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ABSTRACT 

 

Coupled condensates with diverse coherence length scales interfere (interact) constructively or 
destructively, which leads to unconventional non-single-condensate physics. In the Thesis we 
investigate two phenomena governed by multiple condensates: the dependence of the 
superconducting magnetic response on the number of contributing bands and the multiband 
mechanism of screening the superconducting fluctuations.  The first problem is related to the 
tacit assumption that multiband superconductors are essentially the same as multigap 
superconductors. More precisely, it is usually assumed that the number of excitation gaps in the 
energy spectrum determines the number of contributing bands in a relevant superconducting 
model capable to capture the essential physics. Here we demonstrate that contrary to this widely 
accepted perception, the superconducting magnetic properties are sensitive to the number of 
contributing bands even for degenerate excitation gaps. In particular, we find that the crossover 
between superconductivity types I and II and the related intertype physics are affected by 
difference between characteristic lengths of multiple contributing condensates. Coupled 
condensates interfere (interact), which results in non-single-condensate physics regardless of a 
particular structure of the excitation spectrum. The related formalism is based on the 𝜏-
expansion of the microscopic equations, with 𝜏 = 1 − 𝑇/𝑇௖ the proximity to the critical 
temperature, and goes to one order beyond the standard Ginzburg-Landau (GL) approach to 
capture a finite intertype crossover domain in the phase diagram of the superconducting 
magnetic response. Previously this extended GL formalism has been constructed for single- and 
two-band systems. In this work we generalize that formalism to the case of an arbitrary number 
of contributing bands. The second problem is focused on the superconducting fluctuations in 
systems with multiple coupled condensates. It is well known that superconductivity in quasi-
one-dimensional (Q1D) materials is hindered by large fluctuations of the order parameter. They 
reduce the critical temperature and can even destroy the superconductivity altogether. Here we 
demonstrate that the situation changes dramatically when a Q1D pair condensate is coupled to 
a higher-dimensional stable one, as in recently discovered multiband superconductors with 
Q1D band(s). The fluctuations are suppressed even by vanishingly small pair-exchange 
coupling between different band condensates and the superconductor is well described by the 
mean field theory. In this case the low-dimensionality effects enhance the coherence of the 
system instead of suppressing it. As a result, the temperature of the multiband Q1D 
superconductor can increase by orders of magnitude when the system is tuned to the Lifshitz 
transition with the Fermi level close to the edge of the Q1D band. 

 

Keywords: Superconductivity. Intertype Superconductivity. Extended Ginzburg-Landau 
Formalism. Multiband Systems. Superconducting Fluctuations. Quasi-One-Dimensional 
Condensates. 

 

 

 

 



 

 

RESUMO 

 

Condensados acoplados com diversas escalas de comprimento de coerência interferem 
(interagem) construtivamente ou destrutivamente, o que leva a uma física não convencional de 
condensado não único. Na Tese, investigamos dois fenômenos governados por condensados 
múltiplos: a dependência da resposta magnética supercondutora do número de bandas 
contribuintes e o mecanismo multibanda de blindagem das flutuações supercondutoras. O 
primeiro problema está relacionado à suposição tácita de que supercondutores multibandas são 
essencialmente os mesmos que supercondutores multigaps. Mais precisamente, geralmente é 
assumido que o número de gaps de excitação no espectro de energia determina o número de 
bandas contribuintes em um modelo supercondutor relevante capaz de capturar a essência 
física. Aqui, demonstramos que, ao contrário dessa percepção amplamente aceita, as 
propriedades magnéticas supercondutoras são sensíveis ao número de bandas contribuintes, 
mesmo para os gaps de excitação degenerados. Em particular, descobrimos que o cruzamento 
entre os tipos de supercondutividade I e II e a relacionada física intertipo são afetadas pela 
diferença entre os comprimentos característicos dos condensados múltiplos contribuintes. Os 
condensados acoplados interferem (interagem), o que resulta na física de condensado não único, 
independentemente de uma estrutura particular do espectro de excitação. O formalismo 
relacionado é baseado na expansão em 𝜏 das equações microscópicas, com 𝜏 = 1 − 𝑇/𝑇௖ na 
proximidade da temperatura crítica e vai para uma ordem além da abordagem padrão de 
Ginzburg-Landau (GL) afim de obter um domínio finito do cruzamento intertipo no diagrama 
de fase da resposta magnética supercondutora. Anteriormente, esse formalismo GL estendido 
foi construído para sistemas de banda única e banda dupla. Neste trabalho, generalizamos esse 
formalismo para o caso de um número arbitrário de bandas contribuintes. O segundo problema 
está focado nas flutuações supercondutoras em sistemas com condensados múltiplos acoplados. 
É bem conhecido que a supercondutividade em materiais quase unidimensionais (Q1D) é 
prejudicada por grandes flutuações do parâmetro de ordem. Eles reduzem a temperatura crítica 
e podem até destruir completamente a supercondutividade. Aqui, demonstramos que a situação 
muda drasticamente quando um par condensado Q1D é acoplado a um de dimensão superior 
estável, como nos supercondutores multibandas recentemente descobertos com banda(s) Q1D. 
As flutuações são suprimidas inclusive por um pequeno par de acoplamento de troca entre os 
diferentes condensados da banda e o supercondutor é bem descrito pela teoria do campo médio. 
Nesse caso, os efeitos de baixa dimensionalidade aumentam a coerência do sistema em vez de 
suprimi-la. Como resultado, a temperatura do supercondutor multibanda Q1D pode aumentar 
em ordens de magnitude quando o sistema é ajustado para a transição Lifshitz com o nível de 
Fermi próximo à borda da banda Q1D. 

 

Palavras-chave: Supercondutividade. Supercondutividade intertipo. Formalismo estendido 
de Ginzburg-Landau. Sistemas multibandas. Flutuações Supercondutoras. Condensados quase 
unidimensionais 
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1 INTRODUCTION 

 

Concept of multiband superconductivity was introduced in 1959 [1], [2] as a possible 

explanation of a multigap fine structure observed in the frequency dependence of the real 

conductivity part of superconducting lead and mercury, extracted from the infrared absorption 

spectrum [3], [4]. Despite the long history of the problem, detailed and unambiguous results 

supporting this concept, were obtained only in 2000's after experiments with MgBଶ, see, e.g., 

Ref. [5] and references therein. The observation of two well distinguished energy gaps in the 

excitation spectrum of MgBଶ [6], [7] have ignited a substantial interest in the problem and 

boosted further experiments focused on the multiband superconductivity. Now, after a decade 

of intensive investigations, it is clear that multiple overlapping bands are present in most of 

superconducting systems, ranging from iron-based materials [8] to high-𝑇ୡ organic 

superconductors [9] and even topological superconductors [10], [11]. Recent calculations have 

indeed demonstrated that the Fermi surface of Pb is composed of two Fermi sheets, in 

agreement with the multiband interpretation [1] of the pioneering experiments reported in Refs. 

[3], [4]. 

By the historical reasons, the presence of the multiple energy gaps in the excitation 

spectrum of a superconductor is still considered as a key marker for the multiband 

superconductivity. For example, a standard expectation is that if the excitation spectrum does 

not exhibit the multigap structure, the system is single-band or effectively single-band (if there 

are several bands with degenerate excitation gaps) so that its superconducting properties are the 

same as those of single-band materials. More generally, it is usually assumed that the number 

of excitation gaps determines the number of contributing bands in a superconducting model 

designed to capture essential physics of interest. The well-known example is MgBଶ which 

exhibits two excitation gaps associated with 𝜋 and 𝜎 states [5]-[7]. Consequently, 

superconducting models for MgBଶ include, as a rule, two contributing bands, see, e.g., Refs. 

[5], [12]-[15]. However, first principle calculations demonstrate [16], [17] that MgBଶ is in fact 

a four-band superconductor with two 𝜎 and two 𝜋 bands, see also Ref. [5]. The two 𝜎 bands 

have different microscopic parameters (diverse Fermi sheets) but degenerate excitation gaps 

and the same holds for the 𝜋 bands. Thus, a tacit common assumption is that multiband 

superconductivity manifests itself via multiple energy gaps in the excitation spectrum and, 

hence, multiband superconductors are essentially the same as multigap superconductors.  
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However, there is another possible view on a multiband superconductor as the system 

governed by a set of different and competing characteristic lengths. A fascinating consequence 

of such competition can be, e.g., spontaneous pattern formation. Examples of systems with such 

spontaneous patterns and textures are well-known in the literature and include magnetic films 

[18], [19], liquid crystals [20], multilayer soft tissues [19], [21], lipid monolayers [22], granular 

media [23], etc. Recently symmetry breaking patterns of vortices (labyrinths/stripes) caused by 

the competition of two significantly different 𝜋 and 𝜎 coherence lengths have attracted interest 

in the context of unusual mixed-state configurations in MgBଶ, see, e.g., Refs. [24], [25] and 

references therein. Coupled condensates with diverse coherence length scales in one system can 

interfere (interact) constructively or destructively, which leads to unusual non-single-

condensate coherent phenomena. In addition to the labyrinths of vortices mentioned above, 

other effects can be listed, e.g., possible fractional vortices [26]-[31], chiral solitons [32], [33], 

a giant paramagnetic Meissner effect [34], enhancement of the intertype superconductivity [35], 

[36], hidden criticality [37], screening of superconducting fluctuations near the BCS-BEC 

crossover [38], etc. The set of diverse and competing coherence lengths and the multigap energy 

structure of the excitation spectrum in multiband superconductors are both consequences of a 

complex Fermi surface that exhibits multiple sheets associated with different contributing 

bands. However, a nontrivial interplay (interference) between band condensates is not directly 

related to the presence of multiple excitation gaps. Thus, we can expect that in principle, non-

single-condensate physics can appear even when all such energy gaps are degenerate. 
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1.1 SUPERCONDUCTIVITY  

For more than a century, the phenomenon of superconductivity has fascinated many 

scientists around the world, who despite the great discoveries there are still many problems 

open. First observed by Kamerlingh Onnes in Leiden in 1911 [39], when it was observed that 

a mercury sample abruptly loses its electrical resistivity when cooled below 4.2 Kelvin (𝐾). 

As low temperatures were only possible because of the liquefaction of helium first obtained in 

1908, by K. Onnes, and thus 1911 he observed superconductivity in mercury. The transition 

to the superconducting state was observed when at a sufficiently low temperature, called 

superconducting critical temperature 𝑇௖, the electrical resistivity fell to zero. after which the 

phenomena were observed in several other materials, cadmium (0.52 𝐾), aluminum (1.18 𝐾), 

titanium (2.38 𝐾), tin (3.72 𝐾), lead (7.20 𝐾) and some alloys, etc. Since then, great progress 

has been made in understanding the phenomenon of superconductivity.  

In 1933 physicists W. Meissner and R. Ochsenfeld [40], discovered an interesting 

property of superconductors, which was the property that a superconducting material has to 

exclude the magnetic field from its interior when it is subjected to an external magnetic field, 

as would happen with a perfect diamagnetic material, which became known as the Meissner-

Ochsenfeld effect. In addition to the effect that occurs when a material is placed under an 

external magnetic field above a critical value (𝐻௖), the superconductivity disappears regardless 

of the material's temperature. Thus, these and other properties of the superconductors aroused 

a great interest in the researchers to make a theory that explained the causes and the true 

description of the phenomenon. 

In the first successful theory wrote by the London brothers, in 1935 [41], they proposed 

a phenomenological theory based on the Maxwell equations of the classical electrodynamics. 

The London equation describes the Meissner effect, i.e., the expulsion of the magnetic field 

from a superconductor. However, in this theory, superconductivity should exist even in the 

absence of an external magnetic field, so the London theory fails to attempt to explain the 

superconducting state when there is no magnetic field present, and a better theory was needed. 

Then in 1950, L. Landau and V. Ginzburg published the famous paper of the theory of 

superconductivity [42], with the set of equations known as Ginzburg-Landau Equations. This 

is a phenomenological theory, based on experimental observations and some assumptions that 

could not be demonstrated from first principles at the time, but which brilliantly describes the 

properties presented at the time about the superconductors. The approach was based on the 
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general theory of second-order phase transitions proposed by Landau in 1937 [43]. This theory 

was very successful in explaining several fundamental properties of superconductivity. 

Although Ginzburg-Landau's theory has led to many experimentally confirmed 

predictions [44], but this theory was not developed on a microscopic basis and could not 

provide the true explanation for the phenomenon of superconductivity. Thus, it was reasonable 

to suppose that this phenomenon could not arise from classical physics, which is, it is a 

macroscopic manifestation of quantum mechanics. 

Then a more fundamental theory was developed, capable of describing 

superconductivity from the first principles, and came about in 1957 when J. Bardeen, L. 

Cooper and J. Schrieffer [45] treated superconductivity as a purely quantum phenomenon, thus 

obtaining a complete description of the phenomenon and explaining its microscopic origin, 

which became known as the BCS theory of superconductivity. 

Moreover, in 1959 [46], L. Gor'kov demonstrated a direct connection between the BCS 

approach and the GL Theory. When using the Hamiltonian formulation of the BCS model by 

Bogoliubov et al, Gor'kov derives from the quantum field theory the Ginzburg-Landau 

equations, that is, the Ginzburg-Landau equations can be obtained as a limiting case of 

microscopic theory. 

1.2 INTERTYPE SUPERCONDUCTIVITY  

The latest discoveries of new superconducting materials at high critical temperatures 

[47], [48] have led to a review of many of the field's longstanding problems. One is a 

classification of superconducting magnetic properties. As is well known, the Ginzburg-Landau 

(GL) theory distinguishes ideally type I and type II diamagnetic superconductors, where the 

field penetrates in the form of a regular Abrikosov lattice of a single quantum of vortices. 

These types are dependent on the parameter GL 𝜅 = 𝜆/𝜉, with 𝜆 and 𝜉 being, respectively, the 

magnetic penetration depth and the coherence length GL. The change between types occurs 

abruptly when κ crosses the critical value 𝜅଴. 

Already in the 1970s, it was shown that the reality is more complex than that of the GL 

theory (see [51]-[55] and references therein): the table of superconductivity types separated by 

the single point 𝜅 is applied only at the limit 𝑇 → 𝑇௖. Below 𝑇௖, the intertype regime occupies 

a finite interval of 𝜅, forming the inter-type domain between types II and I in the (𝜅, 𝑇) plane 

[51]. This domain exhibits an unconventional field dependence of magnetization, in particular 
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the first-order phase transition between the Meissner and the mixed states [51], [52]. 

Subsequent works have revealed that the physics of the intertype domain is closely related to 

the self-duality Bogomolnyi [56], [57] that results in an infinite degeneration of the 

superconducting state at the point of Bogomolnyi  (𝜅଴, 𝑇௖), see, e.g., [58]. This degeneracy 

results from the symmetry of the GL equations in 𝜅଴ and implies that the mixed state comprises 

an infinite number of different spatial patterns of the magnetic (condensed) flux, including the 

very exotic ones. By lowering the temperature, degeneration is lifted and the Bogomolnyi point 

unfolds into a finite domain on the phase diagram between types II and I. In this case, 

nonstandard flow patterns model the internal structure of the intertype domain. 

A comprehensive investigation of possible condensed flow states in this domain has 

not been presented so far. Theoretically, for bulk materials such research requires a greater 

approach than the GL theory, which is technically very demanding, see, e.g., [53]. The 

experimental study is also quite nontrivial because 𝜅 should be changed by appropriate doping 

to cross the intertype domain in the plane (𝜅, 𝑇) [51], [52]. To date, only one long-range 

attraction between the vortices of Abrikosov is well established in the intertype regime, bearing 

the name of "type II / 1" superconductivity [51] as opposed to the standard type II, referred to 

instead as "type II / 2", where the formation of giant vortices (multi-quantum) was considered 

for superconductors with 𝜅~1. However, the results were contradictory. Therefore, the state 

of the flux configurations in the bulk domain of superconductors remains unclear and requires 

extensive further investigation. 

1.3 EXTENDED GINZBURG-LANDAU THEORY 

In conventional single-band superconductors, the intertype domain is insignificantly 

small and therefore largely ignored in textbooks. However, it has recently been demonstrated 

that this domain is increased in superconductors of two bands and this enlargement can be 

attributed to the disparity between the microscopic parameters of the contributing bands [35]. 

It has also been argued that the effect is a generic phenomenon independent of the details of 

the model for band states. Its origin is the nonlocality of interactions in the aggregate 

condensate due to the appearance of multiple bands.  

 Thus, it is of importance to check this expectation and generalize the consideration of 

the intertype domain in two-band superconductors to the case of multiband superconducting 

materials with more than two contribution bands. In this project, the main purpose of our 
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investigation is to study how the enlargement of the intertype domain is sensitive to increasing 

the number of contributing bands. 

Multiband superconductors are materials in which more than one carrier band 

contributes to the formation of condensates. Since the discovery of superconductivity, 

multiband superconductivity has been also expected in some materials, e.g., in conventional 

𝑃𝑏, but with the evolution of technology an infinity of multiband superconductors has been 

discovered, such as metal borides and boron carbides such as 𝑀𝑔𝐵ଶ [69] and 𝑂𝑠𝐵ଶ are 

observed, iron silicides such as 𝐿𝑖𝐹𝑒ଷ𝑆𝑖ହ [71], chalcogenides such as 𝐹𝑒𝑆𝑒ଵି௫, and pnictides 

of iron [72]. Unconventional characteristics and significantly elevated transition temperature 

have led to the general interest of such compounds as well as to the phenomenon of multiband 

superconductivity.  

The distinction between the types diamagnetic type-I materials and type-II 

superconductors is routinely explained by the Ginzburg-Landau (GL), and occurs when the 

GL parameter 𝜅 = 𝜆/𝜉 crosses the critical value 𝜅଴ = 1/√2 [44], where the type of interaction 

between the vortices is altered, being in the type-I attractive and repulsive in the type-II 

superconductors. And, at 𝜅 = 𝜅଴ , Bogomolnyi point, these vortices do not interact, due to the 

of the fact that the GL theory at this point reduces to a pair of the first-order self-dual 

Bogomolnyi equations. The self-duality, first discussed in the context of cosmological strings, 

leads to an infinite degeneracy of different flux configurations, from which the absence of the 

vortex-vortex interactions follows [35]. 

Beyond the GL theory, EGL theory, shows that the GL dichotomy of the 

superconductivity types is achieved only in the limit 𝑇 → 𝑇௖ ( 𝑇௖ is the critical temperature). 

At 𝑇 < 𝑇௖ the Bogomolnyi point unfolds into a finite temperature-dependent interval of 𝜅’s 

(intertype domain), where the physics of this domain is not captured by the standard GL theory. 

The physics of the transitional domain is commonly restricted to the long-range vortex-vortex 

attraction. This, however, contradicts to the observation that other critical parameters exist 

inside this domain with the corresponding changes of admissible intertype flux patterns. 

Moreover, the number of such internal critical parameters is infinite due to the infinite 

degeneracy of the Bogomolnyi point. The intertype domain has a complex structure with 

different possible variants of the mixed state, structure that appears as a result of the removal 

of the infinite degeneracy of the Bogomolnyi point when lowering temperature [35]. 
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The EGL theory offers a powerful and yet relatively simpler formalism for studies of 

the mixed state in both single and multiband superconductors. While the GL theory predicts a 

sharp interchange between type-I and II at 𝜅 = 𝜅଴, the microscopic calculations and 

experimental results demonstrated that the border between types I and II broadens at 𝑇 < 𝑇௖ 

into the finite interval of 𝜅’s, i.e., the intertype domain between types I and II in the (𝜅, 𝑇)-

plane. Where the physics in this domain is not explained by the GL theory, the EGL theory 

can reproduce the boundaries of the intertype domain in full agreement with the experiments.  

The analysis revealed that when the GL parameter 𝜅 is situated in the interval [𝜅ଶ
∗, 𝜅௟௜

∗ ] 

defined by the onset of the long-range vortex attraction (𝜅௟௜
∗ ) and the appearance of the mixed 

state (𝜅ଶ
∗), the system may demonstrate a great variety of unconventional magnetic states and 

properties. This rich diversity is closely related to the infinite degeneracy of the Bogomolnyi 

point, 𝜅 = 𝜅଴ and 𝑇 = 𝑇௖. When the temperature is lowered below 𝑇௖ this degeneracy is 

gradually lifted, and the Bogomolnyi point projects itself onto the finite critical interval 

(critical domain). Its appearance defines a new separate type of superconductivity that can be 

tentatively called “critical superconductors”. In particular, the preliminary analysis revealed 

the sub-domain in the critical domain, where the elementary entities are those twinning 

Abelian Higgs multi-quanta vortices. Remarkably, the structure of the critical domain is 

universal for single-band materials. Its boundaries are independent of the material parameters, 

as long as the system is in the clean limit. 

Analysis of two-band superconductors have shown a very interesting property that the 

interplay between the bands leads to a systematic enlargement of the critical domain. A 

physical interpretation of this enlargement relates it with the increased non-locality in 

multiband systems, which is also responsible for the long-range vortex attraction. The previous 

results also brought the following conclusions, that in the absence of an additional symmetry, 

the GL order parameter in a multiband superconductor is single-component and defined by the 

standard single-component GL theory, however, the coefficients in the relevant equations have 

contributions of different bands. That, the difference between spatial profiles of different band 

condensates can be correctly described only within an approach that goes beyond the standard 

GL model, e.g., in the EGL formalism. The structure of the type-I/type-II border (near-

Bogomolnyi regime) has been calculated for the single and two-band systems and exhibit a 

wealth of nonstandard spatial flux distributions, found neither in type I nor in type II. With 

patterns that far exceeds the complexity of these standard types, which were previously 

discussed in the literature in the context of the long-range interaction of vortices. This 
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distinctive complexity dictates introducing a separate type of superconductivity, which can be 

tentatively called the critical type. In addition, it has been established that exotic magnetic 

properties of single- and multiband superconductors are closely related: they have the same 

origin, i.e., lifting of the infinite topological degeneracy of the Bogomolnyi critical state. 

For multiband materials, it is generally believed that they could be modeled by the 

standard BCS theory that accounts for the multiple-carrier band structure. The mean-field BCS 

theory is then formulated in the form of multiband Bogoliubov-de Gennes (BdG), Gor’kov or 

Ellenberger equations. In particular, the BdG equations with a chosen approximation for the 

pseudo-potential are a convenient tool of studying clean systems with man-sized dimensions. 

In principle, the BCS theory gives the most complete description of a multiband system; 

however, fully microscopic calculations are not an easy task for strongly inhomogeneous 

mixed states. Investigations of inhomogeneous superconducting state are notably simpler in 

the vicinity of 𝑇௖, where the GL theory is legitimate. Moreover, Gor’kov built the bridge 

between the microscopic BCS and the phenomenological GL theories by relating the order 

parameter with the anomalous microscopic Green function. 

Recently was developed a consistent extension of the GL theory, EGL theory, which 

is based on using the proximity to the critical temperature 𝜏 = 1 − 𝑇/𝑇௖ as the unique small 

parameter in the system. Where the implementation of this mathematical formalism has been 

used in a series of preliminary works, for the single- as well as the two-band cases [35]. All 

relevant physical quantities in this formalism are represented as the series expansion in τ (the 

so-called 𝜏 - expansion). Equations for the order parameter and the magnetic field, also written 

as the series expansion in 𝜏, and are obtained from the condition of the stationary free energy 

functional. With this approach, the standard GL theory follows from the two lowest orders in 

the expansion: the first term defines the critical temperature and the second one yields the GL 

theory. Corrections to it are provided by the higher orders terms. For a multi-band system, the 

difference between the condensates, appear only in the leading order corrections to the GL 

theory: one can describe the relevant phenomena only when they are retained. 

Thus, it is important to verify the expected results and generalize the formalism 

obtained in the single and two-band superconductors to the case of multiband superconducting 

materials, with more than two contributing bands. 
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Figure 1.3-1 Phase diagram of superconductivity types in the (κ,T) plane derived from the EGL formalism and comparison 
with experimental data(symbols), where it is shown the boundaries of the intertype domain for single-band 
superconductors[35] 
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1.4 OBJECTIVES 

In this doctoral thesis we address two remarkable phenomena directly related to 

multiple coupled condensates.  

 

a) Intertype magnetic response of multiband superconductors with degenerate 
excitation gaps.  

 

The concept of multiband superconductivity has been introduced in 1959 [1], [2] as a 

possible explanation of a multigap fine structure observed in frequency-dependent 

conductivity of superconducting 𝑃𝑏 and 𝐻𝑔, extracted from the infrared absorption spectrum 

[4]. It has been confirmed only in 2000, after experiments with 𝑀𝑔𝐵ଶ [5] by observations of 

two distinct energy gaps in the excitation spectrum [6], [7] [density of states (DOS) of 

superconducting electrons contains two peaks]. It is usually assumed that the number of 

excitation gaps in the single-particle energy spectrum of a uniform superconductor determines 

the number of contributing bands in the relevant superconducting model. So, if the spectrum 

doesn't show multigap structure, the expected superconducting properties are those of single 

band materials. A well-known example is 𝑀𝑔𝐵ଶ, which exhibits two spectral gaps associated 

with 𝜋 and 𝜎 states [5]-[7] and, thus, theoretical models that explain this superconductivity 

consider only two contributing bands [5], [12]-[15], despite the fact that the first-principle 

calculations reveal [16], [17] four single particle bands [5]. The two 𝜋 bands of 𝑀𝑔𝐵ଶ have 

different microscopic parameters, but they exhibit degenerate excitation gaps. The same is true 

for the two 𝜎 bands. 

However, there is another approach which is followed by this doctoral thesis and 

considers a multiband superconductor as a system governed by a set of competing 

characteristic lengths associated with different bands [37], [101]. The single-particle spectrum 

of superconducting electrons is usually measured for bulk superconductors to avoid problems 

with the interpretation of nonuniform measurements. When the corresponding tunnelling 

measurements reveal, for example, a single peak in the density of states, it does not mean that 

the position-dependent gap functions of different contributing condensates are always the 

same. Their characteristic spatial lengths can be different due to peculiarities of the Fermi 

surface.  
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The competition of different condensate length-scales can lead to non-trivial physical 

consequences due to interference/interaction of different contributing condensates. It is of 

importance that this competition can appear irrespective of the presence/absence of multiple 

spectral gaps in the uniform superconducting state. These features appear on different levels 

of the theory - the system can have multiple energy gaps in the excitation spectrum but a single 

characteristic length and, vice versa, a multiband superconductor can have multiple coherence 

lengths but a single excitation gap. 

Here we demonstrate that the crossover between superconductivity types I and II—the 

intertype (IT) regime - is strongly affected by the difference between healing lengths of 

multiple contributing condensates even when the corresponding excitation gaps are degenerate 

and cannot be distinguished. Our analysis is done using the formalism of the extended 

Ginzburg-Landau (EGL) theory generalized to the case of an arbitrary number of contributing 

bands. 

 

b) Multiband material with a quasi-1D band as a robust high-temperature 

superconductor. 

 

It is well known that superconductivity in one-dimensional systems is suppressed due 

to large fluctuations of the order parameter, which reduce the critical temperature 𝑇௖ and can 

even destroy the superconductivity completely. The superconducting state can still be achieved 

when several 1D structures (parallel chains of molecules or atoms) are coupled, thus creating 

a weakly coupled matrix. Theoretical studies demonstrated that such quasi-1D (Q1D) materials 

can superconduct [105]-[108] but the fluctuations still proliferate, reducing the critical 

temperature significantly [105]. This theoretical prediction was confirmed by the discovery of 

low temperature superconductivity in Bechgaard salts - organic Q1D superconductors [111], 

[112]. 

Later theoretical efforts were focused on finding the conditions under which the critical 

temperature of Q1D superconductors could be increased rather than reduced. In particular, it 

has been suggested that such increase can be achieved in the vicinity of the Lifshitz transition, 

at which the chemical potential approaches the edge of a Q1D single-particle energy band 

[119]-[122]. However, the fluctuations, which are already very large due to the Q1D effects, 
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are increased due to the Bose-like character of the pairing near the Lifshitz point, tending to 

further deplete the condensate. 

Recently the interest in Q1D superconductors has been boosted by the discovery of 

Cr3As3-chain based materials (such as K2Cr3As3 and KCr3As3Hx). Such materials are 

multiband superconductors where Q1D bands coexist with conventional 3D bands. Previous 

investigations showed that the presence of the pair-exchange coupling between different bands 

can reduce fluctuations due to the multiband screening mechanism [91], [125]. The second 

part of this doctoral thesis is devoted to investigations of such screening mechanism in a 

multiband system comprising Q1D and 3D bands in the vicinity of the Lifshitz transition. We 

demonstrate that when a Q1D condensate is coupled to a 3D stable one, fluctuations are 

suppressed even by a vanishingly small pair-exchange coupling between different band 

condensates and the superconductor is well described by the mean-field theory. In this case, 

when approaching the Lifshitz transition (the chemical potential approaches the edge of the 

Q1D band), the low-dimensionality effects enhance the coherence of the system rather than 

suppress it. As a result, the critical temperature of the Q1D multiband superconductor can 

increase by orders of magnitude. 
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2 BASIC CONCEPTS 

 

2.1 GINZBURG-LANDAU THEORY  

London's theory had a serious flaw because it ignored the possibility of a positive 

surface energy, associated with a normal-superconducting interface [73]. Thus, to correct this 

shortcoming, Ginzburg and Landau proposed a different phenomenological description, which 

explains the surface energy in a natural way. 

This theory was a great triumph of physical intuition, in which a pseudo wave function 

𝜓 was introduced as a parameter of complex order and |𝜓|ଶ  represents the local density of the 

superconducting electron. The theory was developed by applying the variational method to a 

pre-defined expansion of the free energy density in powers of |𝜓|ଶ and |𝛁𝜓|ଶ, resulting in a 

pair of differential equations coupled to 𝜓 and the 𝐀 vector potential. This result was a 

generalization of the London theory to deal with situations in which the density of the 

superconducting electron varied in space, and to deal with the nonlinear response to fields that 

are strong enough to change these electrons. The local approach to electrodynamics in London 

was remained.  

The great value of this theory lies in the treatment of the macroscopic behavior of 

superconductors, in which free energy is more important than the spectrum of excitations. 

Thus, it will be quite reliable in predicting critical fields and the spatial structure  𝜓  of non-

uniform situations. In addition to also providing the qualitative structure helping to understand 

the behavior of the supercurrent because of quantum properties on a macroscopic scale.  

The basic postulate of GL is that if 𝜓 is small and varies slowly in space, the free energy 

𝑓  can be expanded in a series of the order parameter, where the odd terms are neglected in 

favor of the phase symmetry 

 
𝑓௦ = 𝑓௡ + 𝛼|𝜓|ଶ +

𝛽

2
|𝜓|ସ + ⋯, 2.1-1 

The free energy related to others thermodynamic variables is represented by the 

function 𝑓௡ and will be treated as a constant independent of temperature, since it is assumed 

that the other quantities are well behaved close to the transition.  
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Then one must consider the superconducting case to happen when the part related to 

the transition is negative: 

 𝑓 = 𝑓௦ − 𝑓௡ < 0. 2.1-2 

Being superconducting state is energetically more favorable than normal state. The 

series should be truncated until the fourth in order to stay near the second-order phase transition 

at 𝑇௖ where |𝜓|ଶ → 0. The coefficient 𝛼 represent the character of most phase transitions 

𝛼(𝑇) = 𝑎𝜏, where 𝜏 = 1 − 𝑇/𝑇௖, and 𝛽 = 𝑏  must be positive otherwise the lowest free energy 

would occur for a arbitrarily large values of  |𝜓|ଶ. Two cases appear depending on if 𝛼 is 

positive or negative. For a positive value of 𝛼, 𝑇 > 𝑇௖ , the minimum free energy occurs at  

|𝜓|ଶ = 0, which is the normal state. If 𝛼 is a negative, 𝑇 < 𝑇௖, value the minimum occurs 

when 

 

𝜓 = 𝜓ஶ = ඨ
|𝑎|𝜏

𝑏
. 2.1-3 

where 𝜓ஶ is conventionally used because 𝜓 approaches this value infinitely deep in the 

interior of the superconductor, where it is screened from any surface fields or currents. These 

behaviors are shown in the figure below. 

 

Figure 2.1-1 Ginzburg-Landau free energy functions for  𝛼 positive and for 𝛼 negative, the dots are the equilibrium positions, 
and for simplicity 𝜓 has been taken to be real. Figure from [74].  

In order to suppress spatial variations in 𝜓, and the order parameter is uniform in the 

absence of external fields, was added a term proportional to |𝛁𝜓|ଶ, in analogy with the 

Schrödinger equation, and in presence of the magnetic field, the term is assumed to take the 

gauge-invariant form. So, the extra term added is given by,  𝐃 = 𝛁 − 𝑖
ଶ௘

ℏ௖
𝐀, where the first 

term gives the extra energy associated with gradients in the magnitude of the order parameter 
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and the second one gives the kinetic energy associated with supercurrents in a gauge-invariant 

form. And, we have also included a term to represents the energy density of the magnetic field.  

In this way, the free energy density becomes,    

 
𝑓[𝜓, 𝜓∗, 𝐀] = 𝑎𝜏|𝜓|ଶ +

𝑏

2
|𝜓|ସ + 𝐾|𝐃𝜓|ଶ

+
1

8𝜋
(𝛁 × 𝐀)ଶ. 

2.1-4 

So, with the free energy density is possible to calculate the Gibbs free energy difference and 

derive the thermodynamic critical field 𝐻௖, where is  considered the energy necessary to take 

the system from the uniform solution ቀ|𝜓ஶ|ଶ =
|௔|ఛ

௕
ቁ at zero field to the normal state: 

 
𝐺 = න 𝑔𝑑𝐫 , g = 𝑓 +

𝐻௖
ଶ

8𝜋
−

𝐻௖𝐁

4𝜋
, 2.1-5 

So,  

 
𝐻௖ = ඨ

4𝜋𝑎ଶ𝜏ଶ

𝑏
. 2.1-6 

This is the critical field of the Meissner state, where the magnetic field penetrates the 

superconductor only up to a typical length 𝜆௅, London penetration depth. The parameters 𝑎, 𝑏 

and 𝐾 are phenomenological and must be determined in order to match experimental results 

and within the framework of a microscopic theory where it was possible to derive analytic 

expressions for them in terms of microscopic parameters. 

A stationary point of the functional given by Eq. 2.1-4 yields the main equations of the 

GL theory, the Ginzburg-Landau Equations. So, the condition of minimum energy allows the 

use of the Euler-Lagrange equations for the free energy density 

 

 

𝜕𝑓

𝜕𝑞
− ෍

𝜕𝑓

𝜕(𝜕௜𝑞)
௜

= 0, 2.1-7 

where for our case 𝑞 is 𝜓 or 𝐀, then follow the GL equations   

𝑎𝜏|𝜓|ଶ + 𝑏|𝜓|ସ + 𝐾|𝐃𝜓|ଶ = 0, 𝛁 × 𝛁 × 𝐀 = 4𝜋i
2𝑒

ℏc
𝐾(𝜓∗𝐃𝜓 − 𝜓𝐃∗𝜓∗). 2.1-8 

Thus, the Ginzburg-Landau theory gives two coupled differential equations Eq. 2.1-8, 

involving the order parameter and vector potential, which can be analytically solved in some 

regimes of approximation to determine some properties of the superconducting state. 
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Characteristic lengths  

In the two simple cases in which exact closed form, solution can be found, the GL 

equations provide us characteristic lengths.   

First, we consider a case where in which no fields are present; then, we can take 𝜓 to 

be real since the differential equation has only real coefficients. Moreover, introducing the 

normalized wave function 𝑓 =
ట

టಮ
. In addition, we assume that, 𝑥 > 0 is filled with a 

superconductor and,  𝑥 < 0, is a vacuum or normal material, we obtain (in one dimension)  

𝜉ଶ
𝑑ଶ𝑓

𝑑𝑥ଶ
+ 𝑓 − 𝑓ଷ = 0, 𝜉ଶ =

𝐾

|𝑎|𝜏
, 2.1-9 

where the characteristic length 𝜉 is called the coherence length, is one of the two fundamental 

length scale associated with superconductivity, which importance is shown graphically in the 

Figure 2.1-2. We see that 𝜓 is close to 𝜓ஶ far inside the superconductor, is zero at the interface 

with the normal material, and has intermediate values in a transition layer near the interface 

with a width in the order of  𝜉.  

 

Figure 2.1-2 Dependence of the normalized order parameter on distance inside a superconductor with a material that prevents 
the formation of the superconducting condensate in the boundary in situations. The order parameter is larger for 𝑥 > 𝜉. Figure 
from [74]. 

The second characteristic length come into play when we consider a system with an 

applied magnetic field with an essentially uniform order parameter 𝜓 = 𝜓ஶ, spatial variations 

of the order parameter can be neglected. So, the GL equations, Eq. 2.1-8, are reduced to the 

London equation: 

 𝑐

4𝜋
(𝛁 × 𝛁 × 𝐀) = −2

(2𝑒)ଶ

ℏଶc
|𝜓ஶ|ଶ𝐀, 2.1-10 
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where can also be written as 

𝛁 × 𝛁 × 𝐀 =
1

𝜆௅
ଶ 𝐀, 𝜆௅

ଶ =
ℏଶcଶ

𝑒ଶ

𝑏

32𝜋𝐾|𝑎|𝜏
. 

2.1-11 

The second fundamental length of a superconductor is the 𝜆௅, London penetration 

depth. Which measures how much field penetrates in the superconductor. 

 

Figure 2.1-3 Dependence of the vector potential on distance x, where a constant applied magnetic field decays exponentially 
inside the superconductor, becoming very small for 𝑥 ≫ 𝜆௅. Figure from [73]. 

As 𝜓 is interpreted as a wave function, |𝜓|ଶ  gives the local density of superconducting 

particles. Then, for the uniform solution, this density reads 𝑛௦ = |𝜓ஶ|ଶ = |𝑎|𝜏/𝑏. Also, |𝐃𝜓|ଶ 

works as a kinetic term, thus one can define 𝐾 = ℏଶ/2𝑚, where instead of 𝐾, the 

phenomenological quantity is the mass of the particles involved 𝑚. Therefore, with such 

assumptions the  London theory is recovered. This is the so-called London limit of the GL 

equations. 

We defined two characteristic lengths 𝜉(𝑇) and 𝜆௅(𝑇), are phenomenological 

quantities which determine the behavior of superconductor near the transition point. They both 

diverge in 𝑇 → 𝑇௖, so it is conventional to introduce the Ginzburg-Landau parameter 

 
𝜅 =

𝜆௅(𝑇)

𝜉(𝑇)
. 2.1-12 
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The cases studied before are limiting case of a more general picture where 𝜉 and 𝜆௅ 

may be comparable. Thus, the importance of the parameter 𝜅 is better understood when is 

studied the energy associated with a surface separating normal and superconducting material.  

The possibility of a surface energy arises from the occurrence of the two lengths. Now 

we will analyze the situation where the magnetic field is so strong that it destroys the 

superconducting state for 𝑥 ≤ 0 and, as the order parameter recovers from zero to its maximum 

value, the magnetic field tends to zero, for 𝑥 > 0. 

𝑥 → −∞: 𝜓 = 0,   𝐵 = 𝐻௖ .  

𝑥 → ∞:   𝜓 = 𝜓 ஶ,   𝐵 = 0. 2.1-13 

Thus, we calculate the Gibbs free energy difference per unit area for this configuration, 

the so-called surface energy, done through a Legendre transformation, where one obtains the 

Gibbs free energy from the Helmholtz free energy by adding the term −𝐇 ∙ 𝐁/4𝜋 to 𝑓௦ related 

to the expulsion of the field. 

𝜎௦௡ = න 𝑑𝑥(𝑔௦ − 𝑔௡),
ஶ

ିஶ

 𝑔௦(௡) = 𝑓௦(௡) −
𝐇 ∙ 𝐁

4𝜋
. 2.1-14 

where 𝑓௦ is given by Eqs. 2.1-4, 2.1-7and 𝑔௡ = 𝑓௡(஻ୀ଴) +
𝐇మ

଼గ
. The external magnetic field 𝐇 is 

constant and its absolute value is equal to the thermodynamic critical field 𝐻௖. In the normal 

phase, 𝐁 = 𝐇 and 𝐻 = 𝐵 = 𝐻௖, which results in 𝑔௡ = 𝑓௡(஻ୀ଴) +
ு೎

మ

଼గ
. ( We changed the 

notation of B to h for a better understanding of the graphic in Figure 2.1-4)  

 
𝜎௦௡ = න 𝑑𝑥 ቆ𝑎𝜏|𝜓|ଶ +

𝑏

2
|𝜓|ସ + 𝐾|𝐃𝜓|ଶ +

(ℎ − 𝐻௖)ଶ

8𝜋
ቇ ,

ஶ

ିஶ

  

 
 𝜎௦௡ = න 𝑑𝑥 ቆ−

𝑏

2
|𝜓|ସ +

(ℎ − 𝐻௖)ଶ

8𝜋
ቇ .

ஶ

ିஶ

 2.1-15 

where, after integrating by parts and neglecting the surface term, and using the Eq. 2.1-7 in 

order to obtain the concise form in the last line. This form clearly displays how 𝜎௦௡ is 

determined by the balance between the positive diamagnetic energy and the negative 

condensation energy due to the superconductivity. By numerical solutions the GL equations 

demonstrates that if the GL parameter is larger than 𝜅௢ = 1/√2 , then 𝜎௦௡ becomes negative 

and, otherwise, positive.  
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Figure 2.1-4 Diagram of the variation of the field (h) and 𝜓 in a surface region between normal and superconductor 
state. 𝜅 ≪ 1 we have a positive wall energy, refers to type I, 𝜅 ≫ 1 we have a negative wall energy, is a type II 
superconductor.   Figure from [74]. 

In other words, this parameter determines whether the domain-wall solution is 

energetically favorable. Materials are conventionally classified as type I or type II according 

if 𝜎௦௡ is positive or negative.   
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2.2 MICROSCOPIC DERIVATION OF THE GINZBURG-LANDAU   

As is known since the classical work by Gor’kov, the GL equations can be derived 

from the microscopic BCS theory in the most elegant way via the Green function formalism. 

