and interactively input seeds corresponding to the foreground region to
adjust the chosen algorithm's response. However, image segmentation is still a complex task;
some factors can confuse the user, such as noise in the acquisition process, low-resolution
image, cell overlapping, user fatigue, and lack of specialized knowledge. An example of an

easy and challenging one is shown in Figure [2]

Figure 1 — The|[COSE|interface, the user can perform manual annotation using the manual mode (red contour)
or the smart mode (green contour).

31,561 points

Source: http://cose.cambia.caltech.edu/ (2022)

Since crowding source platforms allow non-experts to annotate images, the platforms must

1 The 2D segmentation web interface is available at http://cose.cambia.caltech.edu/
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be prepared for a high annotation error rate, which may be even caused by malicious users.
One of the strategies is to allow several users to annotate the same image, thus creating a set
of image segmentations, then using a segmentation fusion algorithm to transform this set of
segmentations into a single image segmentation with a lower error rate.

Currently, the solutions used for segmentation fusion are based on classic learning methods,
such as the popular segmentation fusion algorithms: Majority Vote, STAPLE (WARFIELD; ZOU;
WELLS,, [2004), SIMPLE (LANGERAK et al., 2010)), and GEMS (CUNHA) 2019). However, despite
the algorithms reducing the average error rate, it is common for errors to occur mainly when
there is a high degree of disparity in the segmentation set. Inspired by the results of works using
deep learning in biomedical image segmentation with weakly supervised data (GUERRERO-PENA
et al,, 2019), (CAICEDO et al., 2019), we propose to use deep learning for the task of fusion
image segmentations. To the best of our knowledge, this type of learning technique was not

used in the context of fusion biological image segmentation as presented in this work.

Figure 2 — Comparison between images considered easy to segment (A), and images considering hard to
segment due to blur (B), low-level luminance (C), and tiring due to presence of small regions with
no precise edges (D).

Source: The author (2022)

1.2 OBJECTIVES

Our objective is to enhance fusion of biological image segmentation originated from crowd-
source annotation tools with high disagreement. Our proposal is a new framework based on

a deep convolutional network that relies on heavy data augmentation for high disagreement
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annotations found in crowdsource tools. We compare the robustness of the proposed method
with well-known algorithms such as SIMPLE (LANGERAK et al., 2010]) and STAPLE (WARFIELD;
ZOU; WELLS, 2004) in three different tasks: varying the number of outliers, missing data, and
deformations.

In order to propose a robust fusion model, we train three models with different loss func-
tions: Cross Entropy (LONG; SHELHAMER; DARRELL), [2015)), Dice (MILLETARI; NAVAB; AHMADI,
2016) and J Regularization (PENA et al,, [2020). These functions were selected because of
the well-proven results for the panoptic segmentation task (KIRILLOV et al.,, 2019) in a high

imbalanced class problem with weak annotations.

1.3 CONTRIBUTIONS
» An adaptation of the U-Net neural network for segmentation fusion, focusing on high
disagreement and noise environment.

» An analysis of several well-known fusion algorithms in three tasks: outliers, missing
data, and deformations, that are based on the problems encountered in crowdsource

segmentation platforms.

The work written in this dissertation has been published below:

» Carlos H. C. Pena, Tsang Ing Ren, Pedro D. Marrero Fernandez, Fidel A. Guerrero-
Pefia and Alexandre Cunha. "An Ensemble Learning Method for Segmentation Fusion."

The 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022.

1.4 STRUCTURE

The remaining sections of this dissertation are structured as follows:

» Chapter 2: We introduce and discuss the concepts and terminology that underlie the de-
velopment of this work such as the concepts of image segmentation, basic morphological

operations and evaluation metrics.

» Chapter 3: The basic concepts of well-known segmentation fusion algorithms used to

compare the proposed work.
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» Chapter 4: This chapter describes and discusses the proposed solution to the problem
of fusion weakly supervised segments, the changes made, and the robustness tasks used

to verify the quality of the results.

» Chapter 5: This chapter presents the final considerations on the main topics covered in

this dissertation, including contributions and indications for future work.
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2 THEORETICAL BACKGROUND

This chapter presents the concepts of image segmentation, the morphology operations
commonly used as segmentation post-processing, supervised evaluation methods, a quick view

of convolution neural networks, and recommended data augmentation used during training.

2.1 SEMANTIC SEGMENTATION

In academic and industrial fields, an image is often taken to describe objects or sub-objects
with a technical description, for instance, a robot that takes an image to count the number
of objects inside an environment, locates the position of those objects, and then, extracts the
dimensions of the objects. Sometimes, the direct extraction of these features is a difficult task,
and to walk through this procedure, it is often used an image segmentation that converts those
objects into a visualization where each object is described with a unique label, commonly this
label is represented as a unique color, as shown in Figure 3} where the pixels of the same color
represent the same object. With this segmented view, the object counting is as easily as count
the number of unique non-background pixels values, the object position could be estimated
using the mass center of each label, and the object WidthE] subtracting the right-most pixel

position by the left-most pixel position.

Figure 3 — An image of simulated environment with five objects , and its image segmentation .

(a) (b)

-

Source: The author (2022)

There are several methods to perform an image segmentation. In general, they aim to

1 Converting the size of the object in the image to the actual size involves techniques that are outside the

scope of this project.
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analyze the similarity or the discontinuity of the pixels level intensity. The similarity (region-
based) algorithms splitting images into regions based on their intensity value, that could be
a threshold value (median, percentile, Otsu (OTSU, 1979)), a region growing (watershed with
markers based) (BEUCHER et al., (1992)), a cluster based (K-Means(MACQUEEN et al/ (1967))),
and many others. On the other hand, the discontinuity (boundary-based) algorithms search
for local abrupt change on the image, in other words, points, lines, and edges.

