Skip navigation
Use este identificador para citar ou linkar para este item: https://repositorio.ufpe.br/handle/123456789/39292

Compartilhe esta página

Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorSHANENKO, Arkady-
dc.contributor.authorCAVALCANTI, Paulo José Fonseca-
dc.date.accessioned2021-02-24T11:15:03Z-
dc.date.available2021-02-24T11:15:03Z-
dc.date.issued2020-10-30-
dc.identifier.citationCAVALCANTI, Paulo José Fonseca. Multiple-Condensates effects in novel superconducting materials. 2020. Tese (Doutorado em Física) - Universidade Federal de Pernambuco, Recife, 2020.pt_BR
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/39292-
dc.description.abstractCoupled condensates with diverse coherence length scales interfere (interact) constructively or destructively, which leads to unconventional non-single-condensate physics. In the Thesis we investigate two phenomena governed by multiple condensates: the dependence of the superconducting magnetic response on the number of contributing bands and the multiband mechanism of screening the superconducting fluctuations. The first problem is related to the tacit assumption that multiband superconductors are essentially the same as multigap superconductors. More precisely, it is usually assumed that the number of excitation gaps in the energy spectrum determines the number of contributing bands in a relevant superconducting model capable to capture the essential physics. Here we demonstrate that contrary to this widely accepted perception, the superconducting magnetic properties are sensitive to the number of contributing bands even for degenerate excitation gaps. In particular, we find that the crossover between super conductivity types I and II and the related intertype physics are affected by difference between characteristic lengths of multiple contributing condensates. Coupled condensates interfere (interact), which results in non-single-condensate physics regardless of a particular structure of the excitation spectrum. The related formalism is based on the 𝜏-expansion of the microscopic equations, with 𝜏 = 1− 𝑇/𝑇c the proximity to the critical temperature, and goes to one order beyond the standard Ginzburg-Landau (GL) approach to capture a finite intertype crossover domain in the phase diagram of the superconducting magnetic response. Previously this extended GL formalism has been constructed for single- and two-band systems. In this work we generalize that formalism to the case of an arbitrary number of contributing bands. The second problem is focused on the superconducting fluctuations in systems with multiple coupled condensates. It is well known that superconductivity in quasi-one-dimensional (Q1D) materials is hindered by large fluctuations of the order parameter. They reduce the critical temperature and can even destroy the superconductivity altogether. Here we demonstrate that the situation changes dramatically when a Q1D pair condensate is coupled to a higher-dimensional stable one, as in recently discovered multiband superconductors with Q1D band(s). The fluctuations are suppressed even by vanishingly small pair-exchange coupling between different band condensates and the superconductor is well described by the mean field theory. In this case the low-dimensionality effects enhance the coherence of the system instead of suppressing it. As a result, the temperature of the multiband Q1D superconductor can increase by orders of magnitude when the system is tuned to the Lifshitz transition with the Fermi level close to the edge of the Q1D band.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.language.isoengpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectFísica da Matéria Condensada e de Materiaispt_BR
dc.subjectSupercondutividadept_BR
dc.subjectSupercondutividade intertipopt_BR
dc.subjectFormalismo estendido de Ginzburg-Landaupt_BR
dc.titleMultiple-Condensates effects in novel superconducting materialspt_BR
dc.typedoctoralThesispt_BR
dc.contributor.advisor-coVAGOV, Alexei-
dc.contributor.authorLatteshttp://lattes.cnpq.br/7221599283516075pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/1367814169798369pt_BR
dc.publisher.programPrograma de Pos Graduacao em Fisicapt_BR
dc.description.abstractxCondensados acoplados com diversas escalas de comprimento de coerência interferem (interagem) construtivamente ou destrutivamente, o que leva a uma física não convencional de condensado não único. Na Tese, investigamos dois fenômenos governados por condensados múltiplos: a dependência da resposta magnética supercondutora do número de bandas contribuintes e o mecanismo multibanda de blindagem das flutuações supercondutoras. O primeiro problema está relacionado à suposição tácita de que supercondutores multibandas são essencialmente os mesmos que supercondutores multigaps. Mais precisamente, geralmente é assumido que o número de gaps de excitação no espectro de energia determina o número de bandas contribuintes em um modelo supercondutor relevante capaz de capturar a essência física. Aqui, demonstramos que, ao contrário dessa percepção amplamente aceita, as propriedades magnéticas supercondutoras são sensíveis ao número de bandas contribuintes, mesmo para os gaps de excitação degenerados. Em particular, descobrimos que o cruzamento entre os tipos de supercondutividade I e II e a relacionada física intertipo são afetadas pela diferença entre os comprimentos característicos dos condensados múltiplos contribuintes. Os condensados acoplados interferem (interagem), o que resulta na física de condensado não único, independentemente de uma estrutura particular do espectro de excitação. O formalismo relacionado é baseado na expansão em 𝜏 das equações microscópicas, com 𝜏 = 1− 𝑇/𝑇c na proximidade da temperatura crítica e vai para uma ordem além da abordagem padrão de Ginzburg-Landau (GL) afim de obter um domínio finito do cruzamento intertipo no diagrama de fase da resposta magnética supercondutora. Anteriormente, esse formalismo GL estendido foi construído para sistemas de banda única e banda dupla. Neste trabalho, generalizamos esse formalismo para o caso de um número arbitrário de bandas contribuintes. O segundo problema está focado nas flutuações supercondutoras em sistemas com condensados múltiplos acoplados. É bem conhecido que a supercondutividade em materiais quase unidimensionais (Q1D) é prejudicada por grandes flutuações do parâmetro de ordem. Eles reduzem a temperatura crítica e podem até destruir completamente a supercondutividade. Aqui, demonstramos que a situação muda drasticamente quando um par condensado Q1D é acoplado a um de dimensão superior estável, como nos supercondutores multibandas recentemente descobertos com banda(s) Q1D. As flutuações são suprimidas inclusive por um pequeno par de acoplamento de troca entre os diferentes condensados da banda e o supercondutor é bem descrito pela teoria do campo médio. Nesse caso, os efeitos de baixa dimensionalidade aumentam a coerência do sistema em vez de suprimi-la. Como resultado, a temperatura do supercondutor multibanda Q1D pode aumentar em ordens de magnitude quando o sistema é ajustado para a transição Lifshitz com o nível de Fermi próximo à borda da banda Q1D.pt_BR
dc.contributor.advisor-coLatteshttp://lattes.cnpq.br/4888950387036254pt_BR
Aparece nas coleções:Teses de Doutorado - Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE Paulo José Fonseca Cavalcanti.pdf4,68 MBAdobe PDFThumbnail
Visualizar/Abrir


Este arquivo é protegido por direitos autorais



Este item está licenciada sob uma Licença Creative Commons Creative Commons