So, in this topic we will present the Gorkov’s microscopic derivation of the Ginzburg-Landau 

equations, which makes it possible to determine the phenomenological constants in terms of 

the microscopic parameters. The core of this derivation relies on the assumption that the 

excitation gap can be identified as the order parameter of the system[73], [74].  

Our starting point is the Hamiltonian formulation of the BCS model by Bogoliubov et 

al[73][74]. This Hamiltonian includes the usual kinetic part absorbing the chemical potential 

in such a way that only the average number of particles is controlled (the grand canonical 

formalism). The interaction part is the second term, the last two terms in the equation below. 

Other terms related to the interaction between particles, the Hartree and Fock contributions, 

are accounted as constants and hidden in the chemical potential 𝜇, once they do not have a 

specific reason to vary significantly when crossing 𝑇௖.  

 
𝐻஻஼ௌ = න 𝑑ଷ𝒙 ൤෍ 𝜓ఙ

ற(𝒙)𝒯௫𝜓ఙ(𝒙)
ఙ

+ 𝜓↑
ற(𝒙)𝜓↓

ற(𝒙)Δ(𝒙) + 𝜓↓(𝒙)𝜓↑(𝒙)Δ∗(𝒙)൨, 2.2-1 

𝒯௫ is the single-electron Hamiltonian, and the summation in the kinetic term is taken over the 

coinciding spin indices 

 
𝒯௫ = −

ℏଶ

2𝑚௘
ቀ𝛁 − i

𝑒

ℏc
𝐀ቁ

ଶ

− 𝜇, 2.2-2 

the energy gap (the convention by Gor’kov, de Gennes used a minus sign) is given by 

 Δ(𝒙) = 𝑔〈𝜓↑(𝒙)𝜓↓(𝒙)〉. 2.2-3 

The Fermi field operators satisfy usual anticommutation relations: 

 ൛𝜓ఙ(𝒙), 𝜓
ఙᇲ
ற (𝒙′)ൟ = 𝛿ఙఙᇲ𝛿(𝒙 − 𝒙′),  

 {𝜓ఙ(𝒙), 𝜓ఙᇲ(𝒙′)} = 0. 2.2-4 

Introducing the Heisenberg picture with imaginary time (𝑡 → real, imaginary time 

representation) to derive the equations of motion.  
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Then, the Heisenberg operators are defined as: 

 𝜓↑(𝒙, 𝑡) = exp(𝐻𝐵𝐶𝑆𝑡/ℏ)𝜓↑(𝒙)exp(−𝐻𝐵𝐶𝑆𝑡/ℏ),  

 𝜓ത↓(𝒙, 𝑡) = exp(𝐻஻஼ௌ𝑡/ℏ)𝜓↓
ற(𝒙)exp(−𝐻஻஼ௌ𝑡/ℏ). 2.2-5 

Then, we can find the equations of motion of the Heisenberg field operators in the imaginary-

time representation: 

 ℏ𝜕௧𝜓↑(𝒙, 𝑡) = −𝒯௫𝜓↑(𝒙, 𝑡) − Δ(𝒙)𝜓ത↓(𝒙, 𝑡),  

 ℏ𝜕௧𝜓ത↓(𝒙, 𝑡) = −Δ∗(𝒙)𝜓↑(𝒙, 𝑡) + 𝒯௫
∗𝜓ത↓(𝒙, 𝑡). 2.2-6 

Introducing the temperature (Matsubara) Green’s function: 

 
𝒢(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = −

1

ℏ
〈𝒯௧ ቀ𝜓↑(𝒙𝑡)𝜓ത↑(𝒙ᇱ𝑡ᇱ)ቁ〉,  

 
ℱ(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = −

1

ℏ
〈𝒯௧ ቀ𝜓ത↓(𝒙𝑡)𝜓ത↑(𝒙ᇱ𝑡ᇱ)ቁ〉,  

 
𝒢̅(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = −

1

ℏ
〈𝒯௧ ቀ𝜓ത↓(𝒙𝑡)𝜓↓(𝒙ᇱ𝑡ᇱ)ቁ〉,  

 
ℱത(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = −

1

ℏ
〈𝒯௧൫𝜓↑(𝒙𝑡)𝜓↓(𝒙ᇱ𝑡ᇱ)൯〉, 2.2-7 

And the generalized time-ordering procedure is given by: 

 𝒯௧൫𝐴(𝑡)𝐵(𝑡ᇱ)൯ = 𝜃(𝑡 − 𝑡ᇱ)𝐴(𝑡)𝐵(𝑡ᇱ) − 𝜃(𝑡ᇱ − 𝑡)𝐵(𝑡ᇱ)𝐴(𝑡),  

So, the equations of motion for the temperature Green’s functions is obtained as: 

 −ℏ𝜕௧𝒢(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = 𝛿(𝒙 − 𝒙′)𝛿(𝑡 − 𝑡ᇱ) + 𝒯௫𝒢(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) + Δ(𝒙)ℱത(𝒙𝑡, 𝒙ᇱ𝑡ᇱ),  

 −ℏ𝜕௧ℱത(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = Δ∗(𝒙)𝒢(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) − 𝒯௫
∗ℱത(𝒙𝑡, 𝒙ᇱ𝑡ᇱ),  

 −ℏ𝜕௧𝒢̅(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = 𝛿(𝒙 − 𝒙′)𝛿(𝑡 − 𝑡ᇱ) + Δ∗(𝒙)ℱ(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) − 𝒯௫
∗𝒢̅(𝒙𝑡, 𝒙ᇱ𝑡ᇱ),  

 −ℏ𝜕௧ℱ(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = −𝒯௫ℱ(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) − Δ(𝒙)𝒢̅(𝒙𝑡, 𝒙ᇱ𝑡ᇱ). 2.2-8 

So called the Gor'kov equations. Their original form was different because Gor’kov did not 

work with the anomalous averages first introduced by Bogoliubov. 

In his work, Gor'kov derived and used the first two equations 2.2-8. Supplemented with 

the two additional relations, the Gor'kov equations can be rewritten as 

 
൜൬

ℏ𝜕௧ 0
0 ℏ𝜕௧

൰ ൬
𝒯௫ Δ(𝑥⃗)

Δ∗(𝑥⃗) −𝒯௫
∗ ൰ൠ ൬

𝒢 ℱ

ℱത 𝒢̅൰ = −𝛿(𝑥⃗ − 𝑥⃗′)𝛿(𝑡 − 𝑡ᇱ) ቀ
1 0
0 1

ቁ. 2.2-9 
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It can also be written in a short notation 

 
𝐺(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = ൬

𝒢(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) ℱ(𝒙𝑡, 𝒙ᇱ𝑡ᇱ)

ℱത(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) 𝒢̅(𝒙𝑡, 𝒙ᇱ𝑡ᇱ)
൰,  

 
𝐻஻ௗீ = ൬

𝒯௫ Δ(𝒙)

Δ∗(𝒙) −𝒯௫
∗ ൰,         Bogoliubov-de Gennes Hamiltonian, 

1෰ = ቀ
1 0
0 1

ቁ, 

 

so, we can write Eq. 2.2-9 in an elegant form that is usually called Gor'kov-Nambu equation. 

 ൛ℏ𝜕௧1෰ + 𝐻஻ௗீൟ𝐺(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) = −𝛿(𝒙 − 𝒙′)𝛿(𝑡 − 𝑡ᇱ)1෰, 2.2-10 

Using the boundary condition: 

 𝐴(𝒙, 𝒙ᇱ, Δ𝑡) = −𝐴(𝒙, 𝒙ᇱ, Δ𝑡 + 𝛽ℏ), ൣ𝐴 = 𝒢, 𝒢ሚ, ℱ, ℱ෨൧, 2.2-11 

results in the expansion in terms of the Matsubara frequencies (𝜔௡): 

 
𝐴(𝒙, 𝒙ᇱ, Δ𝑡) =

1

𝛽ℏ
෍ 𝑒ି௜௡ఠ೙୼௧

௡

𝐴(𝒙, 𝒙ᇱ, 𝜔௡),        𝜔௡ =
𝜋(2𝑛 + 1)

𝛽ℏ
. 2.2-12 

And, being well-known that the temperature Green’s functions are defined only for −𝛽ℏ <

𝑡 − 𝑡ᇱ < 𝛽ℏ, due to the antiperiodic boundary condition. Thus, we arrive at: 

 
𝛿(𝑡 − 𝑡ᇱ) =

1

𝛽ℏ
෍ 𝑒ି௜௡ఠ೙൫௧ି௧ᇲ൯

௡

.        − 𝛽ℏ < 𝑡 − 𝑡ᇱ < 𝛽ℏ. 2.2-13 

And allow us to write the Gor'kov-Nambu in the following form: 

൜൬
𝑖ℏ𝜔௡ 0

0 𝑖ℏ𝜔௡
൰ − ൬

𝒯௫ Δ(𝒙)

Δ∗(𝒙) −𝒯௫
∗ ൰ൠ ൬

𝒢ఠ(𝒙, 𝒙ᇱ, 𝜔௡) ℱఠ(𝒙, 𝒙ᇱ, 𝜔௡)

ℱതఠ(𝒙, 𝒙ᇱ, 𝜔௡) 𝒢ఠ̅(𝒙, 𝒙ᇱ, 𝜔௡)
൰ = −𝛿(𝒙 − 𝒙′) ቀ

1 0
0 1

ቁ, 

 ൛𝑖ℏ𝜔௡1෰ − 𝐻஻ௗீൟ𝐺ఠ(𝒙, 𝒙′) = 𝛿(𝒙 − 𝒙′)1෰,

𝐺ఠ = ൬
𝒢ఠ(𝒙, 𝒙ᇱ, 𝜔௡) ℱఠ(𝒙, 𝒙ᇱ, 𝜔௡)

ℱതఠ(𝒙, 𝒙ᇱ, 𝜔௡) 𝒢ఠ̅(𝒙, 𝒙ᇱ, 𝜔௡)
൰.  

2.2-14 

To solve these equations, it is convenient to introduce new operators in the Hilbert 

space defined as: 

 
ൻ𝒙ห𝐴መఠห𝒙ᇱൿ = 𝐴ఠ(𝒙, 𝒙ᇱ) → 𝐺෰ఠ = ቆ

𝒢መఠ ℱ෠ఠ

ℱത෠ఠ 𝒢̅መ
ఠ

ቇ, 2.2-15 
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and 

 ൻ𝒙ห𝒯෠ห𝒙ᇱൿ = 𝛿(𝒙 − 𝒙′)𝒯௫,  

 ൻ𝒙หΔ෡ห𝒙ᇱൿ = 𝛿(𝒙 − 𝒙′)Δ(𝒙′), 2.2-16 

The 𝐻஻ௗீ  operator can be expressed as the sum of the kinetic and interaction (condensate) 

contributions: 

𝒯෰ = ൬𝒯෠ 0
0 −𝒯෠ ∗

൰, Δ෱ = ൬ 0 Δ෡

Δ෡∗ 0
൰. 2.2-17 

Equation 2.2-14 become: 

 𝑖ℏ𝜔௡ൻ𝒙ห𝐺෰ఠห𝒙ᇱൿ = 𝛿(𝒙 − 𝒙′)1෰ + 𝐻஻ௗீ𝐺ఠ(𝒙, 𝒙′) ,  

 𝑖ℏ𝜔௡ൻ𝒙ห𝐺෰ఠห𝒙ᇱൿ = ⟨𝒙|𝒙ᇱ⟩1෰ + ൻ𝒙ห൫𝒯෰ + Δ෱൯ห𝒙ᇱൿ. 2.2-18 

With completeness relation of the Hilbert space, it is obtained the operator form of the 

Gor’kov-Nambu equations: 

 ൫𝑖ℏ𝜔௡ − 𝒯෰൯𝐺෰ఠ = 1෰ + Δ෱𝐺෰ఠ, 2.2-19 

To the normal state Δ෡ = 0, and we obtain the normal or unperturbed Green function operator  

 ൫𝑖ℏ𝜔௡ − 𝒯෰൯𝐺෰ఠ
(଴)

= 1෰ , 2.2-20 

And using Eqs. 2.2-19 and 2.2-20 one obtains 

 𝐺෰ఠ = 𝐺෰ఠ
(଴)

+ 𝐺෰ఠ
(଴)

Δ෱𝐺෰ఠ, 2.2-21 

Which is the Gor’kov-Nambu formalism as Dyson equation for the Green function 𝐺෰ఠ. And 

iterating  

 𝐺෰ఠ = 𝐺෰ఠ
(଴)

+ 𝐺෰ఠ
(଴)

Δ෱𝐺෰ఠ
(଴)

+ 𝐺෰ఠ
(଴)

Δ෱𝐺෰ఠ
(଴)

Δ෱𝐺෰ఠ
(଴)

+ ⋯. 2.2-22 

Now, we need to extract the equation for the anomalous Green function in order to construct 
the self-consistency equation for the superconducting gap. So, from the Eq. 2.2-21 

 
ቆ

𝒢መఠ ℱ෠ఠ

ℱത෠ఠ 𝒢̅መ
ఠ

ቇ = ቆ
𝒢መఠ

(଴)
0

0 𝒢̅መ
ఠ
(଴)

ቇ + ቆ
𝒢መఠ

(଴)
0

0 𝒢̅መ
ఠ
(଴)

ቇ ൬ 0 Δ෡

Δ෡∗ 0
൰ ቆ

𝒢መఠ ℱ෠ఠ

ℱത෠ఠ 𝒢̅መ
ఠ

ቇ, 2.2-23 
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thus, we obtain 

 𝒢̅መ
ఠ = 𝒢̅መ

ఠ
(଴)

+ 𝒢̅መ
ఠ
(଴)

Δ෡∗ℱ෠ఠ ,  

 ℱ෠ఠ = 𝒢መఠ
(଴)

Δ෡𝒢̅መ
ఠ . 2.2-24 

And we obtain the following after iteration: 

 ℱ෠ఠ = 𝒢መఠ
(଴)

Δ෡𝒢̅መ
ఠ
(଴)

+ 𝒢መఠ
(଴)

Δ෡𝒢̅መ
ఠ
(଴)

Δ෡∗𝒢መఠ
(଴)

Δ෡𝒢̅መ
ఠ
(଴)

+ ⋯. 2.2-25 

From Eq. 2.2-7 is obtained a relation between the energy gap and the anomalous Green 

function 

                   Δ(𝒙) = 𝑔〈𝜓↑(𝒙)𝜓↓(𝒙′)〉 = −𝑔ℏ lim
𝒙ᇲ→𝒙

lim
୼௧→଴

ℱ(𝒙𝑡, 𝒙ᇱ𝑡ᇱ), 

Δ(𝒙) = −𝑔ℏ lim
𝒙ᇲ→𝒙

lim
୼௧→଴

1

𝛽ℏ
෍ 𝑒ି୧ఠ୼௧

ఠ

ℱఠ(𝒙, 𝒙ᇱ), 
 

  Δ(𝒙) = −𝑔𝑇 lim
𝒙ᇲ→𝒙

lim
୼௧→଴

෍ 𝑒ି୧ఠ୼௧

ఠ

ℱఠ(𝒙, 𝒙ᇱ), 2.2
-26 

with 𝑔 the (Gor’kov) coupling constant, and from Eq. 2.2-25 obtains the self-consistency 

equation which is expanded in powers of the order parameter (gap function) 

 
Δ(𝒙) = න 𝑑ଷ𝒚 𝐾௔(𝒙, 𝒚)Δ(𝒚) 

         + ∫൫∏ 𝑑ଷ𝒚
௜

ଷ
௜ୀଵ ൯ 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)Δ(𝒚ଵ)Δ∗(𝒚ଶ)Δ(𝒚ଷ) 

         + ∫൫∏ 𝑑ଷ𝒚
௜

ହ
௜ୀଵ ൯ 𝐾௖(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ, 𝒚ସ, 𝒚ହ)Δ(𝒚ଵ)Δ∗(𝒚ଶ)Δ(𝒚ଷ)Δ∗(𝒚ସ)Δ(𝒚ହ) +

⋯. 

2.2-
27 

and the integral kernels are given  

 𝐾௔(𝒙, 𝒚) = −𝑔𝑇 lim
୼௧→଴

෍ 𝑒ି௜ఠ୼௧

ఠ

𝒢ఠ
(଴)

(𝒙, 𝒚)𝒢ఠ̅
(଴)

(𝒚, 𝒙),  

 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)

= −𝑔𝑇 lim
୼௧→଴

෍ 𝑒ି୧ఠ୼௧

ఠ

𝒢ఠ
(଴)

(𝒙, 𝒚ଵ)𝒢ఠ̅
(଴)

(𝒚ଵ, 𝒚ଶ)𝒢ఠ
(଴)

(𝒚ଶ, 𝒚ଷ)𝒢ఠ̅
(଴)

(𝒚ଷ, 𝒙),  

 𝐾௖(𝒙, 𝒚ଵ, … , 𝒚ହ) =

−𝑔𝑇 lim
୼௧→଴

∑ 𝑒ି୧ఠ୼௧
ఠ 𝒢ఠ

(଴)(𝒙, 𝒚ଵ)𝒢ఠ̅
(଴)(𝒚ଵ, 𝒚ଶ)𝒢ఠ

(଴)(𝒚ଶ, 𝒚ଷ)𝒢ఠ̅
(଴)(𝒚ଷ, 𝒚ସ)𝒢ఠ

(଴)(𝒚ସ, 𝒚ହ)𝒢ఠ̅
(଴)(𝒚ହ, 𝒙). 

2.2
-28 
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Equation 2.2-27 can be truncated to a desired order. To obtain the GL equations is necessary 

keep only the first and third powers (the Gor’kov truncation). To obtain the EGL formalism, 

it is of importance to include the fifth-power term. 

For the normal-state temperature Green function 𝒢ఠ
(଴)

(𝒙, 𝒚), we have (at zero magnetic 

field)  

 
𝒢ఠ

(଴)
(𝒙, 𝒚) = න

𝑑ଷ𝒌

(2𝜋)ଷ

𝑒ି୧𝒌(𝒙ି𝒚)

𝑖ℏ𝜔 − 𝜉௞
. 2.2-29 

for a spherically symmetric Fermi surface and in the parabolic band approximation the single-

particle energy is given by 𝜉௞ =
ℏమ௞మ

ଶ௠
− 𝜇, measured from the chemical potential 𝜇, and 

𝒢ఠ̅
(଴)

(𝒙, 𝒚) = −𝒢ିఠ
(଴)

(𝒚, 𝒙).  

The inclusion of the magnetic field in the formalism is made by the field-induced 

corrections through the field-dependent Peierls phase factor in the Green function obtained 

before 

 𝒢ீ௢௥
(଴)

(𝒙, 𝒙′) = 𝑒୧஍(𝒙,𝒙ᇱ)𝒢ఠ
(଴)

(𝒙, 𝒙′), 2.2-30 

From the equation for the normal Green function  

 𝛁௫Φ(𝒙, 𝒙′) =
𝑒

ℏc
𝐀(𝒙), 2.2-31 

in the semi-classical approximation is obtained 

 Φ(𝒙, 𝒙′) ≈
𝑒

ℏ𝑐
𝐀(𝒙) ∙ (𝒙 − 𝒙′). 2.2-32 

And considering that typical length of the spatial variations of the gap becomes much larger 

than the typical spatial length of the integral kernels, it is convenient to use the gradient 

expansion: 

 
Δ(𝒚) = Δ(𝒙 + 𝒛) = ෍

1

𝑛!

ஶ

௡ୀଵ

(𝒛 ∙ 𝛁)௡Δ(𝒙) 2.2-33 

And as the typical length of the spatial variations of the vector potential is much larger than 

the characteristic lengths of the integral kernels in the self-consistency equation: 

 𝑒୧஍(𝒛) = 1 + i
𝑒

ℏc
𝒛𝐀(𝒙). 2.2-34 
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Then finally, we can calculate Eq. 2.2-27, and in the presence of the magnetic field, in 

particular, the GL equation is obtained when keeping only the first two terms, including 𝐾௔ 

and 𝐾௕: 

 
Δ(𝒙) = න 𝑑ଷ𝒛 𝐾௔(𝒛)Δ(𝒙) +

1

6
න 𝑑ଷ𝒛 𝐾௔(𝒛)zଶ𝐃ଶΔ(𝒙)   

+ න ൭ෑ 𝑑ଷ𝒚
௜

ଷ

௜ୀଵ

൱ 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)|Δ(𝒙)|ଶΔ(𝒙), 

2.2-35 

where 𝐃 = 𝛁 − i
ଶ௘

ℏୡ
𝐀, the so-called gauge invariant derivative.  

Expanding in terms of  𝜏, collecting terms of the order 𝜏ଵ/ଶ, gives the ordinary BCS 

expression for the critical temperature 𝑇௖: 

 
𝑇௖ =

2𝑒ஓ

𝜋
ℏωୡ exp[−1/𝑔𝑁(0)]. 2.2-36 

Where 𝑇௖ is expressed in terms of the microscopic parameters of the superconductor, ωୡ 

denotes the Debye (cut-off) frequency used as regulator of the well-known ultraviolet 

divergence by introducing the cut-off energy, which is identified with the Debye energy when 

the superconductivity is mediated by phonons, 𝑔 the coupling constant, γ = 0.577 the Euler 

constant, and 𝑁(0) the density of the carrier state (DOS) at the Fermi surface. 

In the order 𝜏ଷ/ଶ, one recovers the standard GL equation:  

 𝑎𝜏Δ + 𝑏|Δ|ଶΔ − 𝐾𝐃ଶΔ = 0, 2.2-37 

Where  

𝑎 = 𝑔𝑁(0), 𝑏 = 𝑔𝑁(0) 
7𝜁(3)

8𝜋ଶ𝑇௖
ଶ

, 𝐾 =  
𝑏

6
ℏଶ𝑣ி

ଶ. 

With  𝑣ி the Fermi velocity and 𝜁(… ) the Riemann zeta function.  

To find the GL equation for the current, Gor’kov has employed the linear response to 

the magnetic field  

 
𝒋(𝒙) = lim

୼௧→଴
 lim
𝒙ᇲ→𝒙

ቈ
iℏ𝑒

𝑚
(𝛁௫ − 𝛁௫ᇲ)𝒢̅(𝒙𝑡, 𝒙ᇱ𝑡ᇱ) −

2𝑒ଶ

𝑚c
𝐀(𝒙)𝒢̅(𝒙𝑡, 𝒙ᇱ𝑡ᇱ)቉, 2.2-38 
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where the expression for 𝒢̅ must be accounted up to the leading correction 𝛿𝒢ఠ̅ 

 𝒢ఠ̅(𝒙, 𝒙′)   = 𝒢̅ீ
௢௥,ఠ

(଴)
(𝒙, 𝒙′) + 𝛿𝒢ఠ̅(𝒙, 𝒙′) ,  

 𝛿𝒢ఠ̅(𝒙, 𝒙′)

=
1

ℏଶ
න 𝑑ଷ𝒚 𝑑ଷ𝒛 𝒢̅ீ

௢௥,ఠ
(଴)

(𝒙, 𝒚)𝒢ீ௢௥,ఠ
(଴)

(𝒚, 𝒛)𝒢̅ீ
௢௥,ఠ

(଴)
(𝒛, 𝒙′)Δ∗(𝒚)Δ(𝒛). 

2.2-39 

The contribution of 𝒢̅ீ
௢௥,ఠ

(଴)
(𝒙, 𝒙′) to 𝒋(𝒙) is zero, considering the linear expansion in 

the Peierls factor  

 
lim
𝒙ᇲ→𝒙

iℏ𝑒

𝑚
(𝛁௫ − 𝛁௫ᇲ)𝒢̅(𝒙, 𝒙′) = lim

𝒙ᇲ→𝒙

2𝑒ଶ

𝑚c
𝐀(𝒙)𝒢̅(𝒙, 𝒙′), 2.2-40 

So, Eq. 2.2-38 becomes  

 𝒋(𝒙) =
i𝑒𝑇

𝑚
෍[(𝛁௫ − 𝛁௫ᇲ)𝛿𝒢ఠ̅(𝒙, 𝒙ᇱ)]𝒙ᇲ→𝒙

௡

−
2𝑒ଶ𝑇

𝑚ℏc
𝐀(𝒙) ෍ 𝛿𝒢ఠ̅(𝒙, 𝒙ᇱ)

௡

,  

 𝒋(𝒙)

=
i𝑒𝑇

𝑚
න 𝑑ଷ𝒚 𝑑ଷ𝒛 Δ(𝒙)Δ∗(𝒛)𝑒୧஍(𝒚,𝒛)𝒢ఠ

(଴)
(𝒚, 𝒛) ቄ𝑒୧஍(𝒛,𝒙ᇱ)𝒢ିఠ

(଴)
(𝒛, 𝒙′)𝛁௫ቂ𝑒୧஍(𝒚,𝒙ᇱ)𝒢ିఠ

(଴)
(𝒚, 𝒙)ቃ

− 𝑒୧஍(𝒚,𝒙)𝒢ିఠ
(଴)

(𝒚, 𝒙)𝛁௫ቂ𝑒୧஍(𝒙ᇱ,𝒛)𝒢ିఠ
(଴)

(𝒙′, 𝒛)ቃቅ −
2𝑒ଶ𝑇

𝑚ℏc
𝐀(𝒙) ෍ 𝛿𝒢̅ீ

௢௥,ఠ(𝒙, 𝒙ᇱ)

௡

. 

2.2-41 

By using Eq. 2.2-34, and due of the spherical symmetry, we obtain the second GL equation 

𝒋(𝒙) =
𝑒𝑇

𝑚iℏଶ
න 𝑑ଷ𝒚 𝑑ଷ𝒛 𝒢ఠ

(଴)
(𝒚, 𝒛)ቂ𝒢ఠ

(଴)
(𝒙, 𝒛)𝛁௫𝒢ఠ

(଴)
(𝒚, 𝒙) − 𝒢ఠ

(଴)
(𝒚, 𝒙)𝛁௫𝒢ఠ

(଴)
(𝒙, 𝒛)ቃ

× ൤−
2i𝑒

ℏ𝑐
|Δ(𝒙)|ଶ𝐀(𝒙) ∙ (𝒛 − 𝒚) + Δ∗(𝒙) 𝒚 ∙ 𝛁Δ(𝒙) + Δ∗(𝒙) 𝒛 ∙ 𝛁Δ∗(𝒙)൨, 

 

𝒋(𝒙) =  𝑔𝑁(0) 
7𝜁(3)ℏଶ𝑣ி

ଶ

16𝜋ଶ𝑇௖
ଶ

[Δ∗(𝒙)𝐃Δ(𝒙) − Δ(𝒙)𝐃Δ∗(𝒙)]. 2.2-42 
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2.3 EXTENDED GINZBURG-LANDAU FORMALISM  

Over time, several theorists wished to develop an extension to the GL theory, with the 

idea of improving the formalism and retaining some advantages of its original formulation. 

Thus, several GL-type theories have been proposed. 

 In the first developments, the so-called "local superconducting" formalism there 

appeared a complicated synthesis of the BCS and GL approaches. With a GL theory with 

nonlocal corrections, including higher order parameter gradients, where it was used in higher 

critical field anisotropy studies and the vortex structure in d-wave superconductors. In the 

previous examples, the extension of the GL theory was based on the expansion of the self-

consistent gap equation, including higher powers of the order parameter and its spatial 

gradients phenomenologically. But the calculation of these terms is not so simple, where the 

fundamental problem is to correctly select all the relevant contributions of the same order of 

magnitude. This problem does not arise in the derivation of the original GL theory for a single-

band superconductor, where only the first nonlinear term and the second order gradient of the 

condensed wave function are included. But for the GL theory of a two-band superconductor, 

it leads to the appearance of incomplete contributions of higher order. Such incomplete terms 

may lead to misleading conclusions and should be avoided. 

Thus, it is necessary to use a single small parameter in the expansion. In the case, such 

a small parameter is the proximity to the critical temperature, i.e., 𝜏 = 1 − 𝑇/𝑇௖. In fact, the 

standard GL approach is the lowest order in the expansion 𝜏 of the self-consistent gap equation. 

However, the next orders in 𝜏 are also of great importance, for example, to capture physics of 

different healing lengths of different condensates in multiband superconductors. Higher orders 

in 𝜏 are also important in the case of single band, surprisingly improving the GL theory [65].  

So, based on the formalism of the Gor'kov Green function, using the first three orders 

of the expansion 𝜏 of the gap equation, that is, 𝜏௡/ଶ with 𝑛 = 1,2,3. We have, for the order 

𝜏ଵ/ଶ, we find the equation for the critical temperature. The terms proportional to 𝜏ଷ/ଶ give the 

standard GL theory, giving the lowest order contributions (in 𝜏) to the superconducting 

condensate, that is, ∝ 𝜏ଵ/ଶ, and the magnetic field, that is, ∝ 𝜏. Then, with the terms of the 

order 𝜏ହ/ଶ, is derived the equations for the next-to-leading corrections to the superconducting 

order parameter and magnetic field, ∝ 𝜏ଷ/ଶ and ∝ 𝜏ଶ, respectively. The equations that control 

the order parameter and the magnetic field up to the next-to-leading order in 𝜏 constitutes the 

extended GL formalism (EGL). 
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So, with these considerations, we use the Taylor expansion of the gaps up to the fourth 

order derivatives for the gaps inside the integrals (Eq. 2.2-27) involving 𝐾௔, up to the second 

order inside the integrals involving 𝐾௕ and just the leading term inside the integral involving 

𝐾௖. Due to the spherical symmetry of the kernels, some odd-order terms of these expansions 

can be neglected and a systematic expansion of the gap equation in 𝜏 can be facilitated by 

introducing the scaling transformation for the order parameter, the coordinates, and the spatial 

derivatives of the order parameter in the following form: 

Δ = 𝜏ଵ/ଶΔ, 𝒙 = 𝜏−1/2𝒙, 𝛁௫⃗ = 𝜏1/2𝛁𝒙 

In further calculations we omit the bars unless it causes any confusion (𝛁𝒙 = 𝛁). The result 

reads as 

 𝜏ଵ/ଶ

𝑔
Δ = 𝑎ଵ𝜏ଵ/ଶΔ + 𝑎ଶ𝜏ଷ/ଶ𝛁ଶΔ + 𝑎ଷ𝜏ହ/ଶ𝛁ଶ(𝛁ଶΔ) − 𝑏ଵ𝜏

ଷ
ଶ|Δ|ଶΔ

− 𝑏ଶ𝜏ହ/ଶ[2Δ|𝛁Δ|ଶ + 3Δ∗(𝛁Δ)ଶ + Δଶ𝛁ଶΔ∗ + 4|Δ|ଶ𝛁ଶΔ]

+ 𝑐ଵ𝜏ହ/ଶ|Δ|ସΔ, 

2.3-1 

the coefficients are given by 

𝑎ଵ = A − 𝑎 ቈ𝜏 +
𝜏ଶ

2
+ 𝒪(𝜏ଷ)቉, A = 𝑁(0) ln ൬

2𝛾ℏ𝜔𝑐

𝜋𝑇𝑐

൰ , 𝑎 = −𝑁(0),  

𝑏ଵ = 𝑏[1 + 2𝜏 + 𝒪(𝜏ଶ)], 
𝑏 = 𝑁(0) 

7𝜁(3)

8𝜋ଶ𝑇௖
ଶ

,  

𝑎ଶ = 𝐾[1 + 2𝜏 + 𝒪(𝜏ଶ)], 
𝐾 =  

𝑏

6
ℏଶ𝑣ி

ଶ,  

𝑐ଵ = 𝑐[1 + 𝒪(𝜏)], 
𝑐 = 𝑁(0) 

93𝜁(5)

1288𝜋ସ𝑇௖
ସ

,  

𝑎ଷ = 𝑄[1 + 𝒪(𝜏)], 𝑄 =  
𝑐

30
ℏସ𝑣ி

ସ,  

𝑏ଶ = 𝐿[1 + 𝒪(𝜏)], 𝐿 =  
𝑐

9
ℏଶ𝑣ி

ଶ.  

The solution to the gap equation 2.3-1 must also be sought in the form of a series expansion 

in 𝜏 .  
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So, we can introduce the expansion in small deviation from the critical temperature  

 
Δ(𝒙) = 𝜏1/2 ෍ 𝜏𝑛

∞

𝑛=0

Δ(𝑛)(𝒙), 2.3-2 

Then, collecting terms of the same order, we obtain a set of equations for each Δ(௡)
 

 (gିଵ − A)Δ(଴) = 0,  

 𝑎Δ(଴) + 𝑏หΔ(଴)ห
ଶ

Δ(଴) − 𝐾𝛁ଶΔ(଴) = 0,  

 𝑎Δ(ଵ) + 𝑏 ቀ2Δ(ଵ)หΔ(଴)ห
ଶ

+ Δ(ଵ)∗Δ(଴)ଶቁ − 𝐾𝛁ଶΔ(ଵ) = 𝐹, 2.3-3 

And 𝐹 is given by  

 𝐹 = −
𝑎

2
Δ(଴) + 2𝐾𝛁ଶΔ(଴) + 𝑄𝛁ଶ൫∇ሬሬ⃗ ଶΔ(଴)൯ − 2𝑏หΔ(଴)ห

ଶ
Δ(଴)

− 𝐿 ቂ2Δ(଴)ห𝛁Δ(଴)ห
ଶ

+ 3Δ(଴)∗൫𝛁Δ(଴)൯
ଶ

+ Δ(଴)ଶ𝛁ଶΔ(଴)∗

+ 4หΔ(଴)ห
ଶ

𝛁ଶΔ(଴)ቃ + 𝑐หΔ(଴)ห
ସ

Δ(଴) 

 

The solution to first equation, i.e.,  𝑔A = 1, gives the ordinary BCS expression for the critical 

temperature, i.e., 𝑇௖ =
ଶ௘ಋ

గ
ℏωୡ exp[−1/𝑔𝑁(0)]. 

The extended equation is a linear differential inhomogeneous equation to be solved 

after Δ(଴) is found from standard GL equation. Note that similar features in the 𝜏 expansion of 

the gap equation appear for a two-band superconductor as well. While the equation for Δ(଴) is 

nonlinear, the higher-order contributions to Δ will be controlled by inhomogeneous linear 

differential equations. Such a system of equations is solved recursively, starting from the 

lowest order, since solutions for previous orders will appear in the higher-order equations, but 

not vice versa.  

The solution to the system will thus be uniquely defined (when the relevant boundary 

conditions are specified), ensuring consistency of the developed expansion. The structure of 

Eq. 2.3-3 makes it possible to conclude that the next-to-leading term Δ(ଵ) is not trivially 

proportional to Δ(଴) . For that reason, the spatial profile of Δ(ଵ)  is different compared to Δ(଴). 

This means that the characteristic length for the spatial variations of Δ in EGL differs from the 

standard GL coherence length. However, both lengths have the same dependence on 𝜏 , 

i.e., 𝛁Δ(ଵ) ∝ 𝜏.   
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2.4 INTERTYPE SUPERCONDUCTIVITY  

The division of Abrikosov between types I and II of superconductivity was very 

important in order to establish a pattern of interpretation of very complex phenomena in 

superconductors, and the distinction between types of superconductivity for single-band 

materials were well explained by the Ginzburg-Landau theory that ideally distinguishes type I 

and type II superconducting materials. However, experimental investigations as well as 

theoretical calculations beyond GL theory have shown that this GL dichotomy of 

superconductivity types is achieved only at the limit 𝑇 → 𝑇௖. 

With the study of unconventional vortex configurations in 𝑀𝑔𝐵ଶ, interest in other 

possible types of superconductivity in multiband superconductors has been aroused, where 

many carrier bands contribute to the state of condensation.  

Vagov et al. considering single-band and two-band superconducting cases under the 

effect of magnetic fields applied in the vicinity of 𝜅଴ = 1/√2, brought in another physical 

image for the unusual phenomena observed in multiband compounds, where they considered 

the Bogomolnyi self-duality in the EGL equations, in order to describe the so-called intertype 

domain between the standard types I and II in the plane (𝜅, 𝑇) which can be significantly 

increased to a two-band superconductor. Thus, it has been shown that the intertype domain 

cannot be captured by the standard GL theory because of non-local effects beyond the GL 

domain that must be considered [61]. 

In the presence of a magnetic field, the gap function Δሬሬ⃗  and the magnetic field 𝐁 (or the 

vector potential 𝐀) must also be expanded in powers of 𝜏, so they are represented in the form 

for a two-band system 

 Δሬሬ⃗ = τଵ/ଶ൫Δሬሬ⃗ (଴) + τΔሬሬ⃗ (ଵ) + ⋯ ൯,  

                                         𝐁 = 𝜏൫𝐁(଴) + 𝜏𝐁(ଵ) + ⋯ ൯,  

                                         𝐀 = 𝜏ଵ/ଶ൫𝐀(଴) + 𝜏𝐀(ଵ) + ⋯ ൯. 2.4-1 

Matching the terms of the same order in 𝜏 the EGL free-energy density, following the analysis 

[35][61], we can write 

 𝑓 = 𝜏ଶ൫𝜏ିଵ𝑓(ିଵ) + 𝑓(଴) + 𝜏𝑓(ଵ) + ⋯ ൯, 2.4-2 
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where the lowest-order contribution reads 

 𝑓(ିଵ) = ൻΔሬሬ⃗ (଴)ห𝐿หΔሬሬ⃗ (଴)ൿ, 2.4-3 

with 〈… 〉 denoting the scalar product of vectors in the band space. Here 𝐿 for a two-band 

system is a 2x2 matrix where the elements given by 

 𝐿௜௝ = 𝛾௜௝ − A௜𝛿௜௝,  

being 𝛿௜௝  the Kronecker symbol, and 𝛾௜௝ the inverse of the coupling matrix, where each 

element is given by the term 𝑔௜௝(elements of the coupling matrix) that are symmetric, the 

coupling constants. The gap vector must be proportional to the eigenvector associated with the 

zero eigenvalue Δሬሬ⃗ (଴) = 𝜓(𝒙)𝜂⃗ଵ. 

The next-order contribution to the free energy density is the GL functional 

 
𝑓(଴) =

𝐁(଴)ଶ

8𝜋
+ ൫ൻΔሬሬ⃗ (଴)ห𝐿หΔሬሬ⃗ (ଵ)ൿ + 𝑐. 𝑐. ൯ + ෍ 𝑎௡

௡

ቚΔ௡
(଴)

ቚ
ଶ

+
𝑏௡

2
ቚΔ௡

(଴)
ቚ

ସ
+ 𝐾௡ ቚ𝐃Δ௡

(଴)
ቚ

ଶ
, 2.4-4 

𝐃 = 𝛁 − i
ଶ௘

ℏୡ
𝐀(଴) the gauge-invariant derivative with the leading order contribution of the 

vector potential and the coefficients are related to the band 𝑛.  

The leading correction to the GL functional is obtained in the form 

 
𝑓(ଵ) =

൫𝐁(଴) ∙ 𝐁(ଵ)൯

4𝜋
+ ൫ൻΔሬሬ⃗ (଴)ห𝐿หΔሬሬ⃗ (ଶ)ൿ + 𝑐. 𝑐. ൯ + ൻΔሬሬ⃗ (ଵ)ห𝐿หΔሬሬ⃗ (ଵ)ൿ + ෍ቀ𝑓௡,ଵ

(ଵ)
+ 𝑓௡,ଶ

(ଵ)
ቁ

௡

, 2.4-5 

where 𝑓௡,ଵ
(ଵ) contains only the lowest-order contributions to the band gap and the magnetic field, 

 
𝑓௡,ଵ

(ଵ)
=

𝑎௡

2
ቚΔ௡

(଴)
ቚ

ଶ

+ 2𝐾௡ቚ𝐃Δ௡
(଴)

ቚ
ଶ

+
𝑏௡

36

𝑒ଶℏଶ

𝑚ଶ𝑐ଶ
𝐵ሬ⃗ (଴)ଶቚΔ௡

(଴)
ቚ

ଶ

+ 𝑏௡ቚΔ௡
(଴)

ቚ
ସ

− 𝑄௡ ቊቚ𝐃ଶΔ௡
(଴)

ቚ
ଶ

+
1

3
൫𝒊௡ ∙ 𝒊 × 𝐁(଴)൯ +

4𝑒ଶ

ℏଶ𝑐ଶ
𝐁(଴)ଶቚΔ௡

(଴)
ቚ

ଶ

ቋ

−
𝐿௡

2
൜8ቚΔ௡

(଴)
ቚ

ଶ

ቚ𝐃Δ௡
(଴)

ቚ
ଶ

+ ൤Δ௡
(଴)ଶ

ቀ𝐃∗Δ௡
(଴)∗

ቁ
ଶ

+ 𝑐. 𝑐. ൨ൠ −
𝑐௡

3
ቚΔ௡

(଴)
ቚ

଺

, 

2.4-6 

while 𝑓௡,ଶ
(ଵ) includes also the leading corrections to the band gap and the field, 

 
𝑓௡,ଶ

(ଵ)
= ൬𝑎௡ + 𝑏௡ቚΔ௡

(଴)
ቚ

ଶ

൰ ቀΔ௡
(଴)∗

Δ௡
(ଵ)

+ 𝑐. 𝑐. ቁ

+ 𝐾௡ ቂቀ𝐃Δ௡
(଴)

∙ 𝐃∗Δ௡
∗(ଵ)

+ 𝑐. 𝑐. ቁ − 𝐀(ଵ) ∙ 𝒊௡ቃ, 
2.4-7 
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𝒊௡ = i
ଶ௘

ℏୡ
ቀΔ௡

(଴)
𝐃∗Δ௡

∗(଴)
− Δ௡

∗(଴)
𝐃Δ௡

(଴)
ቁ is the supercurrent density contribution of band 𝑛, and  

𝑄௡, 𝐿௡, 𝑐௡ are the coefficients each band. From this functional, it is possible to derive the Gibbs 

free energy that is used in the criterion of the interchange between types I and II.  