Notation. Let a two-dimensional single-channel image be defined as z : 2 — R, where
every element p C (2 is called pixels. Then, the semantic segmentation task can be expressed as
a function y = H(x), that assigns a categorical label y : 2 — 0, ..., C for every pixel p, where
C'is the number of unique classes in the given problem. The transformation H(z) can be done
in different ways, such as manually, by an algorithm such as Otsu thresholding, seeded Water-
shed((COELHO; SHARIFF; MURPHY, [2009)), or even a Deep Neural Network (BADRINARAYANAN;
KENDALL; CIPOLLA, [2017))(WANG et al., [2018)(RONNEBERGER; FISCHER; BROX, [2015)).

An example of image segmentation is cell nucleus segmentation in microscopy images,
where it is necessary to distinguish between cell nucleus (foreground) and non-nuclear objects
(background). Given a microscopy image, as shown in Figure [4a] the segmentation generates
a binary map as in Figure [4b] in which the foreground and the background are typically
represented with a white and a black label, respectively.

There are several ways to perform this image segmentation, one of the ways is using the
thresholding technique, in which, contiguous regions above the threshold value are defined as
foreground and the remaining as background. As an example, let the threshold value 7}, be
the average pixel value of the original image as in Equation [2.1] the function H(z) is defined
,in this scenario, as in Equation .

Although in this example, it is possible to define a function H(z) in terms of the z pixels
of the original image, this threshold method is prone to a high error rate. For instance, in some
datasets, the edges of the images have a high light intensity, therefore, raising the T}, value.
For other problems, such as the segmentation of individuals, animals, and objects, the precise
definition of this function is still unclear, and in these scenarios, deep learning methods are the

most promising to solve them.

1
T, = @Zp (2.1)

peEQ
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H(z) = (2.2)

0 otherwise

Figure 4 — An microscopy image of U20S cells (a), lts segmentation using the average pixel value as a threshold
(b), and its panoptic segmentation (c).

(a)

Source: (a) (COELHO; SHARIFF; MURPHY] [2009)) (b-c), the author (2022)

2.2 PANOPTIC SEGMENTATION

Kirillov et al. Introduced the Panoptic Segmentation in 2019 (KIRILLOV et al., 2019). The
task consists of assign to each pixel of an image a semantic label (e.g., car, pedestrian, table)
and a unique ID value (e.g., 0, 1, 2). In which it is not possible to have overlapping between
the instances.

Using as an instance the problem of an autonomous vehicle, the Figure |5al was recorded.
Also, its semantic and panoptic segmentation was calculated, as shown in Figure |bb| and
respectively. Depending on the project requirements, the kind of segmentation is more suitable
to solve the problem, for example, if the car just needs to navigate the city, respect traffic
laws, and avoid pedestrians. In this case, it is essential to know where the pedestrians are
but not necessarily how many there are. However, in a risk reduction system case, is essential
to forecast if a pedestrian is heading to cross the street on a collision course. Therefore,
it is necessary to account for each object individually. Thus, panoptic segmentation is more
suitable.

However, when analyzing cell images, it is crucial to have an individual distinction of each

object so that its features: area, radius, symmetry, and others, are correctly accounted for.
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Figure 5 — A sample image (a) followed by its semantic segmentation (b) and its panoptic segmentation (c).

(a) (b) (c)

Source: (KIRILLOV et al., 2019)

In situations like this, the Panoptic Segmentation is more suitable. It is possible to transform
from semantic segmentation to panoptic segmentation, if the objects of the same class are
not juxtaposed to each other, by assigning a unique ID to each connected component of a
foreground class. As a case in point, Figure 4c/ shows the semantic instance segmentation
of Figure This panoptic segmentation presents different cells with the same ID due to
juxtaposed cells. In these cases, a pre-processing function can be used to separate the wrong
joint cells, such as the morphological Opening operation, which will be discussed in the next

section.

2.3 MORPHOLOGICAL OPERATORS

Morphological operations are tools used for image analysis, widely used for pattern search,
text enhancement, region thinning, and many others. In image segmentation, dilate, erode,
opening, and closing operations are widely used as post-processing, which we describe below.
These four operations change the original image A according to a matrix s, called a structuring
element. The matrix s needs an central point (commonly the mass center), and it is common
for s to be much smaller than image A, such as a circle with a radius of 3 pixels or a 5x5
square.

Dilation: is an operation of thickening the image defined as a set of all translations of s
with points that have at least one non-zero element in common with A. Formally, A & s =
{z](8, N A # ()}, where § is the reflection of the structural element and s, is the translation
of s over the pixel z € €. This operator can be used to combine two close components that
are slightly disconnected.

Erode: is the operator that thins elements from A, defined as a junction of all pixels z
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that the translations of s by z are contained in the image A. Formally Ao s = {z|(s, C A)}
(GONZALEZ; WOODS, [2006)). This operator removes fine or small elements, such as salt noise.

Opening: defined as an erosion followed by a dilation with the same structuring element,
Aos = (AOs) @ s, the operation has the effect of smoothing the contours, and removing
tight connections, fine or small elements. As in Figure |§| in which, two juxtaposed cells can
be wrongly segmented into just one cell by a few pixels connecting both. The morphological

opening operation is used to split the segmentation.
Figure 6 — Sample image with two juxtaposed cells segmented into one cell when using Li’s threshold method,
and the segmentation with morphological opening post-processing.

Original Image Li with morphological opening

r

Source: The author (2022)

Closing: defined as dilation follow by an erosion with the same structuring element, Aes =
(A®s) S s, the operation has the effect of joining discontinuities and reducing holes. Figure
shows an image segmentation using the Otsu algorithm, in this scenario in which most of the
errors shown are found in the foreground areas. It is possible to process the Otsu segmentation
to form a single connected set that represents the cell, note that if the morphological closing
is applied to a segmentation similar to the one shown in Figure [7b| it can further degrade the

quality of segmentation.



25

Figure 7 — Example of the morphological closing operation in a binary segmentation using the (a) Otsu thresh-
old and (b) mean threshold.