Now, we will check the switching between types I and II for an isotropic single-band 

case, the criterion for such interchange utilizes the corresponding Gibbs free energy: when it 

becomes smaller than that of the Meissner state at the thermodynamic critical field 𝐻௖. The 

respective difference between the Gibbs free energies is written as 

 
𝐺 = න 𝑔𝑑ଷ𝒙 , g = 𝑓 +

𝐻௖
ଶ

8𝜋
−

𝐻௖𝐁

4𝜋
. 2.4-8 

Then, the nucleation of a non-uniform condensate/field configuration can be investigated 

based on the criterion 𝐺(𝜅, 𝑇) = 0. That yields the corresponding GL critical parameter 𝜅∗(𝑇), 

hereafter referred to as simply a critical parameter. On the (𝜅, 𝑇) plane 𝜅∗ separates domains 

with and without the flux/condensate configuration of interest, called types II and I. Using this 

criterion for various nonuniform configurations (e.g., for the single vortex solution, the domain 

wall between the normal and superconducting state, etc.), it is possible to find the 

corresponding value of 𝜅 above which a non-uniform pattern (representing the well-known 

mixed state) becomes stable. In the following results it is convenient to use the dimensionless 

quantities 

𝒙 = 𝜆𝒙,   𝜓 = 𝜓ஶ𝜓, 
𝐁 =

𝐻𝑐
(0)𝜆

𝜅√2
𝐁, 𝐀 =

𝐻௖
(଴)

𝜆

𝜅
𝐀, 

𝒊 =
𝐻௖

(଴)

4𝜋𝐾𝜆
𝒊, 𝑓 =

𝐻௖
(଴)ଶ

4𝜋
𝑓, 𝑔 =

𝐻௖
(଴)ଶ

4𝜋
𝑔, 𝐺 =

𝐻௖
(଴)ଶ

൫𝜆√2൯
ଷ

4𝜋
𝐺. 

In the following we write the dimensionless quantities without bars unless it causes any 

confusion. The density of the Gibbs free energy difference is given by the expansion  

 𝑔 = 𝜏ଶ൫𝑔(଴) + 𝜏𝑔(ଵ) + ⋯ ൯, 2.4-9 

where in the lowest order we have the GL contribution 

 
𝑔(଴) =

1

2
ቆ

ห𝐁(଴)ห

𝜅√2
− 1ቇ

ଶ

+
1

2𝜅ଶ
|𝐃𝜓|ଶ − |𝜓|ଶ +

1

2
|𝜓|ସ, 2.4-10 
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while the leading correction writes 

 
𝑔(ଵ) = ቆ

ห𝐁(଴)ห

𝜅√2
− 1ቇ ൬

1

2
+

𝑎𝑐

3𝑏ଶ
൰ −

|𝜓|ଶ

2
+ |𝜓|ସ − |𝜓|ଶ +

|𝐃𝜓|ଶ

𝜅ଶ

+
1

4𝜅ସ

𝑎𝑄

𝐾ଶ
൜|𝐃ଶ𝜓|ଶ +

1

3
൫𝛁 × 𝐁(଴)൯

ଶ
+ 𝐁(଴)ଶ|𝜓|ଶൠ

+
1

4𝜅ଶ

𝑎𝐿

𝑏𝐾
{8|𝜓|ଶ|𝐃𝜓|ଶ + [𝜓ଶ(𝐃∗𝜓∗)ଶ + 𝑐. 𝑐. ]} +

𝑎𝑐

3𝑏ଶ
|𝜓|଺, 

2.4-11 

As we are interested in the boundaries between types I and II in the (𝜅, 𝑇) plane it is useful to 

expand 𝐺 around 𝜅଴ = 1/√2. So, expanding with respect to 𝛿𝜅, 𝛿𝜅 = 𝜅 − 𝜅଴, we obtain 

 
𝐺 = 𝜏ଶ ൭𝐺(଴) +

𝑑𝐺(଴)

𝑑𝜅
ቤ

఑బ

𝛿𝜅 + 𝜏𝐺(ଵ) + ⋯ ൱, 2.4-12 

The derivative 𝑑𝐺(଴)/𝑑𝜅 contains the direct contribution coming from the explicit appearance 

of 𝜅 and the indirect one related to the derivatives 𝑑𝜓/𝑑𝜅 and 𝑑𝐀/𝑑𝜅. However, one can 

immediately see that the indirect contribution is equal to zero because the corresponding terms 

in the integrand are proportional to 𝛿𝐺(଴)/𝛿𝜓 and 𝛿𝐺(଴)/𝛿𝐴 which are zero in the equilibrium.  

The expression for 
ௗ௚(బ)

ௗ఑
 reads 

 𝑑𝑔(଴)

𝑑𝜅
= −

ห𝐁(଴)ห

𝜅ଶ√2
ቆ

ห𝐁(଴)ห

𝜅√2
− 1ቇ −

1

𝜅ଷ
|𝐃𝜓|ଶ, 2.4-13 

At 𝜅 = 𝜅଴ solutions to the GL equations are obtained using the Bogomolnyi self-duality 

equations  

 ൫𝜕௬ + 𝑖𝜕௫൯𝜓 = ൫𝐀௫ − 𝑖𝐀௬൯𝜓,  

 ห𝐁(଴)ห = 1 − |𝜓|ଶ, 2.4-14 

that are useful to simplify the integrals in 𝐺, that can be written as 

 
𝐺 = 𝜏ଶ ൜−√2ℐ𝛿𝜅 + 𝜏 ൤൬1 −

𝑎𝑐

3𝑏ଶ
+ 2

𝑎𝑄

𝐾ଶ
൰ ℐ + ൬2

𝑎𝐿

𝑏𝐾
−

𝑎𝑐

3𝑏ଶ
−

5

3

𝑎𝑄

𝐾ଶ
൰ 𝒥൨ + ⋯ ൠ, 2.4-15 

With 

ℐ = න|𝜓|ଶ(1 − |𝜓|ଶ)𝑑ଷ𝑥, 𝒥 = න|𝜓|ସ(1 − |𝜓|ଶ)𝑑ଷ𝑥, 2.4-16 
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It is important to notice that 𝐺(଴) is zero for any solution of the GL equations at 𝜅 = 𝜅଴, 

manifesting the degeneracy of the Bogomolnyi point, so 𝐺 comprises only two contributions, 

∝ 𝛿𝜅  and ∝ 𝜏. 

Substituting Eq. 2.4-15 into 𝐺(𝜅, 𝑇) = 0 one obtains the general expression for critical 

parameters up to the leading correction in 𝜏, 

 
𝜅∗ = 𝜅଴ ൜1 + 𝜏 ൤1 −

𝑎𝑐

3𝑏ଶ
+ 2

𝑎𝑄

𝐾ଶ
+

𝒥

ℐ
൬2

𝑎𝐿

𝑏𝐾
−

𝑎𝑐

3𝑏ଶ
−

5

3

𝑎𝑄

𝐾ଶ
൰൨ + ⋯ ൠ, 2.4-17 

Where the constants are not dependent on the material parameters, which points to the 

robustness of the approach. Thus, we can calculate the critical parameter based on the criterion 

of interchange, which is dependent to the ratio of 𝒥/ℐ.  

The first criterion is based on the appearance of a flat Normal-Superconductor domain 

wall. The corresponding solution for this criterion is 𝒥/ℐ = 0.559. So,  

 𝜅௦
∗ = 𝜅଴(1 − 0.027𝜏), 2.4-18 

The thermodynamic stability of an isolated Abrikosov vortex, given by the condition 

𝐻௖ = 𝐻௖ଵ  yields to 𝒥/ℐ = 0.735. Thus  

 𝜅ଵ
∗ = 𝜅଴(1 + 0.093𝜏), 2.4-19 

The condition of changing the sign of the long-range vortex-vortex interaction is 

calculated using 𝐺 for the state with two single-quantum vortices separated by distance 𝑅. In 

the asymptotic case 𝒥/ℐ = 2 (𝑅 → ∞) 

 𝜅௟௜
∗ = 𝜅଴(1 + 0.95𝜏), 2.4-20 

Finally, onset of the superconductivity nucleation is defined by the condition 𝐻௖ଶ =

𝐻௖. To solve this equation, we can use Eq. 2.2-19 and utilize the fact that in the limit 𝐵 = 𝐻௖ଶ 

and the order parameter vanishes. Thus, in this limit one obtains 𝒥/ℐ → 0 and the 

corresponding critical parameter writes 

 𝜅ଶ
∗ = 𝜅଴(1 − 0.407𝜏), 2.4-21 

The boundaries between types I and II is given by the upper and lower limits 𝜅௟௜
∗  and 

𝜅ଶ
∗ respectively, in the limit 𝑇 → 𝑇௖ the difference disappears and one arrives at the standard 

classification: type I is below 𝜅଴ while type II is above 𝜅଴. Below 𝑇௖ is find the intertype 

domain between types I and II.  
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As we can see in the Figure 2.4-1:  

 

Figure 2.4-1 Internal structure of the transitional (intertype) domain [𝜅ଶ
∗(𝑇), 𝜅௟௜

∗ (𝑇)] as following from analysis of different 
isolated-vortex solutions. The subdivision in the three subdomains is dictated by the presence of critical parameters 𝜅ଵ,ே

∗ (𝑇) 
displaying stability of N-quantum vortices in the interval [𝜅௦

∗(𝑇), 𝜅ଵ
∗(𝑇)]. Figure from [35] 
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2.5 FLUCTUATION – DRIVEN SHIFT OF 𝑇௖ 

Introduced by Landau, the notion of quasiparticles has promoted great success in low 

temperature physics. Where, according to this hypothesis the properties of many body 

interacting systems at low temperatures are determined by the spectra of some low-energy, 

long-living excitations (quasiparticles). Phenomena which cannot be described by the 

quasiparticle method or by mean field approximation (MFA) are usually called fluctuations. 

A successful example of the use of both MFA and the quasiparticle description is, for example, 

the BCS theory, explained before. And due the fact that fluctuations give small corrections to 

the MFA results determined the success of the theory for traditional superconductors [104]. 

BCS Theory provides good results for the traditional superconductors, however in the 

vicinity of transition,  fluctuations lead to small corrections in the physical characteristics in a 

wide  range of temperatures. So, we can use the fluctuation theory to obtain the correction in 

the critical temperature.  

2.5.1 Partition function and free energy 

The complete description of thermodynamic properties can be done through the 

calculation of the partition function, in the vicinity of the superconducting transition, side by 

side with the fermionic electron excitations, fluctuation Cooper pairs of a bosonic nature 

appear in the system and they can be described by means of classical bosonic complex fields 

𝜓(𝒓)  which can be treated as “Cooper pair wave functions”.  

So, we need to find the free-energy functional with the fluctuation corrections, in D-

dimensions, and 𝑗 is related for each direction, we have for the anisotropic model: 

 
F = න 𝑑஽𝒓 ቐ𝑎|𝜓(𝒓)|ଶ +

𝑏

2
|𝜓(𝒓)|ସ + ෍ 𝐾(௝)ห𝜕௝𝜓(𝒓)ห

ଶ

௝

ቑ
௅ವ

. 2.5.1-1 

In order to find the fluctuation contribution, we have to write the order parameter as the sum 

of the equilibrium, 𝜓଴, and fluctuation, 𝜂(𝒓), parts.  

  𝜓(𝒓) = 𝜓଴ + 𝜂(𝒓). 2.5.1-2 

where 𝜓଴ = ට−
௔

௕
.  

 



48 

 

So, the free energy can be written as 

 F = F଴ + H. 2.5.1-3 

Being, F଴ the mean field contribution to the free energy, and, H is called the fluctuation 

Hamiltonian that is the fluctuation contribution to the free energy and has dependence on  𝜂(𝒓) 

and 𝜂∗(𝒓).  

Therefore, we can calculate the partition function  

 
Z = න D𝜓(𝒓)D𝜓∗(𝒓)exp ൜−

F

𝑇
ൠ ,  

 
Z = exp ൜−

F଴

𝑇
ൠ න D𝜂(𝒓)D𝜂∗(𝒓)exp ቊ−

H[𝜂(𝒓), 𝜂∗(𝒓)]

𝑇
ቋ . 2.5.1-4 

Applying 𝜓(𝒓) = 𝜓଴(𝒓) + 𝜂(𝒓), into the equation of free energy Eq. 2.5.1-1, and considering 

only the quadratic terms (|𝜂|ଶ, 𝜂ଶ, 𝜂∗ଶ) in the fluctuation, odd terms do not contribute to 

Gaussian fluctuation. Then, we have: 

1. 𝑎|𝜓(𝒓)|ଶ = 𝑎൫𝜓଴ + 𝜂(𝒓)൯൫𝜓଴ + 𝜂∗(𝒓)൯ → 𝑎|𝜓଴|ଶ + 𝑎|𝜂|ଶ; 

2. 
௕

ଶ
|𝜓(𝒓)|ସ =

௕

ଶ
൫𝜓଴ + 𝜂(𝒓)൯

ଶ
൫𝜓଴ + 𝜂∗(𝒓)൯

ଶ
=

௕

ଶ
(𝜓଴

ଶ + 𝜂ଶ + 2𝜓଴𝜂)(𝜓଴
ଶ + 𝜂∗ଶ +

2𝜓଴𝜂∗) →
௕

ଶ
(𝜓଴

ସ + 𝜓଴
ଶ𝜂ଶ + 𝜓଴

ଶ𝜂∗ଶ + 4𝜓଴
ଶ|𝜂|ଶ); 

3. 𝐾(௝)ห𝜕௝𝜓(𝒓)ห
ଶ

= 𝐾(௝)ห𝜕௝൫𝜓଴ + 𝜂(𝒓)൯ห
ଶ

→ 𝐾(௝)ห𝜕௝𝜂ห
ଶ
. 

Collecting the terms only with dependence in 𝜓଴, we can find  

 
F଴ = න 𝑑஽𝒓 ൜𝑎|𝜓଴|ଶ +

𝑏

2
𝜓଴

ସൠ = −
𝑎ଶ

2𝑏௅ವ

𝐿஽ . 2.5.1-5 

With the remaining terms we can obtain the fluctuation Hamiltonian  

 
H = න 𝑑஽𝒓 ቐ(𝑎 + 2𝑏𝜓଴

ଶ)|𝜂|ଶ +
𝑏

2
𝜓଴

ଶ𝜂ଶ +
𝑏

2
𝜓଴

ଶ𝜂∗ଶ

௅ವ

+ ෍ 𝐾(௝)ห𝜕௝𝜂ห
ଶ

௝

ቑ. 

2.5.1-6 
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2.5.2 Gaussian fluctuation Hamiltonian in terms of the Fourier components 

The fluctuation contribution to the partition function is written as: 

 
Zி௟௨௖ = න D𝜂(𝒓)D𝜂∗(𝒓)exp ቊ−

H[𝜂(𝒓), 𝜂∗(𝒓)]

𝑇
ቋ . 2.5.2-1 

To solve this functional integral we perform a Fourier transform from configuration space to 

the momentum space and separating into real and imaginary parts.  

𝜂(𝒓) =
1

𝐿஽/ଶ
෍ 𝑒௜𝐪∙𝒓𝜂𝐪

𝐪

, 𝜂∗(𝒓) =
1

𝐿஽/ଶ
෍ 𝑒ି௜𝐪∙𝒓𝜂𝐪

∗ .

𝐪

 2.5.2-2 

Rewriting the Gaussian Hamiltonian and separating the terms 

 
H = (𝑎 + 2𝑏𝜓଴) න 𝑑஽𝒓|𝜂(𝒓)|ଶ

௅ವ

+
𝑏

2
𝜓଴

ଶ න 𝑑஽𝒓[𝜂ଶ(𝒓)]
௅ವ

+
𝑏

2
𝜓଴

ଶ න 𝑑஽𝒓[𝜂∗ଶ(𝒓)]
௅ವ

+ ෍ 𝐾(௝)

௝

න 𝑑஽𝒓ห𝜕௝𝜂ห
ଶ

.
௅ವ

 
2.5.2-3 

So, performing the transformation for each integral 

1. ∫ 𝑑஽𝒓|𝜂(𝒓)|ଶ
௅ವ = ∫ 𝑑஽𝒓

ଵ

௅ವ
∑ 𝑒௜(𝐪ି𝐪ᇱ)∙𝒓𝜂𝐪𝜂𝐪ᇱ

∗
𝐪,𝐪ᇱ௅ವ = ∑ 𝜂𝐪𝜂𝐪ᇱ

∗ 𝛿𝐪,𝐪ᇱ𝐪,𝐪ᇱ = ∑ ห𝜂𝐪ห
ଶ

𝐪 ; 

2. ∫ 𝑑஽𝒓[𝜂ଶ(𝒓)]
௅ವ = ∫ 𝑑஽𝒓

ଵ

௅ವ
∑ 𝑒௜൫𝐪ା𝐪ᇲ൯∙𝒓𝜂𝐪𝜂𝐪ᇲ𝐪,𝐪ᇲ

௅ವ = ∑ 𝜂𝐪𝜂𝐪ᇲ𝛿𝐪,ି𝐪ᇲ𝐪,𝐪ᇲ = ∑ 𝜂𝐪𝜂ି𝐪𝐪 , 

as all coefficients are symmetric under 𝐪 → −𝐪, we assume 𝜂𝐪 = 𝜂ି𝐪; 

3. ∫ 𝑑஽𝒓[𝜂∗ଶ(𝒓)]
௅ವ = ∫ 𝑑஽𝒓

ଵ

௅ವ
∑ 𝑒ି௜൫𝐪ା𝐪ᇲ൯∙𝒓𝜂𝐪

∗ 𝜂𝐪ᇱ
∗

𝐪,𝐪ᇲ
௅ವ = ∑ 𝜂𝐪

∗ 𝜂ି𝐪
∗

𝐪 ; 

4. ∫ 𝑑஽𝒓ห𝜕௝𝜂(𝒓)ห
ଶ

௅ವ = ∫ 𝑑஽𝒓
ଵ

௅ವ
∑ 𝜕௝൫𝑒௜𝐪∙𝒓𝜂𝐪൯ ∙ 𝜕௝൫𝑒ି௜𝐪∙𝒓𝜂𝐪

∗ ൯𝐪,𝐪ᇲ
௅ವ =

∫ 𝑑஽𝒓
ଵ

௅ವ
∑ ൣ൫𝑖q௝𝑒௜𝐪∙𝒓൯ ∙ ൫−𝑖q௝

ᇱ 𝑒ି௜𝐪ᇱ∙𝒓𝜂𝐪ᇱ
∗ ൯൧𝐪,𝐪ᇱ௅ವ = ∑ q௝

ଶห𝜂𝐪ห
ଶ

𝐪 . 

Collecting all these terms, we obtain 

 
H = ෍ ቎ቌ𝑎 + 2𝑏𝜓଴

ଶ + ෍ 𝐾(௝)

௝

q௝
ଶቍ ห𝜂𝐪ห

ଶ
+

𝑏

2
𝜓଴

ଶ൫𝜂𝐪𝜂ି𝐪 + 𝜂𝐪
∗ 𝜂ି𝐪

∗ ൯቏

𝐪

. 2.5.2-4 

The real and imaginary parts of the fluctuation field can be separated in the following 

form  

 𝜂𝐪 = 𝑥𝐪 + 𝑖𝑦𝐪, 2.5.2-5 

where, 𝑥𝐪 = Re൛𝜂𝐪ൟ, and 𝑦𝐪 = Im൛𝜂𝐪ൟ .  
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And, the following term  

𝜂𝐪𝜂ି𝐪 + 𝜂𝐪
∗ 𝜂ି𝐪

∗ = ൫𝑥𝐪 + 𝑖𝑦𝐪൯൫𝑥ି𝐪 + 𝑖𝑦 𝐪൯ + ൫𝑥𝐪 − 𝑖𝑦𝐪൯൫𝑥ି𝐪 − 𝑖𝑦 𝐪൯ = 2𝑥𝐪𝑥ି𝐪 − 2𝑦𝐪𝑦ି𝐪. 

 

So, our Gaussian Hamiltonian becomes  

 
H = ෍ ቎ቌ𝑎 + 2𝑏𝜓଴

ଶ + ෍ 𝐾(௝)

௝

q௝
ଶቍ ൫𝑥𝐪

ଶ + 𝑦𝐪
ଶ൯ + 𝑏𝜓଴

ଶ൫𝑥𝐪𝑥ି𝐪 − 𝑦𝐪𝑦 𝐪൯቏

𝐪

,  

That can be written as   

 H = ෍ൣ𝐴𝐪൫𝑥𝐪
ଶ + 𝑦𝐪

ଶ൯ + 𝐵൫𝑥𝐪𝑥ି𝐪 − 𝑦𝐪𝑦 𝐪൯൧

𝐪

, 2.5.2-6 

with 𝐴𝐪 = 𝑎 + 2𝑏𝜓଴
ଶ + ∑ 𝐾(௝)

௝ q௝
ଶ and 𝐵 = 𝑏𝜓଴

ଶ . 

2.5.3 Fluctuation part of free energy 

Now, we have everything to our disposal to calculate the fluctuation part of free energy. 

First, we need to rearrange the fluctuation Hamiltonian and express it in a matrix form. 

Taking into account that we have a summation over all momenta 𝐪, we can change its sign to 

express it in a more convenient form, in function of matrices. 

 H = ෍൫𝐴𝐪𝑥𝐪
ଶ + 𝐵𝑥𝐪𝑥ି𝐪 + 𝐴𝐪𝑦𝐪

ଶ − 𝐵𝑦𝐪𝑦 𝐪൯

𝐪

,  

 
H =

1

2
෍ൣ൫𝐴𝐪𝑥𝐪

ଶ + 𝐵𝑥𝐪𝑥ି𝐪 + +𝐵𝑥ି𝐪𝑥𝐪 + 𝐴𝐪𝑥ି𝐪
ଶ ൯

𝐪

+ ൫𝐴𝐪𝑦𝐪
ଶ − 𝐵𝑦𝐪𝑦 𝐪 − 𝐵𝑦 𝐪𝑦𝐪 + 𝐴𝐪𝑦 𝐪

ଶ ൯൧. 

 

H =
1

2
෍ ൤(𝑥𝐪 𝑥ି𝐪) ൬

𝐴𝐪 𝐵

𝐵 𝐴𝐪
൰ ቀ

𝑥𝐪

𝑥ି𝐪
ቁ + (𝑦𝐪 𝑦 𝐪) ൬

𝐴𝐪 −𝐵

−𝐵 𝐴𝐪
൰ ቀ

𝑦𝐪

𝑦 𝐪
ቁ൨

𝐪

, 

 
H = ෍ ൤(𝑥𝐪 𝑥ି𝐪) ൬

𝐴𝐪 𝐵

𝐵 𝐴𝐪
൰ ቀ

𝑥𝐪

𝑥ି𝐪
ቁ + (𝑦𝐪 𝑦ି𝐪) ൬

𝐴𝐪 −𝐵

−𝐵 𝐴𝐪
൰ ቀ

𝑦𝐪

𝑦 𝐪
ቁ൨

𝐪,௤ೣஹ଴

, 2.5.3
-1 

where 𝑞௫ ≥ 0 assures that for each pair 𝐪 and −𝐪 only one vector of the wavenumber is present 

in the sum.  
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In order to proceed, we need to get the diagonal representation for both 𝑥- and 𝑦- 

contributions, so we need to find the eigenvalues and eigenstates of the matrices  

 
(𝑥𝐪 𝑥ି𝐪) ൬

𝐴𝐪 𝐵

𝐵 𝐴𝐪
൰ ቀ

𝑥𝐪

𝑥ି𝐪
ቁ = (𝛼𝐪 𝛽𝐪) ൭

𝐸𝐪,ା
(௫)

0

0 𝐸𝐪,ି
(௫)

൱ ൬
𝛼𝐪

𝛽𝐪
൰, 2.5.3-2 

And   

 
(𝑦𝐪 𝑦 𝐪) ൬

𝐴𝐪 −𝐵

−𝐵 𝐴𝐪
൰ ቀ

𝑦𝐪

𝑦 𝐪
ቁ = (𝜉𝐪 𝜁𝐪) ൭

𝐸𝐪,ା
(௬)

0

0 𝐸𝐪,ି
(௬)

൱ ቆ
𝜉𝐪

𝜁𝐪
ቇ. 

2.5.3-3 

The unitary matrix U௫ is made of eigenvectors of ൬
𝐴௤ 𝐵

𝐵 𝐴௤
൰, then  

 
U௫

ற ൬
𝐴𝐪 𝐵

𝐵 𝐴𝐪
൰ U௫ = ൭

𝐸𝐪,ା
(௫)

0

0 𝐸𝐪,ି
(௫)

൱, 
 

and we can write  

 
(𝑥𝐪 𝑥ି𝐪)U௫U௫

ற ൬
𝐴𝐪 𝐵

𝐵 𝐴𝐪
൰ U௫U௫

ற ቀ
𝑥𝐪

𝑥ି𝐪
ቁ = (𝛼𝐪 𝛽𝐪) ൭

𝐸𝐪,ା
(௫)

0

0 𝐸𝐪,ି
(௫)

൱ ൬
𝛼𝐪

𝛽𝐪
൰, 

2.5.3-4 

where (𝑥𝐪 𝑥ି𝐪)U௫ = (𝛼𝐪 𝛽𝐪) and U௫
ற ቀ

𝑥𝐪

𝑥ି𝐪
ቁ = ൬

𝛼𝐪

𝛽𝐪
൰.  

Similarly, the unitary matrix U௬ is made of eigenvectors of ൬
𝐴𝐪 −𝐵

−𝐵 𝐴𝐪
൰, then  

 
U௬

ற ൬
𝐴𝐪 −𝐵

−𝐵 𝐴𝐪
൰ U௬ = ൭

𝐸𝐪,ା
(௬)

0

0 𝐸𝐪,ି
(௬)

൱, 
 

 
(𝑦𝐪 𝑦 𝐪)U௬U௬

ற ൬
𝐴𝐪 −𝐵

−𝐵 𝐴𝐪
൰ U௬U௬

ற ቀ
𝑦𝐪

𝑦 𝐪
ቁ = (𝜉𝐪 𝜁𝐪) ൭

𝐸𝐪,ା
(௬)

0

0 𝐸𝐪,ି
(௬)

൱ ቆ
𝜉𝐪

𝜁𝐪
ቇ, 

2.5.3-5 

where (𝑦𝐪 𝑦 𝐪)U௬ = (𝜉𝐪 𝜁𝐪) and U௬
ற ቀ

𝑦𝐪

𝑦 𝐪
ቁ = ቆ

𝜉𝐪

𝜁𝐪
ቇ. 

Our next step is explicitly the unitary transformations to find U௫ and U௬. The 

eigenvalue equation associated with U௫  

 
൬

𝐴𝐪 𝐵

𝐵 𝐴𝐪
൰ ൭

𝑢±
(௫)

𝑣±
(௫)

൱ = 𝐸𝐪,±
(௫)

൭
𝑢±

(௫)

𝑣±
(௫)

൱, 
2.5.3-6 
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a non-trivial solution to these equations exists when  

 
det ൭

𝐴𝐪 − 𝐸𝐪,±
(௫)

𝐵

𝐵 𝐴𝐪 − 𝐸𝐪,±
(௫)

൱ = 0, 
 

 𝐸𝐪,±
(௫)

= 𝐴𝐪 ± 𝐵.  

For 𝐸𝐪,ା
(௫) we obtain  

 
൬

𝐴𝐪 𝐵

𝐵 𝐴𝐪
൰ ቆ

𝑢ା
(௫)

𝑣ା
(௫)

ቇ = ൫𝐴𝐪 + 𝐵൯ ቆ
𝑢ା

(௫)

𝑣ା
(௫)

ቇ, 
 

So,  the components of the eigenvector are  

𝑢ା
(௫)

=
1

√2 
, 𝑣ା

(௫)
=

1

√2 
, 

where we used the normalization condition 𝑢ା
(௫)ଶ

+ 𝑣ା
(௫)ଶ

= 1. 

We can do the same for 𝐸𝐪,ି
(௫), and we get  

𝑢ି
(௫) =

1

√2 
, 𝑣ି

(௫) = −
1

√2 
, 

Hence,  

 
U௫ =

1

√2 
ቀ

1 1
1 −1

ቁ, 
 

ቀ
𝑥𝐪

𝑥ି𝐪
ቁ =

1

√2 
ቀ

1 1
1 −1

ቁ ൬
𝛼𝐪

𝛽𝐪
൰, ൬

𝛼𝐪

𝛽𝐪
൰ =

1

√2 
ቀ

1 1
1 −1

ቁ ቀ
𝑥𝐪

𝑥ି𝐪
ቁ, 

2.5.3-7 

and 

 
න 𝑑𝑥𝐪𝑑𝑥ି𝐪 = න 𝑑𝛼𝐪𝑑𝛽𝐪. 

 

In addition, for the 𝑦-contribution, the eigenvalue equation associated with U௬.  

 
൬

𝐴𝐪 −𝐵

−𝐵 𝐴𝐪
൰ ൭

𝑢±
(௬)

𝑣±
(௬)

൱ = 𝐸𝐪,±
(௬)

൭
𝑢±

(௬)

𝑣±
(௬)

൱, 
2.5.3-8 
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The correspondent non-trivial solution to these equations exists when  

 
det ൭

𝐴𝐪 − 𝐸𝐪,±
(௬)

−𝐵

−𝐵 𝐴𝐪 − 𝐸𝐪,±
(௬)

൱ = 0, 
 

and then  

 𝐸𝐪,±
(௬)

= 𝐴𝐪 ± 𝐵,  

𝑢ା
(௬)

= −𝑣ା
(௬)

=
1

√2 
, 𝑢ି

(௬) = 𝑣ି
(௬) =

1

√2 
, 

Hence,  

 
U௬ =

1

√2 
ቀ

1 1
−1 1

ቁ, 
 

ቀ
𝑦𝐪

𝑦 𝐪
ቁ =

1

√2 
ቀ

1 1
−1 1

ቁ ቆ
𝜉𝐪

𝜁𝐪
ቇ, ቆ

𝜉𝐪

𝜁𝐪
ቇ =

1

√2 
ቀ

1 −1
1 1

ቁ ቀ
𝑦𝐪

𝑦 𝐪
ቁ, 

2.5.3-9 

and 

 
න 𝑑𝑦𝐪𝑑𝑦 𝐪 = න 𝑑𝜉𝐪𝑑𝜁𝐪. 

 

Using the new variables 𝛼𝐪, 𝛽𝐪, 𝜉𝐪, 𝜁𝐪 one can rewrite the fluctuation Hamiltonian as  

 
H = ෍ ቈ(𝛼𝐪 𝛽𝐪) ൬

𝐴𝐪 + 𝐵 0

0 𝐴𝐪 − 𝐵
൰ ൬

𝛼𝐪

𝛽𝐪
൰

𝐪,௤ೣஹ଴

+ (𝜉𝐪 𝜁𝐪) ൬
𝐴𝐪 + 𝐵 0

0 𝐴𝐪 − 𝐵
൰ ቆ

𝜉𝐪

𝜁𝐪
ቇ቉, 

2.5.3
-10 

and the fluctuation contribution for the partition function becomes  

 
Zி௟௨௖ = න ෑ ൫𝑑𝛼𝐪𝑑𝛽𝐪 𝑑𝜉𝐪𝑑𝜁𝐪൯

𝐪,௤ೣஹ଴

exp ቊ−
Hൣ𝛼𝐪, 𝛽𝐪, 𝜉𝐪, 𝜁𝐪൧

𝑇
ቋ . 2.5.3-11 

So, the fluctuation contribution for free energy is given by  

 Fி௟௨௖ = −𝑇 ln Zி௟௨௖, 2.5.3-12 
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writing explicitly, we get  

Fி௟௨௖

= −𝑇 ln න ෑ ൫𝑑𝛼𝐪𝑑𝛽𝐪 𝑑𝜉𝐪𝑑𝜁𝐪൯

𝐪,௤ೣஹ଴

exp ቐ−
1

𝑇
෍ ቈ(𝛼𝐪 𝛽𝐪) ൬

𝐴𝐪 + 𝐵 0

0 𝐴𝐪 − 𝐵
൰ ൬

𝛼𝐪

𝛽𝐪
൰

𝐪,௤ೣஹ଴

+ (𝜉𝐪 𝜁𝐪) ൬
𝐴𝐪 + 𝐵 0

0 𝐴𝐪 − 𝐵
൰ ቆ

𝜉𝐪

𝜁𝐪
ቇ቉ቑ, 

= −𝑇 ln න ෑ ൫𝑑𝛼𝐪𝑑𝛽𝐪 𝑑𝜉𝐪𝑑𝜁𝐪൯

𝐪,௤ೣஹ଴

exp ቐ−
1

𝑇
෍ ൣ൫𝐴𝐪 + 𝐵൯𝛼𝐪

ଶ + ൫𝐴𝐪 − 𝐵൯𝛽𝐪
ଶ

𝐪,௤ೣஹ଴

+ ൫𝐴𝐪 + 𝐵൯𝜉𝐪
ଶ + ൫𝐴𝐪 − 𝐵൯𝜁𝐪

ଶ൧ቑ. 

That is a Gaussian integral with the following solution 

Fி௟௨௖ = −𝑇 ln ቌ ෑ ඨ
𝜋𝑇

𝐴𝐪 + 𝐵
ඨ

𝜋𝑇

𝐴𝐪 − 𝐵
ඨ

𝜋𝑇

𝐴𝐪 + 𝐵
ඨ

𝜋𝑇

𝐴𝐪 − 𝐵
𝐪,௤ೣஹ଴

ቍ 

Fி௟௨௖ = −𝑇 ෍ ቆln
𝜋𝑇

𝐴𝐪 + 𝐵
+ ln

𝜋𝑇

𝐴௤ − 𝐵
ቇ

𝐪,௤ೣஹ଴

. 

And finally, we arrive at the expression given in the book by Larkin and Varlamov[104]:  

 
Fி௟௨௖ = −

𝑇

2
෍ ቆln

𝜋𝑇

𝐴𝐪 + 𝐵
+ ln

𝜋𝑇

𝐴௤ − 𝐵
ቇ ,

𝐪

 2.5.3-13 

𝐴𝐪 + 𝐵 = 𝑎 + 3𝑏𝜓଴
ଶ + ෍ 𝐾(௝)

௝

q௝
ଶ, 𝐴𝐪 − 𝐵 = 𝑎 + 𝑏𝜓଴

ଶ + ෍ 𝐾(௝)

௝

q௝
ଶ. 

Some remarks due the eq. 2.5.3-13, this expression holds both for 𝑇 > 𝑇௖଴ and 𝑇 ≤ 𝑇௖଴, and 

for 𝑇 ≤ 𝑇௖଴ the second term in this equation is divergent at 𝐪 → 0, i.e., the Goldstone mode 

appears in the system, this term is related to the phase fluctuations. We can also notice that 
గ்

஺𝐪ା஻
 and 

గ்

஺𝐪ି஻
 are not dimensionless because in the introduction of 𝑑൫Re𝜂𝐪൯, and 𝑑൫Im𝜂𝐪൯, 

we introduce a dimension quantity under ln. We can also notice that if we can multiply 

 𝑑൫Re𝜂𝐪൯ and 𝑑൫Im𝜂𝐪൯ by arbitrary factor it will not contribute to the fluctuation heat capacity 

and the Ginzburg number.    
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2.5.4 Ginzburg number, Ginzburg-Levanyuk parameter, and the 
fluctuation heat capacity 

From the fluctuation free energy now, it is possible to calculate the fluctuation for the 

heat capacity. This fluctuation contribution is divergent at 𝑇௖௢, mean field critical temperature, 

while the mean field contribution is regular. The temperature 𝑇∗ < 𝑇௖௢, at the heat capacity is 

equal to the mean field contribution, is called the Ginzburg-Levanyuk Temperature. The 

Ginzburg Number is defined as     

 
𝐺𝑖 = 1 −

𝑇∗

𝑇௖௢
, 2.5.4-1 

it measures the temperature interval below 𝑇௖௢, where the fluctuations are important. 

The procedure to calculate  𝐺𝑖 employs only the contribution from the temperature 

dependence of 𝐴𝐪 = 𝑎 + 2𝑏𝜓଴
ଶ + 𝐾𝐪ଶ. The fluctuation contribution of free energy 𝐴𝐪 appears 

in two terms 
గ்

஺𝐪ା஻
 and 

గ்

஺𝐪ି஻
. 

The first one at 𝑇 < 𝑇௖௢, we have  

𝜋𝑇

2|𝑎| + ∑ 𝐾(௝)
௝ q௝

ଶ  , 

and the second one   

𝜋𝑇

∑ 𝐾(௝)
௝ q௝

ଶ  , 

this term is not dependent on the parameter 𝑎. We should keep in mind the infrared and 

ultraviolet cut-offs here (temperature independent).  

Thus, the divergent (critical) part of the fluctuation heat capacity is related to  

 
Fி௟௨௖

(௖௥௜௧)
= −

𝑇௖଴

2
෍ ln

𝜋𝑇௖଴

2|𝑎| + ∑ 𝐾(௝)
௝ q௝

ଶ

𝐪

. 2.5.4-2 

So, in order to calculate the heat capacity, we need to calculate the entropy first  

 
𝑆ி௟௨௖

(௖௥௜௧)
= −

𝜕Fி௟௨௖
(௖௥௜௧)

𝜕𝑇
,  
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𝑆ி௟௨௖

(௖௥௜௧)
=

𝑇௖଴

2
෍

𝜕

𝜕𝑇
቎− ቌln 2|𝑎| + ෍ 𝐾(௝)

௝

q௝
ଶቍ቏

𝐪

,  

 
𝑆ி௟௨௖

(௖௥௜௧)
= −

𝑇௖଴

2
෍

1

2|𝑎| + ∑ 𝐾(௝)
௝ q௝

ଶ 2
𝜕|𝑎|

𝜕𝑇
𝐪

,  

 
𝑆ி௟௨௖

(௖௥௜௧)
= 𝑇௖଴𝛼 ෍

1

2|𝑎| + ∑ 𝐾(௝)
௝ q௝

ଶ

𝐪

, 2.5.4-3 

where |𝑎| = 𝛼(𝑇௖଴ − 𝑇). 

Then we have everything to calculate the fluctuation contribution to the heat capacity, 

from statistical mechanics we obtain that  

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
= 𝑘஻𝑇௖଴

𝜕𝑆ி௟௨௖
(௖௥௜௧)

𝜕𝑇
,  

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
= 𝑘஻𝑇௖଴

ଶ 2𝛼ଶ ෍
1

൫2|𝑎| + ∑ 𝐾(௝)
௝ q௝

ଶ൯
ଶ

𝐪

,  

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
= 2𝑘஻𝑇௖଴

ଶ 𝛼ଶ ෍
1

൫2|𝑎| + ∑ 𝐾(௝)
௝ q௝

ଶ൯
ଶ

𝐪

. 2.5.4-4 

It is important to note that integral (sum) in 𝐶௩,ி௟௨௖
(௖௥௜௧)  is not divergent for 𝑇 < 𝑇௖଴ without any 

cut-offs, so the cut-offs do not contribute at this stage and can be ignored.  

It is instructive to consider the formula for 𝐶௩,ி௟௨௖
(௖௥௜௧)  in the particular isotropic case with 

𝐾(௝) = 𝐾. So, it is convenient to write the Eq. 2.5.4-4  in function of the coherence lengths, 

and we have 𝜉 = ට
௄

|௔|
, the Ginzburg-Landau coherence length that 𝜉 → ∞(𝑇 → 𝑇௖௢), and the 

zero temperature coherence length 𝜉଴ = ට
௄

ఈ ೎்೚
, that 𝜉଴ is finite at  𝑇 → 𝑇௖௢. Where  

𝜉଴~𝜉஻஼ௌ, 𝜉஻஼ௌ is the BCS coherence length or the cooper-pair size for the isotropic case.  

Then, one finds     

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
=

2𝑘஻𝑇௖଴
ଶ 𝛼ଶ

4𝐾ଶ
෍

1

൬
|𝑎|
𝐾

+
𝐪ଶ

2
൰

ଶ

𝐪

, 
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𝐶௩,ி௟௨௖

(௖௥௜௧)
=

𝑘஻

2𝜉଴
ସ ෍

1

൬𝜉ିଶ +
𝐪ଶ

2
൰

ଶ

𝐪

. 
2.5.4-5 

And as 𝜉ିଶ → 0 we have 𝐶௩,ி௟௨௖
(௖௥௜௧)

→ ∞(𝑇 → 𝑇௖௢). So, the critical behavior is due to the 

divergence related to 𝜉, or due to the fact that |𝑎| → 0 for 𝑇 → 𝑇௖௢. This is why the dependence 

of |𝑎| on the temperature is decisive in the fluctuation in the free energy. 

Further, we perform the calculations for the general case of an anisotropic system, from 

the discrete to continuous variables  by standard procedure   

 
෍ →

𝐪

𝐿஽ න
𝑑஽𝐪

(2𝜋)஽
, 

 

So, Eq.2.5.4-4 becomes  

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
= 2𝑘஻𝑇௖଴

ଶ 𝛼ଶ𝐿஽ න
𝑑஽𝐪

(2𝜋)஽

1

൫2|𝑎| + ∑ 𝐾(௝)
௝ q௝

ଶ൯
ଶ , 

 

Changing the variables q௝ඥ𝐾(௝) → p௝  

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
= 2𝑘஻𝑇௖଴

ଶ 𝛼ଶ
𝐿஽

∏ 𝐾(௝)஽
௝ୀଵ

න
𝑑஽𝐩

(2𝜋)஽

1

(2|𝑎| + 𝐩ଶ)ଶ
, 

 

and, making a new changing of variables 
𝐩

ඥ|௔|
→ 𝐦 that means 𝑑஽𝐩 = ቀඥ|𝑎|ቁ

஽

𝑑஽𝐦  

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
= 2𝑘஻𝑇௖଴

ଶ 𝛼ଶ
𝐿஽|𝑎|஽/ଶ 

∏ 𝐾(௝)஽
௝ୀଵ |𝑎|ଶ

න
𝑑஽𝐦 

(2𝜋)஽

1

(2 + 𝐦ଶ)ଶ
, 

 

as we know |𝑎| = 𝛼𝑇௖଴𝜏, where 𝜏 = 1 − 𝑇/𝑇௖଴, then we can write  

 
𝐶௩,ி௟௨௖

(௖௥௜௧)
=

𝐿஽

𝜏ଶି஽/ଶ
2𝑘஻

𝑇௖଴
஽/ଶ

𝛼஽/ଶ

∏ 𝐾(௝)஽
௝ୀଵ

න
𝑑஽𝐦 

(2𝜋)஽

1

(2 + 𝐦ଶ)ଶ
, 

 

as we have 
ఈವ/మ

೎்బ
ವ/మ

∏ ௄(ೕ)ವ
ೕసభ

=
ଵ

∏ కబ
(ೕ)ವ

ೕసభ

, 𝜉଴
(௝)

= ට
௄(ೕ)

ఈ ೎்೚
 where 𝜉଴

(௝) is the direction-dependent zero 

temperature coherence length.  

Thus, finally we can obtain the critical fluctuation to the heat capacity as   

 
𝑐௩,ி௟௨௖

(௖௥௜௧)
=

2𝑘஻𝐿஽

𝜏ଶି஽/ଶ

1

∏ 𝜉଴
(௝)஽

௝ୀଵ

න
𝑑஽𝐦 

(2𝜋)஽

1

(2 + 𝐦ଶ)ଶ
. 2.5.4-6 
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With this result one can see that 

 

𝐶௩,ி௟௨௖
(௖௥௜௧)

∝

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐷 = 3 →

1

𝜏ଵ/ଶ

1

𝜉0
(1)

1

𝜉0
(2)

1

𝜉0
(3)

 ;

𝐷 = 2 →
1

𝜏

1

𝜉0
(1)

1

𝜉0
(2)

 ; 

𝐷 = 1 →
1

𝜏ଷ/ଶ

1

𝜉0
(1)

.

 2.5.4-7 

We can see that the divergence of heat capacity is more pronounced in lower dimensions. This 

divergence is connected with the Goldstone mode and sensitive to the presence of strong phase 

fluctuations, which are beyond the Gaussian picture of the present analysis.  

The results of integral of the Eq. 2.5.4-6 are given by  

 

න
𝑑஽𝐦 

(2𝜋)஽

1

(2 + 𝐦ଶ)ଶ
=

⎩
⎪⎪
⎨

⎪⎪
⎧𝐷 = 3 →

1

8𝜋 √2
;

𝐷 = 2 →
1

8𝜋 
; 

𝐷 = 1 →
1

16 √2
.

  

Then, we arrive at 

 

𝐶௩,ி௟௨௖
(௖௥௜௧)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐷 = 3 →

𝐿ଷ𝑘஻

4𝜋 √2

1

𝜏ଵ/ଶ𝜉0
(1)

1

𝜉0
(1)

𝜉0
(2)

𝜉0
(3)

 ;

𝐷 = 2 →
𝐿ଶ𝑘஻

4𝜋 

1

𝜏𝜉0
(1)

𝜉0
(2)

; 

𝐷 = 1 →
𝐿𝑘஻

8 √2

1

𝜏ଷ/ଶ𝜉0
(1)

.

 2.5.4-8 

Recall that the phase fluctuations affect the divergence of 𝐶௩,ி௟௨௖
(௖௥௜௧) . 
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2.5.5 Ginzburg Number 

Finally, to calculate the Ginzburg number from fluctuation  heat capacity, we need to 

find the mean-field contribution to 𝐶௩. The mean field contribution for free energy is  

 
F௠.௙. = −

𝑎ଶ

2𝑏
𝐿஽ . 2.5.5-1 

For Entropy 

 
𝑆௠.௙. = −

𝜕F௠.௙.

𝜕𝑇
= −𝐿஽

|𝑎|𝛼

𝑏
. 2.5.5-2 

So, the mean-field contribution for heat capacity (taken in the leading order 𝜏)   

 
𝐶௩,௠.௙. = 𝑘஻𝑇௖଴

𝜕𝑆௠.௙.

𝜕𝑇
  

 
𝐶௩,௠.௙. = 𝐿஽𝑘஻

𝑇௖଴𝛼ଶ

𝑏
. 2.5.5-3 

Now, we have everything at our disposal to calculate 𝐺𝑖 from the equation  

 𝐶௩,௠.௙. = 𝐶௩,ி௟௨௖
(௖௥௜௧)

(𝜏 = 𝐺𝑖), 2.5.5-4 

 
𝐿஽𝑘஻

𝑇௖଴𝛼ଶ

𝑏
~

𝐿஽

𝜏ଶି஽/ଶ

𝑘஻

𝜉଴
஽ .  

However, before performing the calculations for different dimensions with the proper 

numerical coefficients involved, let us derive a useful approximation for 𝐺𝑖, neglecting 

numerical factors and anisotropy. Usually such formula is given in terms of the jump in the 

mean-field capacity per unit of volume at 𝑇 = 𝑇௖଴, i.e.  

 
Δ𝐶 = 𝑘஻

𝑇௖଴𝛼ଶ

𝑏
. 2.5.5-5 

Then,  

 
Δ𝐶~ 𝑘஻

1

𝜉଴
஽𝜏(ସି஽)/ଶ

ቤ
ఛୀீ௜

,  

 
𝐺𝑖~

1

ቀ
Δ𝐶
𝑘஻

𝜉଴
஽ቁ

ଶ/(ସି஽)
. 

2.5.5-6 
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The zero-temperature coherence length 𝜉଴ plays an important role in the estimation of the 

fluctuation impact, when 𝜉଴ decreases 𝐺𝑖 increases together with the impact of fluctuations. 

This increase of  𝐺𝑖 is dependent on the dimension of the system, 𝐷, i.e.  

 

𝐶௩,ி௟௨௖
(௖௥௜௧)

~

⎩
⎪⎪
⎨

⎪⎪
⎧𝐷 = 3 →

1

𝜉଴
଺  ;

𝐷 = 2 →
1

𝜉଴
ଶ  ; 

𝐷 = 1 →
1

𝜉଴
.

 2.5.5-7 

Now, let us proceed to detailed calculations of 𝐺𝑖 in the general anisotropic case  

1. 𝐷 = 3; 𝜏 = 𝐺𝑖 ∶ 

 
𝐿ଷ𝑘஻

𝑇௖଴𝛼ଶ

𝑏
=

𝐿ଷ𝑘஻

4𝜋 √2

1

𝐺𝑖ଵ/ଶ𝜉଴
(ଵ)

𝜉଴
(ଶ)

𝜉଴
(ଷ)

,  

 
𝐺𝑖ଵ/ଶ =

𝑏

𝑇௖଴𝛼ଶ

1

4𝜋 √2

𝛼ଷ/ଶ𝑇௖଴
ଷ/ଶ

ඥ𝐾(ଵ)ඥ𝐾(ଶ)ඥ𝐾(ଷ)
,  

To have an idea about the value of Gi, we consider the particular anisotropic case of a single 

band superconductor with a standard deep band in the clean limit  

 
𝐺𝑖 =

1

32𝜋ଶ 

𝑇௖଴𝑏ଶ

𝛼𝐾ଷ
. 2.5.5-8 

𝑏 = 𝑁(0)
7𝜁(3)

8𝜋ଶ𝑇௖଴
ଶ , 𝐾 = 𝑁(0)

ℏଶ𝑣ி
ଶ

6

7𝜁(3) 

8𝜋ଶ𝑇௖଴
ଶ , 

𝛼 =
𝑁(0)

𝑇௖଴
, 𝑁(0)|஽ୀଷ =

𝑚𝑘ி

2𝜋ଶℏଶ
. 

So, Eq. 2.5.5-8 becomes 

𝐺𝑖 =
27𝜋ସ

14 𝜁(3)

𝑇௖଴
ସ

൬
ℏଶ𝑘ி

ଶ

𝑚
൰

ସ, 

𝐺𝑖 =
27𝜋ସ

14 𝜁(3)
൬

𝑇௖଴

𝐸ி
൰

ସ

~10ଶ ൬
𝑇௖଴

𝐸ி
൰

ସ

. 

To have an idea about the value of 𝐺𝑖, for aluminum for example  

𝑇௖଴ = 1.2𝐾 → 𝑇௖଴ = 1.2𝐾 ∙ 0.086183
𝑀𝑒𝑉

𝐾
≅ 0.1 𝑀𝑒𝑉, 
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𝐸ி ≅ 10 000 𝑀𝑒𝑉, 

𝐺𝑖 ≅ 10ିଵ଼. 

This value is typical of elemental superconductors. For a shallow band 𝐺𝑖 increases 

significantly and can be of order 1, huge fluctuations. The reason is a drop in 𝐸ி, or a 

corresponding drop in 𝜉଴. Shallow bands have extremely slow charge carries  so that  

characteristic velocity in the stiffness 𝐾 is nearly to zero, 𝐾 is decreased as compared to the 

case of a deep band, and so is 𝜉଴. 

2. 𝐷 = 2; 𝜏 = 𝐺𝑖: 

 
𝐿ଶ𝑘஻

𝑇௖଴𝛼ଶ

𝑏
=

𝐿ଶ𝑘஻

4𝜋 

1

𝐺𝑖𝜉଴
(ଵ)

𝜉଴
(ଶ)

,  

 
𝐺𝑖 =

1

4𝜋 

𝑏

𝛼ଶ𝑇௖଴

𝛼𝑇௖଴

ඥ𝐾(ଵ)ඥ𝐾(ଶ)
,  

For a single band isotropic superconductor with a standard deep band in the clean limit, 

 
𝐺𝑖 =

1

4𝜋 

𝑏

𝛼𝐾
. 2.5.5-9 

𝑏 = 𝑁(0)
7𝜁(3)

8𝜋ଶ𝑇௖଴
ଶ , 𝐾 = 𝑁(0)

ℏଶ𝑣ி
ଶ

4

7𝜁(3) 

8𝜋ଶ𝑇௖଴
ଶ , 

𝛼 =
𝑁(0)

𝑇௖଴
, 𝑁(0)|஽ୀଶ =

𝑚

2𝜋ℏଶ
. 

Eq.2.5.5-9 becomes 

𝐺𝑖 = 2
𝑇௖଴

𝑚
ℏଶ ℏଶ𝑣ி

ଶ
= 2

𝑇௖଴

ℏଶ𝑘ி
ଶ

𝑚

, 

𝐺𝑖 =
𝑇௖଴

𝐸ி
. 

Using again the values for aluminum   

𝑇௖଴ ≅ 0.1 𝑀𝑒𝑉, 

𝐸ி ≅ 10 000 𝑀𝑒𝑉, 

𝐺𝑖 ≅ 10ିହ. 

That is significantly larger than for 𝐷 = 3. 

 



62 

 

3. 𝐷 = 1; 𝜏 = 𝐺𝑖: 

 
𝐿𝑘஻

𝑇௖଴𝛼ଶ

𝑏
=

𝐿𝑘஻

8 √2

1

𝐺𝑖ଷ/ଶ𝜉଴
(ଵ)

,  

 
𝐺𝑖ଷ/ଶ =

1

8 √2

𝛼ଵ/ଶ𝑇௖଴
ଵ/ଶ

ඥ𝐾(ଵ)

𝑏

𝛼ଶ𝑇௖଴
,  

 
𝐺𝑖ଷ/ଶ =

1

8 √2

𝑏

ඥ𝐾(ଵ)𝛼ଷ/ଶ𝑇௖଴
ଵ/ଶ

,  

 
𝐺𝑖 = ቆ

1

128

𝑏ଶ

𝐾(ଵ)𝑇௖଴𝛼ଷ
ቇ

ଵ/ଷ

. 2.5.5-10 

A single band isotropic superconductor with a standard deep band in the clean limit 

𝑏 = 𝑁(0)
7𝜁(3)

8𝜋ଶ𝑇௖଴
ଶ , 𝐾 = 𝑁(0)

ℏଶ𝑣ி
ଶ

2

7𝜁(3) 

8𝜋ଶ𝑇௖଴
ଶ , 

𝛼 =
𝑁(0)

𝑇௖଴
, 𝑁(0)|஽ୀଶ =

𝑚

2𝜋ℏଶ
. 

 Eq.2.5.5-10 becomes 

𝐺𝑖 = ቆ
1

128

7𝜁(3) 

8𝜋ଶ
2𝜋ଶቇ

ଵ/ଷ

൬
𝑇௖଴

𝐸ி
൰

଴

, 

𝐺𝑖 ∝ ൬
𝑇௖଴

𝐸ி
൰

଴

~1. 

From this result, we can see that, superconductive fluctuations are extremely pronounced in 

the case 𝐷 = 1 and corresponding 𝐺𝑖 does not depend on microscopic parameters. 

So, we can obtain the general relation  for the Ginzburg number at 𝐷 = 3, 2, 1 as  

 
𝐺𝑖 ∝ ൬

𝑇௖଴

𝐸ி
൰

ଶ(஽ିଵ)
ସି஽

. 2.5.5-11 

Notice that Eq. 2.5.5-11 is considered for 𝐷 = 3, 2, 1. However, it is an important remark that 

𝐺𝑖 becomes infinitely small at 𝐷 = 4. This reflects the fact that fluctuations are negligible  in 

the Ginzburg-Landau theory for 𝐷 ≥ 4.  
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2.5.6 Isotropizing an anisotropic Ginzburg-Landau theory and 𝑮𝒊 for the 
initial anisotropic and eventual isotropic models  

Here we return to the free energy functional of the Ginzburg-Landau theory.  

F = න 𝑑஽𝒓 ൤𝑎|𝜓(𝒓)|ଶ +
𝑏

2
|𝜓(𝒓)|ସ + 𝐾(௫)|𝜕௫𝜓(𝒓)|ଶ + 𝐾(௬)ห𝜕௬𝜓(𝒓)ห

ଶ
+ 𝐾(௭)|𝜕௭𝜓(𝒓)|ଶ൨

௅ವ

, 

taken in the general anisotropic case. The model can be isotropic for 𝐷 = 3 by the coordinate 

transformation 

𝑥෤ =
𝑥

ඥ𝛼(௫)
, 𝑦෤ =

𝑦

ඥ𝛼(௬)
, 𝑧̃ =

𝑧

ඥ𝛼(௭)
, 

with 

𝛼(௫) =
𝐾(௫)

𝐾
, 𝛼(௬) =

𝐾(௬)

𝐾
, 𝛼(௭) =

𝐾(௭)

𝐾
, 

and 

𝐾 = ඥ𝐾(௫)𝐾(௬)𝐾(௭)య
. 

Notice that 

𝛼(௫)𝛼(௬)𝛼(௭) = 1, 

and so, (𝐷 = 3) 

𝑑ଷ𝒓 = 𝑑ଷ𝒓෤, 

which means  

F = න 𝑑ଷ𝒓෤ ൤𝑎|𝜓|ଶ +
𝑏

2
|𝜓|ସ + 𝐾ห𝛁෩𝜓ห

ଶ
൨

௅య

, 

where 𝛁෩ = ൫𝜕௫෤ , 𝜕௬෤ , 𝜕௭෤൯.  

In principle, one could invoke the transformation such that 𝛼(௜) =
௄(೔)

௄෩
, 𝐾෩ ≠ ඥ𝐾(௫)𝐾(௬)𝐾(௭)య

. 

However, in this case an extra factor will appear in F  because 𝑑஽𝒓 ≠ 𝑑஽𝒓෤. This factor should 

be taken in account during the calculations of the fluctuation impact. 
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Under the choice of the coordinate transformation, we can easily find that the 

outcoming isotropic model yields at 𝐷 = 3  

𝐺𝑖௢௨௧ =
1

32𝜋ଶ 

𝑇௖଴𝑏ଶ

𝛼𝐾ଷ
, 

which is the same as 𝐺𝑖 of the initial anisotropic model 

𝐺𝑖௢௨௧ = 𝐺𝑖௜௡ =
1

32𝜋ଶ 

𝑇௖଴𝑏ଶ

𝛼𝐾(௫)𝐾(௬)𝐾(௭)
. 

The critical temperature is also the same in both models. We note the transformation yields  

the only solution of the equations 

𝐾(௫)

𝛼(௫)
=

𝐾(௬)

𝛼(௬)
=

𝐾(௫)

𝛼(௭)
, 𝛼(௫)𝛼(௬)𝛼(௭) = 1. 

The same we can do for 𝐷 = 2, the isotropic transformation reads  

𝑥෤ =
𝑥

ඥ𝛼(௫)
, 𝑦෤ =

𝑦

ඥ𝛼(௬)
. 

with 

𝛼(௫) =
𝐾(௫)

𝐾
, 𝛼(௬) =

𝐾(௬)

𝐾
, 𝐾 = ඥ𝐾(௫)𝐾(௬). 

Here 

𝛼(௫)𝛼(௬) = 1, 𝑑ଶ𝒓 = 𝑑ଶ𝒓෤. 

Finally 

𝐺𝑖௢௨௧ =
1

4𝜋 

𝑏

𝛼𝐾
, 𝐺𝑖௜௡ =

1

4𝜋 

𝑏

𝛼ඥ𝐾(௫)𝐾(௬)
. 

So,  𝐺𝑖௢௨௧ = 𝐺𝑖௜௡. 
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2.5.7 General form of the Gaussian “Hamiltonian” and fluctuation-field 
average  

To proceed with our formalism, we need to generalize the fluctuation “Hamiltonian”. 

In a similar way as we obtained before, but in this case,  we can also have contributions of 

terms like |𝜂|ସ approximated (a kind of mean field approach) by ∝ 〈|𝜂|ଶ〉|𝜂|ଶ, in further 

considerations of the fluctuation-driven shift in 𝑇௖. Sometimes, such high-power terms are 

called “fluctuations interactions”, just following the interpretation of the nonlinear term in the 

Ginzburg-Landau equation, notice that, this interpretation is based on the similarity of the 

Ginzburg-Landau equation with a nonlinear Schrödinger equation, in fact, this interpretation 

is rather conditional.  

So, using the definition 𝜂𝐪 = 𝑥𝐪 + 𝑖𝑦𝐪, for the Fourier component of the field 𝜂(𝒓), the 

general fluctuation “Hamiltonian”, in the Gaussian approximation reads  

 H = ෍ൣ𝜀ା൫𝑥𝐪
ଶ + 𝑦𝐪

ଶ൯ + 𝜀ି൫𝑥𝐪𝑥ି𝐪 − 𝑦𝐪𝑦 𝐪൯൧

𝐪

, 2.5.7-1 

And after performing the diagonalization procedure, as we have done before, we obtain   

 H = ෍ ൣ𝜀ଵ,𝐪൫𝛼𝐪
ଶ + 𝜉𝐪

ଶ൯ + 𝜀ଶ,𝐪൫𝛽𝐪
ଶ + 𝜁𝐪

ଶ൯൧

𝐪,௤ೣஹ଴

, 2.5.7-
2 

𝜀ଵ,𝐪 = 𝜀ା + 𝜀ି, 𝜀ଶ,𝐪 = 𝜀ା − 𝜀ି, 

𝛼𝐪 =
1

√2
൫𝑥𝐪 + 𝑥ି𝐪൯, 𝛽𝐪 =

1

√2
൫𝑥𝐪 − 𝑥ି𝐪൯, 

𝜉𝐪 =
1

√2
൫𝑦𝐪 + 𝑦 𝐪൯, 𝜁𝐪 =

1

√2
൫𝑦𝐪 − 𝑦 𝐪൯. 

𝛼𝐪 = 𝛼ି𝐪, 𝛽𝐪 = 𝛽ି𝐪, 𝜉𝐪 = 𝜉ି𝐪, 𝜁𝐪 = 𝜁ି𝐪 

𝜀ା(𝐪) =
𝜀ଵ,𝐪 + 𝜀ଶ,𝐪

2
, 𝜀ି(𝐪) =

𝜀ଵ,𝐪 − 𝜀ଶ,𝐪

2
, 

𝑥𝐪 =
1

√2
൫𝛼𝐪 + 𝛽𝐪൯, 𝑥ି𝐪 =

1

√2
൫𝛼𝐪 − 𝛽𝐪൯, 

𝑦𝐪 =
1

√2
൫𝜉𝐪 + 𝜁𝐪൯, 𝑦 𝐪 =

1

√2
൫−𝜉𝐪 + 𝜁𝐪൯, 
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and  

 
Fி௟௨௖ = −

𝑇

2
෍ ቆln

𝜋𝑇

𝜀ଵ,𝐪
+ ln

𝜋𝑇

𝜀ଶ,𝐪
ቇ .

𝐪

 2.5.7-3 

Notice that, the functional integration here can be done only over the set 𝐪୶, as  

𝛼𝐪 = 𝛼ି𝐪, 𝛽𝐪 = 𝛽ି𝐪, 𝜉𝐪 = 𝜉ି𝐪, 𝜁𝐪 = 𝜁ି𝐪. The choice of 𝐪୶ is not mandatory, we can adopt 

𝐪୷ ≥ 0, 𝐪୸ ≥ 0. 

It is also important to note that 𝜀ଶ,𝐪 does not appear in the problem when only the real 

fluctuation fields are included: 𝜀ଶ,𝐪 is related to phase fluctuations of the order parameter and, 

so, to the Goldstone mode, this come from the fact that 𝑥𝐪 = 𝑥ି𝐪 and 𝑦𝐪 = 𝑦 𝐪 for real 

fluctuations. 

Then, we can use this framework to calculate the average of the fluctuation fields.  

For 〈𝜂(𝒓)〉, we have  

 
〈𝜂(𝒓)〉 =

∫ D[𝜂]𝜂(𝒓)𝑒-H[ఎ]

∫ D[𝜂]𝑒-H[ఎ]
,  

as 

 
𝜂(𝒓) =

1

𝐿஽/ଶ
෍ 𝑒௜𝐪∙𝒓𝜂𝐪

𝐪

,  

becomes 

〈𝜂(𝒓)〉 =
1

𝐿஽/ଶ
෍ 𝑒௜𝐪∙𝒓〈𝜂𝐪〉

𝐪

, 

with 

〈𝜂𝐪〉 =
∫ D[𝜂]𝜂𝐪𝑒-H[ఎ]

∫ D[𝜂]𝑒-H[ఎ]
. 

As 𝜂𝐪 = 𝑥𝐪 + 𝑖𝑦𝐪 and 𝜂𝐪
∗ = 𝑥𝐪 − 𝑖𝑦𝐪, we have  

〈𝜂𝐪〉 = 〈𝑥𝐪〉 + 𝑖〈𝑦𝐪〉, 

and 

〈𝑥𝐪〉 =
∫ D[𝜂]𝑥𝐪𝑒-H[ఎ]

∫ D[𝜂]𝑒-H[ఎ]
, 〈𝑦𝐪〉 =

∫ D[𝜂]𝑦𝐪𝑒-H[ఎ]

∫ D[𝜂]𝑒-H[ఎ]
. 
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Whereas 

〈𝜂𝐪
∗ 〉 = 〈𝑥𝐪〉 − 𝑖〈𝑦𝐪〉, 

Then, 

〈𝑥𝐪〉 =
∫ ∏ 𝑑𝛼𝐤𝑑𝛽𝐤 𝑑𝜉𝐤𝑑𝜁𝐤𝑥𝐪𝐤,௞ೣஹ଴ exp ቄ−

1
𝑇

∑ ൣ𝜀ଵ,𝐤(𝛼𝐤
ଶ + 𝜉𝐤

ଶ) + 𝜀ଶ,𝐤(𝛽𝐤
ଶ + 𝜁𝐤

ଶ)൧𝐤,௞ೣஹ଴ ቅ

∫ ∏ 𝑑𝛼𝐤𝑑𝛽𝐤 𝑑𝜉𝐤𝑑𝜁𝐤𝐤,௞ೣஹ଴ exp ቄ−
1
𝑇

∑ ൣ𝜀ଵ,𝐤(𝛼𝐤
ଶ + 𝜉𝐤

ଶ) + 𝜀ଶ,𝐤(𝛽𝐤
ଶ + 𝜁𝐤

ଶ)൧𝐤 ቅ
, 

〈𝑥𝐪〉 =
∫ 𝑑𝛼𝐪𝑑𝛽𝐪 𝑑𝜉𝐪𝑑𝜁𝐪

൫𝛼𝐪 + 𝛽𝐪൯

√2
exp ቄ−

1
𝑇

ൣ𝜀ଵ,𝐪൫𝛼𝐪
ଶ + 𝜉𝐪

ଶ൯ + 𝜀ଶ,𝐪൫𝛽𝐪
ଶ + 𝜁𝐪

ଶ൯൧ቅ

∫ 𝑑𝛼𝐪𝑑𝛽𝐪 𝑑𝜉𝐪𝑑𝜁𝐪exp ቄ−
1
𝑇

ൣ𝜀ଵ,𝐪൫𝛼𝐪
ଶ + 𝜉𝐪

ଶ൯ + 𝜀ଶ,𝐪൫𝛽𝐪
ଶ + 𝜁𝐪

ଶ൯൧ቅ
, 

〈𝑥𝐪〉 =
∫ 𝑑𝛼𝐪𝑑𝛽𝐪

൫𝛼𝐪 + 𝛽𝐪൯

√2
exp ቂ−

1
𝑇

൫𝜀ଵ,𝐪𝛼𝐪
ଶ + 𝜀ଶ,𝐪𝛽𝐪

ଶ൯ቃ

∫ 𝑑𝛼𝐪𝑑𝛽𝐪 exp ቂ−
1
𝑇

൫𝜀ଵ,𝐪𝛼𝐪
ଶ + 𝜀ଶ,𝐪𝛽𝐪

ଶ൯ቃ
= 0. 

In turn,  

〈𝑦𝐪〉 =
∫ ∏ 𝑑𝛼𝐤𝑑𝛽𝐤 𝑑𝜉𝐤𝑑𝜁𝐤𝑦𝐪𝐤,௞ೣஹ଴ exp ቄ−

1
𝑇

∑ ൣ𝜀ଵ,𝐤(𝛼𝐤
ଶ + 𝜉𝐤

ଶ) + 𝜀ଶ,𝐤(𝛽𝐤
ଶ + 𝜁𝐤

ଶ)൧𝐤,௞ೣஹ଴ ቅ

∫ ∏ 𝑑𝛼𝐤𝑑𝛽𝐤 𝑑𝜉𝐤𝑑𝜁𝐤𝐤,௞ೣஹ଴ exp ቄ−
1
𝑇

∑ ൣ𝜀ଵ,𝐤(𝛼𝐤
ଶ + 𝜉𝐤

ଶ) + 𝜀ଶ,𝐤(𝛽𝐤
ଶ + 𝜁𝐤

ଶ)൧𝐤 ቅ
, 

〈𝑦𝐪〉 =
∫ 𝑑𝛼𝐪𝑑𝛽𝐪 𝑑𝜉𝐪𝑑𝜁𝐪

൫𝜉𝐪 + 𝜁𝐪൯

√2
exp ቄ−

1
𝑇

ൣ𝜀ଵ,𝐪൫𝛼𝐪
ଶ + 𝜉𝐪

ଶ൯ + 𝜀ଶ,𝐪൫𝛽𝐪
ଶ + 𝜁𝐪

ଶ൯൧ቅ

∫ 𝑑𝛼𝐪𝑑𝛽𝐪 𝑑𝜉𝐪𝑑𝜁𝐪exp ቄ−
1
𝑇

ൣ𝜀ଵ,𝐪൫𝛼𝐪
ଶ + 𝜉𝐪

ଶ൯ + 𝜀ଶ,𝐪൫𝛽𝐪
ଶ + 𝜁𝐪

ଶ൯൧ቅ
, 

〈𝑦𝐪〉 =
∫ 𝑑𝜉𝐪𝑑𝜁𝐪

൫𝜉𝐪 + 𝜁𝐪൯

√2
exp ቂ−

1
𝑇

൫𝜀ଵ,𝐪𝜉𝐪
ଶ + 𝜀ଶ,𝐪𝜁𝐪

ଶ൯ቃ

∫ 𝑑𝜉𝐪𝑑𝜁𝐪 exp ቂ−
1
𝑇

൫𝜀ଵ,𝐪𝜉𝐪
ଶ + 𝜀ଶ,𝐪𝜁𝐪

ଶ൯ቃ
= 0. 

Thus, we conclude that  

〈𝜂𝐪〉 = 〈𝜂𝐪
∗ 〉 = 0, 

and 

〈𝜂(𝒓)〉 = 〈𝜂∗(𝒓)〉 = 0. 

Obviously,  

〈𝛁𝜂(𝒓)〉 = 〈𝛁𝜂∗(𝒓)〉 = 0 
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Now, we investigate the pair averages, and first we consider 〈|𝜂ଶ(𝒓)|〉, but in order to do this 

calculation we need to rewrite the product 𝜂(𝒓)𝜂∗(𝒓) in terms of the variables with 𝑞௫ ≥ 0 

𝜂(𝒓) =
1

𝐿஽/ଶ
෍ 𝑒௜𝐪∙𝒓𝜂𝐪

𝐪

=
1

𝐿஽/ଶ
෍ 𝑒௜𝐪∙𝒓൫𝑥𝐪 + 𝑖𝑦𝐪൯

𝐪

, 

as we can do the change 𝐪 → −𝐪  

𝜂(𝒓) =
1

2𝐿஽/ଶ
෍ 𝑒௜𝐪∙𝒓൫𝑥𝐪 + 𝑖𝑦𝐪൯ + 𝑒௜ି𝐪∙𝒓൫𝑥ି𝐪 + 𝑖𝑦 𝐪൯

𝐪

, 

𝜂(𝒓) =
1

𝐿஽/ଶ
෍ ൣ𝑒௜𝐪∙𝒓൫𝑥𝐪 + 𝑖𝑦𝐪൯ + 𝑒௜ି𝐪∙𝒓൫𝑥ି𝐪 + 𝑖𝑦 𝐪൯൧

𝐪,௤ೣஹ଴

, 

𝜂(𝒓) =
1

𝐿஽/ଶ
෍ ቊ𝑒௜𝐪∙𝒓 ቈ

൫𝛼𝐪 + 𝛽𝐪൯

√2
+ 𝑖

൫𝜉𝐪 + 𝜁𝐪൯

√2
቉ + 𝑒௜ି𝐪∙𝒓 ቈ

൫𝛼𝐪 − 𝛽𝐪൯

√2
+ 𝑖

൫−𝜉𝐪 + 𝜁𝐪൯

√2
቉ቋ

𝐪,௤ೣஹ଴

, 

𝜂(𝒓) =
1

𝐿஽/ଶ
෍ ቊ

𝑒௜𝐪∙𝒓

√2
ൣ൫𝛼𝐪 + 𝛽𝐪൯ + 𝑖൫𝜉𝐪 + 𝜁𝐪൯൧ +

𝑒௜ି𝐪∙𝒓

√2
ൣ൫𝛼𝐪 − 𝛽𝐪൯ + 𝑖൫−𝜉𝐪 + 𝜁𝐪൯൧ቋ

𝐪,௤ೣஹ଴

. 

For the complex conjugate  

𝜂∗(𝒓) =
1

𝐿஽/ଶ
෍ ቊ

𝑒ି௜𝐪ᇱ∙𝒓

√2
ൣ൫𝛼𝐪ᇱ + 𝛽𝐪ᇱ൯ − 𝑖൫𝜉𝐪ᇱ + 𝜁𝐪ᇱ൯൧

𝐪ᇱ,௤ᇱೣஹ଴

+
𝑒௜𝐪ᇱ∙𝒓

√2
ൣ൫𝛼𝐪ᇱ − 𝛽𝐪ᇱ൯ + 𝑖൫𝜉𝐪ᇱ − 𝜁𝐪ᇱ൯൧ቋ. 

Considering only the terms with 𝐪 = 𝐪′, other terms do not contribute, we obtain  

|𝜂ଶ(𝒓)| =
1

𝐿஽
෍ ቆ

𝛼𝐪
ଶ

2
+

𝛼𝐪
ଶ𝑒௜ଶ𝐪∙𝒓

2
+

𝛼𝐪
ଶ𝑒ି௜ଶ𝐪∙𝒓

2
+

𝛼𝐪
ଶ

2
+

𝛽𝐪
ଶ

2
−

𝛽𝐪
ଶ𝑒௜ଶ𝐪∙𝒓

2
−

𝛽𝐪
ଶ𝑒ି௜ଶ𝐪∙𝒓

2
+

𝛽𝐪
ଶ

2
𝐪,௤ೣஹ଴

+
𝜉𝐪

ଶ

2
−

𝜉𝐪
ଶ𝑒௜ଶ𝐪∙𝒓

2
−

𝜉𝐪
ଶ𝑒ି௜ଶ𝐪∙𝒓

2
+

𝜉𝐪
ଶ

2
+

𝜁𝐪
ଶ

2
+

𝜁𝐪
ଶ𝑒௜ଶ𝐪∙𝒓

2
+

𝜁𝐪
ଶ𝑒ି௜ଶ𝐪∙𝒓

2
+

𝜁𝐪
ଶ

2
ቇ. 

Calculating the average, of each term   

〈𝛼𝐪
ଶ〉 =

∫ 𝑑𝛼𝐪𝛼𝐪
ଶ𝑒-H

∫ 𝑑𝛼𝐪𝑒-H
=

∫ 𝑑𝛼𝐪𝛼𝐪
ଶexp ቀ−

1
𝑇

𝜀ଵ,𝐪𝛼𝐪
ଶቁ

∫ 𝑑𝛼𝐪exp ቀ−
1
𝑇

𝜀ଵ,𝐪𝛼𝐪
ଶቁ

=
Γ ቀ

3
2

ቁ

2 ቀ
𝜀ଵ,𝐪

𝑇
ቁ

ଷ
ଶ

2 ቀ
𝜀ଵ,𝐪

𝑇
ቁ

ଵ/ଶ

Γ ቀ
1
2

ቁ
=

1

2

𝑇

𝜀ଵ,𝐪
. 
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〈𝛽𝐪
ଶ〉 =

∫ 𝑑𝛽𝐪𝛽𝐪
ଶ𝑒-H

∫ 𝑑𝛽𝐪𝑒-H
=

∫ 𝑑𝛽𝐪𝛽𝐪
ଶexp ቀ−

1
𝑇

𝜀ଶ,𝐪𝛽𝐪
ଶቁ

∫ 𝑑𝛽𝐪exp ቀ−
1
𝑇

𝜀ଶ,𝐪𝛼𝐪
ଶቁ

=
Γ ቀ

3
2

ቁ

2 ቀ
𝜀ଶ,𝐪

𝑇
ቁ

ଷ
ଶ

2 ቀ
𝜀ଶ,𝐪

𝑇
ቁ

ଵ/ଶ

Γ ቀ
1
2

ቁ
=

1

2

𝑇

𝜀ଶ,𝐪
. 

The same we can do for 〈𝜉𝐪
ଶ〉 and 〈𝜁𝐪

ଶ〉, that read 

〈𝜉𝐪
ଶ〉 =

1

2

𝑇

𝜀ଵ,𝐪
, 〈𝜁𝐪

ଶ〉 =
1

2

𝑇

𝜀ଶ,𝐪
. 

And, now we can calculate the average  

〈|𝜂ଶ(𝒓)|〉 =
1

𝐿஽
෍ ൫〈𝛼𝐪

ଶ〉 + 〈𝛽𝐪
ଶ〉 + 〈𝜉𝐪

ଶ〉 + 〈𝜁𝐪
ଶ〉൯

𝐪,௤ೣஹ଴

, 

So, as we can see 〈𝛼𝐪
ଶ〉 = 〈𝜉𝐪

ଶ〉 and 〈𝛽𝐪
ଶ〉 = 〈𝜁𝐪

ଶ〉, and 〈|𝜂ଶ(𝒓)|〉 writes  

 
〈|𝜂ଶ(𝒓)|〉 =

2

𝐿஽
෍ ൫〈𝛼𝐪

ଶ〉 + 〈𝛽𝐪
ଶ〉൯

𝐪,௤ೣஹ଴

,  

 
〈|𝜂ଶ(𝒓)|〉 =

1

𝐿஽
෍൫〈𝛼𝐪

ଶ〉 + 〈𝛽𝐪
ଶ〉൯

𝐪

,  

 
〈|𝜂ଶ(𝒓)|〉 =

1

2𝐿஽
෍ ቆ

𝑇

𝜀ଵ,𝐪
+

𝑇

𝜀ଶ,𝐪
ቇ

𝐪

. 2.5.7-4 

The same procedure we can do for 〈𝜂ଶ(𝒓)〉, using the previous results for 𝜂(𝒓) in terms of the 

diagonal variables 𝛼𝐪, 𝛽𝐪, 𝜉𝐪 and 𝜁𝐪 

〈𝜂ଶ(𝒓)〉 =
1

𝐿஽
෍ ቆ

〈𝛼𝐪
ଶ〉

2
+

〈𝛼𝐪
ଶ〉𝑒௜ଶ𝐪∙𝒓

2
+

〈𝛼𝐪
ଶ〉𝑒ି௜ଶ𝐪∙𝒓

2
+

〈𝛼𝐪
ଶ〉

2
+

〈𝛽𝐪
ଶ〉𝑒௜ଶ𝐪∙𝒓

2
−

〈𝛽𝐪
ଶ〉

2
𝐪,௤ೣஹ଴

+
〈𝛽𝐪

ଶ〉𝑒ି௜ଶ𝐪∙𝒓

2
−

〈𝛽𝐪
ଶ〉

2
−

〈𝜉𝐪
ଶ〉𝑒௜ଶ𝐪∙𝒓

2
+

〈𝜉𝐪
ଶ〉

2
−

〈𝜉𝐪
ଶ〉𝑒ି௜ଶ𝐪∙𝒓

2
+

〈𝜉𝐪
ଶ〉

2
−

〈𝜁𝐪
ଶ〉𝑒௜ଶ𝐪∙𝒓

2

−
〈𝜁𝐪

ଶ〉

2
−

〈𝜁𝐪
ଶ〉𝑒ି௜ଶ𝐪∙𝒓

2
−

〈𝜁𝐪
ଶ〉

2
ቇ, 

as we can see 〈𝛼𝐪
ଶ〉 = 〈𝜉𝐪

ଶ〉 and 〈𝛽𝐪
ଶ〉 = 〈𝜁𝐪

ଶ〉 

〈𝜂ଶ(𝒓)〉 =
1

𝐿஽
෍ ൫〈𝛼𝐪

ଶ〉 + 〈𝜉𝐪
ଶ〉 − 〈𝛽𝐪

ଶ〉 − 〈𝜁𝐪
ଶ〉൯

𝐪,௤ೣஹ଴

, 
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Finally 

 
〈𝜂ଶ(𝒓)〉 =

1

2𝐿஽
෍ ቆ

𝑇

𝜀ଵ,𝐪
−

𝑇

𝜀ଶ,𝐪
ቇ

𝐪

. 2.5.7-5 

When 𝜀ଵ,𝐪 = 𝜀ଶ,𝐪 (above the critical temperature, where there is no averaged condensate), we 

have 〈𝜂ଶ(𝒓)〉 = 0, while 〈|𝜂ଶ(𝒓)|〉 ≠ 0. Generally, |〈𝜂ଶ〉| ≪ 〈|𝜂ଶ|〉, which is justified by the 

presence of significant oscillations of  𝜂ଶ due to the phase variations. This, in particular, 

dictates the random phase approximation, according which any average including different 

numbers of 𝜂 and 𝜂∗ is nearly zero due to oscillations caused by phase variations.  

2.5.8 Fluctuation- Shifted critical temperature 

In this section, from the formalism of the Gaussian fluctuations  we will calculate how 

the critical temperature is shifted from the mean field temperature, 𝑇௖଴. As is usual, the critical 

temperature is found by the Ginzburg-Landau equation, by the temperature dependence in 𝑎. 

So, our starting point is the Ginzburg-Landau equation  

 𝑎𝜓(𝒓) + 𝑏𝜓(𝒓)|𝜓(𝒓)|ଶ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜓(𝒓) = 0, 2.5.8-1 

Suppose that order parameter is given by its averaged value plus a fluctuation field. 𝜓 = 𝜓଴ +

𝜂 and 𝜓଴ = 〈𝜓〉. So, the GL equation becomes  

𝑎(𝜓଴ + 𝜂) + 𝑏(𝜓଴ + 𝜂)|𝜓଴ + 𝜂|ଶ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ(𝜓଴ + 𝜂) = 0, 

𝑎(𝜓଴ + 𝜂) + 𝑏(𝜓଴ + 𝜂)ଶ(𝜓଴ + 𝜂)∗ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ(𝜓଴ + 𝜂) = 0, 

𝑎(𝜓଴ + 𝜂) + 𝑏(𝜓଴
ଶ + 𝜂ଶ + 2𝜓଴𝜂)ଶ(𝜓଴

∗ + 𝜂∗) − ෍ 𝐾(௝)

௝

𝜕௝
ଶ(𝜓଴ + 𝜂) = 0, 

𝑎𝜓଴ + 𝑎𝜂 + 𝑏𝜓଴|𝜓଴|ଶ + 𝑏𝜓଴
ଶ𝜂∗ + 𝑏𝜂ଶ𝜓଴

∗ + 𝑏𝜂|𝜂|ଶ + 2𝑏𝜂|𝜓଴|ଶ + 2𝑏𝜓଴|𝜂|ଶ

− ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜓଴ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜂 = 0, 
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Collecting the similar terms  

𝑎𝜓଴ + 𝑏𝜓଴|𝜓଴|ଶ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜓଴

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
୬୭ ୤୪୳ୡ୲୳ୟ୲୧୭୬ ୲ୣ୰୫ୱ

+ 𝑎𝜂 + 𝑏𝜓଴
ଶ𝜂∗ + 2𝑏𝜂|𝜓଴|ଶ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜂

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
୪୧୬ୣୟ୰ ୧୬ ఎ

+ 𝑏𝜂ଶ𝜓଴
∗ + 𝑏𝜂|𝜂|ଶ + 2𝑏𝜓଴|𝜂|ଶᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ

୬୭୬ି୪୧୬ୣୟ୰ ୧୬ ఎ

= 0 

Averaging above equation over 𝜂, knowing that 〈𝜂〉 = 〈𝜂∗〉 = 〈𝛁𝟐𝜂〉 = 0, and the non-linear 

terms gives a contribution if they are normal (not anomalous) from the random phase 

approximation, i.e. 〈𝜂ଶ〉 = 〈𝜂|𝜂|ଶ〉 = 0, 〈|𝜂|ଶ〉 ≠ 0. 