(a)

Ground Truth Otsu

Original Image Otsu with morphological closing

Original Image Ground Truth Mean with morphological closing
T S TCEI0N

RIS s
PIVIESR S -
ey 1 <

Source: The author (2022)

2.4 EVALUATION MEASURES

There are several ways to measure the quality of a segmentation, some of these metrics are
derived from a pixel-wise comparison from the proposed segmentation y and its ground truth
g in which every pixel is classified into one of the following terms: True Positive (TP) if it is
correctly classified as a cell, True Negative (TN) if it is correctly classified as a background,
False Positive (FP) if it is classified as a cell although it is a background and finally False
Negative (FN) if it is classified as a background pixel, however, it should be a cell pixel.

One of the most used and straightforward metric is the accuracy, which is the sum of
True pixels (T'P + T'N) over the total number of pixels. However, in cell segmentation, the
accuracy could be misleading, because one of the key requirements in task is to separating cells
correctly. An example of this behavior can be seen in Figure 8] in which the segmentation
wrongly merges two cells. Although only a few pixels are wrongly classified, this error directly
impacts all biological analyses cell count, radius of the cells, symmetry, and numerous others.
Nevertheless it achieves an accuracy of around 99%. Because of the similarity between the

intensity level of the touching edges and the inner part of the cell, the problem of wrongly
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merging cells is frequent when using automatic segmentation.

Figure 8 — A toy segmentation problem where pixels of the same color (red or yellow) denote an element of the
same cells, with (a) ground truth with two cells, and two proposed segmentation: (b) that contains
only one cell however with borders similar to ground truth and (c) with two cells, however, these
cells do not have correctly marked edges.

(a) (b) (c)

Source: The author (2022)

Another key point for the evaluation process is considering the class imbalance frequently
found in microscopic images. For instance, the image shown in Figure [9] is from a Mouse
stem cells dataset of the Cell Tracking Challenge? and it has just one tiny cell present that
represents less than 0.0005% of the whole image. In other words, a dummy segmentation
method that just returns the background class has over 99.9% of accuracy in this image.

The F-Measure (F1) is the harmonic mean with equal importance to precision (positive
prediction rate) and recall (true positive rate) and is widely used in scenarios in which the
True Negative is not relevant for the task. As in the example in Figure[9] considering the True

Negative pixels, the result is biased and misleading.

Another measure function is the [Intersection Over Union (IOU)| (also known as Jaccard

index or Jaccard similarity coefficient), widely used in detection and segmentation tasks. Given
a predicted mask P and its correct segmentation G, the measure calculates the intersection

area of P and G divided over the union areas of P and G.

Finally, the [Panoptic Quality (PQ)|(KIRILLOV et al., 2019) metric was explicitly created for

the Panoptic Segmentation problem. This problem has a particular property that, given a
ground truth mask, it can have at the most one respectively predicted mask with [[OU] greater
than 0.5. The metric can be summarized as the average of matched segments (|IOU

greater than a threshold value) with a penalization for unmatched segments.

2 http://celltrackingchallenge.net/
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Figure 9 — A sample image of mouse hematopoietic stem cells in hydrogel microwells (left) which contains a
small number of pixels considered in the foreground (green pixels on the right image).

(b)

Source:(a) http://celltrackingchallenge.net/2d-datasets/ (2022) (b) The author (2022)

As in recent works of microscopic image segmentation, we use the [PQ| as the primary
metric for this project. This metric is more consistent with the problem of cell segmentation.
Back to our problem of Figure [§] the first proposed segmentation [8b] achieves an accuracy
of 0.99 and a PQ of 0.35; and [8d with an accuracy of 0.86 and PQ of 0.77, which is much
closer to what would be defined as good for a specialist. Finally, the Equations from to

summarize the metrics discussed in this section.

TP+TN TP

ACCUracY = o F(N | precision = TP+ FP (2.4)
2.3
TP .
recall = ————— (2.5) r _ 2 - precision - recall 26
TP+ EN —measire precision + recall (26)
PQ = 5Q x RQ (2.7) pQ = =wacrrloUp.q) (28)

~ 7P|+ L[FP| + IFN]
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2.5 SEGMENTATION WITH DEEP LEARNING

When the segmentation task requires a low error rate, as in the example of the Cell Tracking
Challengeﬂ, or when it is necessary to segment several classes, such as Cityscapes (CORDTS et
al., 2016) and Microsoft Common Objects in Context (COCO) (LIN et al., 2014) datasets, a
manual segmentation algorithm will hardly achieve the desired performance. (CAICEDO et al.
2019) reported on the 2018 Data Science Bowl, competition on the Kaggle platform over cell
segmentation. The dataset for this competition is quite challenging due to the variety of cell

types, capture procedures, and few images. The article reports the three best solutions, all of

them based on a |Fully Convolutional Network (FCN)| with the first being an ensemble of 32

[FCN] with eight different architectures.

In biomedical image segmentation, there has been a significant advance using Deep Learn-
ing, specially, since the creation of U-NET (RONNEBERGER; FISCHER; BROX, 2015). The U-NET
was a revolutionary model that made it possible to train a deep network with few annotated
images with a relatively quick evaluation time. The model relies on solid data argumentation
and its U-shaped encoder-decoder architecture with skip connection, as illustrated in Figure
10l

Like the other models of convolutional networks, U-Net architecture is based on the fol-

lowing operations:

= Convolution: Convolution is the primary operation of this kind of network. We can
visualize it as a trainable pattern detector. An oversimplified example is shown in Figure
[13}, in which a 6x6 kernel for detecting the letter "A" is convoluted over the letters "A",
"B", "C", and "D". The result of the convolution of the image by the kernel gives us a
score that varies according to the similarity with the kernel, in this scenario, the letter
"A".
In the case of neural networks, several kernels are convolvecﬂ in the image at each layer.
More specifically, in the first layer of the U-Net network, 64 kernels 3x3 are convoluted
to the original image, creating a multichannel feature map in which each pixel value
of the i-th channel results from the convolution of kernel; in a region of the image.