We obtain the following 

 𝑎𝜓଴ + 𝑏𝜓଴|𝜓଴|ଶ + 2𝑏𝜓଴〈|𝜂|ଶ〉 − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜓଴ = 0,  

 (𝑎 + 2𝑏〈|𝜂|ଶ〉)𝜓଴ + 𝑏|𝜓଴|ଶ𝜓଴ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜓଴ = 0. 2.5.8-2 

We can see that; this equation is a GL equation for 𝜓଴. The solution of 𝜓଴ depends on the 

average  〈|𝜂|ଶ〉, the shape of the resulting equation dictates that 𝜓଴ → 0 when 𝑇 → 𝑇௖.  

So, calculate at 𝑇 = 𝑇௖, 𝑇௖ is given by,   

𝛼(𝑇௖ − 𝑇௖଴) + 2𝑏〈|𝜂|ଶ〉
೎்

= 0. 

Then, the shifted value at 𝑇௖ reads  

 
𝑇௖ = 𝑇௖଴ −

2𝑏

𝛼
〈|𝜂|ଶ〉

೎்
. 2.5.8-3 

The equation for the fluctuation field can be represented in the form 

(𝑎 + 2𝑏|𝜓଴|ଶ)𝜂 + 𝑏𝜓଴
ଶ𝜂∗ + 𝑏𝜓଴

∗𝜂ଶ + (2𝑏|𝜂|ଶ − 2𝑏〈|𝜂|ଶ〉)𝜓 + 𝑏𝜂|𝜂|ଶ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜂 = 0, 

To get the related Gaussian functional, one needs to approximate (linearize) the terms 𝑏𝜓଴
∗𝜂ଶ, 

(2𝑏|𝜂|ଶ − 2𝑏〈|𝜂|ଶ〉)𝜓, 𝑏𝜂|𝜂|ଶ. However, to calculate Eq. 2.5.8-3, we need to use 𝑇 = 𝑇௖ so 

that 𝜓଴ = 0. In this case the equation for the fluctuation becomes   

 𝑎𝜂 + 𝑏𝜂|𝜂|ଶ − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜂 = 0. 2.5.8-4 
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Nonlinear term in 𝜂 is not simply ignored in the GL equation, but is approximated to the mean-

field recipe, if the product of two “operators” obeys the relation  

〈𝐴𝐵〉 ≈ 〈𝐴〉 ∙ 〈𝐵〉, 

then, we use the mean field approximation 

𝐴𝐵 = 〈𝐴〉𝐵 + 〈𝐵〉𝐴 − 〈𝐴〉〈𝐵〉, 

if not 𝐴𝐵 ≈ 〈𝐴𝐵〉. 

For three “operators” we have  

𝐴𝐵𝐶 ≅ 〈𝐴〉𝐵𝐶 + 𝐴〈𝐵𝐶〉 − 〈𝐴〉〈𝐵𝐶〉 + 〈𝐵〉𝐴𝐶 + 𝐵〈𝐴𝐶〉 − 〈𝐵〉〈𝐴𝐶〉 + 〈𝐶〉𝐴𝐵 + 𝐶〈𝐴𝐵〉

− 〈𝐶〉〈𝐴𝐵〉, 

or 𝐴𝐵𝐶 ≅ 〈𝐴𝐵𝐶〉, respectively 

|𝜂|ଶ ≅ 〈|𝜂|ଶ〉, 

𝜂ଶ ≅ 𝜂〈𝜂〉 + 〈𝜂〉𝜂 − 〈𝜂〉ଶ, 

𝜂|𝜂|ଶ = 𝜂𝜂𝜂∗ ≅ 〈𝜂〉𝜂𝜂∗ + 𝜂〈𝜂𝜂∗〉 − 〈𝜂〉〈𝜂𝜂∗〉 + 〈𝜂〉𝜂𝜂∗ + 𝜂〈𝜂𝜂∗〉 − 〈𝜂〉〈𝜂𝜂∗〉 + 〈𝜂∗〉𝜂ଶ

+ 𝜂∗〈𝜂ଶ〉 − 〈𝜂∗〉〈𝜂ଶ〉 ≅ 2𝜂〈|𝜂|ଶ〉, 

where we keep in mind that 〈𝜂〉 = 〈𝜂ଶ〉 = 0, but 〈|𝜂|ଶ〉 ≠ 0. This construction for 𝜂|𝜂|ଶ looks 

a bit tricky, however its justification is also in the final result for the shift of the critical 

temperature, that is known from the renormalization group analysis. 

So, Eq. 2.5.8-4 becomes    

(𝑎 + 2𝑏〈|𝜂|ଶ〉)𝜂 − ෍ 𝐾(௝)

௝

𝜕௝
ଶ𝜂 = 0. 

We obtain  

𝜀ା = 𝑎 + 2𝑏〈|𝜂|ଶ〉 − ෍ 𝐾(௝)

௝

𝑞௝
ଶ, 𝜀ି = 0, 

and 

𝜀ଵ,𝐪 = 𝜀ଶ,𝐪 = 𝑎 + 2𝑏〈|𝜂|ଶ〉 + ෍ 𝐾(௝)

௝

𝑞௝
ଶ. 

 

 



73 

 

So, one finds 

〈|𝜂ଶ|〉
೎்

=
1

𝐿஽
෍

𝑇௖

𝑎 + 2𝑏〈|𝜂ଶ|〉
೎்

+ ∑ 𝐾(௝)
௝ 𝑞௝

ଶ

𝐪

. 

Finally, writing in it as a function of continuous variables  

 
〈|𝜂ଶ|〉

೎்
= න

d஽𝐪

(2𝜋)஽

𝑇௖

𝑎 + 2𝑏〈|𝜂ଶ|〉
೎்

+ 𝐾𝐪𝟐
, 2.5.8-5 

where  𝐾 = ඥ𝐾(௫)𝐾(௬)𝐾(௭)య
 for 3D, 𝐾 = ඥ𝐾(௫)𝐾(௬) for 2D. As seen, we write 〈|𝜂ଶ|〉

೎்
 in 

terms of the isotropic model. 

As 𝑎 + 2𝑏〈|𝜂|ଶ〉
೎்

= 0, at 𝑇 = 𝑇௖ 

 
〈|𝜂ଶ|〉

೎்
= න

d஽𝐪

(2𝜋)஽

𝑇௖

𝐾𝐪𝟐

ஃಮ

ஃబ

, 2.5.8-6 

 where  the cutoffs are estimated as 

Λ଴ =
c଴

𝜉(𝐺𝑖)
, Λஶ =

cஶ

𝜉଴
, 

Justified by renormalization group analysis. Here 𝜉(𝐺𝑖) is the Ginzburg-Landau length 

calculated at the Ginzburg-Levanyuk temperature. For  𝐪 >
ୡಮ

కబ
 should not contribute as 𝜉଴ is 

the minimal lenght in the Ginzburg-Landau theory. 𝐪 <
ୡబ

క(ீ௜)
 should not make contribution as 

𝜉(𝐺𝑖) is an upper limit of the coherence radius in the system. The divergence at small momenta 

appears at 𝑇௖. 
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2.5.9 𝑻𝒄 Shifted by fluctuations   

To proceed further, we perform the calculations of the shifted temperature in the case 

for 3, 2 and 1 spatial dimension 

1. 𝐷 = 3 ∶ 

 
〈|𝜂ଶ|〉

೎்
= න

dଷ𝐪

(2𝜋)ଷ

𝑇௖

𝐾𝐪𝟐

ஃಮ

ஃబ

,  

 
=

𝑇௖

2𝜋ଶ𝐾
൬

cஶ

𝜉଴
−

c଴

𝜉(𝐺𝑖)
൰,  

as 𝜉(𝐺𝑖) = 𝜉଴/ √𝐺𝑖 we obtain  

 
〈|𝜂ଶ|〉

೎்
=

𝑇௖

2𝜋ଶ𝐾

cஶ

𝜉଴
൬1 −

c଴

cஶ
√𝐺𝑖൰. 2.5.9-1 

Inserting in Eq. 2.5.8-3 

 
𝑇௖଴ − 𝑇௖ =

2𝑏

𝛼
〈|𝜂|ଶ〉

೎்
,  

 𝑇௖଴ − 𝑇௖

𝑇௖
=

2𝑏

𝛼

1

2𝜋ଶ𝐾

cஶ

𝜉଴
൬1 −

c଴

cஶ
√𝐺𝑖൰.  

As from Eq.2.5.5-8, 𝐺𝑖 =
ଵ

ଷଶగమ 

೎்బ௕మ

ఈ௄య
 and 𝜉଴ = ඥ𝐾/𝛼𝑇௖଴, we get 

 
𝑇௖଴ − 𝑇௖

𝑇௖
=

2𝑏

𝛼

1

2𝜋ଶ𝐾
ඨ

𝛼𝑇௖଴

𝐾
cஶ ൬1 −

c଴

cஶ
√𝐺𝑖൰,  

 𝑇௖଴ − 𝑇௖

𝑇௖
=

cஶ

𝜋ଶ
ඥ32𝜋ଶ𝐺𝑖 ൬1 −

c଴

cஶ
√𝐺𝑖൰. 

2.5.9-2 

For 𝐺𝑖 ≪ 1 we can keep only the leading order contribution in √𝐺𝑖, i.e., 

 𝑇௖଴ − 𝑇௖

𝑇௖
=

cஶ

𝜋ଶ
ඥ32𝜋ଶ𝐺𝑖,  

which recovers the known result of  the renormalization group at cஶ = √2, 

 𝑇௖଴ − 𝑇௖

𝑇௖
=

8

𝜋
√𝐺𝑖. 

2.5.9-3 
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2. 𝐷 = 2 ∶ 

 
〈|𝜂ଶ|〉

೎்
= න

dଶ𝐪

(2𝜋)ଶ

𝑇௖

𝐾𝐪𝟐

ஃಮ

ஃబ

,  

 
〈|𝜂ଶ|〉

೎்
=

𝑇௖

2𝜋𝐾
ln ൬

Λஶ

Λ଴
൰ =

𝑇௖

2𝜋𝐾
ln ൬

cஶ

c଴

𝜉଴

𝜉(𝐺𝑖)
൰,  

as 𝜉(𝐺𝑖) = 𝜉଴/ √𝐺𝑖   

 
〈|𝜂ଶ|〉

೎்
=

𝑇௖

2𝜋𝐾
ln ቆ

cஶ

c଴√𝐺𝑖
ቇ, 2.5.9-4 

 

Inserting in Eq. 2.5.8-3 

 
𝑇௖଴ − 𝑇௖ =

2𝑏

𝛼
〈|𝜂|ଶ〉

೎்
.  

 𝑇௖଴ − 𝑇௖

𝑇௖
=

2𝑏

𝛼

1

2𝜋𝐾
ln ቆ

cஶ

c଴√𝐺𝑖
ቇ,  

As from Eq. 2.5.5-9, 𝐺𝑖 =
ଵ

ସగ 

௕

ఈ௄
, we get 

 𝑇௖଴ − 𝑇௖

𝑇௖
= 4𝐺𝑖 ln ൬

cஶ

c଴

1

√𝐺𝑖
൰. 

2.5.9-5 

Using cஶ/c଴ = 1/2, we recover the renormalization group result  

 𝑇௖଴ − 𝑇௖

𝑇௖
= 2𝐺𝑖 ln ൬

1

4𝐺𝑖
൰. 

2.5.9-6 

Here the two leading terms are available −2𝐺𝑖 ln 𝐺𝑖 and −2𝐺𝑖 ln 4. 

3. 𝐷 = 1 ∶ 

Our previous calculations of 𝐺𝑖 for one dimension produced the result 𝐺𝑖~1, meaning 

the failure of the perturbation scheme based on the Gaussian fluctuations. For illustration we 

will calculate the shift of the critical temperature due to the fluctuations for 𝐷 = 1.  

 
〈|𝜂ଶ|〉

೎்
= න

d𝐪

2𝜋

𝑇௖

𝐾𝐪𝟐

ஃಮ

ஃబ

,  

 
〈|𝜂ଶ|〉

೎்
=

𝑇௖

2𝜋𝐾
ቆ

𝜉(𝐺𝑖)

c଴
−

𝜉଴

cஶ
ቇ,  
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〈|𝜂ଶ|〉

೎்
=

𝑇௖

2𝜋𝐾

𝜉଴

cஶ
൬

cஶ

c଴

1

√𝐺𝑖
− 1൰. 2.5.9-7 

Inserting in Eq. 2.5.8-3 and 𝜉଴ = ඥ𝐾/𝛼𝑇௖଴ 

 
𝑇௖଴ − 𝑇௖ =

2𝑏

𝛼
〈|𝜂|ଶ〉

೎்
,  

 
𝑇௖଴ − 𝑇௖

𝑇௖
=

2𝑏

𝛼

1

2𝜋𝐾
ඨ

𝐾

𝛼𝑇௖଴

1

cஶ
൬

cஶ

c଴

1

√𝐺𝑖
− 1൰,  

 
𝑇௖଴ − 𝑇௖

𝑇௖
=

𝑏

𝛼𝜋𝐾
ඨ

𝐾

𝛼𝑇௖଴

1

cஶ
൬

cஶ

c଴

1

√𝐺𝑖
− 1൰.  

As from Eq. 2.5.5-10, 𝐺𝑖 = ቀ
ଵ

ଵଶ଼

௕మ

௄ ೎்బఈయ
ቁ

ଵ/ଷ

~1, we get 

 𝑇௖଴ − 𝑇௖

𝑇௖
=

1

cஶ𝜋
ඥ128𝐺𝑖ଷ ൬

cஶ

c଴

1

√𝐺𝑖
− 1൰. 

2.5.9-8 

 
𝑇௖଴ − 𝑇௖

𝑇௖
= 𝐺𝑖⏟

~ଵ

൮
√128

𝜋c଴ᇣᇤᇥ
~ଵ

−
√128

𝜋cஶ
√𝐺𝑖

ᇣᇧᇧᇤᇧᇧᇥ
~ଵ

൲. 

 

which is certainly beyond the perturbation theory, fluctuations  are huge, and we cannot  

invoke any framework based on the gaussian picture of fluctuation. 

 

 

 

 

 

 

 

 

 



77 

 

3 EGL FORMALISM FOR MULTIBAND SUPERCONDUCTORS 

 

3.1 FORMALISM 

The GL theory distinguishes ideally diamagnetic type I and type II, where the 

paramagnetic contribution results in the mixed state with an Abrikosov lattice of single-

quantum vortices. The boundary between types I and II, in the GL picture, is the temperature-

independent line 𝜅 = 𝜅଴ = 1/√2, in the 𝜅-𝑇 plane [75], [76], [44]. However, this picture is 

valid only in the limit 𝑇 → 𝑇௖, while below 𝑇௖ there is a finite temperature-dependent interval 

of 𝜅’s, separating types I and II. Thus, there is a finite domain of the crossover between types 

I and II in 𝜅-𝑇plane [61], [51], [52], [60], [81], which is referred as intertype (IT) domain. 

Inside this domain, the system exhibits a nonstandard field dependence on the magnetization 

[77]-[80] with unconventional configurations of the mixed state [65], [85], [88], governed by 

long-range attraction of vortices [80], [81], [60], and many-vortices interactions [63].  

In this work, we employed the M-band extension of the two-band BCS model 

introduced in [1], [2], with the s-wave pairing in all contributing bands and the Josephson like, 

Cooper-pair transfer between the bands (tunneling from one band to another), a system in the 

clean limit and that all available bands have a parabolic single-particle energy dispersion and 

spherical Fermi surfaces. The pairing is controlled by the symmetric real coupling matrix 𝑔ු, 

with the elements 𝑔ఔఔᇲ. 

To describe the finite IT domain, we should go beyond the GL theory. Solving 

microscopic equations for a nonuniform problem with an external magnetic field is a time 

consuming and rather involved task. However, to reach the objective of our sturdy, it is enough 

to use a perturbative expansion of these equations in 𝜏 = 1 − 𝑇/𝑇௖ to one order beyond the 

GL theory, i.e., the extended GL approach [35]. Here, we generalize the EGL formalism, 

developed previously for single- and two-band superconductors, to the case of an arbitrary 

number of contributing bands [35].  
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3.2 MULTIBAND NEUMANN-TEWORDT FUNCTIONAL 

First of all, to construct our formalism we start with constructing a multiband 

Neumann-Tewordt functional [92], [93]. The NT functional is obtained from the microscopic 

expression for the condensate free energy by accounting for higher powers and higher 

gradients of the band-dependent gap functions Δఔ = Δఔ(𝒙), as compared to the GL functional. 

Only the terms giving the GL theory and its leading corrections are taken into account. The 

general expression for the free energy density of 𝑀-band 𝑠-wave superconductor, relative to 

the normal state at zero field, is given by [36], [35]. 

 
𝑓 =

𝐁ଶ

8𝜋
+ Δሬሬ⃗ †𝑔ුିଵΔሬሬ⃗ + ෍ 𝑓ఔ[Δఔ]

ெ

ఔୀଵ

, 3.2-1 

where 𝐁 denotes the magnetic field, the vector Δሬሬ⃗ ் = (Δଵ, Δଶ, … , Δெ) comprises the band order 

parameters Δ஝ = Δ஝(𝒙), and the functional 𝑓ఔ[Δఔ] reads  

 

𝑓஝ = − ෍
1

𝑛 + 1
න ෑ 𝑑ଷ𝒚௝

ଶ௡ାଵ

௝ୀଵ

ஶ

௡ୀ଴

𝐾ఔ,ଶ௡ାଵ(𝒙, {𝒚}ଶ௡ାଵ)

× Δఔ
∗ (𝒙)Δఔ(𝒚ଵ) … Δఔ

∗ (𝒚ଶ௡)Δఔ(𝒚ଶ௡ାଵ), 

3.2-2 

with {𝒚}ଶ௡ାଵ = {𝒚ଵ, … , 𝒚ଶ௡ାଵ}. The integral kernel in Eq. (3.2-2) is given by (𝑚 is odd)  

 
𝐾஝,௠(𝒙, {𝒚}௠) = −𝑇  ෍ 𝒢஝,ன

(஻)
(𝒙, 𝒚ଵ)𝒢஝̅,ன

(஻)

ன

(𝒚ଵ, 𝒚ଶ) … 

× 𝒢ఔ,ఠ
(஻)

(𝒚௠ିଵ, 𝒚௠)𝒢ఔ̅,ఠ
(஻)

(𝒚௠, 𝒙), 

3.2-3 

where 𝜔 is the fermionic Matsubara frequency, 𝒢ఔ,ఠ
(஻)

(𝒙, 𝒚) is the Fourier transform of the 

normal Green function calculated in the presence of the magnetic field and 𝒢ఔ̅,ఠ
(஻)

(𝒙, 𝒚) =

−𝒢ఔ,ିఠ
(஻)

(𝒚, 𝒙). For  𝒢ఔ,ఠ
(஻)

(𝒙, 𝒚) we employ the standard approximation enough to derive the 

extended GL theory 

 

𝒢ఔ,ఠ
(஻)

(𝒙, 𝒚)  = exp ቈ𝑖 
𝑒

ℏc
න 𝐀(𝒛) ⋅ 𝑑𝒛

𝒙

𝒚

቉ 𝒢ఔ,ఠ
(଴)

(𝒙, 𝒚) , 3.2-4 
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where the integral in the exponent is taken along the trajectory of a charge carrier in a magnetic 

field with the vector potential 𝐀. The Green function for zero magnetic field is written as   

 

𝒢ఔ,ఠ
(଴)

(𝒙, 𝒚) = න
𝑑ଷ𝒌

(2π)ଷ

exp[𝑖𝒌 ⋅ (𝒙 − 𝒚)]

𝑖ℏω − ξ஝(𝒌)
, 3.2-5 

where the band-dependent single-particle energy dispersion reads  

 
ξ஝(𝒌) = ξ஝(0) +

ℏଶ𝒌ଶ

2𝑚஝
− 𝜇, 3.2-6 

with 𝑚ఔ the band effective mass, 𝜉ఔ(0) the band lower energy and 𝜇 the chemical potential. 

We invoke the gradient expansion for the gap functions and the vector potential in 

order to obtain a partial differential equation structure 

 Δ஝(𝒚) = Δ஝(𝒙) + ൫(𝒚 − 𝒙) ⋅ 𝛁௫⃗൯Δ஝(𝒙) + ⋯ , 

𝐀(𝒚) = 𝐀(𝒙) + ൫(𝒚 − 𝒙) ⋅ 𝛁௫⃗൯𝐀(𝒙) + ⋯ . 
3.2-7 

So, it is possible to represent the non-local integrals in the functional 𝑓ఔ as a series in powers 

of Δఔ, its gradients and field spatial derivatives. The series is infinite so that a truncation 

procedure is needed. For example, to get the GL formalism, the standard Gor'kov truncation 

is employed [94]. To incorporate the leading corrections to the GL formalism, one needs to go 

beyond the Gor'kov truncation and obtain a multiband generalization of the Neumann-Tewordt 

functional [92][93][35]. As the form of 𝑓ఔ is not sensitive to the number of contributing bands, 

one can utilize the previous results for the two-band case [35][61]. Then, the multiband 

Neumann-Tewordt functional reads 

 
𝑓 =

𝐁ଶ

8𝜋
+ Δሬሬ⃗ ற𝑔ුିଵΔሬሬ⃗

+ ෍ ቊቈAఔ + 𝑎ఔ ቆ𝜏 +
𝜏ଶ

2
ቇ቉ |Δఔ|ଶ +

𝑏ఔ

2
(1 + 2𝜏)|Δఔ|ସ −

𝑐ఔ

3
|Δఔ|଺

ெ

ఔୀଵ

+ 𝐾ఔ(1 + 2𝜏)|𝐃Δఔ|ଶ − 𝑄ఔ ቆ|𝐃ଶΔఔ|ଶ +
1

3
rot𝐁 ⋅ 𝒊ఔ +

4𝑒ଶ

ℏଶcଶ
𝐁ଶ|Δఔ|ଶቇ

−
𝐿ఔ

2
[8|Δఔ|ଶ|𝐃Δఔ|ଶ + (Δఔ

∗ଶ(𝐃Δఔ)ଶ + c.c.)]ቋ , 

3.2-8 
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where 𝐃 = 𝛁 − i
ଶ௘

ℏୡ
𝐀, 𝒊ఔ =

ଶ௘

ℏ ୡ
[Δఔ𝐃∗Δఔ

∗ − Δఔ
∗ 𝐃Δఔ] and the band dependent coefficients 

are given by 

 Aఔ = 𝑁ఔ ln ቀ
ଶ౳ℏఠ೎

గ ೎்
ቁ, 𝑎ఔ = −𝑁ఔ, 

𝑏ఔ = 𝑁ఔ
଻஖(ଷ)

଼గమ
೎்
మ, 𝑐஝ = 𝑁஝

93ζ(5)

128πସ𝑇௖
ସ,

 

 𝐾஝ =
௕ಕ

଺
ℏଶ𝑣஝

ଶ, 𝑄஝ =
௖ಕ

ଷ଴
ℏସ𝑣஝

ସ, 𝐿஝ =
௖ಕ

ଽ
ℏଶ𝑣஝

ଶ,  

where 𝜔௖ is the cut-off frequency, 𝑁ఔ is the band DOS, 𝑣ఔ denotes the band Fermi velocity, 

𝑇௖ is in the energy units, ζ(⋯ )  the Riemann zeta-function and Γ the Euler constant. 

At first sight the Neumann-Tewordt approach is a natural and straightforward 

extension of the GL theory. The initial motivation of its derivation was to construct a 

formalism that goes beyond the GL theory but preserves, to some practical extent, useful 

relative simplicity of the GL formalism, especially in the case of spatially nonuniform 

problems with an external magnetic field. However, highly nonlinear equations for the 

stationary solution of the Neumann-Tewordt extension of the GL theory are, in fact, not 

easier than the exact microscopic equations, see, e.g., Eq. (3) in Ref. [95]. Furthermore, it 

was demonstrated that the Neumann-Tewordt functional can lead to unphysical results 

[95] such as weakly damped oscillations of the order parameter for a single-vortex 

solution. This problem is related to the fact that the Neumann-Tewordt free energy is not 

bound from below, as the coefficients 𝑐஝,  𝑄஝, and 𝐿஝ are positive.  

It was suggested for the single-band case (see Ref. [95] and references therein) 

that to remedy the problem, the Neumann-Tewordt functional should be restructured by 

applying the perturbative τ-expansion. The point is that the stationary solution for the 

order parameter within the Neumann-Tewordt approach contains all odd powers of 𝜏ଵ/ଶ 

while the truncation of the infinite series in Eq.(3.2-3) does not distort only the two 

lowest orders 𝜏 (the GL term) and 𝜏ଷ/ଶ (the leading correction to the GL term). 

Incomplete (distorted) higher-order terms in τ cause the problem and should be 

removed by using the 𝜏-expansion. When removing these terms, the unphysical results 

disappear[95]. A similar situation should be, of course, expected in the multiband case, 

for the functional given by Eq. (3.2-8). 
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3.3 EXTENDED GINZBURG-LANDAU THEORY AND 𝜏-EXPANSION  

In order to obtain a consistent extension of the GL theory for multiband 

superconductors, as mentioned above, the Neumann-Tewordt functional [92], [93] should be 

restructured by applying the perturbative expansion in powers of  𝜏 and keeping only the 

lowest and next-to-lowest order contributions to the band order parameters (and also to the 

field), eliminating higher-order contributions. For single-band superconductors such 

eliminating procedure can be found in Refs. [95] and [61]. For two-band superconductors the 

extended GL theory has been developed in Ref. [61]. Here we generalize the consideration of 

this theory and investigate the 𝜏-expansion of the functional given by Eq. (3.2-8) for an 

arbitrary number of contributing bands 𝑀. 

When employing the 𝜏-expansion, the band order parameters and fields are sought as 

series in 𝜏 given by [61] 

 Δఔ = 𝜏ଵ/ଶቀΔఔ
(଴)

+ 𝜏Δఔ
(ଵ)

+ ⋯ ቁ,  

                                          𝐀 = 𝜏ଵ/ଶ൫𝐀(଴) + 𝜏𝐀(ଵ) + ⋯ ൯,  

                                          𝐁 = 𝜏൫𝐁(଴) + 𝜏𝐁(ଵ) + ⋯ ൯. 3.3-1 

To obtain explicitly the 𝜏-dependence of spatial derivatives, one needs to apply 

the spatial coordinate scaling 𝒙ᇱ = 𝜏ଵ/ଶ𝒙. Below the prime is suppressed for simplicity, 

unless it causes any confusion. Notice that to get the stationary solution in the two lowest 

orders in 𝜏, one also needs to operate with Δఔ
(ଶ)

 but only in intermediate expressions 

Inserting Eq. (3.3-1) in Eq. (3.2-8), one obtains 

 𝑓 = 𝜏ଶൣ𝜏ିଵ𝑓(ିଵ) + 𝑓(଴) + 𝜏𝑓(ଵ) + ⋯ ൧, 3.3-2 

The two lowest orders in the band gap functions and the field produce three lowest orders in 

the free energy but, as is shown below, the contribution 𝑓(ିଵ) is zero for the stationary point. 

In Eq. (3.3-2) we have 

 𝑓(ିଵ) = Δሬሬ⃗ (଴)ற𝐿ෘΔሬሬ⃗ (଴), 3.3-3 

where Δሬሬ⃗ (଴)் = ቀΔଵ
(଴)

, Δଶ
(଴)

, … ቁ and the matrix 𝐿ෘ has the elements  

 𝐿ఔఔᇲ = 𝑔ఔఔᇲ
ିଵ − Aఔ𝛿ఔఔᇲ, 3.3-4 
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with 𝑔ఔఔᇲ
ିଵ  the matrix element of 𝑔ුିଵ and 𝛿ఔఔᇲ the discrete delta-function. The contribution 𝑓(଴) 

is of the form 

 
𝑓(଴) =

𝐁(଴)ଶ

8𝜋
+ ൫Δሬሬ⃗ (଴)ற𝐿ෘΔሬሬ⃗ (଴) + 𝑐. 𝑐. ൯ + ෍ 𝑓ఔ

(଴)

ெ

ఔୀଵ

, 3.3-5 

where 𝑓ఔ
(଴) is given by  

 
𝑓ఔ

(଴)
= 𝑎ఔቚΔఔ

(଴)
ቚ

ଶ

+
𝑏ఔ

2
ቚΔఔ

(଴)
ቚ

ସ

+ 𝐾ఔቚ𝐃(଴)Δఔ
(଴)

ቚ
ଶ

, 3.3-6 

with 𝐃(଴) = 𝛁 − i
ଶ௘

ℏୡ
𝐀(଴). Finally, for the highest-order term in Eq. (3.3-2) we obtain  

 
𝑓(ଵ) =

൫𝐁(଴) ∙ 𝐁(ଵ)൯

4𝜋
+ ൫Δሬሬ⃗ (଴)ற𝐿ෘΔሬሬ⃗ (ଶ) + 𝑐. 𝑐. ൯ + Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) + ෍ 𝑓ఔ

(ଵ)

ெ

ఔୀଵ

, 3.3-7 

where, 

 
𝑓ఔ

(ଵ)
= ൬𝑎ఔ + 𝑏ఔቚΔఔ

(଴)
ቚ

ଶ

൰ ቀΔఔ
(଴)∗

Δఔ
(ଵ)

+ 𝑐. 𝑐. ቁ +
𝑎ఔ

2
ቚΔఔ

(଴)
ቚ

ଶ

+ 𝑏ఔቚΔఔ
(଴)

ቚ
ସ

−
𝑐ఔ

3
ቚΔఔ

(଴)
ቚ

଺

+ 2𝐾ఔቚ𝐃(଴)Δఔ
(଴)

ቚ
ଶ

+ 𝐾ఔ ቂቀ𝐃(଴)Δఔ
(଴)

∙ 𝐃(଴)∗Δఔ
∗(ଵ)

+ 𝑐. 𝑐. ቁ − 𝐀(ଵ) ∙ 𝒊ఔ
(଴)

ቃ

− 𝑄ఔ ቊቚ𝐃(଴)ଶΔఔ
(଴)

ቚ
ଶ

+
1

3
ቀ𝛁 × 𝐁(଴) ∙ 𝒊ఔ

(଴)
ቁ +

4𝑒ଶ

ℏଶcଶ
𝐁(଴)ଶቚΔఔ

(଴)
ቚ

ଶ

ቋ

−
𝐿ఔ

2
൜8ቚΔఔ

(଴)
ቚ

ଶ

ቚ𝐃(଴)Δఔ
(଴)

ቚ
ଶ

+ ൤Δఔ
(଴)ଶ

ቀ𝐃(଴)∗Δఔ
(଴)∗

ቁ
ଶ

+ 𝑐. 𝑐. ൨ൠ, 

3.3-8 

and 𝒊ఔ
(଴)

= i
ଶ௘

ℏ ୡ
ቂΔఔ

(଴)
𝐃(଴)∗Δఔ

(଴)∗
− Δఔ

(଴)∗
𝐃(଴)Δఔ

(଴)
ቃ is the lowest-order term in the 𝜏-expansion of 

the current, 𝒊ఔ. 

To calculate the boundaries of the IT domain, the free energy at the stationary 

point is needed. The equation for the stationary solution of the extended GL formalism 

is obtained by calculating the functional derivatives of the free energy F  with the density 

given by Eq. (3.3-2). As the latter is a series in 𝜏, the stationary solution is specified by a 

set of equations associated with different order contributions in 𝜏. So, taking the lowest 

order in Eq. (3.3-2) the corresponding equation for the stationary solution reads   
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 𝛿F(ିଵ)

𝛿Δሬሬ⃗ (଴)ற
= 𝐿ෘΔሬሬ⃗ (଴) = 0, 3.3-9 

where F(ିଵ) is the contribution to the free-energy corresponding to 𝑓(ିଵ). This equation has a 

nontrivial solution for Δሬሬ⃗ (଴) only when 

 det 𝐿ෘ = 0, 3.3-10 

As 𝐿ෘ includes Aఔ and, hence, depends on 𝑇௖, Eq. (3.3-10) gives zeros of an 𝑀 degree 

polynomial function of a single indeterminate ln ቀ
ଶംℏఠ೎

గ ೎்
ቁ. The minimal zero of this polynomial 

should be chosen, to get the maximal critical temperature. Once 𝑇௖ is determined, it is 

convenient to introduce the eigenvalues and eigenvectors of 𝐿ෘ as 

 𝐿ෘ𝜖 = 0, 3.3-11 

for the zero eigenvalue and  

 𝐿ෘ𝜂⃗௜ = Λ௜𝜂⃗௜, 3.3-12 

for the nonzero eigenvalues Λ௜ ≠ 0. As the matrix 𝐿ෘ is real and symmetric, the vectors 𝜖 and 

𝜂⃗௜ can be chosen such that 𝜖ற𝜖 = 1, 𝜖ற𝜂⃗௜ = 0 and 𝜂⃗௜
ற𝜂⃗௝ = 𝛿௜௝. We note that in principle, the 

zero eigenvalue can be degenerate, and, in this case,  there exist more than one corresponding 

eigenvectors. This occurs when the superconducting system of interest has a symmetry, 

additional to 𝑈(1) and the superconducting properties in the GL domain are governed by a 

multi-component order parameter,  see details in Refs. [61] and [68]. For our investigation, 

however, it is enough to consider the standard nondegenerate formalism (all eigenvalues are 

nondegenerate). Then, from Eqs. (3.3-9) and (3.3-11) one obtains 

 Δሬሬ⃗ (଴) = Ψ(𝒙)𝜖, 3.3-13 

where Ψ(𝒙) is a single-component Landau order parameter of the 𝑀 band superconductor 

being discussed. Here we recall that the number of the Landau order parameter components is 

determined by the dimension of the irreducible representation of the corresponding symmetry 

group [75] (rather than by the number of the available bands). Equation (3.3-9) assures that 

spatial profiles of all band condensates are controlled by the same position dependent function 

Ψ(𝒙) (𝜖 does not depend on 𝒙 but it does not give any information about Ψ. To get an equation 

for Ψ, one needs to address the next order contribution to the free energy.   
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The next-to-lowest order term in Eq. (3.3-2) yields two equations for the stationary 

solution. The first one is given by   

 𝛿F(଴)

𝛿Δሬሬ⃗ (଴)ற
= 𝐿ෘΔሬሬ⃗ (ଵ) + 𝑊ሬሬሬ⃗ ൣΔሬሬ⃗ (଴)൧ = 0, 3.3-14 

where F(଴) is the contribution to the free-energy corresponding to 𝑓(଴) and the components of 

𝑊ሬሬሬ⃗ ൣΔሬሬ⃗ (଴)൧ are 

 
𝑊ఔ = 𝑎ఔΔఔ

(଴)
+ 𝑏ఔΔఔ

(଴)
ቚΔఔ

(଴)
ቚ

ଶ

− 𝐾ఔ𝐃(଴)ଶΔఔ
(଴). 3.3-15 

The second equation is given by 

 𝛿F(଴)

𝛿𝐀(଴)
=

1

4𝜋
rot 𝐁(଴) − ෍ 𝐾ఔ𝒊ఔ

(଴)

ெ

ఔୀଵ

= 0. 3.3-16 

The equation 
ఋF(బ)

ఋ୼ሬሬ⃗ (భ)಩
= 0 is the same as Eq. (3.3-9) and 

ఋF(బ)

ఋ𝐀(భ) = 0 is trivial because 𝑓(଴) does 

not depend of 𝐀(ଵ). 

Projecting Eq. (3.3-14) on 𝜖 and keeping in mind that 𝜖ற𝐿ෘ = 0, we obtain 𝜖றWሬሬሬ⃗ = 0, 

which is written in the explicit form as 

 
෍ 𝜖ఔ

∗ ൤𝑎ఔΔఔ
(଴)

+ 𝑏ఔΔఔ
(଴)

ቚΔఔ
(଴)

ቚ
ଶ

− 𝐾ఔ𝐃(଴)ଶΔఔ
(଴)

൨

ெ

ఔ

= 0, 3.3-17 

where 𝜖ఔ is the band component of 𝜖. Taking into account that the stationary solution obeys 

Eq.(3.3-13), we get Δఔ
(଴)

= 𝜖ఔΨ, and Eq. (3.3-17) becomes 

 𝑎Ψ + 𝑏Ψ|Ψ|ଶ − 𝐾𝐃(଴)ଶΨ = 0, 3.3-18 

which is formally the equation for a single-component GL theory, however, the coefficient 𝑎, 

𝑏 and  𝐾 are averages over the contributing bands 

𝑎 = ෍ 𝑎ఔ|𝜖ఔ|ଶ

ெ

ఔୀଵ

, 𝑏 = ෍ 𝑏ఔ|𝜖ఔ|ସ

ெ

ఔୀଵ

, 𝐾 = ෍ 𝐾ఔ|𝜖ఔ|ଶ

ெ

ఔୀଵ

. 3.3-19 

Similarly, using Δఔ
(଴)

= 𝜖ఔΨ, Eq. (3.3-16) becomes 

 rot 𝐁(଴) = 4𝜋𝐾𝒊ஏ
(଴)

, 3.3-20 

where 𝒊ஏ
(଴)

= i
ଶ௘

ℏ ୡ
ൣΨ𝐃(଴)∗Ψ∗ − Ψ∗𝐃(଴)Ψ൧, is obtained from 𝚤ఔ

(଴) by substituting Δఔ
(଴) for Ψ.  
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Equations (3.3-18) and (3.3-20) are the standard equations for the single-component 

GL theory. The presence of multiple bands is reflected only in the expressions for the 

coefficients 𝑎, 𝑏 and  𝐾. Each of these coefficients is given by the summation over the 𝑀 

available bands with the band contributions controlled by the components of 𝜖.   

We have investigated only one projection of Eq. (3.3-14). To explore other projections 

(on 𝜂⃗௜, we need to expand Δሬሬ⃗ (ଵ) as 

 
Δሬሬ⃗ (ଵ) = Φ𝜖 + ෍ Φ௜𝜂⃗௜

ெିଵ

௜ୀଵ

, 3.3-21 

where we introduce the new position dependent functions Φ(𝒙) and Φ୧(𝒙) [i = 1, … , M − 1].  

So, we can insert Eq. (3.3-21) in Eq. (3.3-14),  

 𝐿ෘΔሬሬ⃗ (ଵ) + 𝑊ሬሬሬ⃗ ൣΔሬሬ⃗ (଴)൧ = 0, 3.3-22 

 
𝐿ෘ ൭Φ𝜖 + ෍ Φ௜𝜂⃗௜

ெିଵ

௜ୀଵ

൱ + 𝑊ሬሬሬ⃗ ൣΔሬሬ⃗ (଴)൧ = 0, 3.3-23 

 
෍ Λ௜Φ௜𝜂⃗௜ + 𝑊ሬሬሬ⃗ ൣΔሬሬ⃗ (଴)൧ = 0

ெିଵ

௜ୀଵ

. 3.3-24 

And, projecting Eq. (3.3-24) into 𝜂⃗௝, we obtain 

 
𝜂⃗௝

ற ൝ ෍ Λ௜Φ௜𝜂⃗௜ + 𝑊ሬሬሬ⃗ ൣΔሬሬ⃗ (଴)൧

ெିଵ

௜ୀଵ

ൡ = 0,  

 
Φ௝ = −

1

Λ௝
൫𝛼௝Ψ + 𝛽௝Ψ|Ψ|ଶ + Γ௝𝐷ሬሬ⃗ (଴)ଶΨ൯, 

3.3-25 

where the coefficients 𝛼௝, 𝛽௝ and Γ௝ are of the form 

𝛼௝ = ෍ 𝑎ఔ𝜂௝ఔ
∗ 𝜖ఔ

ெ

ఔୀଵ

, 𝛽௝ = ෍ 𝑏ఔ𝜂௝ఔ
∗ 𝜖ఔ|𝜖ఔ|ଶ

ெ

ఔୀଵ

, Γ௝ = ෍ 𝐾ఔ𝜂௝ఔ
∗ 𝜖ఔ

ெ

ఔୀଵ

, 3.3-26 

and 𝜂௝ఔ  are the components of 𝜂⃗௝. Equations (3.3-21), (3.3-25) and (3.3-26) can be compared 

with the corresponding expressions for the two-band formalism in Ref. [61]. Here, however, 

one should keep in mind that the present formalism involves the orthonormal set of the vectors 

𝜖 and 𝜂⃗௝ while Δሬሬ⃗ (ଵ) in Ref. [35] was represented as a linear combination of two explicitly 

chosen vectors that were not normalized and orthogonal. Therefore, to recover the expression 
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for Δሬሬ⃗ (ଵ) in Ref. [35]it is not enough to insert 𝑁 = 2 in Eqs. (3.3-21) and (3.3-25). One should 

also express the vectors defined by Eqs. (3.3-11) and (3.3-12) in terms of those of Ref. [35].  

Thus, considering the two lowest order contributions to the free energy makes it 

possible to derive the equations for Δሬሬ⃗ (଴) and 𝐁(଴)ൣ𝐀(଴)൧ and also algebraic expressions for the 

𝑀 − 1 functions Φ௜ that determine the second term in Eq. (3.3-21)  for Δሬሬ⃗ (ଵ). To find the 

remaining part of Δሬሬ⃗ (ଵ), involving Φ and 𝐀(ଵ), one needs to investigate functional derivatives 

of the free-energy term corresponding to 𝑓(ଵ). However, it is shown below that Φ and 𝐀(ଵ) do 

not contribute to the boundaries of the IT domain in the next-to-lowest order in 𝜏 (and, of 

course, in the lowest order as well). Therefore, the equations for Φ and 𝐀(ଵ) are beyond the 

scope of the present study. 

3.4 FREE ENERGY AT THE STATIONARY POINT AND 
THERMODYNAMIC CRITICAL FIELD 

To pursue our goal, the Eqs. (3.3-9), (3.3-14) and (3.3-16) [and the related ones 

(3.3-18), (3.3-20) and (3.3-25)] are necessary to find the free energy density for the stationary 

solution, and, in addition, to obtain the thermodynamic critical field which is also used in 

calculations of the IT domain. When inserting the stationary solution, the free energy density 

reads  

 𝑓௦௧ = 𝜏ଶቂ𝑓௦௧
(଴)

+ 𝜏𝑓௦௧
(ଵ)

+ ⋯ ቃ, 3.4-1 

where  the term of the order 𝜏ିଵ is absent by the virtue of Eq. (3.3-9). The lowest order term 

in Eq. (3.4-1) is given by  

 
𝑓௦௧

(଴)
=

𝐁(଴)ଶ

8𝜋
+ 𝑎|Ψ|ଶ +

𝑏

2
|Ψ|ସ + 𝐾ห𝐃(଴)Ψห

ଶ
, 3.4-2 

where it is considered that Δሬሬ⃗ (଴)ற𝐿ෘΔሬሬ⃗ (ଵ) = 0,which follows from Eq. (3.3-9).  

To simplify the expression for 𝑓௦௧
(ଵ), we first rearrange the terms in 𝑓(ଵ) that include 

Δఔ
(ଵ) and Δఔ

∗(ଵ). As the free energy is needed rather than the free-energy density, 

we can utilize the substitution  

 −Δఔ
∗(ଵ)

𝐃(଴)ଶΔఔ
(଴)

→ 𝐃(଴)Δఔ
(଴)

∙ 𝐃(଴)∗Δఔ
(ଵ)∗

, 3.4-3 
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which is correct up to a vanishing surface integral in the free energy. Based on Eq. (3.4-3), the 

sum of the terms involving Δఔ
(ଵ) and Δఔ

∗(ଵ) can be represented for the stationary solution as 

 
Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) + ෍ ൤൬𝑎ఔ + 𝑏ఔቚΔఔ

(଴)
ቚ

ଶ

൰ ቀΔఔ
(ଵ)∗

Δఔ
(଴)

+ 𝑐. 𝑐. ቁ

ெ

ఔୀଵ

+ 𝐾ఔቀ𝐃(଴)Δఔ
(଴)

∙ 𝐃(଴)∗Δఔ
∗(ଵ)

+ 𝑐. 𝑐. ቁ൨ = 

 

 
Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) + ෍ ൤൬𝑎ఔ + 𝑏ఔቚΔఔ

(଴)
ቚ

ଶ

൰ ቀΔఔ
(ଵ)∗

Δఔ
(଴)

+ 𝑐. 𝑐. ቁ

ெ

ఔୀଵ

− 𝐾ఔቀΔఔ
∗(ଵ)

𝐃(଴)ଶΔఔ
(଴)

+ 𝑐. 𝑐. ቁ൨ = 

 

 Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) + Δሬሬ⃗ (ଵ)ற𝑊ሬሬሬ⃗ + 𝑊ሬሬሬ⃗ றΔሬሬ⃗ (ଵ) = −Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ), 3.4-4 

where Eq. (3.3-14) was considered to find the relation. Using Eqs. (3.3-17) and (3.3-24), we 

obtain 

 
Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) = Δሬሬ⃗ (ଵ)ற𝐿ෘ ቌΦ𝜖 + ෍ Φ௝𝜂⃗௝

ெିଵ

௝ୀଵ

ቍ, 
 

 

Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) = ൭Φ𝜖 + ෍ Φ௜𝜂⃗௜

ெିଵ

௜ୀଵ

൱

ற

ቌ ෍ Φ௝Λ௝𝜂⃗௝

ெିଵ

௝ୀଵ

ቍ, 

 

 
Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) = ෍ Λ௜|Φ௜|

ଶ

ெିଵ

௜ୀଵ

, 
 

and  

𝐃(଴)ଶΨ = −
𝑎

𝐾
Ψ −

𝑏

𝐾
Ψ|Ψ|ଶ, 

so, 

 
Φ௝ = −

1

Λ௝
൤𝛼௝Ψ + 𝛽௝Ψ|Ψ|ଶ − Γ௝ ൬

𝑎

𝐾
Ψ +

𝑏

𝐾
Ψ|Ψ|ଶ൰൨, 

Φ௝ = −
1

Λ௝
൤ቀ𝛼௝ − Γ௝

𝑎

𝐾
ቁ Ψ + ൬𝛽௝ − Γ௝

𝑏

𝐾
൰ Ψ|Ψ|ଶ൨, 

Φ௝ = −
1

Λ௝
ቈ𝑎 ൬

𝛼௝

𝑎
−

Γ௝

𝐾
൰ Ψ + 𝑏 ቆ

𝛽௝

𝑏
−

Γ௝

𝐾
ቇ Ψ|Ψ|ଶ቉, 
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finally, we obtain 

 
Δሬሬ⃗ (ଵ)ற𝐿ෘΔሬሬ⃗ (ଵ) = |Ψ|ଶ ෍

𝑎ଶ|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

+ |Ψ|଺ ෍
𝑏ଶห𝛽̅௜ห

ଶ

Λ௜

ெିଵ

௜ୀଵ

+ |Ψ|ସ ෍
𝑎𝑏൫𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

, 

3.4-5 

where the dimensionless parameters 𝛼ത௜ and  𝛽̅௜ are defined as  

 
𝛼ത௜ =

𝛼௜

𝑎
−

Γ௜

𝐾
, 𝛽̅௜ =

𝛽௜

𝑏
−

Γ௜

𝐾
. 

3.4-6 

 

Then, 𝑓(ଵ) given by Eqs. (3.3-7) and (3.3-8), can be represented for the stationary solution in 

the form 

 
𝑓௦௧

(ଵ)
=

𝐁(଴) ∙ 𝐁(ଵ) − 𝐀(ଵ) ∙ rot 𝐁(଴)

4𝜋
+ ൭

𝑎

2
− ෍

𝑎ଶ|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ଶ

+ ൭𝑏 − ෍
𝑎𝑏൫𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ସ − ൭
𝑐

3
+ ෍

𝑏ଶห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|଺

+ 2𝐾ห𝐃(଴)Ψห
ଶ

− 𝑄 ቈห𝐃(଴)ଶΨห
ଶ

+
1

3
rot 𝐁(଴) ∙ 𝒊ஏ

(଴)
+

4𝑒ଶ𝐁(଴)ଶ

ℏଶcଶ
|Ψ|ଶ቉

−
𝐿

2
ቄ8|Ψ|ଶห𝐃(଴)Ψห

ଶ
+ ቂΨଶ൫𝐃(଴)∗Ψ∗൯

ଶ
+ 𝑐. 𝑐. ቃቅ, 

3.4-7 

 

where  

𝑄 = ෍ 𝑄ఔ|𝜖ఔ|ଶ

ெ

ఔୀଵ

, 𝐿 = ෍ 𝐿ఔ|𝜖ఔ|ସ

ெ

ఔୀଵ

, 𝑐 = ෍ 𝑐ఔ|𝜖ఔ|଺

ெ

ఔୀଵ

. 3.4-8 

Now we have everything at our disposal to find the thermodynamic critical field 𝐻௖ in the 

lowest and next-to-lowest orders in 𝜏. According to the well-known definition of 𝐻௖, we have 

 ு೎
మ

଼గ
= −𝑓௦௧,଴, 3.4-9 

where 𝑓௦௧,଴ is the value of the free energy density for the spatially uniform stationary solution 

Ψ = Ψ଴ = ට
ି௔

௕
.  
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Following Eq. (3.4-1), the 𝜏 -expansion of 𝐻௖ is obtained in the form 

 𝐻௖ = 𝜏ቂ𝐻௖
(଴)

+ 𝜏𝐻௖
(ଵ)

+ ⋯ ቃ, 3.4-10 

Using (3.4-1), (3.4-2), (3.4-7), and (3.4-10), one finds 

 

𝐻௖
(଴)

= ඨ
4𝜋𝑎ଶ

𝑏
, 3.4-11 

and  

 
𝑓௦௧,଴

(ଵ)
=

−𝑎

𝑏
൭

𝑎

2
− ෍

𝑎ଶ|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱

+ ቀ
−𝑎

𝑏
ቁ

ଶ

൭𝑏 − ෍
𝑎𝑏൫𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱ — 𝑎𝑏3 ൭
𝑐

3
+ ෍

𝑏ଶห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱, 

𝑓௦௧,଴
(ଵ)

=
𝑎ଶ

𝑏
൥൭−

1

2
+ ෍

𝑎|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ + ൭1 − ෍
𝑎൫𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱

+
𝑎

𝑏ଶ
൭

𝑐

3
+ ෍

𝑏ଶห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱൩, 

𝑓௦௧,଴
(ଵ)

=
𝑎ଶ

𝑏
൝൬

1

2
+

𝑐𝑎

3𝑏ଶ
൰ + ൥ ෍

𝑎

Λ௜
ቀ|𝛼ത௜|

ଶ + ൫𝛼ത௜
∗𝛽̅௜ + 𝑐. 𝑐. ൯ + ห𝛽̅௜ห

ଶ
ቁ

ெିଵ

௜ୀଵ

൩ൡ, 

𝑓௦௧,଴
(ଵ)

=
𝑎ଶ

𝑏
൝൬

1

2
+

𝑐𝑎

3𝑏ଶ
൰ + ൥ ෍

𝑎

Λ௜
൬|𝛼ത௜|

ଶ + ห𝛽̅௜ห
ଶ

+ ൫𝛼ത௜
∗𝛽̅௜ + 𝑐. 𝑐. ൯൰

ெିଵ

௜ୀଵ

൩ൡ, 

𝑓௦௧,଴
(ଵ)

=
𝑎ଶ

𝑏
൥൬

1

2
+

𝑐𝑎

3𝑏ଶ
൰ + ෍

𝑎

Λ௜
ห𝛼ത௜ − 𝛽̅௜ห

ଶ
ெିଵ

௜ୀଵ

൩. 

 

 

Now we can calculate 𝐻௖
(ଵ) 

𝐻௖ = ට−8𝜋𝜏ଶቂ𝑓௦௧,଴
(଴)

+ 𝜏𝑓௦௧,଴
(ଵ)

+ ⋯ ቃ, 

𝐻௖ = ඩ−8𝜋𝜏ଶ𝑓௦௧,଴
(଴)

൥1 + 𝜏
𝑓௦௧,଴

(ଵ)

𝑓௦௧,଴
(଴)

+ ⋯ ൩, 
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as the second term is small, we can expand the square root, and the critical field can be written 

as 

𝐻௖ = 𝐻௖
(଴)

𝜏 ൭1 + 𝜏
1

2

𝑓௦௧,଴
(ଵ)

𝑓௦௧,଴
(଴)

൱. 

So, 𝐻௖
(ଵ) reads 

𝐻௖
(ଵ)

=
𝐻௖

(଴)

2

𝑓௦௧,଴
(ଵ)

𝑓௦௧,଴
(଴)

, 

𝐻௖
(ଵ)

𝐻௖
(଴)

=

𝑎ଶ

𝑏
ቂቀ

1
2

+
𝑐𝑎

3𝑏ଶቁ + ∑
𝑎
Λ௜

ห𝛼ത௜ − 𝛽̅௜ห
ଶெିଵ

௜ୀଵ ቃ

−
𝑎ଶ

𝑏

, 

 𝐻௖
(ଵ)

𝐻௖
(଴)

= −
1

2
−

𝑐𝑎

3𝑏ଶ
− ෍

𝑎

Λ௜
ห𝛼ത௜ − 𝛽̅௜ห

ଶ
ெିଵ

௜ୀଵ

. 3.4-12 

Comparing Eq. (3.4-11) with the corresponding result for the two-band case [35], one finds 

that 𝐻௖
(଴) is formally the same as that of the two-band system (but 𝑎 and 𝑏 are now averages 

over 𝑀 contributing bands). As for Eq. (3.4-12), the third term in the left-hand side has a 

different form as compared to its counterpart in the two-band expression for 𝐻௖
(଴) in Ref. [35]. 

The reason is the same as mentioned in the discussion after Eq. (3.3-26). Namely, the 

orthonormal set of vectors defined by Eqs. (3.3-11) and (3.3-12) is used in the present study 

while the two-band formalism of [35] involved two linearly independent vectors that were not 

orthonormal. The latter was given by explicit analytical expressions, which was convenient 

for solving two-band equations. 

3.5 GIBBS FREE ENERGY DIFFERENCE  

As is known from textbooks, only spatially uniform distribution of the condensate can 

appear in bulk type-I superconductors. For a sufficiently low applied field 𝐇, such a system is 

in the Meissner state with a nonzero position-independent condensate density. When the 

applied field amplitude 𝐇 exceeds the thermodynamic critical field 𝐻௖, the system undergoes 

an abrupt transition to the zero-condensate solution (normal state). Switching from type I to 

type II occurs when a spatially inhomogeneous condensate-field configuration becomes more 

thermodynamically favorable at the thermodynamic critical field than the spatially uniform 



91 

 

condensate. As the system is under an external magnetic field, the thermodynamic potential in 

charge is the Gibbs free energy. Thus, investigating the switching between superconductivity 

types I and II, one needs to compare the Gibbs free energy of a uniform and nonuniform 

condensate solutions at 𝐻 = 𝐻௖, i.e., to calculate the corresponding Gibbs free energy 

difference. The Gibbs free energy density for a superconductor in an external magnetic field 

𝐻 = 𝐻௖, is given by 𝑔 = 𝑓௦௧ −
ு೎஻

ସగ
. For the uniform solution we have 𝐵 = 0 and 𝑓௦௧,଴ = −

ு೎
మ

଼గ
 

and so 𝑔଴ = −
ு೎

మ

଼గ
. Therefore, the density of the Gibbs free energy difference 𝑔∆ = 𝑔 − 𝑔଴ is 

given by 

 
𝑔∆ = 𝑓௦௧ −

𝐻௖𝐵

4𝜋
+

𝐻௖
ଶ

8𝜋
, 3.5-1 

where 𝐵 = |𝐁|. 

To proceed further and find the 𝜏-expansion for 𝑔∆, it is convenient to introduce the 

dimensionless quantities 

𝒙෥ =
𝒙

𝜆௅√2
, 𝐀෩ = 𝜅

𝐀

𝜆௅𝐻௖
(଴)

, 𝐁෩ = 𝜅√2
𝐁

𝐻௖
(଴)

,  

Ψ෩ =
Ψ

Ψ଴
, 𝑔෤∆ =

4𝜋𝑔∆

𝐻௖
(଴)ଶ

, 𝐺෨∆ =
4𝜋𝐺∆

𝐻௖
(଴)ଶ

൫𝜆௅√2൯
ଷ, 3.5-2 

where 𝐺∆ is the Gibbs free energy difference and 

 

𝜆௅ = −
ℏc

𝑒
ඨ−

𝑏

32𝜋𝐾𝑎
, 𝜅 =

𝜆௅

𝜀ீ௅
= 𝜆௅ට−

𝑎

𝐾
. 

3.5-3 

 

Here we recall that to get the 𝜏-expansion of the microscopic formalism in the explicit form, 

we have previously introduced the scaled spatial coordinates 𝒙ᇱ = 𝜏ଵ/ଶ𝒙, suppressing the 

prime for convenience. Therefore, the expressions for the GL coherence length 𝜀ீ௅ and the 

magnetic London penetration depth 𝜆௅ given by Eq. (3.5-3), should be divided by 𝜏ଵ/ଶ to 

obtain the standard definitions of these characteristic lengths. Below we use the GL equations 

for the dimensionless order parameter and magnetic field. 
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First, we must find 𝐃(଴) in dimensionless quantities  

 
𝐃(଴) = 𝛁 − i

2𝑒

ℏc
𝐀(଴) =

𝛁෩

𝜆௅√2
− i

2𝑒

ℏc

𝜆௅𝐻௖
(଴)

𝐀෩(଴)

𝜅
=

𝛁෩

𝜆௅√2
− i

2𝑒

ℏc

𝜆௅𝐻௖
(଴)

𝐀෩(଴)

𝜆௅ට−
𝑎
𝐾

, 

𝐃(଴) =
1

𝜆௅√2

⎣
⎢
⎢
⎢
⎡

𝛁෩ − i
2𝑒

ℏc
√2

ቆ−
ℏc
𝑒

ට−
𝑏

32𝜋𝐾𝑎
ቇ ቆට4𝜋𝑎ଶ

𝑏
ቇ 𝐀෩(଴)

ට−
𝑎
𝐾 ⎦

⎥
⎥
⎥
⎤

, 

𝐃(଴) =
1

𝜆௅√2
൫𝛁෩ + i𝐀෩(଴)൯ =

1

𝜆௅√2
𝐃෩ (଴). 

Now, we can rewrite the first GL equation 

𝑎Ψ + 𝑏Ψ|Ψ|ଶ − 𝐾𝐃(଴)ଶΨ = 0, 

 

 
𝑎Ψ଴Ψ෩ + 𝑏Ψ଴|Ψ଴|ଶΨ෩หΨ෩ห

ଶ
−

Ψ଴

2𝜆௅
ଶ 𝐾𝐃෩ (଴)ଶΨ෩ = 0,  

 
𝑎Ψ෩ −

𝑎

𝑏
𝑏Ψ෩ หΨ෩ห

ଶ
+

1

2 ቀ𝜅ଶ 𝐾
𝑎

ቁ
𝐾𝐃෩ (଴)ଶΨ෩ = 0,  

 
Ψ෩ − Ψ෩ หΨ෩ห

ଶ
+

1

2𝜅ଶ
𝐃෩ (଴)ଶΨ෩ = 0. 

The second GL equation 

rot 𝐁(଴) = 4𝜋i𝐾𝒊ஏ
(଴)

= 4𝜋i𝐾
2𝑒

ℏc
ൣΨ𝐃(଴)∗Ψ∗ − Ψ∗𝐃(଴)Ψ൧, 

1

𝜆௅√2

𝐻௖
(଴)

𝜅√2
ro෤t 𝐁෩(଴) = 4𝜋i𝐾

2𝑒

ℏc
|Ψ଴|ଶ

1

𝜆௅√2
ൣΨ෩𝐃෩ (଴)∗Ψ෩ ∗ − Ψ෩ ∗𝐃෩ (଴)Ψ෩൧, 

ro෤t 𝐁෩(଴) = 4𝜋i𝐾
2𝑒

ℏ c

𝜅√2

𝐻௖
(଴)

|Ψ଴|ଶൣΨ෩𝐃෩ (଴)∗Ψ෩ ∗ − Ψ෩ ∗𝐃෩ (଴)Ψ෩൧, 

ro෤t 𝐁෩(଴) = 4𝜋i𝐾
2𝑒

ℏ c
√2

ቆ−
ℏc
𝑒

ට−
𝑏

32𝜋𝐾𝑎
ቇ ට−

𝑎
𝐾

𝐻௖
(଴)

|Ψ଴|ଶൣΨ෩𝐃෩ (଴)∗Ψ෩ ∗ − Ψ෩ ∗𝐃෩ (଴)Ψ෩൧, 

 



93 

 

ro෤t 𝐁෩(଴) = −8𝜋𝑖

ට 𝑏
16𝜋

ට4𝜋𝑎ଶ

𝑏

ቀ
−𝑎

𝑏
ቁ ൣΨ෩𝐃෩ (଴)∗Ψ෩ ∗ − Ψ෩ ∗𝐃෩ (଴)Ψ෩൧, 

ro෤t 𝐁෩(଴) = iൣΨ෩𝐃෩ (଴)∗Ψ෩ ∗ − Ψ෩ ∗𝐃෩ (଴)Ψ෩൧. 

So, the GL equations for the dimensionless order parameter and magnetic field reads 

 
Ψ෩ ቀ1 − หΨ෩ห

ଶ
ቁ +

1

2𝜅ଶ
𝐃෩ (଴)ଶΨ෩ = 0, ro෤t 𝐁෩(଴) = ଙ̃

ஏ෩
(଴)

, 
3.5-4 

 

where 𝐃෩ (଴) = 𝛁෩ + i𝐀෩(଴), ଙ̃
ஏ෩
(଴)

= iൣΨ෩𝐃෩ (଴)∗Ψ෩ ∗ − Ψ෩ ∗𝐃෩ (଴)Ψ෩ ൧, and the vector differential operators 

are associated with the dimensionless radius vector 𝒙෥. 

Based on Eqs. (3.3-1), (3.4-1), and (3.4-2), the 𝜏-expansion for 𝑔∆ is obtained  in the 

form 

 𝑔∆ = 𝜏ଶቂ𝑔∆
(଴)

+ 𝜏𝑔∆
(ଵ)

+ ⋯ ቃ, 3.5-5 

where  

𝑔∆
(଴)

=
𝐵(଴)ଶ

8𝜋
+ 𝑎|Ψ|ଶ +

𝑏

2
|Ψ|ସ + 𝐾ห𝐃(଴)Ψห

ଶ
−

𝐻௖
(଴)

𝐵(଴)

4𝜋
+

𝐻௖
(଴)ଶ

8𝜋

=
𝐻௖

(଴)ଶ

8𝜋
ቆ

𝐵(଴)

𝐻௖
(଴)

− 1ቇ

ଶ

+ 𝑎|Ψ|ଶ +
𝑏

2
|Ψ|ସ + 𝐾ห𝐃(଴)Ψห

ଶ
, 

𝑔෤∆
(଴)

=
4𝜋

𝐻௖
(଴)ଶ

቎
𝐻௖

(଴)ଶ

8𝜋
൭

𝐵෨ (଴)𝐻௖
(଴)

𝜅√2𝐻௖
(଴)

− 1൱

ଶ

+ 𝑎 ቀ
−𝑎

𝑏
ቁ หΨ෩ห

ଶ
+

𝑏

2
ቀ

−𝑎

𝑏
ቁ

ଶ

หΨ෩ห
ସ

+ 𝐾 ቀ
−𝑎

𝑏
ቁ ቆ

1

𝜆௅√2
ቇ

ଶ

ห𝐃෩ (଴)Ψ෩ห
ଶ

቏, 

𝑔෤∆
(଴)

=
4𝜋

𝐻௖
(଴)ଶ

቎
𝐻௖

(଴)ଶ

8𝜋
൭

𝐵෨ (଴)𝐻௖
(଴)

𝜅√2𝐻௖
(଴)

− 1൱

ଶ

−
𝑎ଶ

𝑏
หΨ෩ห

ଶ
+

𝑎ଶ

2𝑏
หΨ෩ห

ସ
−

𝑎ଶ

2𝑏

𝐾

𝑎𝜆௅
ଶ ห𝐃෩ (଴)Ψ෩ห

ଶ
቏, 

here and in the results below the tilde is suppressed for brevity 

 
𝑔∆

(଴)
=

1

2
ቆ

𝐵(଴)

𝜅√2
− 1ቇ

ଶ

− |Ψ|ଶ +
1

2
|Ψ|ସ −

ห𝐃(଴)Ψห
ଶ

2𝜅ଶ
, 3.5-6 

with 𝐵(଴) = ห𝐁(଴)ห. 
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Before the next derivation, we need to rearrange Eq. (3.4-7) by inserting  

𝐀(ଵ) ∙ rot 𝐁(଴) = 𝐀(ଵ) ∙ rotቂ𝐁(଴) − 𝐇௖
(଴)

ቃ, 

and then performing the substitution 

 𝐀(ଵ) ∙ rot 𝐁(଴) → 𝐁(ଵ) ∙ ቂ𝐁(଴) − 𝐇௖
(଴)

ቃ. 3.5-7 

According to Gauss's theorem, this substitution results in an additional surface integral in 𝐺∆ 

that vanishes because 𝐁(଴) approaches 𝐇௖
(଴) at infinity. Then,  

 

𝑔∆
(ଵ)

=
𝐵(଴)𝐵(ଵ) − 𝐵(ଵ)ቂ𝐵(଴) − 𝐻௖

(଴)
ቃ

4𝜋
−

ቂ𝐻௖
(଴)

𝐵(ଵ) + 𝐻௖
(ଵ)

𝐵(଴)ቃ

4𝜋
+

𝐻௖
(ଵ)

𝐻௖
(଴)

4𝜋

+ ൭
𝑎

2
− ෍

𝑎ଶ|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ଶ + ൭𝑏 − ෍
𝑎𝑏൫𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ସ

− ൭
𝑐

3
+ ෍

𝑏ଶห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|଺ + 2𝐾ห𝐃(଴)Ψห
ଶ

− 𝑄 ቈห𝐃(଴)ଶΨห
ଶ

+
1

3
rot 𝐁(଴) ∙ 𝒊ஏ

(଴)
+

4𝑒ଶ𝐁(଴)ଶ

ℏଶcଶ
|Ψ|ଶ቉

−
𝐿

2
ቄ8|Ψ|ଶห𝐃(଴)Ψห

ଶ
+ ቂΨଶ൫𝐃(଴)∗Ψ∗൯

ଶ
+ 𝑐. 𝑐. ቃቅ, 

 

𝑔∆
(ଵ)

=
−𝐻௖

(ଵ)
ቂ𝐵(଴) − 𝐻௖

(଴)
ቃ

4𝜋
+ ൭

𝑎

2
− ෍

𝑎ଶ|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ଶ + ൭𝑏 − ෍
𝑎𝑏൫𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ସ

− ൭
𝑐

3
+ ෍

𝑏ଶห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ |Ψ|଺ + 2𝐾ห𝐃(଴)Ψห
ଶ

− 𝑄 ቈห𝐃(଴)ଶΨห
ଶ

+
1

3
rot 𝐁(଴) ∙ 𝚤ஏ

(଴)
+

4𝑒ଶ𝐁(଴)ଶ

ℏଶcଶ
|Ψ|ଶ቉

−
𝐿

2
ቄ8|Ψ|ଶห𝐃(଴)Ψห

ଶ
+ ቂΨଶ൫𝐃(଴)∗Ψ∗൯

ଶ
+ 𝑐. 𝑐. ቃቅ. 
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Now, we will write each part of this equation in terms of dimensionless parameters  

1. 
ିு೎

(భ)
ቂ஻(బ)ିு೎

(బ)
ቃ

ସగ
: 

 

−𝐻௖
(ଵ)

ቂ𝐵(଴) − 𝐻௖
(଴)

ቃ

4𝜋
=

−𝐻௖
(଴)ଶ

4𝜋
൥
𝐻௖

(ଵ)

𝐻௖
(଴)

൩ ቈ
𝐵(଴)

𝐻௖
(଴)

− 1቉ 

=
𝐻௖

(଴)ଶ

4𝜋
ቆ

𝐵෨ (଴)

𝜅√2
− 1ቇ ൥

1

2
+

𝑐𝑎

3𝑏ଶ
+ ෍

𝑎

Λ௜
ห𝛼ത௜ − 𝛽̅௜ห

ଶ
ெିଵ

௜ୀଵ

൩. 

 

 

2. ቀ
௔

ଶ
− ∑

௔మ|ఈഥ೔|మ

ஃ೔

ெିଵ
௜ୀଵ ቁ |Ψ|ଶ + ቀ𝑏 − ∑

௔௕൫ఈഥ೔
∗ఉഥ೔ା௖.௖.൯

ஃ೔

ெିଵ
௜ୀଵ ቁ |Ψ|ସ − ൬

௖

ଷ
+ ∑

௕మหఉഥ೔ห
మ

ஃ೔

ெିଵ
௜ୀଵ ൰ |Ψ|଺ +

2𝐾ห𝐃(଴)Ψห
ଶ

: 

 

൭
𝑎

2
− ෍

𝑎ଶ|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ ቀ
−𝑎

𝑏
ቁ หΨ෩ห

ଶ
+ ൭𝑏 − ෍

𝑎𝑏൫𝛼ത௜
∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱ ቀ
−𝑎

𝑏
ቁ

ଶ

หΨ෩ห
ସ

− ൭
𝑐

3
+ ෍

𝑏ଶห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ ቀ
−𝑎

𝑏
ቁ

ଷ

หΨ෩ห
଺

+ 2𝐾 ቀ
−𝑎

𝑏
ቁ ቆ

1

𝜆௅√2
ቇ

ଶ

ห𝐃෩ (଴)Ψ෩ห
ଶ
 

= −
𝑎ଶ

𝑏
൭

1

2
− ෍

𝑎|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ หΨ෩ห
ଶ

+
𝑎ଶ

𝑏
൭1 − ෍

𝑎൫𝛼ത௜
∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱ หΨ෩ห
ସ

+
𝑎ଶ

𝑏
൭

𝑎𝑐

3𝑏ଶ
+ ෍

𝑎ห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ หΨ෩ห
଺

+
𝑎ଶ

𝑏

ห𝐃෩ (଴)Ψ෩ห
ଶ

𝜅ଶ
, 

=
𝐻௖

(଴)ଶ

4𝜋
൥− ൭

1

2
− ෍

𝑎|𝛼ത௜|
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ หΨ෩ห
ଶ

+ ൭1 − ෍
𝑎൫𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐. ൯

Λ௜

ெିଵ

௜ୀଵ

൱ หΨ෩ห
ସ

+ ൭
𝑐𝑎

3𝑏ଶ
+ ෍

𝑎ห𝛽̅௜ห
ଶ

Λ௜

ெିଵ

௜ୀଵ

൱ หΨ෩ห
଺

+
ห𝐃෩ (଴)Ψ෩ห

ଶ

𝜅ଶ
൩. 
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3. −𝑄 ൤ห𝐃(଴)ଶΨห
ଶ

+
ଵ

ଷ
rot 𝐁(଴) ∙ 𝒊ஏ

(଴)
+

ସ௘మ𝐁(బ)మ

ℏమୡమ
|Ψ|ଶ൨: 

 

−𝑄 ቎ቀ
−𝑎

𝑏
ቁ ቆ

1

𝜆௅√2
ቇ

ସ

ห𝐃෩ (଴)ଶΨ෩ห
ଶ

+
1

3

1

𝜆௅√2

𝐻௖
(଴)

𝜅√2
4𝜋𝐾

2𝑒

ℏ c
ቀ

−𝑎

𝑏
ቁ

1

𝜆௅√2
ro෤t 𝐁෩(଴) ∙ ଙ̃

ஏ෩
(଴)

+ ቀ
−𝑎

𝑏
ቁ ൭

𝐻௖
(଴)

𝜅√2
൱

ଶ
4𝑒ଶ

ℏଶcଶ
𝐁෩(଴)ଶหΨ෩ห

ଶ
቏ 

=
𝐻௖

(଴)ଶ

4𝜋
𝑄 ቈ

1

4𝑎𝜆௅
ସ ห𝐃෩ (଴)ଶΨ෩ห

ଶ
−

1

4𝐾𝜆௅
ଶ𝜅ଶ

1

3
ro෤t 𝐁෩(଴) ∙ ଙ̃

ஏ෩
(଴)

+
𝑎

𝑏

8𝜋

𝜅ଶ

𝑒ଶ

ℏଶcଶ
𝐁෩(଴)ଶหΨ෩ห

ଶ
቉, 

=
𝐻௖

(଴)ଶ

4𝜋
𝑄 ቈ

1

4𝑎𝜅ସ𝜀ீ௅
ସ ห𝐃෩ (଴)ଶΨ෩ห

ଶ
−

1

4𝐾𝜅ସ𝜀ீ௅
ଶ

1

3
ro෤t 𝐁෩(଴) ∙ ଙ̃

ஏ෩
(଴)

−
1

4𝜆௅
ଶ𝐾𝜅ଶ

𝐁෩(଴)ଶหΨ෩ห
ଶ

቉, 

=
𝐻௖

(଴)ଶ

4𝜋

𝑄𝑎

𝐾ଶ

1

4𝜅ସ ൤ห𝐃෩ (଴)ଶΨ෩ห
ଶ

+
1

3
ro෤t 𝐁෩(଴) ∙ ଙ̃

ஏ෩
(଴)

+ 𝐁෩(଴)ଶหΨ෩ห
ଶ

൨. 

 

4. −
௅

ଶ
ቄ8|Ψ|ଶห𝐷ሬሬ⃗ (଴)Ψห

ଶ
+ ቂΨଶ൫𝐷ሬሬ⃗ (଴)∗Ψ∗൯

ଶ
+ 𝑐. 𝑐. ቃቅ: 

 

−
𝐿

2
൝8 ቀ

−𝑎

𝑏
ቁ ቆ

1

𝜆௅√2
ቇ

ଶ

หΨ෩ห
ଶ

ห𝐃෩ (଴)Ψ෩ห
ଶ

+ ቀ
−𝑎

𝑏
ቁ

ଶ

ቆ
1

𝜆௅√2
ቇ

ଶ

ቂΨ෩ ଶ൫𝐃෩ (଴)∗Ψ෩ ∗൯
ଶ

+ 𝑐. 𝑐. ቃൡ 

= −
𝐻௖

(଴)ଶ

4𝜋

𝐿

4𝑏𝜆௅
ଶ ቄ8หΨ෩ห

ଶ
ห𝐃෩ (଴)Ψ෩ห

ଶ
+ ቂΨ෩ ଶ൫𝐃෩ (଴)∗Ψ෩ ∗൯

ଶ
+ 𝑐. 𝑐. ቃቅ, 

= −
𝐻௖

(଴)ଶ

4𝜋

𝐿

4𝑏𝜅ଶ𝜀ீ௅
ଶ ቄ8หΨ෩ห

ଶ
ห𝐃෩ (଴)Ψ෩ห

ଶ
+ ቂΨ෩ ଶ൫𝐃෩ (଴)∗Ψ෩ ∗൯

ଶ
+ 𝑐. 𝑐. ቃቅ, 

=
𝐻௖

(଴)ଶ

4𝜋

𝐿𝑎

𝐾𝑏

1

4𝜅ଶ ቄ8หΨ෩ห
ଶ

ห𝐃෩ (଴)Ψ෩ห
ଶ

+ ቂΨ෩ ଶ൫𝐃෩ (଴)∗Ψ෩ ∗൯
ଶ

+ 𝑐. 𝑐. ቃቅ. 

So, the next-to-lowest order correction of Gibbs free energy in dimensionless quantities 

where the tilde is suppressed for brevity is written as 

 
𝑔∆

(ଵ)
= ቆ

𝐵(଴)

𝜅√2
− 1ቇ ൥

1

2
+ 𝑐̅ + ෍

ห𝛼ത௜ − 𝛽̅௜ห
ଶ

Λഥ௜

ெିଵ

௜ୀଵ

൩ − ൭
1

2
− ෍

|𝛼ത௜|ଶ

Λഥ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ଶ

+ ൭1 − ෍
𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐.

Λഥ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ସ + ൭𝑐̅ + ෍
ห𝛽̅௜ห

ଶ

Λഥ௜

ெିଵ

௜ୀଵ

൱ |Ψ|଺ +
ห𝐃(଴)Ψห

ଶ

𝜅ଶ

+
𝑄ത

4𝜅ସ ൤ห𝐃(଴)ଶΨห
ଶ

+
1

3
rot 𝐁(଴) ∙ 𝒊ஏ

(଴)
+ 𝐁(଴)ଶ|Ψ|ଶ൨

+
𝐿ത

4𝜅ଶ ቄ8|Ψ|ଶห𝐃(଴)Ψห
ଶ

+ ቂΨଶ൫𝐃(଴)∗Ψ∗൯
ଶ

+ 𝑐. 𝑐. ቃቅ, 

3.5-8 
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with the dimensionless parameters 

 
𝑐̅ =

𝑐𝑎

3𝑏ଶ
, 𝑄ത =

𝑄𝑎

𝐾ଶ
, 𝐿ത =

𝐿𝑎

𝐾𝑏
, Λഥ௜ =

Λ௜

𝑎
. 

3.5-9 

 
When utilizing Eq. (3.5-7), we find that the next-to-lowest order correction to the magnetic 

field does not appear in the Gibbs free energy difference. In addition, one notes that the 

contribution 𝑔∆
(଴) is not sensitive to the number of available bands. However, 𝑔∆

(ଵ) depends 

explicitly on 𝑀, which is the basis for the main conclusions of the present study.   

3.6 BOGOMOLNYI SELF-DUALITY AND INTERTYPE DOMAIN  

As is discussed in Sec.3.1, the IT domain is located on the 𝜅 − 𝑇  plane near 𝜅 = 𝜅଴ 

so that it is convenient to expand the Gibbs free energy difference 𝐺∆, integration of 𝑔∆
(଴),  in 

powers of 𝛿𝜅 = 𝜅 − 𝜅଴. Keeping only terms up to order 𝜏~𝛿𝜅, we obtain 

 
𝐺∆ = 𝜏ଶ ቎𝐺∆

(଴)
ቚ

఑ୀ఑బ

+ 𝛿𝜅
𝑑𝐺∆

(଴)

𝑑𝜅
อ

఑ୀ఑బ

+ 𝜏𝐺∆
(ଵ)

ቚ
఑ୀ఑బ

቏, 3.6-1 

where the derivative of 𝐺∆
(଴) with respect to 𝜅 is not dependent on the number of contributing 

bands (𝑔∆
(଴) is not sensitive to 𝑀, as is mentioned above) and, so, we simply quote the two-

band result of Ref. [35] 

 𝑑𝐺∆
(଴)

𝑑𝜅
อ

఑ୀ఑బ

= − න 𝑑ଷ𝒙 ቂ√2𝐵(଴)൫𝐵(଴) − 1൯ + 2√2ห𝐃(଴)Ψห
ଶ

ቃ, 3.6-2 

where we recall that 𝜅଴ = 1/√2. 

A significant advantage of using the expansion in 𝛿𝜅 is related to the special property 

of the GL theory at 𝜅 = 𝜅଴. This property is called the Bogomolnyi self-duality [57], or the 

matching between the magnetic-field and condensate spatial profiles given by [35], [57] 

 𝐵(଴) = 1 − |Ψ|ଶ. 3.6-3 

This local relation between the order parameter and magnetic field amplitude is consistent 

with the GL equations (3.5-4) when [35], [57] 

 𝐷ି
(଴)Ψ = 0, 3.6-4 
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where 𝐷±
(଴)

= 𝐷௫
(଴)

± i𝐷௬
(଴), with 𝐷௫,௬

(଴) the 𝑥- and 𝑦-components of 𝐃(଴).  Here 𝐁(଴) is assumed 

to be along the 𝑧-direction so that Ψ is not dependent on 𝑧 and 𝐃(଴)ଶ = 𝐷ା
(଴)

𝐷ି
(଴) + 𝐵(଴). 

Equations (3.6-3) and (3.6-4) are usually called the Bogomolnyi equations [57] (they are also 

known as the Sarma solution [44]). Using Eqs. (3.5-4) and (3.6-3) and also the substitution 

ห𝐃(଴)Ψห
ଶ

→ Ψ∗𝐃(଴)ଶΨ (producing a zero surface integral), we find 

𝐺∆
(଴)

ቚ
఑ୀ఑బ

= න 𝑑ଷ𝒙 ൤
1

2
൫𝐵(଴) − 1൯

ଶ
− |Ψ|ଶ +

1

2
|Ψ|ସ − Ψ∗𝐃(଴)ଶΨ൨, 

𝐺∆
(଴)

ቚ
఑ୀ఑బ

= න 𝑑ଷ𝒙 ൤
1

2
|Ψ|ସ − |Ψ|ଶ +

1

2
|Ψ|ସ − Ψ∗𝐃(଴)ଶΨ൨, 

𝐺∆
(଴)

ቚ
఑ୀ఑బ

= − න 𝑑ଷ𝒙 Ψ∗ൣΨ(1 − |Ψ|ଶ) + 𝐃(଴)ଶΨ൧ = 0, 

so,  

 
𝐺∆

(଴)
ቚ

఑ୀ఑బ

= න 𝑑ଷ𝒙 ൫|Ψ|ସ − |Ψ|ଶ − Ψ∗𝐃(଴)ଶΨ൯ = 0. 3.6-5 

This result is valid for any stationary solution of the GL formalism at 𝜅 = 𝜅଴ and reflects 

another benchmark property of the Bogomolnyi self-duality: at the thermodynamic critical 

field all possible GL solutions are degenerate (there is an infinite number of GL self-dual 

configurations, including very exotic patterns, see Appendix C in Ref. [35]). Above 𝐻௖ the 

normal state Ψ = 0 is stable while below 𝐻௖ the Meissner state Ψ = 1 is favourable. Thus, the 

mixed state appears only at the single point 𝐻 = 𝐻௖ and all exotic self-dual patterns of the 

field and condensate are locked at this point. However, corrections to the GL formalism break 

the Bogomolnyi degeneracy and successive self-dual patterns determine the properties of the 

IT mixed state. 

Similarly, to the procedure used to obtain Eq. (3.6-5), we rewrite Eq. (3.6-2) as 

𝑑𝐺∆
(଴)

𝑑𝜅
อ

఑ୀ఑బ

= −√2 න 𝑑ଷ𝒙 ൣ(1 − |Ψ|ଶ)|Ψ|ଶ + 2൫Ψ∗𝐃(଴)ଶΨ൯൧, 

𝑑𝐺∆
(଴)

𝑑𝜅
อ

఑ୀ఑బ

= −√2 න 𝑑ଷ𝒙 ൣ(1 − |Ψ|ଶ)|Ψ|ଶ + 2൫Ψ∗𝐃(଴)ଶΨ൯൧, 

𝑑𝐺∆
(଴)

𝑑𝜅
อ

఑ୀ఑బ

= −√2 න 𝑑ଷ𝒙 [|Ψ|ଶ − |Ψ|ସ + 2(|Ψ|ସ − |Ψ|ଶ)], 
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𝑑𝐺∆
(଴)

𝑑𝜅
อ

఑ୀ఑బ

= −√2 න 𝑑ଷ𝒙 (|Ψ|ସ − |Ψ|ଶ), 

so,  

 𝑑𝐺∆
(଴)

𝑑𝜅
อ

఑ୀ఑బ

= න 𝑑ଷ𝒙 |Ψ|ଶ(|Ψ|ଶ − 1). 3.6-6 

The terms contributing to 𝐺∆
(ଵ) and containing 𝐷ሬሬ⃗ (଴) can be rewritten by applying 

Gauss's theorem with vanishing surface integrals and using Eqs. (3.5-4), (3.6-3), and Eq. 