In the subsequent layers, the feature maps from the previous layer are used as input,

http://celltrackingchallenge.net/
Despite the name 'convolution’, as the weights are trained, the libraries use the correlation operation to
avoid the computational cost of reversing the input.

4
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Figure 10 — The enconder-decoder U-Net architecture.

input

i output
Imatgillg " t " > segmentation
2l o = map

=» conv 3x3, ReLU
copy and crop

¥ max pool 2x2
4 up-conv 2x2
= cONv 1x1

Source: U-Net: Convolutional Networks for Biomedical Image Segmentation (RONNEBERGER; FISCHER;
BROX,, [2015])

thus creating new feature maps, following Equation 2.9 Where C;y and Copr are the
numbers of input and output channels, respectively, and * is the correlation operation.

Finally, a bias is add to weight the feature maps individually.

Figure 11 — Example of a kernel for detecting the letter "A" and the four letters "A, B, C, D" with their
respective convolution scores.

Kernel Image 1 | Score: 14.0 Image 2 | Score: 11.0 Image 3 | Score: 7.0 Image 4 | Score: 10.0

Source: The author (2022)
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Cin—1
feature_map(Coyt) = ( Z weight(Cou, k) * z'nput(k:)) + bias(Cout) (2.9)

k=0

» Activation Function: prevents the output from being modeled as a combination of
linear functions (a - x + b); therefore, also prevents the final solution to also be linear.

Usually, the action functions of neural network models use one of the following:

ef—e” T

et+e T

— Hyperbolic Tangent =

— Sigmoid = H%

— |Rectified Linear Unit (ReLU)| = maz(0, x)

The [ReLU]is the most used among the three, the function avoids the gradient vanishing
problem that would occur in deep learning models with Hyperbolic Tangent or Sigmoid
since the [ReLU] derivative has codomain one for each x greater than zero. Furthermore,
for making the network achieve better results faster(KRIZHEVSKY; SUTSKEVER; HINTON,
2012). However, a disadvantage of the function is that for negative x values, its
result is zero; consequently, the calculated gradient is also zero, thus making optimization
algorithms difficult. To smooth this problem, (MAAS et al., 2013)) proposed a modification
of [ReLU] called Leaky RelLu, where the hardcoded zero is replaced by 0.01z, so regions

of negative values of =, have a non-zero gradient.

= Pooling: The pooling layer (also known as the subsampling layer) is used to reduce
the dimensions of the feature maps, in which a single value replaces over an N x M
grid, consequently reducing the number of features thus, the number of mathematical
operations. The most commonly used pooling functions are the maximum pooling (as

in the U-Net) and the average pooling.

In general, segmentation networks are based on the encoder-decode architecture using a
building block from a well-known classifier network on the encoder path. An example of a
building block is the ResNet(HE et al., |2016) and the VGGL6(SIMONYAN; ZISSERMAN, 2014)

used in LinkNet(SHVETS et al, 2018) and TernausNet(IGLOVIKOV; SHVETS), 2018), respectively.
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2.6 DATA AUGMENTATION

A good learning model must learn from the data and generalize the data to get good
results with new data. One of the methods to improve generalization is to use synthetic
transformations in the data to increase their diversity. Especially when dealing with microscope
images, the images and their annotations are scarce.

In this scenario, the main operations performed randomly are rotations, flips, resize, crops,
blur, change in brightness, contrast and gamma, and mainly elastic distortions (SIMARD et al.,
2003)). As said in (RONNEBERGER; FISCHER; BROX, [2015) the elastic deformations is essential
for training with few images, this operation consists of creating a Gaussian displacement field
and performing a pixel-to-pixel shift in the original image according to the vector in the same

position on the displacement field.

2.7 SEGMENTATION FUSION

While the goal of image segmentation is to create a new representation y of the original
image x, the goal of the segmentation fusion is to merge N already segmented images Y =
{y1,v2, ..., yn} into a unique segmentation §. These segmentations could be created from any
automatic method or be handmade segmented. Nevertheless, as in any ensemble method,
the final result is expected to be as good as the data are precise and diverse. As well as the
segmentation the output is a that assigns a categorical label § : 2 — 0, ..., C for every pixel p,
so we can use the same evaluation methods described in the section, as well as the neural

networks and data augmentation.
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3 RELATED WORKS

In this chapter, we explain the basic concepts of well-known segmentation fusion algorithms
used to compare the proposed work. All the following algorithms require solely the pool of

segmentations for the fusion task, not requiring the original image during this process.

3.1 FUSION ALGORITHMS

Let Y = {y1, 2, ..., yn} be the segmentation pool composed of n 2D binary segmentation
y, the goal of the following methods is to fusion it into a unique segmentation §. For this
dissertation, we use the 0 value for background and 1 value for the foreground (segmentation
border). To exemplify the concepts of the techniques explained below, we use a toy dataset
composed of three hand-drawn hearts {y1,ys,y3}, as shown in the Figure [12| considering
that all pixels, whether background or foreground, have the same confidence level in the
segmentations.

Depending on the problem, it is common for some operations to be applied to the method
output ¢. In this scenario, it might be interesting to use an algorithm to merge near contours,
(e.g., Morphological Closing), and a method to uniform the thickness of the contour, such as

morphological skeleton or Zhang-Suen Thinning (ZHANG; SUEN, 1984).

Figure 12 — Three freehand hearts segmentations, and the sum of these segmentations (rescaled for visual
proposes).

Segmentation 1 Segmentation 2 Segmentation 3 Sum of the segmentations

NN

Source: The author (2022)
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3.1.1 Fixed Rules Algorithms

Several non-trainable rules algorithms such as the Average Rule and Majority Voting (MV)
are widely used to aggregate binary inputs (DUIN et al, [1998; DUIN, 2002; TAN et al.,, [2019;
THAMBAWITA et al., [2021)). Although they are fairly straightforward algorithms, they are likely
to produce unsatisfactory results without regard to spatial dependence when applied in image
segmentation tasks. An example of them is seen in Figure[13]| where the Minimum, Maximum,
and Majority Voting are performed in the segmentations of the toy problem of Figure [12] In
this scenario, the operation described is performed on all pixels with the same position (z,y)
along the segmentation pool Y.

Figure 13 — The segmentation output of the Figure |12| produced by the fixed rules algorithms: min, max and
majority vote.

Min rule Max rule

Majority Vote

Source: The author (2022)

3.1.2 Simultaneous Truth and Performance Level Estimation (STAPLE)

Warfield et al (WARFIELD; ZOU; WELLS| 2004 shows the |Simultaneous truth and per|

fformance level estimation (STAPLE)| an |expectation—maximization (EM)| weighted voting

technique for aggregate image segmentation. The algorithm iteratively estimates every seg-
mentation’s sensitivity and specificity and predicts a ground truth segmentation based on the
previous score estimation. Despite being one of the most famous classical algorithms for im-
age fusion, this approach’s principal drawback is the computational cost required for the EM|
convergence.

Let NV be the number of pixels in a segmentation, and R the size of segmentation pool,
also the column vectors p = (p1, pa, ...,pR)T, q = (q1, ¢o, ...,qR)T in which p; and ¢; be the

True Positive Rate and True Negative Rate of the i-th segmentation. Let D be an N x R
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matrix showing a ravel view of the segmentation pool, in which, every segmentation is viewed
as a row, as shown in Figure [I4] Finally, let T be a vector representing the binary ground
truth. Given the probability function f (D, T|p,q) the STAPLE estimates the vectors (p,q)
using the Equation [3.1] Since we do not have a priori the vectors T, p and q, the EM method

is used for the iterative calculation of the non-observable variables.

(P, q) = argmax f (D, T|p, q) (3.1)

Figure 14 — The DT matrix of the toy dataset We transpose the D matrix and resize the segmentations
to 8x8 pixels (N=64) for visual purposes.

D Matrix

£
5
B

Segmentation
ID

30
Pixel ID

Source: The author (2022)

3.1.3 Selective and Iterative Method For Performance Level Estimation (SIMPLE)

In (LANGERAK et al) 2010) Langerak et al. introduce the iterative algorithm

land Iterative Method for Performance Level Estimation (SIMPLE)| for the multi-atlas based

segmentation problem. This algorithm stands out for having a result comparable to STAPLE,
decreasing the implementation complexity, and improving the response time.

Let x, be a score of each segmentation of the set {y,}"_,, and let §j be a ground-
truth estimation calculated with the Weight Majority Vote rule of the segmentations {y, }2_,
using X, as a weight. The SIMPLE algorithm starts by setting the array {x,}"_, as unit
value and iteratively updates the estimation ¢, and consecutively the x, score using the
Normalized Mutual Information (NMI) metric between each segmentation y,, and the ground-
truth estimation ¢. After the i-th iteration, the segmentations whose scores are lower than
a threshold value 6 are removed from the set. This threshold value 6 is given by Equation
, where ? o' are the average and the standard deviation of chi on the i-th iteration,

respectively, moreover «v is a parameter that controls the algorithm convergence speed.

' =x"—a-o (3.2)
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3.1.4 Distance Transform Merge (DTM)

The (BARBOSA; REN, 2014) is a fast and effective algorithm, initially proposed for
the [COSE]| system (BARBOSA; REN| [2014), based on the Distance Transform (DT) algorithm.
The [DT] creates a heatmap where the value of each pixel p represents the euclidean distance
between p and ¢, the nearest foreground pixel. Formally ¢;(p) = min ||p — g||5. This heatmap
is used to build an intermediate probability region near the foreground pixels. The[DTM]creates
an Reliability Map (RM) based on the Equation , where L is the number of segmentations,
and ¢; is the [DT] of the complementary of the i-th segmentation, the final segmentation
is calculated using the Otsu thresholding over the Reliability Map. The [DT], [RM] and

results of the toy dataset is shown in Figure (15|

RM(z,y) = ; W (3:3)

Figure 15 — An example of the of the complementary segmentation 1 in Figure the of the toy
dataset of [12} and the final result.

DT of inverse segmentation 1 RM DTM result

Source: The author (2022)

3.1.5 Geometric Median Shapes (GEMS)

The work of Cunha (CUNHA, 2019) proposes a fast and simple extension to the median
rule for high dimensions inputs. The algorithm aims to capture the central tendency of the
segmentations (in the article is referred to as curves), and is focused on being robust to high
levels of outliers. Initially, the algorithm deals with the problem of finding the best curve as an

optimization problem for finding the optimal curve that minimizes its distance to the set of
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curves. In the experiments the author showed that the GEMS algorithm are still able to find
a curve that captures the central tendency even with 50% contamination.

Let = be a point and I" be a curve, the distance between x and I' is defined as the Euclidean
distance between x and the nearest point y on the I curve as in Equation [3.4] Moreover, this
definition is expanded to the distance between two curves I' and U as the average of the
distance between every point x € I' and the curve ¥ as in Equation (3.5 which dy is given by

Equation 3.4}

(@) = min 2 — ] 54)
(T, W) = |F1’ [ duteyds (3.5)
™ = arg mrmi d(I', Ty) (3.6)

Equation [3.6]defines an optimal closed curve I'* as the curve with the smallest accumulated
distance between I'* and a given set of contours I'; € T". Once the objective of finding the
I'* curve has been defined, the author uses the watershed (BEUCHER; MEYER, 2018) method
to solve I'* as an optimization problem, thereby is created a grid ¢, in which each element z
represents the cumulative distance between x and every curve in T' using the [DT]| algorithm.
Finally, the markers (required for the watershed algorithm) are calculated using the basins in
<,7A§ = invert(¢) with the complement of the convex hull of I'. The pseudocode of the GEMS
method is illustrated in Algorithm[I] and a visual comparison of the method is shown in Figure

.16l
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Algorithm 1: Geometric Median Shapes
Input: contour images T’

minima height h
Result: optimal closed curve I'*
1¢9=0
2 forI'; € I' do
L ¢ = ¢ + DistanceTransform(I';)

w

A

& = invert(¢)

5 B = WatershedBasins(¢, h)

6 H = ConvexHull(T")

7 markers = BU{Q\ H}

8 [ = Watershed(¢, markers)

S

9 Return I'*

Source: ((CUNHA| [2019) (adapted-2022)

3.1.6 Topology preserving segmentation fusion for cells with complex shapes

Most recently, in the (MELNIKOVA; MATULA, 2021)), Melnikova and Matula propose a fusion
segmentation mask algorithm focusing on preserving the topology of the inputs segmentations.
Unlike the other algorithms discussed in this chapter, this algorithm focuses on simply con-
nected segments.