(3.6-4). We also have ൫𝐃(଴)Ψ൯
ଶ

= ൫𝐃(଴)∗Ψ∗൯
ଶ

= 0 resulting from 𝐷௫
(଴)

Ψ = i𝐷௬
(଴)

Ψ, see Eq. 

(3.6-4). Notice that at the same time ห𝐃(଴)Ψห
ଶ

≠ 0, as is seen from Eq. (3.6-5).  

1. ห𝐃(଴)Ψห
ଶ

→  |Ψ|ଶ(1 − |Ψ|ଶ). 

 

2. ห𝐃(଴)ଶΨห
ଶ
: 

න 𝑑ଷ𝒙 ห𝐃(଴)ଶΨห
ଶ

= න 𝑑ଷ𝒙 |Ψ(|Ψ|ଶ − 1)|ଶ, 

න 𝑑ଷ𝒙 ห𝐃(଴)ଶΨห
ଶ

= න 𝑑ଷ𝒙 (|Ψ|଺ + |Ψ|ଶ − 2|Ψ|ସ), 

න 𝑑ଷ𝒙 ห𝐃(଴)ଶΨห
ଶ

= න 𝑑ଷ𝒙 [|Ψ|ଶ(1 − |Ψ|ଶ) − |Ψ|ସ(1 − |Ψ|ଶ)]. 

 

3. |Ψ|ଶห𝐃(଴)Ψห
ଶ
: 

න 𝑑ଷ𝒙 |Ψ|ଶห𝐃(଴)Ψห
ଶ

= න 𝑑ଷ𝒙 ෍|Ψ|ଶ𝐷௝
(଴)

Ψ𝐷௝
(଴)∗

Ψ∗

௝

, 

න 𝑑ଷ𝒙 |Ψ|ଶห𝐃(଴)Ψห
ଶ

= න 𝑑ଷ𝒙 ෍|Ψ|ଶ𝐷௝
(଴)

Ψe୧஘𝜕௝൫eି୧஘Ψ∗൯

௝

, 

where 𝐷௝
(଴) is the component of 𝐃(଴) given by Eq. (3.5-4), 𝜕௝ is the component of 𝛁, and θ is 

defined so that 𝛁θ = 𝐀(଴). Then, we obtain 

න 𝑑ଷ𝑥⃗ |Ψ|ଶห𝐃(଴)Ψห
ଶ

= න 𝑑ଷ𝒙 ෍ ቂ𝜕௝ቀ|Ψ|ଶ𝐷௝
(଴)

ΨΨ∗ቁ − Ψ∗eି୧஘𝜕௝ቀe୧஘|Ψ|ଶ𝐷௝
(଴)

Ψቁቃ

௝

 

where the first term yields, by virtue of Gauss's theorem, a vanishing surface integral (Ψ is 

zero at infinity). 
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 Hence, 

න 𝑑ଷ𝒙 |Ψ|ଶห𝐃(଴)Ψห
ଶ

= − න 𝑑ଷ𝒙 ෍ ቂΨ∗𝐷௝
(଴)

Ψ𝜕௝|Ψ|ଶ + Ψ∗|Ψ|ଶeି୧஘𝜕௝ቀe୧஘𝐷௝
(଴)

Ψቁቃ

௝

, 

= − න 𝑑ଷ𝒙 ෍ቂΨ∗𝐷௝
(଴)

Ψ𝜕௝|Ψ|ଶ + Ψ∗|Ψ|ଶ𝐷௝
(଴)ଶ

Ψቃ

௝

, 

= − න 𝑑ଷ𝒙 ෍ቂΨ∗𝐷௝
(଴)

Ψ𝜕௝൫e୧஘eି୧஘ΨΨ∗൯ + Ψ∗|Ψ|ଶ𝐷௝
(଴)ଶ

Ψቃ

௝

, 

= − න 𝑑ଷ𝒙 ෍ቂΨ∗ଶ𝐷௝
(଴)

Ψeି୧஘𝜕௝൫e୧஘Ψ൯ + Ψ∗Ψ𝐷௝
(଴)

Ψe୧஘𝜕௝൫eି୧஘Ψ∗൯

௝

+ Ψ∗|Ψ|ଶ𝐷௝
(଴)ଶ

Ψቃ, 

= − න 𝑑ଷ𝒙 ቂΨ∗ଶ൫𝐃(଴)Ψ൯
ଶ

+ |Ψ|ଶห𝐃(଴)Ψห
ଶ

+ Ψ∗|Ψ|ଶ𝐃(଴)Ψቃ. 

Here the first term is equal to zero because  𝐷௫
(଴)

Ψ = i𝐷௬
(଴)

Ψ, as is seen from Eq. (3.6-4).  

න 𝑑ଷ𝒙 |Ψ|ଶห𝐃(଴)Ψห
ଶ

= − න 𝑑ଷ𝒙 ቂ|Ψ|ଶห𝐃(଴)Ψห
ଶ

+ Ψ∗|Ψ|ଶ𝐃(଴)Ψቃ. 

Then, we obtain 

2 න 𝑑ଷ𝒙 |Ψ|ଶห𝐃(଴)Ψห
ଶ

= − න 𝑑ଷ𝒙 Ψ∗|Ψ|ଶ𝐃(଴)Ψ. 

Now, using the scaled GL equations (3.5-4), we conclude that 

න 𝑑ଷ𝒙 ห𝐃(଴)ଶΨห
ଶ

= −
1

2
න 𝑑ଷ𝒙 |Ψ|ଶ(|Ψ|ସ − |Ψ|ଶ), 

න 𝑑ଷ𝒙 ห𝐃(଴)ଶΨห
ଶ

=
1

2
න 𝑑ଷ𝒙 |Ψ|ସ(1 − |Ψ|ଶ). 

4. rot 𝐁(଴) ∙ 𝒊ஏ
(଴): 

 

න 𝑑ଷ𝒙 rot 𝐁(଴) ∙ 𝒊ஏ
(଴)

= න 𝑑ଷ𝒙 𝒊ஏ
(଴)ଶ 

= න 𝑑ଷ𝒙 (−1)൫Ψ𝐃(଴)∗Ψ∗ − Ψ∗𝐃(଴)Ψ൯
ଶ

, 

= − න 𝑑ଷ𝒙 ቂΨଶ൫𝐃(଴)∗Ψ∗൯
ଶ

+ Ψ∗ଶ൫𝐃(଴)Ψ൯
ଶ

− 2|Ψ|ଶห𝐃(଴)Ψห
ଶ

ቃ. 
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Here the first and second terms are equal to zero because  𝐷௫
(଴)

Ψ = i𝐷௬
(଴)

Ψ → ൫𝐃(଴)Ψ൯
ଶ

=

൫𝐃(଴)∗Ψ∗൯
ଶ

= 0, as is seen from Eq. (3.6-4).  

න 𝑑ଷ𝒙 rot 𝐁(଴) ∙ 𝒊ஏ
(଴)

= 2 න 𝑑ଷ𝒙 |Ψ|ଶห𝐃(଴)Ψห
ଶ

, 

න 𝑑ଷ𝒙 rot 𝐁(଴) ∙ 𝒊ஏ
(଴)

= න 𝑑ଷ𝒙 |Ψ|ସ(1 − |Ψ|ଶ). 

Now, we can rewrite the terms contributing to 𝐺∆
(ଵ) and containing 𝐃(଴) by using the following 

substitutions: 

 ห𝐃(଴)Ψห
ଶ

→  |Ψ|ଶ(1 − |Ψ|ଶ),  

 ห𝐃(଴)ଶΨห
ଶ

→  |Ψ|ଶ(1 − |Ψ|ଶ) − |Ψ|ସ(1 − |Ψ|ଶ),  

 
|Ψ|ଶห𝐃(଴)Ψห

ଶ
→  

1

2
|Ψ|ସ(1 − |Ψ|ଶ),  

 rot 𝐁(଴) ∙ 𝒊ஏ
(଴)

→ |Ψ|ସ(1 − |Ψ|ଶ), 3.6-7 

Then, 𝐺∆
(ଵ) reads 

𝐺∆
(ଵ)

ቚ
఑ୀ఑బ

= න 𝑑ଷ𝒙 ൝−|Ψ|ଶ ൥
1

2
+ 𝑐̅ + ෍

ห𝛼ത௜ − 𝛽̅௜ห
ଶ

Λഥ௜

ெିଵ

௜ୀଵ

൩ − ൭
1

2
− ෍

|𝛼ത௜|ଶ

Λഥ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ଶ

+ ൭1 − ෍
𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐.

Λഥ௜

ெିଵ

௜ୀଵ

൱ |Ψ|ସ + ൭𝑐̅ + ෍
ห𝛽̅௜ห

ଶ

Λഥ௜

ெିଵ

௜ୀଵ

൱ |Ψ|଺ + 2|Ψ|ଶ(1 − |Ψ|ଶ)

+ 𝑄ത ൜[|Ψ|ଶ(1 − |Ψ|ଶ) − |Ψ|ସ(1 − |Ψ|ଶ)] +
1

3
|Ψ|ସ(1 − |Ψ|ଶ) + |Ψ|ଶ(1 − |Ψ|ଶ)ଶൠ

+ 2𝐿ത|Ψ|ସ(1 − |Ψ|ଶ)ൡ, 

𝐺∆
(ଵ)

ቚ
఑ୀ఑బ

= න 𝑑3𝒙 ൝|Ψ|2(1 − |Ψ|2) + 𝑐̅(|Ψ|6 − |Ψ|2) + ൥(|Ψ|2 − |Ψ|4) ෍
𝛼ത𝑖

∗𝛽ത
𝑖

+ 𝑐. 𝑐.

Λത𝑖

𝑀−1

𝑖=1

൩

+ (|Ψ|6 − |Ψ|2) ൭෍
ห𝛽ത

𝑖
ห

2

Λത𝑖

𝑀−1

𝑖=1

൱

+ 𝑄ഥ ൜|Ψ|2(1 − |Ψ|2) −
2

3
|Ψ|4(1 − |Ψ|2) + |Ψ|2 + |Ψ|6 − 2|Ψ|4ൠ

+ 2𝐿ത|Ψ|4(1 − |Ψ|2)ൡ. 
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So, 

 
𝐺∆

(ଵ)
ቚ
఑ୀ఑బ

= න 𝑑ଷ𝒙 ൝|Ψ|ଶ(1 − |Ψ|ଶ) − 𝑐̅[|Ψ|ସ(1 − |Ψ|ଶ) + |Ψ|ଶ(1 − |Ψ|ଶ)]

+ ൥|Ψ|ଶ(1 − |Ψ|ଶ) ෍
𝛼ത௜

∗𝛽̅௜ + 𝑐. 𝑐.

Λഥ௜

ெିଵ

௜ୀଵ

൩

− [|Ψ|ସ(1 − |Ψ|ଶ) + |Ψ|ଶ(1 − |Ψ|ଶ)] ൭ ෍
ห𝛽̅௜ห

ଶ

Λഥ௜

ெିଵ

௜ୀଵ

൱

+ 𝑄ത ൤2|Ψ|ଶ(1 − |Ψ|ଶ) −
5

3
|Ψ|ସ(1 − |Ψ|ଶ)൨ + 2𝐿ത|Ψ|ସ(1 − |Ψ|ଶ)ൡ. 

3.6-8 

Then, it follows from Eqs. (3.6-6) and (3.6-8) that 𝐺∆ can be expressed in terms of the two 

integrals defined by 

 
I = න 𝑑3𝒙 |Ψ|2(1 − |Ψ|2),               J = න 𝑑3𝒙 |Ψ|4(1 − |Ψ|2). 

3.6-9 

 

Utilizing Eqs. (3.6-5), (3.6-6), (3.6-8), and (3.6-9), we can rewrite 𝐺∆ given by Eq. (3.6-1) in 

the form  

 𝐺∆ = 𝜏ଶൣ−√2I𝛿𝜅 + 𝜏(AI + BJ)൧, 3.6-10 

where the coefficients A and B read 

 

A = 1 − 𝑐̅ + 2𝑄ഥ + ෍
𝛼ത𝑖

∗𝛽ത
𝑖

+ 𝛼ത𝑖𝛽ത𝑖

∗
− ห𝛽ത

𝑖
ห

2

Λത𝑖

𝑀−1

𝑖=1

,  

 

B = 2𝐿ത − 𝑐̅ −
5

3
𝑄ഥ − ෍

ห𝛽ത
𝑖
ห

2

Λത𝑖

𝑀−1

𝑖=1

, 3.6-11 

with the dimensionless parameters 𝑐̅, 𝐿ത, 𝑄ത, 𝛼ത௜, 𝛽̅௜ and Λഥ௜ given by Eqs. (3.4-8) and (3.5-9). 

Now we have everything at our disposal to determine the boundaries of the IT domain 

on the 𝜅 − 𝑇 plane. This domain with the general remark that the superconductivity types are 

related to the way the magnetic field penetrates the bulk superconductor and produces a 

nonuniform configuration of the flux/condensate, is found when the Gibbs free energy 

difference  becomes smaller than that of the Meissner state at the thermodynamic critical field 

𝐻௖, and this flux/condensate in question can appear. The appearance/disappearance marks the 
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mixed state and separates the domains[35], the onset of this nonuniform state is found from 

the equation 

 𝐺∆(𝜅, 𝑇) = 0, 3.6-12 

that yields the corresponding GL critical parameter 𝜅∗(𝑇), referred to as simply a critical 

parameter. On the 𝜅 − 𝑇 plane 𝜅∗(𝑇) separates domains with and without the flux/condensate 

configuration of interest.  

Using Eq. (3.6-12) into Eq. (3.6-10), and 𝛿𝜅∗ = 𝜅∗ − 𝜅଴, one obtains the general 

expression for critical parameters up to the leading correction 

 √2I𝛿𝜅∗ = 𝜏(AI + BJ),  

 𝛿𝜅∗ =
𝜏

√2
(A + BJ/I). 3.6-13 

We obtain 

 𝜅∗ = 𝜅଴[1 + 𝜏(A + BJ/I)]. 3.6-14 

The lower boundary 𝜅୫୧୬
∗ (𝑇) marks the appearance/disappearance of the mixed state. 

The condensate vanishes at 𝐻௖ଶ and so the Gibbs free energies of the normal and condensate 

states become equal. At the same time the normal and Meissner states have the same Gibbs 

free energy at 𝐻௖. Therefore, when type I separation of the IT domain approaches the, Ψ → 0. 

Using this information and considering that J/I → 0 for Ψ → 0, from Eq. (3.6-10) we find 

 𝜅୫୧୬
∗ = 𝜅଴(1 + 𝜏A). 3.6-15 

The upper boundary 𝜅୫ୟ୶
∗ (𝑇) separates type-II and IT regimes and is determined by 

zero long-range interaction between superconducting vortices [35]: this interaction is repulsive 

in type II whereas it is attractive inside the IT domain. To calculate 𝜅୫ୟ୶
∗ (𝑇), one solves the 

Bogomolnyi equations for the case of two vortices at a distance 𝑅 apart and finds the asymptote 

of Ψ at 𝑅 → ∞. The position dependent part of this asymptote is plugged into Eq. (3.6-12). As 

the Gibbs free energy of the normal state is not dependent on 𝑅, this procedure yields the long-

range asymptote of the Gibbs free energy of two vortices or, in other words, their long-range 

interaction potential. The scaled GL equations (3.5-4) and, in turn, the Bogomolnyi equations 

are not sensitive to the number of contributing bands 𝑀, we can adopt the long-range 

asymptote of the two-vortex solution Ψ found previously in the two-band case [35], which 

yields J/I = 2. Then, we get 
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 𝜅୫ୟ୶
∗ = 𝜅଴൫1 + 𝜏(A + 2B)൯. 3.6-16 

Equations (3.6-15) and (3.6-16) are generalization of the expressions for the boundaries 

of the IT domain obtained previously for the two-band case [35]. As is already mentioned 

above, within the two-band formalism, Δሬሬ⃗ (଴) and Δሬሬ⃗ (ଵ) were represented as linear combinations 

of two explicitly chosen vectors[61] and the IT boundaries were expressed in terms of their 

components [35]. In the case of M > 2, the extended GL formalism is obtained in a more 

compact form when Δሬሬ⃗ (଴) and Δሬሬ⃗ (ଵ) are written as linear combinations of the eigenvectors of the 

matrix 𝐿ෘ [see Eq. (3.3-4)]. Then, to use Eqs.(3.6-15) and (3.6-16), one needs first to solve Eqs. 

(3.3-11) and (3.3-12) to determine the eigenvalues and eigenvectors of 𝐿ෘ.  

In the next chapter we will investigate how the IT domain boundaries given by Eqs. 

(3.6-15) and (3.6-16) are sensitive to the number of contributing bands 𝑀 for multiband 

systems with degenerate gaps. Analyzing Eqs. (3.3-19), (3.3-26), (3.4-6), (3.4-8), (3.5-9), and 

(3.6-11), one finds that 𝜅୫୧୬
∗  and 𝜅୫ୟ୶

∗  depend on the following microscopic parameters: the 

dimensionless couplings 𝜆ఔఔᇲ = 𝑔ఔఔᇲ𝑁 (with 𝑁 = ∑ 𝑁ఔఔ  the total DOS), the relative band 

DOSs 𝑛ఔ = 𝑁ఔ/𝑁, and the band velocities ratios 𝑣ఔ/𝑣ଵ (here the Fermi velocity of band 1 can 

be replaced by another band characteristic velocity). Since 𝑇௖ ∝ ℏc, the cut-off frequency 𝜔௖ 

does not contribute to 𝜅୫୧୬
∗  and 𝜅୫ୟ୶

∗ .  

For two-band models available in the literature (see Ref. [35] and references therein) 

the intraband couplings 𝜆ଵଵ, 𝜆ଶଶ are usually in the range 0.2-0.7 (they are larger for MgBଶ), 

the interband coupling 𝜆ଵଶ is typically much smaller than the intraband ones, and the relative 

band DOSs 𝑛ଵ and 𝑛ଶ are usually close quantities. Thus, we can expect in general that 0.2 ≲

𝜆ఔఔᇲ ≲ 0.7, 𝜆ఔஷఔᇲ ≪ 𝜆ఔఔ and 𝑛ఔ ≈ 𝑛ఔᇲ.  

To have an idea about the ratio 𝑣ఔ/𝑣ଵ, we can invoke available results of the first 

principle calculations for multiband superconductors. For example,  the averaged Fermi 

velocity in the 𝑎-𝑏 plane of MgBଶ is estimated[99] as 𝑣ఙ
(௔ି௕)

= 4.4 × 10ହ𝑚/𝑠 and 𝑣గ
(௔ି௕)

=

5.35 × 10ହ𝑚/𝑠 for 𝜎 and 𝜋 bands, respectively. One sees that 𝑣ఙ
(௔ି௕) is about 20% smaller 

than 𝑣గ
(௔ି௕). However, for the 𝑐-direction one obtains[99] that 𝑣ఙ

௖ = 7 × 10ସ𝑚/𝑠 is by an 

order of magnitude smaller than that 𝑣గ
௖ = 7 × 10ହ𝑚/𝑠. In addition, ARPES measurements 

can be also employed. For instance, these measurements demonstrate that there exist three 

contributing bands in iron chalcogenide FeSe଴.ଷହTe଴.଺ହ and the maximal ratio of the band 

Fermi velocities is about 4, see Ref. [100] and discussion in Ref. [101] 
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3.7 RESULTS AND CONCLUSIONS 

As is mentioned in the Introduction, it is usually assumed that the number of the energy 

gaps in the excitation spectrum determines the number of contributing bands in a 

superconducting model designed to capture essential physics in the multiband system of 

interest. The results given in the below demonstrate that this common expectation is an 

oversimplification and the magnetic properties of multiband systems with the same excitation 

gaps but with different numbers of bands can be significantly different. 

For illustration, we first consider a two-band superconductor with degenerate 

excitation gaps and compare the boundaries of the IT domain for such a system with those for 

a single-band superconductor. The excitation gaps are calculated from the BCS equations 

 
Δఔ = ෍ 𝜆ఔఔᇲ

ఔᇲ

𝑛ఔᇲ න
Δఔᇲ

2𝐸ఔᇲ
[1 − 2𝑓(𝐸ఔᇲ)]

ℏனౙ

ିℏனౙ

, 3.7-1 

with 𝐸ఔ = ඥ𝜀ଶ + |Δఔ|ଶ and 𝑓(𝐸ఔᇲ) the fermi function. In the two-band case we choose  

 𝜆ଵଵ = 𝜆ଶଶ = 0.3, 𝜆ଵଶ = 0.05, 𝑛ଵ = 𝑛ଶ.   3.7-2 

Figure 3.7-1 “Reference-[131]”, The two-band system with the couplings and relative DOSs given by Eq. (3.7-2) versus the 

single-band system with the coupling 𝜆 = 0.35: (a) The single temperature dependent gap for both systems; (b) The 𝜏-

derivatives of the IT boundaries 𝜅௠௔௫
∗  (two upper lines) and  𝜅௠௜௡

∗  (two lower lines) versus the band Fermi velocities ratio 

𝛽 = 𝑣ଶ/𝑣ଵ for the two-band (dotted) and single-band (solid) cases, the single-band results are material independent 

quantities 0.67  and 0.29, see Ref. [35]; (c) The derivative 𝑑|𝜉ଶ − 𝜉ଵ|/𝑑𝜏 versus 𝛽, where |𝜉ଶ − 𝜉ଵ| is the absolute value of 

the difference of the band healings lengths 𝜉ଶ and 𝜉ଵ for the two-band system in question. 

 

The results of Δଵ and Δଶ (in units of 𝑇௖, Δఔ in units of 𝑇௖ does not depend on ℏωୡ),  are 

given by the solid and dotted lines and merge into one curve (degenerate), as seen from  Figure 

3.7-1 a). To get the same excitation gap for the single-band case, one needs to adopt the 
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dimensionless coupling 0.35, which is the sum of 𝜆ଵଵ and 𝜆ଵଶ given by Eq. (3.7-2), see Figure 

3.7-1 a). Thus, the excitation spectra of the chosen two-band and single-band systems exhibit 

the same single energy gap. Notice that there are infinite combinations of parameters resulting 

in a single excitation energy gap in the two-band case: one simply needs to use 𝜆ଵଵ𝑛ଵ = 𝜆ଶଶ𝑛ଶ. 

However, our qualitative conclusions are not sensitive to a particular choice of the couplings 

and DOSs. 

In Figure 3.7-1 b) the derivatives 𝑑𝜅∗/𝑑𝜏 for 𝜅୫୧୬
∗  and 𝜅୫ୟ୶

∗  are shown versus the ratio 

𝛽 = 𝑣ଶ/𝑣ଵ for the single-gap system with two bands (dotted lines). The same quantities for 

the single-band system are universal material-independent constants [35] given by the solid 

lines. One sees that the boundaries of the IT domain of the two-band system are sensitive to 

the velocity ratio 𝛽 and, in general, differ significantly from the single-band boundaries. We 

arrive at the conclusion that the superconducting magnetic properties depend on features of a 

Fermi surface with multiple band Fermi sheets, irrespective of the appearance of a multigap 

structure in the excitation spectrum. 

To gain deeper understanding, it is of importance to emphasize that the IT domain 

boundaries of the both systems in Figure 3.7-1 b) coincide at 𝛽 = 1. To clarify this point, we 

utilize the formalism of Ref. [101] and calculate the derivative 𝑑|𝜉ଶ − 𝜉ଵ|/𝑑𝜏, where |𝜉ଶ − 𝜉ଵ| 

is the absolute value of the difference of the band healings lengths 𝜉ଶ and 𝜉ଵ for the two-band 

system in question. To the next-to-lowest order in 𝜏, we have 𝜉ఔ = 𝜉ఔ
(଴)

+ 𝜏𝜉ఔ
(଴), with 𝜉ఔ

(଴)
=

𝜉ீ௅, see Refs. [61][101][102][103]. [Due to using the scaling transformation 𝑥⃗ᇱ = 𝜏ଵ/ଶ𝑥⃗, this 

healing-length expression should be multiplied by 𝜏ିଵ/ଶ to return to the standard definition]. 

Therefore, taken to one order beyond the GL theory, 𝑑|𝜉ଶ − 𝜉ଵ|/𝑑𝜏, is equal to ቚ𝜉ଶ
(ଵ)

− 𝜉ଵ
(ଵ)

ቚ 

and is not 𝜏-dependent. The result is given in Figure 3.7-1 c) [in units of the GL coherence 

length 𝜉ୋ୐] and one sees that 𝜉ଶ and 𝜉ଵ coincide at 𝛽 = 1. As is seen, when the band 

condensates are controlled by the same characteristic length, we find no difference in the 

superconducting magnetic properties as compared to the single-band case. Thus, the most 

promising regime of searching for non-single-condensate superconducting magnetic effects is 

the one with diverse and competing lengths of multiple contributing condensates. 

For another illustration we compare the boundaries of the IT domain calculated for the 

two- and four-band systems with two different energy gaps in the excitation spectrum. Now 

the dimensionless couplings and relative DOSs are chosen as, the two-band system 
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 𝜆ଵଵ = 0.175, 𝜆ଶଶ = 0.125, 𝜆ଵଶ = 0.05, 𝑛ଵ = 𝑛ଶ,   3.7-3 

and for the four-band one  

 𝜆ଵଵ = 𝜆ଶଶ = 0.3, 𝜆ଷଷ = 𝜆ସସ = 0.2, 𝜆ఔఔᇲ = 0.05, 𝑛ఔ = 𝑛ఔᇲ ,   3.7-4 

Two energy gaps obtained from Eqs. (3.7-3) and (3.7-4) are shown in Figure 3.7-2 a). 

As in the previous illustration, there again exist infinite variants the couplings and DOSs. From 

Eq. 3.7-1 we can see that, the excitation gaps become degenerate when the quantity  

 
Δఔ = ෍ 𝜆ఔఔᇲ

ெ

ఔᇲୀଵ

𝑛ఔᇲ ,   3.7-5 

assumes the same value for several bands. 

For example, to get Δଵ
(ସ௕)

= Δଶ
(ସ௕)

= Δଵ
(ଶ௕), we can use ∑ 𝜆

ఔఔᇲ
(ସ௕)

𝑛
ఔᇲ
(ସ௕)ସ

ఔᇲୀଵ ቚ
ఔୀଵ,ଶ

=

∑ 𝜆
ఔఔᇲ
(ଶ௕)

𝑛
ఔᇲ
(ଶ௕)ଶ

ఔᇲୀଵ , similar expression with obvious alterations is needed to obtain Δଷ
(ସ௕)

=

Δସ
(ସ௕)

= Δଶ
(ଶ௕). We note again, however, that a particular choice of the couplings and DOSs 

does not influence our qualitative results. 

 

Figure 3.7-2 “Reference-[131]”, The four-band system with the couplings and relative DOSs given by Eq. (3.7-4) versus the 
two-band system with 𝜆ఔఔᇲ and 𝑛ఔ given by Eq. (3.7-3): (a) The two temperature dependent gaps for both systems; (b) The 𝜏-
derivatives of the IT boundaries 𝜅௠௔௫

∗  (two upper lines) and  𝜅௠௜௡
∗  (two lower lines) versus 𝛽 for the two-band (dotted) and 

single-band (solid) cases, where 𝛽 = 𝑣ଶ/𝑣ଵ for the two-band case and 𝑣ଶ/𝑣ଵ = 𝑣ଷ/𝑣ଵ = 𝛽 and 𝑣ସ/𝑣ଵ = 2𝛽 for the four-band 
case.  
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The IT domain boundaries (their 𝜏-derivatives) for the two-band system with two 

distinguished gaps governed by Eq. (3.7-3) are shown in Figure 3.7-2 b) versus 𝛽 = 𝑣ଶ/𝑣ଵ 

(solid lines). One can see that in general, the corresponding IT domain is significantly different 

from the two-band IT domain shown in Figure 3.7-1 b). However, the two-band IT boundaries 

in Figure 3.7-2 b) are still close to the single-band ones in vicinity of 𝛽 = 1, recall that 

𝑑𝜅୫ୟ୶
∗ /𝑑𝜏 and 𝑑𝜅୫௜௡

∗ /𝑑𝜏  in the single-band case are universal material-independent constants 

0.67 and 0.29, respectively. Close to 𝛽 = 1 the healing lengths 𝜉ଶ and 𝜉ଵ are nearly the same 

and the two-band system exhibits a nearly single-band superconducting magnetic response 

despite the presence of two excitation gaps. We again observe that the presence/absence of 

diverse characteristic lengths of multiple condensates coexisting in one material is more 

important for the superconducting magnetic properties than the presence/absence of multiple 

gaps in the excitation spectrum.  

The quantities 𝑑𝜅୫ୟ୶
∗ /𝑑𝜏 and 𝑑𝜅୫௜௡

∗ /𝑑𝜏 for the four-band system with two excitation 

gaps controlled by Eq. (3.7-4) are given by dotted lines in Figure 3.7-2 b). Here we use the 

parametrization of the band Fermi velocities as 𝑣ଶ/𝑣ଵ = 𝑣ଷ/𝑣ଵ = 𝛽 and 𝑣ସ/𝑣ଵ = 2𝛽. The 

adopted parametrization is not crucial: our study demonstrates that the IT domain boundaries 

for the four-band system are always very sensitive to the choice of the band Fermi velocities 

and in general different from the IT boundaries for the single- and two-band systems. In 

particular, we can see that the IT domain for the four-band case is always larger than the IT 

domain for the single-band system [c.f. Figure 3.7-2 b)]. More complex results are obtained 

when comparing the two- and four-band cases. The two-band and four-band lines 

corresponding to 𝑑𝜅୫ୟ୶
∗ /𝑑𝜏 intersect at 𝛽 ≈ 2.5 while the corresponding lines for 𝑑𝜅୫௜

∗ /𝑑𝜏 

cross each other at the larger value 𝛽 ≈ 3. One sees that the IT domain boundaries for the four-

band case are close to those for the two-band case at 𝛽 ≈ 2.5-3. However, at 𝛽 ≈ 6-8 the size 

of the IT domain is notably larger for the two-band case whereas the four-band IT domain is 

more pronounced for 𝛽 <  2. Thus, the number of bands always matters, regardless the 

presence/absence of degenerate excitation gaps. 

We have demonstrated that the superconducting magnetic properties are sensitive to 

the number of contributing bands even for degenerate excitation gaps. We have compared 

single-band results for the boundaries of the IT domain with those for the two-band case with 

degenerate superconducting gaps. In addition, the IT domain boundaries have been calculated 

for a four-band system with two excitation gaps and compared with the corresponding 

boundaries of a two-band case with the same two gaps in the excitation spectrum. We have 
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found that nontrivial competition between diverse characteristic lengths of different 

contributing band condensates can result in non-single-condensate magnetic response even 

when the excitation spectrum of a superconductor exhibits a single energy gap. At the same 

time, we have observed that a superconductor can demonstrate a nearly single-condensate 

magnetic response in the presence of multiple excitation gaps. Characteristic lengths of 

multiple condensates are directly related to the complex Fermi surface made of different band 

Fermi sheets. The set of diverse and competing coherence lengths and the multigap energy 

structure of the excitation spectrum are both results of a complex Fermi surface with multiple 

Fermi sheets associated with different contributing bands. However, interference between 

different band condensates is not directly related to multiple excitation gaps. Thus, multiband 

superconductors are not the same as multigap ones. 

Our analysis has been performed within the EGL approach that considers the leading 

corrections to the GL theory in the perturbative expansion of the microscopic equations in 𝜏 =

1 − 𝑇/𝑇௖. This formalism, previously constructed for single- and two-band systems, has been 

extended in the present work to the case of an arbitrary number of contributing bands. Its 

advantage is that it allows one to clearly distinguish various effects appearing due to the 

multiband structure in different types of superconducting characteristics. It particular, it 

reveals solid correlations between changes in the IT domain with the competition of multiple 

characteristic lengths of the contributing condensates. 
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4 MULTIBAND MATERIAL WITH A QUASI-1D BAND AS A HIGH 
TEMPERATURE SUPERCONDUCTOR 

 

It is a common knowledge that superconductivity in 1D systems is suppressed due to 

fluctuations of the order parameter. The superconducting state can still be achieved when 

several 1D structures (parallel chains of molecules or atoms) are coupled one to another, 

creating a weakly coupled matrix. Earlier theoretical studies demonstrated that such quasi-1D 

materials can superconduct [105]–[110] but the fluctuations significantly reduce the critical 

temperature 𝑇௖ [105]. These predictions were confirmed by observations of the low-

temperature superconductivity in Bechgaard salts-organic quasi-1D superconductors [111], 

[112]. Subsequent theoretical analysis revealed that in some situations the critical temperature 

in quasi-1D systems can be enhanced rather than suppressed. In particular, this was calculated 

for weakly interacting stripes formed due to a particular transformation of the 

antiferromagnetic insulator [109], [110] and the enhancement is achieved under subtle balance 

of different physical mechanisms.  

The interest in quasi-1D superconductors has been recently boosted by the discovery 

of CrଶAsଷ-chain based quasi-1D materials [113]–[116]. Results of the first principle 

calculations of the electronic band structure of those compounds led to a conclusion that these 

quasi-1D superconductors are multiband materials with some of the contributing bands being 

quasi-1D ([116], [117]), multiband quasi-1D superconductors. In particular, there are two 

quasi-1D Fermi surface sheets coexisting with one 3D sheet in KଶCrଷAsଷ [13] and also in 

KCrଷAsଷH୶ [12]. Furthermore, it was demonstrated that in KCrଷAsଷH୶ the Fermi level is lifted 

by changing the H-intercalation [116], which gives rise to alterations in topology of the Fermi 

surface manifested in Lifshitz transitions. It is expected that proximity to a Lifshitz transition 

has a profound effect on the superconducting properties. For example, the mean field 

calculations reveal a considerable increase in the critical temperature when the chemical 

potential approaches the edge of a quasi-1D band [119]–[122]). However, the fluctuations, 

being already strong due to quasi-1D effects, severely increase due to the Bose-like character 

of the pairing in this regime. This can rule out any expectations based on the mean-field 

arguments.  
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On the other side, the interband coupling between condensates in different bands can 

reduce the fluctuations due to the multiband screening mechanism [118]. However, this 

mechanism was previously investigated only for quasi-2D bands and it is not clear how 

effective it is for quasi-1D superconductors. In the present thesis, motivated by recent 

experiments with multiband quasi-1D superconductors, we investigate a two-band system with 

coupled quasi-1D and 3D condensates. The goal of this work is to demonstrate that under a 

fairly general assumptions on the microscopic details, this system is a robust mean-field 

superconductor. This result opens promising prospects to engineer quasi-1D superconducting 

materials with higher critical temperatures. 

4.1 QUASI-1D BAND 

It is known that the GL theory in the vicinity of the mean-field critical temperature 𝑇௖଴ 

is obtained from the BCS microscopic formalism via the Gor’kov derivation. Below, for the 

reader convenience, we outline this derivation, specifying important features of the quasi-1D 

band in the vicinity of the Lifshitz transition (shallow quasi-1D band). The initial step of the 

Gor’kov procedure is the integral equation for the superconducting order parameter Δ(𝒙) =

𝑔〈𝜓↑(𝒙)𝜓↓(𝒙)〉 (𝑔 is the Gor’kov coupling) in terms of the normal-state temperature Green 

functions 𝒢ఠ
(଴) and 𝒢ఠ̅

(଴), i.e., 

 Δ(𝒙)

𝑔
= න 𝑑ଷ𝒚 𝐾௔(𝒙, 𝒚)Δ(𝒚) 

         + ∫൫∏ 𝑑ଷ𝒚
௜

ଷ
௜ୀଵ ൯ 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)Δ(𝒚ଵ)Δ∗(𝒚ଶ)Δ(𝒚ଷ),   

4.1-1 

where the kernels are given by 

 𝐾௔(𝒙, 𝒚) = −𝑇 ෍ 𝑒ି௜ఠ଴శ

ఠ

𝒢ఠ
(଴)

(𝒙, 𝒚)𝒢ఠ̅
(଴)

(𝒚, 𝒙),  

 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)

= −𝑇 ෍ 𝑒ି୧ఠ଴శ

ఠ

𝒢ఠ
(଴)

(𝒙, 𝒚ଵ)𝒢ఠ̅
(଴)

(𝒚ଵ, 𝒚ଶ)𝒢ఠ
(଴)

(𝒚ଶ, 𝒚ଷ)𝒢ఠ̅
(଴)

(𝒚ଷ, 𝒙). 
4.1-2 

The normal-state temperature Green functions are expressed as 

 
𝒢ఠ

(଴)
(𝒙, 𝒚) = න

𝑑ଷ𝒌

(2π)ଷ

exp[𝑖𝒌 ⋅ (𝒙 − 𝒚)]

𝑖ℏω − ξ𝒌
, 4.1-3 
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and 𝒢ఠ̅
(଴)

(𝒚, 𝒙) = −𝒢ିఠ
(଴)

(𝒙, 𝒚). The integral kernels involve, as usual, the summation over the 

fermionic Matsubara frequencies 𝜔௡ =
గ்(ଶ௡ାଵ)

ℏ
 (here the Boltzmann constant 𝑘஻ is set to 1). 

The magnetic field is zero in the present consideration. The quasi-1D Fermi surface is 

modelled in such a way that the dispersion relation has very large effective electronic masses 

in two directions, say, 𝑚௬, 𝑚௭ ≫ 𝑚௫. Then the related single-particle energy becomes 

 
ξ௞ = ෍

ℏଶ𝑘௜
ଶ

2𝑚୧
− 𝜇

ଷ

௜
≈

ℏଶ𝑘௫
ଶ

2𝑚୶
− 𝜇, 4.1-4 

with 𝜇 the chemical potential (the Fermi level) and 𝑚୶ set to the free electron mass 𝑚. 

Considering only the linear contribution to the gap equation given by Eq. (3.7-1) and 

making its expansion 

න 𝑑ଷ𝒚 𝐾௔(𝒙, 𝒚)Δ(𝒚) = න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)Δ(𝒙 + 𝒛), 

න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)Δ(𝒙 + 𝒛)

≅ න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛) ቎Δ(𝒙) +
𝒛 ∙ 𝛁

1!
Δ(𝒙)

ᇣᇧᇧᇤᇧᇧᇥ
଴

+
(𝒛 ∙ 𝛁)ଶ

2!
Δ(𝒙) + ⋯ ቏, 

≅ න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛) ቈΔ(𝒙) +
(𝒛 ∙ 𝛁)ଶ

2!
Δ(𝒙) + ⋯ ቉, 

 
න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)Δ(𝒙 + 𝒛)

≅ න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)Δ(𝒙) + න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)
(𝒛 ∙ 𝛁)ଶ

2!
Δ(𝒙)

+ ⋯. 

4.1

-5 

Now, we deal with the local term ∫ 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)Δ(𝒙) = 𝑎ଵ௦Δ(𝒙) 

𝑎ଵ௦ = −𝑇 න 𝑑ଷ𝒛 ෍ 𝑒ି௜ఠ଴శ

ఠ

𝒢ఠ
(଴)

(𝒙, 𝒙 + 𝒛)𝒢ఠ̅
(଴)

(𝒙 + 𝒛, 𝒙), 

𝑎ଵ௦ = −𝑇 න 𝑑ଷ𝒛 ෍ 𝑒ି௜ఠ଴శ

ఠ

න
𝑑ଷ𝒌

(2π)ଷ

exp[−𝑖𝒌 ⋅ 𝒛]

𝑖ℏω − ξ𝒌
න

𝑑ଷ𝒒

(2π)ଷ

exp[𝑖𝒒 ⋅ 𝒛]

𝑖ℏω + ξ𝒌ᇲ
, 

𝑎ଵ௦ = −𝑇 ෍ 𝑒ି௜ఠ଴శ

ఠ

න න 𝑑ଷ𝒌ᇱ 𝛿(𝒌 − 𝒒)
𝑑ଷ𝒌

(2π)ଷ

1

𝑖ℏω − ξ𝒌

1

𝑖ℏω + ξ𝒌ᇲ
, 
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𝑎ଵ௦ = −𝑇 ෍ 𝑒ି௜ఠ శ

ఠ

න
𝑑ଷ𝒌

(2π)ଷ

1

𝑖ℏω − ξ𝒌

1

𝑖ℏω + ξ𝒌
, 

𝑎ଵ௦ = −𝑇 ෍ 𝑒ି௜ఠ଴శ

ఠ

න
𝑑ଷ𝒌

(2π)ଷ

1

2ξ𝒌
൬

1

𝑖ℏω − ξ𝒌
−

1

𝑖ℏω + ξ𝒌
൰, 

𝑎ଵ௦ = −𝑇 න
𝑑ଷ𝒌

(2π)ଷ

1

2ξ𝒌
൭෍

𝑒ି௜ఠ଴శ

𝑖ℏω − ξ𝒌
ఠ

− ෍
𝑒ି௜ఠ଴శ

𝑖ℏω + ξ𝒌
ఠ

൱, 

𝑎ଵ௦ = −𝑇 න
𝑑ଷ𝒌

(2π)ଷ

1

2ξ𝒌
൭−

1

𝑇

1

𝑒ି
ଵ
୘

ஞ𝒌 + 1
+

1

𝑇

1

𝑒
ଵ
୘

ஞ𝒌 + 1
൱, 

𝑎ଵ௦ = න
𝑑ଷ𝒌

(2π)ଷ

1

2ξ𝒌
൭

1

𝑒ି
ଵ
୘

ஞ𝒌 + 1
−

1

𝑒
ଵ
୘

ஞ𝒌 + 1
൱, 

 
𝑎ଵ௦ = න

𝑑ଷ𝒌

(2π)ଷ

1

2ξ𝒌
tanh ൬

ξ𝒌

2T
൰.  4.1-6 

Introducing the dimensionless coupling 𝜆௦ that is defined as 

 
𝜆௦ = 𝑔𝑁௦ = 𝑔𝜎(௬௭)ඨ

𝑚

32πଶℏଷωୡ
= 𝑔

𝜎(௬௭)

4πℏ𝑣ୱ
. 4.1-7 

Here 𝜎(௬௭) is given by 

 
𝜎(௬௭) = න

𝑑𝑘௬

2π

𝑑𝑘௭

2π
~൫𝑎௬𝑎௭൯

ିଵ
, 4.1-8 

and introduced to account for the states in 𝑦 and 𝑧 directions. It is proportional to the inverse 

product of the lattice parameters 𝑎௬ and 𝑎௭. The auxiliary quantity 𝑁௦ is the effective DOS in 

the quasi-1D band at the energy ℏωୡ, and we also introduce the effective band velocity 𝑣ୱ that 

is determined by the cutoff energy (ℏωୡ), where ωୡ is the cut-off frequency, as 𝑣ୱ = ට
ଶℏனౙ

௠
.  