The algorithm averages the protrusions regions with only the segmentations that contain
the protrusions. After the calculation, the regions of protrusions are merged using spline inter-
polation, which creates the final segmentation. The algorithm achieved good results compared
to several well-known algorithms, mainly for not producing artifacts on the borderline region,

as shown in Figure [16]



38

Figure 16 — Example in which each line represents a set of three segmentations, followed by their sum (rescaled
for visual proposes) and their segmentation fusion using Majority Vote, GEMS, and Topology
Preserving algorithms.

Segmentation 1 ~ Segmentation 2 Segmentation 3 Sum Majority Vote GEMS Topology Preserving

Source: (MELNIKOVA; MATULA|, [2021]) (adapted)
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4 IMAGE SEGMENTATION FUSION FOR CROWDSOURCING DATA

In this chapter, we focus on analyzing and mitigate the problem of crowdsourcing image
segmentation platforms, as is the example of the COSE platform. In this platform, given an
image, it is collected N manual segmentations made by non-experts, and it is required to create
a unique segmentation for the initial image. The following experiments were implemented in
Python, in which the main libraries used were: OpenCV /Scikit-image (image processing),
PyTorch (Deep Neural networks) and PyTVision (package of datasets, models, and image

transformations for PyTorch).

4.1 METHODOLOGY

Let a two-dimensional single-channel image be defined as = : {2 — R, where every element
p C € are called pixels. Then, the semantic segmentation task can be expressed as a function
y = H(z), that assigns a categorical label y : Q@ — 0,...,(C' — 1) for every pixel p, where
C' is the number of unique classes in a given problem. The transformation H(x) can be
done in different ways, such as manually, by an algorithm such as Otsu thresholding(OTSU,
1979)), seeded Watershed(COELHO; SHARIFF; MURPHY, [2009)), or even a Deep Neural Network
(BADRINARAYANAN; KENDALL; CIPOLLA, [2017; WANG et al., 2018; |RONNEBERGER; FISCHER;
BROX, 2015)).

Moreover, given a pool of n segmentations ¥, ..., y,, the goal of segmentation fusion is to
merge this set into a unique segmentation § = F'(yi, ..., y,). It is the desire that such fused
segmentation must be, on average, more accurate than every individual segmentation in the
pool. Nevertheless, as in any ensemble method, the final result is expected to be as good as
the data are precise and diverse (CRUZ; SABOURIN; CAVALCANTI, 2018)).

Similar to the image segmentation task, for learning to solve the segmentation fusion
task, a training dataset S = {(Y11,--s Y1n, G1)s s (Ymys -y Ymn, gm) } it is used, where for
each image =z, its segmentations vy, ...,y, and ground truth g are known, being g defined
as g : 2 = 0,...,C. The function F(.) can be done with different techniques, such as the

well-known [SIMPLE| or STAPLE| However, in this experiment, we focus on using a parametric

function Fj to solve the segmentation fusion task. In other words, modeling as a neural network

as illustrated in Figure [I7] Therefore, finding a feasible fusion function is equivalent to solve
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Figure 17 — The overall architecture, where the deep learning architecture is the U-Net(RONNEBERGER; FIS-
(CHER; BROX, 2015).
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Source: https://github.com/Harislqbal88/PlotNeuralNet (adapted-2022)

the optimization problem 6* = arg ming-oC(6), where C(#) is the cost function for a generic

loss function £(g,7) described in Equation

CO) =~ S Llg Folya o yin) (4.1)

| | (Yi1ye-Yin gi ) ES

We evaluated three loss functions, the [Cross Entropy (CE)((LONG; SHELHAMER; DARRELL),

2015), Smooth Dice (Dice)(MILLETARI; NAVAB; AHMADI, 2016)), and [Youden's J statistic reg-|
|ularization (J-REG)|(PENA et al., 2020). The CE is an information theory-based loss function

described in Equation where ¢ and z are the ground truth in one hot representation and

the probability likelihood, respectively.

101

Lcor(g > ai(p) - loghi(p) (4.2)
pC

=0

Moreover, the region based loss function Smooth Dice is shown on Equation where, in
this work, we use the smooth parameter « equal to one, for better stability during training time.
To address the highly imbalanced classes, we add weight for each class inversely proportional

to the number of pixels in each class.

~ 05‘1‘22 1272 9i
Lprcr(g,9) =1— = 4.3
( ) a+zz 1yl+27, 1gz ( )

Also, for the same reason, the J Regularization was evaluated. The regularization consists of

the cross entropy loss with Younden Regularization as in Equation £; = Log(y, 2) + T (v, 2),
where the 7 (y, z) is described in Equation [4.4]
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In the proposed method called UFUSION, we decided to use a modified version of the

Y ( 9i(p) gk(p)>] (4.4)

oo 2n; 2ny,

convolutional encoder-decoder U-Net (RONNEBERGER; FISCHER; BROX, 2015 architecture for
the task of image segmentation fusion. the U-Net was selected due to fast and consistent results
with few annotated training samples in the biomedical image segmentation task. One-pixel
padding was used for every convolution operations to preserve the spatial resolution. During
the training phase, random transformations such as rotating, mirroring, warping, and elastic
deforming augmentations were applied. In early experiments, we also evaluate changing the
input space by applying the same transformations in all input segmentation sets {1, ..., Yim }-
The operations are skeletonization, Gaussian blur, and distance transform. Nevertheless, in
this scenario, this modification deteriorates the model performance. Another unsuccessful test
was when using pre-trained Generative Adversarial Networks (GANs) as data augmentation.

We believe this preprocessing can be favorable, though we leave it for future work.

4.2 ROBUSTNESS TASKS

To evaluate the quality of the final segmentation, we defined three robustness tasks: the
presence of outliers, missing data, and deformations. These tests were determined based on
annotation problems observed in the COSE software. Figure [18| shows the original image, a
manual segmentation, and the overlap between the original image and the manual segmenta-
tion in four scenarios. The first scenario in Figure (A) is an example of good segmentation
in which all marks were performed entirely and accurately; Figure (B) shows a segmenta-
tion in which several borders were not marked, although the existing markings were annotated
precisely; Moreover, in Figure 18] (C), the markings shown are unrelated to the original image
and thus increase the fusion task difficulty; Finally, in Figure (D), a noise over-segment
sample, despite having some correlation with the original image due to the high noise, is also
a bad segmentation example.

Outliers Test. This test evaluates the robustness of the algorithms with a percentage
of unrelated data. This unrelated data comes from a random selection of three sources: the
evaluated dataset, a different cell segmentation dataset, and hand-drawn geometric figures,

as shown in Figure 203 In real scenarios, this unexpected segmentation is inserted into the
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Figure 18 — Sample of data collected in COSE system, in which the top row is the original image, the middle row
is a manual segmentation, and the bottom row overlaps the top row and its manual segmentation.
Here are good segmentation (A), under segmentation (B), outlier segmentation (C), and over-
segmentation in the presence of salt noise (D).

)

A

Source: The author (2022)

system by users who do not have proper knowledge of the tool or by malicious users, as can
be seen in Figure (18| (C).

Missing Data. In some segmentations, the result may come with a lack of some markings
as in Figure 20b] Some factors that can increase the incidence may be the presence of dark
regions, lack of specific knowledge in some areas (e.g., tiny cells), and even fatigue and
inattention of the annotator; an example of missing data can be seen in Figure [18] (B).

Deformations. Even though two segmentations have a pixel-level disagreement, both may
be good results, as shown in Figure[19] This behavior may happen in regions where the border
is too thick or due to precision problems of the annotator. To simulate this behavior, we use
elastic distortion(SIMARD et al., [2003)) for every segmentation ¥, in which, Figure shows

an example of two segmentations with a low and high level of elastic distortion.
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Figure 19 — An example of two 'good’ segmentation (green and blue) overlapped, where the white pixels
denote the agreement of both.

HAY

Source: The author (2022)
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Figure 20 — Sample images of the robustness task.

(a) Outliers test: Unrelated segmentation.

(c) Deformations test. Visual comparison between a segmentation (green) and the elastic
distortion of it (blue) where the white areas denote unaltered pixels.

Source: The author (2022)
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4.3 POST PROCESSING

For each algorithm, we applied the following procedure: first, if the output segmentation is

multichannel, it is used the [Maximum a Posteriori (MAP), where the given raw segmentation

y with ¢ channels, and an output segmentation ¥/ is calculated with ¢ = arg max_ y(c). Figure
illustrates the subsequent post-processing operations, in which, the red, green, and blue
circles exemplify: the removal of small regions with a morphological opening operation; the

removal of unclosed touch region; and finally, the width of the edges is ensured.

Figure 21 — Example of the post-processing function, where the red, green, and blue regions show: removed
unconnected touch region, removed unclosed touch region, and the standardization of edges width,
respectively.

Source: The author (2022)
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Figure 22 — Results for the three tests, presence of outliers, missing data, and deformations for two segmen-
tation problems (SP) 1009 and 1167, in which dashed lines represent the proposed method. In

all three cases, the further to the right on the x axis, the more difficult it is to obtain the correct
segmentation fusion.
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4.4 RESULTS

We compare the proposed method, UFUSION, with four algorithms: Majority Vote (MV),
STAPLE(WARFIELD; ZOU; WELLS, [2004)[|, SIMPLE(LANGERAK et al.,2010), and DTM(BARBOSA;
REN, 2014) with the same post-processing described in . All networks are guaranteed to
begin with the same random set of weights, and the parameters of the Table[I] Random data
augmentation is also guaranteed to be the same during training time. The Table 2| shows the
data augmentation operations performed as well as their parameters. In the initial experiments,
it was detected that the results of all tests were degraded when reducing the elastic distortion.
In addition, we tested operations such as random foreground erasing, and adding random lines,
but despite having better results in a given test, the others results were drastically impacted.

To measure the final instance segmentation quality, we adopted the metric (KIRILLOV!
et al, [2019) weighted by the number of cells in the given image. The metric consists of
multiplication between the average Intersection over Union (loU) of the matched segments,
called Segmentation Quality (SQ), and the F1 score of the detection, called by Recognition
Quality (RQ). For the deformation test, we used as the similarity distance the average

between all segmentations in the input set.

Table 1 — Parameters used in this experiment for training neural networks

Option Value
Architecture U-Net
Learning Rate 1075
Optimizer Adam
Scheduler Fixed
Epochs 200

Post Processing MAP

Source: The author (2022)

Two sepal cells datasets, the Segmentation Problem 1009 and the Segmentation Problem
1167, were collected to evaluate the performance of the algorithms. They were imaged on

a Zeiss LSM 880 Confocal laser scanning with a 20x magnification lens resulting in a pixel

1 nitially, we evaluate two STAPLE implementations, https://pypi.org/project/staple and

https://simpleitk.org, although the first implementation requires high computational cost, in our
scenario, it produces better results, and due to that, we use this implementation in the results section.
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Table 2 — Transformations used in neural network training and their respective parameters, where « is a scaling
factor and o is the Gaussian of standard deviation of the Elastic Distortion algorithm (SIMARD et
al., 2003).

Random Operation Parameters

Scale max=30%

Flip prob=50%

Rotate prob=50%, max_angle=45
Translate prob=50%, max=20%

Warp Perspective  prob=50%, max=2%
Elastic Distortions  prob=50%, =32, =12

Source: The author (2022)

size of 0.621 x 0.621 microns. Furthermore, both datasets were artificially modified (noise,
deformations) to simulate more challenging scenarios.

Figure [22| shows the results of the segmentation fusion methods. As can be observed, all
approaches except majority vote and SIMPLE achieved close results in low noise situations
(leftmost part of the graphs). The STAPLE algorithm showed comparable results for missing
data and deformation test scenarios, showing significant differences only for higher deforma-
tion values. However, differently from our proposal, the STAPLE algorithm suffered a severe
degradation of the performance for the outlier test. This drop of performance happens due to
the wrong fusion of both the correct segmentation set and the outlier set, forming an image
with many False Positives (foreground pixels from every input segmentation), which results
in segmentation with many small regions. Moreover, the SIMPLE and the Majority Vote indi-
cated a high decay along with the given task. And finally, the proposed method, UFUSION,
and the DTM achieved the best results in this evaluation with an advantage to UFUSION
with Smooth DICE loss function. Note that, since there are different sources of outliers, the
data central tendency is still maintained even with more than 50% of outliers.

The Figure 23] [24 and [25]illustrates four samples Y7, Y5, Y3, Y, of the input set, the average
of all inputs, the ground-truth (GT), and the segmentation fusion output. Note that even in this
high noise scenario the proposed method makes fewer mistakes. It avoids some segmentations
error, such as cells inside other cells, which is not present in this dataset.

Figure 25| shows a case of random erasing, in which the probability of a pixel being erased is
proportional to its coordinates, where the upper right pixel has the lowest probability of being

erased and the lower left pixel the highest probability. In addition to having a more precise
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Figure 23 — Example of the outlier test, whose top row Y7, ..., Y, are samples of inputs segmentation, followed
by their average, the ground truth (GT), note that, the Y7 and Y3 represent outliers segmentations.
The bottom row is shows the post processed output of the input segmentation set .S, in which
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Figure 24 — Example of the deformation test, whose top row Y7, ..., Y, are samples of inputs segmentation S
with elastic distortion, followed by their average and ground truth segmentation GT. Furthermore,

bottom row shows the segmentation performed by the evaluated algorithms, in which UFUSION
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segmentation throughout the whole image, the proposed methods did not change the edge
thickness along the image, indicating a more stable algorithm for this test.

Finally, the evaluation time is shown in Figure 26| as the evaluation time of the neural
networks are variants to the architecture but not the loss function, the proposed method is
shown as a unique label UFUSION. The DTM, MV, SIMPLE, STAPLE, and UFUSION-CPU
were measured using an AMD Ryzen 5 5600X, and for the UFUSION - GPU an NVIDIA RTX
3060 TI, the GPU time accounts the copy process from RAM memory to GPU memory, and

vice versa. Although real-time performance is not mandatory, SIMPLE and STAPLE require
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Figure 25 — Example of the missing data, whose top row Yi,..., Y, are samples of inputs segmentation S
where each segmentation has a probability of being partially erased. followed by their average and
ground truth segmentation GT. Furthermore, bottom row shows the raw segmentation performed
by the evaluated algorithms, in which UFUSION is the proposed model.
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Figure 26 — The average processing time of the fusion methods along with the input segmentation shape.
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more than 80x, 4000x time of the majority vote, respectively, which is not convenient for this

task.
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5 CONCLUSION

In this work, we adapt the deep learning U-Net architecture for segmentation fusion, fo-
cusing on high disagreement and noise environments. To evaluate the behavior of the adapted
network, we defined three robustness tasks based on real problems found in the [COSE| crowd-
sourcing platform, which are the robustness of outliers segmentation, missing data, and defor-
mations.

According to the explored scenarios, in high disagreement environments, the most promising
method was using the proposed deep learning architecture with the smooth dice loss function.
In cases of low disagreement, despite the proposed method obtaining the best results, due to
the training process required by the neural network, we believe that the[DTM]| method obtained
the best tradeoff.

5.1 CONTRIBUTIONS

» An adaptation of the U-Net neural network for segmentation fusion, focusing on high
disagreement and noise environment. The proposed model aims at replacing an existing
segmentation fusion method of the COSE crowdsourcing platform for having better

results in situations of high diversity that happen on crowdsourcing platforms.

» Analyzing several well-known fusion algorithms in three tasks: outliers, missing data, and
deformations, that are based on the problems encountered in crowdsource segmentation

platforms.

» The published work: Carlos H. C. Pena, Tsang Ing Ren, Pedro D. Marrero Fernan-
dez, Fidel A. Guerrero-Pefia and Alexandre Cunha. "An Ensemble Learning Method for
Segmentation Fusion." The 2022 International Joint Conference on Neural Networks

(IJCNN). IEEE, 2022.

5.2 FUTURE WORKS

To analyze the results of this work, we found that the segmentation pool cannot always
provide a good intuition about optimal segmentation. We often resort to looking at the orig-

inal image to obtain a clearer idealization of the segmentation. For this reason, we plan to
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concatenate more information into the network input besides the segmentation pool, in which
the original image is one of the possible sources of information. However, we expected that
with the original image, the network would improve the overall result at the cost of greater
dependence on the training dataset. We also aim to attach a regression neural network to the
beginning of the proposed method to weight each segmentation individually and compare it
with an attention-based architecture.

Furthermore, we are also interested in the unsupervised learning process. (GUERRERO-PENA
et al., [2019)) showed that deep neural networks could have excellent results even when trained

with weakly supervised data. We want to extend their work with fully unsupervised data.
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