So, from this considerations and eq. 4.1-4, eq. 4.1-6 becomes  

𝑎ଵ௦ = 𝜎(௬௭) න
𝑑𝑘௫

2π

1

2ξ𝒌
tanh ൬

ξ𝒌

2T
൰ , 

changing to the energy space, 𝑑𝑘௫ = ට
௠

ଶℏమ

ௗஞ

ඥஞାఓ
,   
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𝑎ଵ௦ =
𝜎(௬௭)

4π
ට

𝑚

2ℏଶ
න

𝑑ξ

ඥξ + 𝜇

1

ξ
tanh ൬

ξ

2T
൰

ℏனౙ

ିఓ

. 

Normalizing the energies in function of the cutoffs ℏωୡ, ξ̅ =
ஞ

ℏனౙ
, 𝜇̅ =

ఓ

ℏனౙ
 and temperature 

𝑇ത =
்

ℏனౙ
, and changing to the normalized variables  

𝑎ଵ௦ = 𝜎(௬௭)ඨ
𝑚

32πଶℏଷωୡ
න

𝑑ξ̅

ඥξ̅ + 𝜇̅

1

ξ̅
tanh ቆ

ξ̅

2𝑇ത
ቇ

ଵ

ିఓഥ

, 

 
𝑎ଵ௦ = 𝑁௦ න

𝑑ξ̅

ඥξ̅ + 𝜇̅

1

ξ̅
tanh ቆ

ξ̅

2𝑇ത
ቇ

ଵ

ିఓഥ

, 4.1-9 

As 

𝑎ଵୱ = A௦ − 𝑎௦[𝜏 + 𝒪(𝜏ଶ)]. 

Where 𝜏 = 1 − 𝑇/𝑇௖, one obtains  

 
A௦ = 𝑁௦ න

𝑑ξ̅

ඥξ̅ + 𝜇̅

1

ξ̅
tanh ቆ

ξ̅

2𝑇ത௖଴

ቇ ,
ଵ

ିఓഥ

 
4.1-10 

 
𝑎௦ = −

𝑁௦

2𝑇ത௖଴

න
𝑑ξ̅

ඥξ̅ + 𝜇̅
sechଶ ቆ

ξ̅

2𝑇ത௖଴

ቇ
ଵ

ିఓഥ

. 4.1-11 

From eq. 4.1-10, we can find 𝑇ത௖଴ due to the fact that A௦ = 1.   

Now, we will solve the square-gradient term ∫ 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)
(𝒛∙𝛁)మ

ଶ!
Δ(𝒙), 

න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)
(𝒛 ∙ 𝛁)ଶ

2!
Δ(𝒙) = ෍ න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)

𝑧௡
ଶ∇௡

ଶ

2
Δ(𝒙)

௡

 

= ෍ ቈන 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)
𝑧௡

ଶ

2
቉ ∇௡

ଶ Δ(𝒙).

௡

 

Solving this term first 

𝑎ଶ௦
(௡)

= න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)
𝑧௡

ଶ

2
, 

𝑎ଶ௦
(௡)

= −
𝑇

2
න 𝑑ଷ𝒛 ෍ 𝑒ି୧ఠ଴శ

ఠ

𝒢ఠ
(଴)

(𝒛)𝑧௡𝒢ఠ̅
(଴)

(−𝒛)(−𝑧௡)(−1), 
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𝑎ଶ௦

(௡)
=

𝑇

2
න 𝑑ଷ𝒛 ෍ 𝑒ି୧ఠ଴శ

ఠ

𝒢ఠ
(଴)

(𝒛)𝑧௡𝒢ఠ̅
(଴)

(−𝒛)(−𝑧௡). 4.1-12 

And the relations  

1

𝑖ℏω − ξ𝒌
= න 𝑑ଷ𝒛 𝒢ఠ

(଴)
(𝒛)𝑒ି௜𝒌⋅𝒛, −

1

𝑖
𝜕௞೙

1

𝑖ℏω − ξ𝒌
= න 𝑑ଷ𝒛 𝑧௡𝒢ఠ

(଴)
(𝒛)𝑒ି௜𝒌⋅𝒛, 

1

𝑖ℏω + ξ𝒌
= න 𝑑ଷ𝒛 𝒢ఠ̅

(଴)
(𝒛)𝑒ି௜𝒌⋅𝒛, −

1

𝑖
𝜕௞೙

1

𝑖ℏω + ξ𝒌
= න 𝑑ଷ𝒛 𝑧௡𝒢ఠ̅

(଴)
(𝒛)𝑒ି௜𝒌⋅𝒛, 

 
−

1

𝑖
𝜕௞೙

1

𝑖ℏω + ξ𝒌
= න 𝑑ଷ𝒛 (−𝑧௡)𝒢ఠ̅

(଴)
(−𝒛)𝑒௜𝒌⋅𝒛. 

So,  

𝑧௡𝒢ఠ
(଴)

(𝒛) = න
𝑑ଷ𝒌

(2π)ଷ
𝑒௜𝒌⋅𝒛 ൬−

1

𝑖
൰ 𝜕௞೙

1

𝑖ℏω − ξ𝒌
, 

(−𝑧௡)𝒢ఠ̅
(଴)

(−𝒛) = න
𝑑ଷ𝒌

(2π)ଷ
𝑒ି௜𝒌⋅𝒛 ൬−

1

𝑖
൰ 𝜕௞೙

1

𝑖ℏω + ξ𝒌
. 

Then, eq. 4.1-12 becomes  

𝑎ଶ௦
(௡)

=
𝑇

2
න 𝑑ଷ𝒛 ෍ 𝑒ି୧ఠ଴శ

ఠ

න
𝑑ଷ𝒌

(2π)ଷ
𝑒௜𝒌⋅𝒛 ൬−

1

𝑖
൰ 𝜕௞೙

1

𝑖ℏω − ξ𝒌
න

𝑑ଷ𝒒

(2π)ଷ
𝑒ି௜𝒒⋅𝒛 ൬−

1

𝑖
൰ 𝜕௤೙

1

𝑖ℏω + ξ𝒒
, 

So, one obtains 

 
𝑎ଶ௦

(௡)
= −

𝑇

2
෍ 𝑒ି୧ఠ଴శ

ఠ

න
𝑑ଷ𝒌

(2π)ଷ
𝜕௞೙

1

𝑖ℏω − ξ𝒌
𝜕௞೙

1

𝑖ℏω + ξ𝒌
. 4.1-13 

Solving this equation, and 𝜕௞೙

ଵ

௜ℏனିஞ𝒌
= 0 in 𝑦 and 𝑧 direction.  

𝑎ଶ௦
(௫)

= −
𝑇

2
෍ න

𝑑ଷ𝒌

(2π)ଷ

1

(𝑖ℏω − ξ𝒌)ଶ

ℏଶ

𝑚
𝑘௫

(−1)

(𝑖ℏω + ξ𝒌)ଶ

ℏଶ

𝑚
𝑘௫

ఠ

, 

𝑎ଶ௦
(௫)

=
𝑇

2

ℏଶ

𝑚
෍ න

𝑑ଷ𝒌

(2π)ଷ

1

(𝑖ℏω − ξ𝒌)ଶ

1

(𝑖ℏω + ξ𝒌)ଶ

ℏଶ

𝑚
𝑘௫

ଶ

ఠ

, 

𝑎ଶ௦
(௫)

=
𝑇

2

ℏଶ

𝑚
෍ 𝑒ି୧ఠ଴శ

ఠ

න
𝑑ଷ𝒌

(2π)ଷ

1

(ℏଶωଶ + ξ𝒌
ଶ)ଶ

2(ξ𝒌 + 𝜇), 
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changing to the energy space, 𝑑𝑘௫ = ට
௠

ଶℏమ

ௗஞ

ඥஞାఓ
, and using 𝜎(௬௭) = ∫

ௗ௞೤

ଶ஠

ௗ௞೥

ଶ஠
,   

 
𝑎ଶ௦

(௫)
= 𝑇

ℏଶ

𝑚
ට

𝑚

2ℏଶ
𝜎(௬௭) ෍ න

𝑑ξ

2πඥξ + 𝜇

(ξ + 𝜇)

(ℏଶωଶ + ξଶ)ଶ

ℏனౙ

ିఓఠ

, 4.1-14 

and here we use the tabled infinite summation over fermionic Matsubara frequencies(𝜂 = −1) 

෍
1

(ℏଶωଶ + ξଶ)ଶ

ఠ

= −
𝜂

2𝑇ξଶ
ቀ𝑐ఎ(0, ξ) + 𝑛ఎ

ᇱ (ξ)ቁ, 

where  

𝑐ఎ(𝑎, b) =
sinh(𝑏/𝑇)

2𝑏(cosh(𝑎/𝑇) − 𝜂 cosh(𝑏/𝑇))
. 

Then,  

𝑐ி(0, ξ) =
1

2ξ
tanh ൬

ξ

2𝑇
൰. 

And  

𝑛ఎ(ξ) =
1

𝑒ஞ/୘ − 𝜂
. 

For fermions  

𝑛ி(ξ) =
1

2
൤1 − tanh ൬

ξ

2𝑇
൰൨. 

So,  

𝑛ி
ᇱ (ξ) = −

sechଶ ൬
ξ

2𝑇
൰

4𝑇
. 

Finally, one obtains the infinite summation over fermionic Matsubara frequencies 

෍
1

(ℏଶωଶ + ξଶ)ଶ

ఠ

=
1

2ξଶ𝑇
൤

1

2ξ
tanh ൬

ξ

2𝑇
൰ −

1

4𝑇
sechଶ ൬

ξ

2𝑇
൰൨, 

 

෍
1

(ℏଶωଶ + ξଶ)ଶ

ఠ

=
൤𝑇 sinh ൬

ξ
𝑇

൰ − ξ൨ sechଶ ൬
ξ

2𝑇
൰

8ξଷ𝑇ଶ
. 4.1-15 
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Then using this equation in 4.1-14, reads 

𝑎ଶ௦
(௫)

= 𝑇
ℏଶ

2π𝑚
ට

𝑚

2ℏଶ
𝜎(௬௭) න 𝑑ξඥξ + 𝜇

൤𝑇 sinh ൬
ξ
𝑇

൰ − ξ൨ sechଶ ൬
ξ

2𝑇
൰

8ξଷ𝑇ଶ

ℏனౙ

ିఓ

. 

Normalizing the energies in function of the cutoffs and changing to the normalized variables  

𝑎ଶ௦
(௫)

=
1

16πℏωୡ

ඨ
ℏଶ

2𝑚ℏωୡ
𝜎(௬௭) න 𝑑ξ̅

ඥξ̅ + 𝜇̅

ξ̅ଷ
ቈsinh ቆ

ξ̅

Tഥ
ቇ −

ξ̅

Tഥ
቉ sechଶ ቆ

ξ̅

2Tഥ
ቇ

ଵ

ିఓഥ

, 

using 𝜎(௬௭) = 𝑁௦4πℏ𝑣ୱ and 𝑣ୱ = ට
ଶℏனౙ

௠
, 

𝑎ଶ௦
(௫)

=
1

16πωୡ

𝑣ୱ

ඥ2ℏωୡ

ඨ
1

2ℏωୡ
𝑁௦4πℏ𝑣ୱ න 𝑑ξ̅

ඥξ̅ + 𝜇̅

ξ̅ଷ
ቈsinh ቆ

ξ̅

Tഥ
ቇ −

ξ̅

Tഥ
቉ sechଶ ቆ

ξ̅

2Tഥ
ቇ

ଵ

ିఓഥ

, 

𝑎ଶ௦ = ℏଶ𝑣ୱ
ଶ

𝑁௦

8ℏଶωୡ
ଶ

න 𝑑ξ̅
ඥξ̅ + 𝜇̅

ξ̅ଷ
ቈsinh ቆ

ξ̅

Tഥ
ቇ −

ξ̅

Tഥ
቉ sechଶ ቆ

ξ̅

2Tഥ
ቇ

ଵ

ିఓഥ

. 

Thus, we obtain 

න 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)
(𝒛 ∙ 𝛁)ଶ

2!
Δ(𝒙) = ෍ ቈන 𝑑ଷ𝒛 𝐾௔(𝒙, 𝒙 + 𝒛)

𝑧௡
ଶ

2
቉ ∇௡

ଶ Δ(𝒙)

௡

, 

෍ 𝑎ଶ௦
(௡)

∇௡
ଶ Δ(𝒙)

௡

= 𝑎ଶ௦
(௫)

∇௫
ଶΔ(𝒙), 

𝑎ଶ௦
(௫)

= 𝐾௦
(௫)

[1 + 𝒪(𝜏)]. 

So,  

 
𝐾௦

(௫)
= ℏଶ𝑣ୱ

ଶ
𝑁௦

8ℏଶωୡ
ଶ

න 𝑑ξ̅
ඥξ̅ + 𝜇̅

ξ̅ଷ
ቈsinh ቆ

ξ̅

𝑇ത௖଴

ቇ −
ξ̅

𝑇ത௖଴

቉ sechଶ ቆ
ξ̅

2𝑇ത௖଴

ቇ
ଵ

ିఓഥ

. 
4.1-

16 

and the stiffnesses of the gap parameter along the other orthogonal directions is zero. 

Now we will deal with the last term  given by the cubic contribution from  Eq. (3.7-1). 

It is enough to consider only the zero-order contribution of the gap in the Taylor expansion on 

the coordinates (i.e. it becomes independent of the gap) and thus the integral becomes 
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න ൭ෑ 𝑑ଷ𝒚
௜

ଷ

௜ୀଵ

൱ 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)Δ(𝒚ଵ)Δ∗(𝒚ଶ)Δ(𝒚ଷ)

= −𝑇 ෍ න ൭ෑ 𝑑ଷ𝒚
௜

ଷ

௜ୀଵ

൱

ఠ

𝒢ఠ
(଴)

(𝒙, 𝒚ଵ)𝒢ఠ̅
(଴)

(𝒚ଵ, 𝒚ଶ)𝒢ఠ
(଴)

(𝒚ଶ, 𝒚ଷ)𝒢ఠ̅
(଴)

(𝒚ଷ, 𝒙)Δ(𝒚ଵ)Δ∗(𝒚ଶ)Δ(𝒚ଷ), 

= −𝑇 ෍ න ൭ෑ 𝑑ଷ𝒛௜

ଷ

௜ୀଵ

൱

ఠ

𝒢ఠ
(଴)

(−𝒛ଵ)𝒢ఠ̅
(଴)

(𝒛ଵ − 𝒛ଶ)𝒢ఠ
(଴)

(𝒛ଶ − 𝒛ଷ)𝒢ఠ̅
(଴)

(𝒛ଷ)Δ(𝒙 + 𝒚ଵ)Δ∗(𝒙

+ 𝒚ଶ)Δ(𝒙 + 𝒚ଷ), 

with 𝒛ଵ = 𝒚ଵ − 𝒙, 𝒛ଶ = 𝒚ଶ − 𝒙, 𝒛ଷ = 𝒚ଷ − 𝒙.  

න ൭ෑ 𝑑ଷ𝒚
௜

ଷ

௜ୀଵ

൱ 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)Δ(𝒚ଵ)Δ∗(𝒚ଶ)Δ(𝒚ଷ)

= −𝑇 ෍ න ൭ෑ 𝑑ଷ𝒛௜

ଷ

௜ୀଵ

൱

ఠ

𝒢ఠ
(଴)

(−𝒛ଵ)𝒢ఠ̅
(଴)

(𝒛ଵ − 𝒛ଶ)𝒢ఠ
(଴)

(𝒛ଶ − 𝒛ଷ)𝒢ఠ̅
(଴)

(𝒛ଷ)Δ(𝒙

+ ⋯ )(𝒙 + ⋯ )Δ∗(𝒙 + ⋯ )Δ(𝒙 + ⋯ ), 

= −𝑇 ෍ න ൭ෑ 𝑑ଷ𝒛௜

ଷ

௜ୀଵ

൱

ఠ

𝒢ఠ
(଴)

(−𝒛ଵ)𝒢ఠ̅
(଴)

(𝒛ଵ − 𝒛ଶ)𝒢ఠ
(଴)

(𝒛ଶ − 𝒛ଷ)𝒢ఠ̅
(଴)

(𝒛ଷ)|Δ(𝒙)|ଶΔ(𝒙). 

Then, 

𝑏ଵ௦ = −𝑇 ෍ න ൭ෑ 𝑑ଷ𝒛௜

ଷ

௜ୀଵ

൱

ఠ

𝒢ఠ
(଴)

(−𝒛ଵ)𝒢̅ఠ
(଴)

(𝒛ଵ − 𝒛ଶ)𝒢ఠ
(଴)

(𝒛ଶ − 𝒛ଷ)𝒢ఠ̅
(଴)

(𝒛ଷ), 4.1-17 

𝑏ଵ௦ = −𝑇 ෍ න ൭ෑ 𝑑ଷ𝒛௜

ଷ

௜ୀଵ

𝑑ଷ𝒌௜

(2π)ଷ
൱

ఠ

𝑑ଷ𝒌

(2π)ଷ

𝑒௜𝒌⋅(ି𝒛భ)

𝑖ℏω − ξ𝒌

𝑒௜𝒌భ⋅(𝒛భି𝒛మ)

𝑖ℏω + ξ𝒌భ

𝑒௜𝒌మ⋅(𝒛మି𝒛య)

𝑖ℏω − ξ𝒌మ

𝑒௜𝒌య⋅𝒛య

𝑖ℏω + ξ𝒌య

, 

𝑏ଵ௦ = −𝑇 ෍ න ൭ෑ 𝑑ଷ𝒌௜

ଷ

௜ୀଵ

൱

ఠ

𝑑ଷ𝒌

(2π)ଷ
𝛿(𝒌 − 𝒌ଵ)𝛿(𝒌ଵ − 𝒌ଶ)𝛿(𝒌ଶ

− 𝒌ଷ)
1

𝑖ℏω − ξ𝒌

1

𝑖ℏω + ξ𝒌భ

1

𝑖ℏω − ξ𝒌మ

1

𝑖ℏω + ξ𝒌య

, 

𝑏ଵ௦ = −𝑇 ෍ න
𝑑ଷ𝒌

(2π)ଷ

1

(ℏଶωଶ + ξ𝒌
ଶ)ଶ

ఠ

, 
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changing to the energy space, 𝑑𝑘௫ = ට
௠

ଶℏమ

ௗஞ

ඥஞାఓ
, and using 𝜎(௬௭) = ∫

ௗ௞೤

ଶ஠

ௗ௞೥

ଶ஠
   

𝑏ଵ௦ = −𝑇ට
𝑚

2ℏଶ
𝜎(௬௭) ෍ න

𝑑ξ

2πඥξ + 𝜇

1

(ℏଶωଶ + ξଶ)ଶ

ℏனౙ

ିఓఠ

. 

And using Eq. 4.1-15, we obtain 

𝑏ଵ௦ = −𝑇ට
𝑚

2ℏଶ
𝜎(௬௭) න

𝑑ξ

2πඥξ + 𝜇

൤𝑇 sinh ൬
ξ
𝑇

൰ − ξ൨ sechଶ ൬
ξ

2𝑇
൰

8ξଷ𝑇ଶ

ℏனౙ

ିఓ

, 

changing to the normalized variables 

𝑏ଵ௦ = −ඨ
𝑚

2ℏଷωୡ

𝜎(௬௭)

16π(ℏωୡ)ଶ
න 𝑑ξ̅

sechଶ ൬
ξ̅

2Tഥ
൰

ξ̅ଷඥξ̅ + 𝜇̅
ቈsinh ቆ

ξ̅

Tഥ
ቇ −

ξ̅

Tഥ
቉

ଵ

ିఓഥ

. 

As, 𝜎(௬௭) = 𝑁௦ට
ଷଶ మℏయனౙ

௠
  

𝑏ଵ௦ = −ඨ
𝑚

2ℏଷωୡ

𝑁௦

16π(ℏωୡ)ଶ
ඨ

32πଶℏଷωୡ

𝑚
න 𝑑ξ̅

sechଶ ൬
ξ̅

2Tഥ
൰

ξ̅ଷඥξ̅ + 𝜇̅
ቈsinh ቆ

ξ̅

Tഥ
ቇ −

ξ̅

Tഥ
቉

ଵ

ିఓഥ

, 

𝑏ଵ௦ = −
𝑁௦

4ℏଶωୡ
ଶ

න 𝑑ξ̅
sechଶ ൬

ξ̅
2Tഥ

൰

ξ̅ଷඥξ̅ + 𝜇̅
ቈsinh ቆ

ξ̅

Tഥ
ቇ −

ξ̅

Tഥ
቉

ଵ

ିఓഥ

. 

Finally 

න ൭ෑ 𝑑ଷ𝒚
௜

ଷ

௜ୀଵ

൱ 𝐾௕(𝒙, 𝒚ଵ, 𝒚ଶ, 𝒚ଷ)Δ(𝒚ଵ)Δ∗(𝒚ଶ)Δ(𝒚ଷ) = 𝑏ଵ௦|Δ(𝒙)|ଶΔ(𝒙), 

𝑏ଵ௦ = −𝑏௦[1 + 𝒪(𝜏)], 

 

𝑏௦ =
𝑁௦

4ℏଶωୡ
ଶ

න 𝑑ξ̅

sechଶ ൬
ξ̅

2𝑇ത௖଴
൰

ξ̅ଷඥξ̅ + 𝜇̅
ቈsinh ቆ

ξ̅

𝑇ത௖଴

ቇ −
ξ̅

𝑇ത௖଴

቉
ଵ

ିఓഥ

. 4.1-18 

 

 



120 

 

4.2 TWO-BAND SUPERCONDUCTOR WITH A QUASI-1D AND 3D 
BAND 

We consider a two-band superconductor with the s-wave pairing in quasi-1D and 3D 

bands, with their partial condensates coupled by the Josephson-like Cooper pairs transfer. To 

describe this system, we adopt a standard two-band generalization of the BCS model given in 

Refs. [1], [2]. The intra- and interband pairing is determined by the real matrix 𝑔ු of the 

coupling constants g஝஝ᇱ = g஝ᇱ஝ (ν = 1,2). For simplicity we assume the parabolic momentum 

dispersion of the single-particle energy in both bands. For the same reason the Fermi surface 

of the 3D band (ν = 1) is taken spherically symmetric. The principal axis of the quasi-1D band 

(ν = 2) is chosen parallel to the 𝑥-axis, while in the 𝑦 - and 𝑧 directions the energy dispersion 

is degenerate. We assume the effective finite integral of the density of states (DOS) for both 

these directions. The single-particle energy in both bands, shifted by the chemical potential  𝜇, 

are thus given by 

ξ𝒌
(ଵ)

= ξ଴ +
ℏଶ𝒌𝟐

2𝑚ଵ
− 𝜇, ξ𝒌

(ଵ)
=

ℏଶ𝑘௫
ଶ

2𝑚ଶ
− 𝜇, 4.2-1 

where 𝑚ଵ,ଶ are the effective masses and 𝒌 = ൫𝑘௫ + 𝑘௬ + 𝑘௭൯. The energy and 𝜇 are measured 

relative to the the bottom of the quasi-1D band. The lowest energy of the 3D band is thus 

negative ξ଴ < 0 and we adopt also that |ξ଴| ≫ 0. Our study is focused on the superconducting 

state near the Lifshitz point 𝜇 = 0. The system is considered in the clean limit (the role of 

impurities is negligible). In what follows we set 𝑘஻ = 1 for the Boltzmann constant.  

Following Refs. [1], [2], the mean-field Hamiltonian of the two-band superconductors 

is written as 

 
H = න 𝑑3𝒓 ൝ ෍ ෍ ቂ𝜓෡

𝜈𝜎

†
(𝒓)𝑇𝜈(𝒓)𝜓෡

𝜈𝜎
(𝒓) + 𝜓෡

𝜈↑

†
(𝒓)𝜓෡

𝜈↓

†
(𝒓)Δν(𝒓) + h. c. ቃ

𝜎𝜈=1,2

+ ൫Δሬ⃗ , 𝑔ු−1Δሬ⃗ ൯ൡ, 

4.2-2 

where 𝜓෠ఔఙ
ற (𝒓) and 𝜓෠ఔఙ(𝒓) are the field operators for the carriers in band 𝜈, 𝑇ఔ(𝒓) is the single-

particle Hamiltonian with the single-particle energies given by Eq. 4.2-1, and Δ஝(𝒓) is the 

superconducting gap function for band ν. We also use vector notations Δሬሬ⃗ = (Δଵ, Δଶ), where 

(. , . ) denotes the scalar product in the band vector space, and 𝑔෕ିଵ is the inverse of the coupling 
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matrix. The band dependent superconducting gap functions satisfy the self-consistency 

condition, known as the matrix gap equation, 

 Δሬሬ⃗ = 𝑔෕𝑅ሬሬ⃗ , 4.2-3 

where components of 𝑅ሬሬ⃗  are the anomalous Green functions 𝑅ఔ = 〈𝜓෠ఔ↑(𝒓), 𝜓෠ఔ↓(𝒓)〉. 

The model based on Eqs. 4.2-2 and 4.2-3 is used to calculate the mean-field critical 

temperature 𝑇௖଴ and then the fluctuation-shifted 𝑇௖. 𝑇௖଴ is obtained by solving the linearized 

variant of the gap equation 4.2-3. The fluctuations are investigated by using the expansion for 

the free energy functional for the two-band system with respect to the band superconducting 

gap functions, which essentially gives the two-band Ginzburg-Landau (GL) free energy 

functional. 

Assuming 𝑇௖଴ is known, one expands the r.h.s. of Eq. 4.2-3 with respect to Δ஝. The 

lowest order terms of this expansion are given by [21–27] 

 𝑅ఔ[Δν] = (Aν − 𝑎ν)Δν − 𝑏νΔν|Δν|2 + ෍ 𝐾ఔ
(௜)

∇௜
ଶΔν

𝑖=𝑥,𝑦,𝑧

, 4.2-4 

where the coefficients Aν, 𝑎ν, 𝑏ν, and 𝐾ఔ
(௜) are to be calculated using the microscopic model 

for each band, and external fields are assumed to be zero. 

For the 3D band, ν = 1, with the spherically symmetric Fermi surface, one obtains the 

standard result 

 Aଵ = 𝑁ଵ ln ൬
2ఊℏ𝜔௖

𝜋𝑇௖଴
൰ ,                         𝑎ଵ = −𝜏𝑁ଵ,                            𝑏ଵ = 𝑁ଵ

7ζ(3)

8𝜋ଶ𝑇௖బ
ଶ

, 

𝐾ଵ
(௫)

= 𝐾ଵ
(௬)

= 𝐾ଵ
(௭)

=
ℏଶ𝑣ଵ

ଶ

6
𝑏ଵ, 4.2-5 

where 𝜏 = 1 − 𝑇/𝑇௖଴, 𝜔௖ is the energy cutoff (assumed to be the same for both bands), 𝛾 is 

the Euler constant, ζ(𝑥) is the Riemann zeta function, the DOS of the 3D band at the Fermi 

energy is 𝑁ଵ = 𝑚ଵ𝑘ி/2πଶℏଶ and the 3D band Fermi velocity 𝑣ଵ = ℏ𝑘ி/𝑚ଵ is determined by 

the corresponding Fermi wavenumber 𝑘ி = ඥ2𝑚ଵ(𝜇 − ξ଴)/ℏ. 

For the quasi-1D band near the Lifshitz transition, at |𝜇| < ℏ𝜔௖, the expressions for 

the coefficients are given by the integrals to be evaluated numerically, i.e. 
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Aଶ = 𝑁ଶ න
𝑑ξ̅

ඥξ̅ + 𝜇̅

1

ξ̅
tanh ቆ

ξ̅

2𝑇ത௖଴

ቇ ,
ଵ

ିఓഥ

  

𝑎ଶ = −
𝑁ଶ

2𝑇ത௖଴

න
𝑑ξ̅

ඥξ̅ + 𝜇̅
sechଶ ቆ

ξ̅

2𝑇ത௖଴

ቇ
ଵ

ିఓഥ

,  

𝑏ଶ =
𝑁ଶ

4ℏଶωୡ
ଶ

න 𝑑ξ̅

sechଶ ൬
ξ̅

2𝑇ത௖଴
൰

ξ̅ଷඥξ̅ + 𝜇̅
ቈsinh ቆ

ξ̅

𝑇ത௖଴

ቇ −
ξ̅

𝑇ത௖଴

቉
ଵ

ିఓഥ

,  

𝐾ଶ
(௫,௬)

= 0  

𝐾ଶ
(௭)

= ℏଶ𝑣ୱ
ଶ

𝑁ଶ

8ℏଶωୡ
ଶ

න 𝑑ξ̅
ඥξ̅ + 𝜇̅

ξ̅ଷ
ቈsinh ቆ

ξ̅

𝑇ത௖଴

ቇ −
ξ̅

𝑇ത௖଴

቉ sechଶ ቆ
ξ̅

2𝑇ത௖଴

ቇ ,
ଵ

ିఓഥ

  
4.2-6 

where we use the scaled quantities 𝑇ത௖଴ = 𝑇௖଴/ℏ𝜔௖ and 𝜇̅ = 𝜇/ℏ𝜔௖, and the effective band 

velocity 𝑣ଶ is determined by the cutoff energy as 𝑣ଶ = ඥ2ℏ𝜔௖/𝑚ଶ (independent of 𝜇). The 

effective DOS of the quasi-1D band is given by 𝑁ଶ = 𝜎(௫௬)/4πℏ𝑣ୱ, where the factor 𝜎(௫௬) 

accounts for the contribution to DOS by the 𝑥, 𝑦 dimensions. 

The mean-field critical temperature 𝑇௖଴ is obtained by solving the linearized gap 

equation which reads as (see Eqs. 4.2-3 and 4.2-4) 

𝐿ෘΔሬሬ⃗ = 0, 𝐿ෘ = 𝑔ුିଵ − ൬
Aଵ 0

0 Aଶ
൰ . 4.2-7 

This is the matrix equation with the solution in the form 

 Δሬሬ⃗ = 𝜓(𝒓)𝜂⃗, 4.2-8 

where 𝜂⃗ is an eigenvector of 𝐿ෘ corresponding to its zero eigenvalue while 𝜓(𝒓) is a coordinate 

dependent GL parameter of the system [133]. A non-trivial solution to Eq. 4.2-7 exists only 

when the determinant of 𝐿ෘ is zero, which gives the equation 

 (𝑔ଶଶ −  𝐺Aଵ)(𝑔ଵଵ − 𝐺Aଶ) − 𝑔ଵଶ
ଶ = 0, 4.2-9 

with 𝐺 = 𝑔ଵଵ𝑔ଶଶ − 𝑔ଵଶ
ଶ . Of the two solutions to Eq. 4.2-9, one chooses the maximal 𝑇௖଴. The 

corresponding eigenvector 𝜂⃗ can be adopted in the form 

𝜂⃗ = ቀ
𝑆
1

ቁ, 𝑆 =
𝑔ଵଵ − 𝐺Aଶ

𝑔ଵଶ
, 4.2-10 

Notice that this choice is unique up to the normalization factor which is absorbed by 𝜓(𝒓).  
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The actual critical temperature 𝑇௖ is lower than its mean field value 𝑇௖଴ due to 

fluctuations [104]. The fluctuation-induced correction to 𝑇௖଴ is obtained by using the standard 

Gibbs distribution exp(−F/𝑇), where the free energy functional writes as (see e.g. [123], 

[124]) 

 
F = න 𝑑ଷ𝒓 ൥ ෍ 𝑓ఔ

ఔୀଵ,ଶ

+ ൫Δሬሬ⃗ , 𝐿ෘΔሬሬ⃗ ൯൩, 4.2-11 

with 

 
𝑓ఔ = 𝑎ఔ|Δఔ|ଶ +

𝑏ఔ

2
|Δఔ|ସ + ෍ 𝐾ఔ

(௜)
|∇ఔ

ଶΔఔ|ଶ

௜ୀ௫,௬,௭

. 4.2-12 

The stationary solution of this functional satisfies the gap equation 4.2-3. The fluctuation 

corrections are obtained by assuming the standard Gibbs distribution exp(−F /T), with the free 

energy F given by Eqs. 4.2-11, 4.2-12.  

The calculations are simplified by representing Δሬሬ⃗  as a linear combination of the 

contributions proportional to 𝜂⃗ and to the orthogonal vector 𝜉 = (1, −𝑆)் as 

 Δሬሬ⃗ (𝒓) = 𝜓(𝒓)𝜂⃗ + 𝜑(𝒓)𝜉, 4.2-13 

where 𝜑(𝒓) is the second spatial mode. The free energy functional is then expressed using 𝜓 

and 𝜑 as 

 
F = න 𝑑ଷ𝒓 ൫𝑓ట + 𝑓ఝ + 𝑓టఝ൯. 4.2-14 

Here contributions𝑓ట and 𝑓ఝ have the same structure as given by Eq. 4.2-12, where Δఔ is 

replaced by 𝜓(𝒓) and 𝜑(𝒓), respectively, and a set of coefficients {𝑎ఔ, 𝑏ఔ, 𝐾ఔ} is changed to 

{𝑎ట, 𝑏ట, 𝐾ట} and {𝑎ఝ, 𝑏ఝ, 𝐾ఝ}. The contribution 𝑓టఝ represents the coupling between the 

two modes 𝜓(𝒓) and 𝜑(𝒓).  

Coefficients in 𝑓ట one obtained as 

𝑎ట = 𝑆ଶ𝑎ଵ + 𝑎ଶ, 𝑏ట = 𝑆ସ𝑏ଵ + 𝑏ଶ,  

      𝐾ట
(௜)

= 𝑆ଶ𝐾ଵ
(௜)

+ 𝐾ଶ
(௜)

,  4.2-15 
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whereas the coefficients in 𝑓ఝ are given by 

𝑎ఝ = 𝑎ଵ + 𝑆ଶ𝑎ଶ, 𝑏ఝ = 𝑏ଵ + 𝑆ସ𝑏ଶ,  

      𝐾ఝ
(௜)

= 𝐾ଵ
(௜)

+ 𝑆ଶ𝐾ଶ
(௜)

,  4.2-16 

with 

 
𝛼ఝ

(଴)
=

(1 + 𝑆ଶ)ଶ

𝑆𝐺𝑔ଵଶ
, 4.2-17 

Here 𝛼ఝ
(଴)

≠ 0 since S is real. This means that only 𝑓ట represents the critical fluctuations in 

the vicinity of the superconducting transition because 𝛼ఝ → 0 in the limit 𝑇 → 𝑇௖଴. The 

contribution 𝑓ఝ describes non-critical fluctuations and can be safely omitted [125]. Thus, the 

fluctuations are determined by the GL functional 𝑓ట, with the single component order 

parameter 𝜓(𝒓). Due to the presence of the quasi-1D band, this functional is anisotropic with 

𝐾ట
(௫,௬)

≠ 𝐾ట
(௭). 

With this simplification we can apply the known results for the fluctuation-driven shift 

of the critical temperature in the single-component GL theory. Using the renormalization 

group approach, performed in the section 2.5.9, we obtain that the actual 3D critical 

temperature is related to the mean-field one by 

 𝑇௖଴ − 𝑇௖

𝑇௖
=

8

𝜋
√𝐺𝑖, 4.2-18 

where 𝐺𝑖 is the Ginzburg number (Ginzburg-Levanyuk parameter). For the 3D anisotropic GL 

functional it reads  

 
𝐺𝑖 =

1

32𝜋ଶ 

𝑇௖଴𝑏ట
ଶ

𝑎ట
ᇱ 𝐾ట

(௫)
𝐾ట

(௬)
𝐾ట

(௭)
, 4.2-19 

with 𝑎ట
ᇱ = 𝑑𝑎ట/𝑑𝑇. Using Eq. 4.2-15, this above expression can be rearranged as 

 
𝐺𝑖 = 𝐺𝑖ଷ஽

(𝑏ଶ/𝑏ଵ + 𝑆ସ)ଶ

(𝑎ଶ/𝑎ଵ + 𝑆ଶ)ቀ𝐾ଶ
(௭)

/𝐾ଵ
(௭)

+ 𝑆ଶቁ𝑆ସ
, 4.2-20 

where 𝐺𝑖ଷ஽ is the Ginzburg number of the uncoupled (standalone) 3D band, given by Eq. 

4.2-19 with the substitution ቄ𝑎ట, 𝑏ట, 𝐾ట
(௜)

ቅ → ቄ𝑎ଵ, 𝑏ଵ, 𝐾ଵ
(௫)

ቅ. 
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4.3 RESULTS AND CONCLUSIONS  

Using the obtained expressions, we can now calculate both the mean-field 𝑇௖଴ and 

fluctuation-shifted 𝑇௖ critical temperatures. Essential parameters of the model are the three 

coupling constants 𝑔ఔఔᇲ and the band DOSs 𝑁ఔ, while the cutoff ℏ𝜔௖ sets the energy scale. It 

is convenient to introduce the dimensionless coupling constants 𝜆ఔఔᇲ = 𝑔ఔఔᇲඥ𝑁ఔ𝑁ఔᇲ. The 

parameter 𝑆, which controls Eqs. (4.2-18)-(4.2-20) and also 𝑇௖଴, depends on 𝜆ଵଵ, 𝜆ଶଶ, 𝜆ଵଶ as 

well as on the ratio 𝑁ଶ/𝑁ଵ. In the calculations we assume 𝜆ଶଶ = 0.2 and 𝜆ଵଵ = 0.18, which is 

in the range of typical values of the dimensionless couplings in conventional weak-coupling 

superconductors [126]. We also take 𝑁ଶ/𝑁ଵ = 1 for simplicity. Finally, we need also to 

specify 𝑁ଵ which defines 𝐺𝑖ଷ஽. We follow a different path and use an estimate 𝐺𝑖ଷ஽ = 10ିଵ଴ 

by taking into account that the Ginzburg number of most 3D superconductors is in the range 

10ି଺-10ିଵ  [127], being 𝐺𝑖ଷ஽ ≈ (𝑇௖ଵ/𝐸ி)ସ with 𝑇௖ଵ the critical temperature of the standalone 

band 1 and 𝐸ி = ℏଶ𝑘ி
ଶ/2𝑚ଵ (for the stable 3D condensate 𝑇௖ଵ ≪ 𝐸ி ). Notice, that our results 

are not sensitive to a particular choice of the microscopic parameters unless the dimensionless 

intraband coupling of the 3D band is significantly larger than that of the quasi-1D band and 

the two-band system approaches a routine 3D superconductor.  

 

Figure 4.3-1 “Reference-[132]”, a) The mean-field critical temperature 𝑇௖଴ versus the chemical potential 𝜇, calculated for 
𝜆ଵଶ = 0.05 and 𝜆ଵଶ → 0; the insert demonstrates the energy dependent DOSs with the van Hove singularity of the quasi-1D 
DOS at the Lifshitz point 𝜇 = 0. b) The fluctuation-shifted critical temperatures Tc as a function of µ, calculated for selected 
values of the dimensionless pair-exchange coupling constant 𝜆ଵଶ = 0.001, 𝜆ଵଶ = 0.025, 𝜆ଵଶ = 0.005, 𝜆ଵଶ = 0.05 at the 
Ginzburg number 𝐺𝑖ଷ஽ = 10ିଵ଴ of the uncoupled 3D band. 
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Numerical results for 𝑇௖଴ and 𝑇௖ versus the chemical potential 𝜇, calculated for several 

values of the dimensionless pair-exchange coupling 𝜆ଵଶ, are shown in Figure 4.3-1. One sees 

from a) that when µ is sufficiently below zero, the quasi-1D band does not contribute and 𝑇௖଴ 

is determined by the uncoupled band 1. In the vicinity of the Lifshitz transition at 𝜇 = 0, 𝑇௖଴ 

rises sharply. At larger 𝜇, 𝑇௖଴ decreases, approaching the critical temperature of the decouple 

3D band again. As is well known, the reason for this sharp rise is the increase in the energy-

dependent quasi-1D DOS that has the van Hove singularity at the band edge, as illustrated in 

the inset in Fig. 1 a). It is remarkable that 𝑇௖଴ is almost insensitive to the pair-exchange 

coupling as long as 𝜆ଵଶ ≪ 𝜆ଵଵ. Consequently, in the vicinity of the Lifshitz transition, the 

superconducting properties of the two-band system on the mean field level are fully 

determined by the quasi-1D band.  

In contrast, the fluctuation-induced shift of the critical temperature strongly depends 

on the pair-exchange coupling. In the limit 𝜆ଵଶ → 0 the fluctuations suppress the 

superconductivity. However, this suppression ceases rapidly with increasing the pair-exchange 

coupling. Figure 4.3-1 b) demonstrates that the presence of even a vanishingly small coupling, 

𝜆ଵଶ ≪ 𝜆ఔఔᇲ, is enough to quench the fluctuations and to eliminate the shift. In particular, 𝑇௖ 

approaches 𝑇௖଴ already at 𝜆ଵଶ ≅ 0.01 and at 𝜆ଵଶ ≅ 0.05 the two critical temperatures are 

practically indistinguishable.  

Concluding, our calculations demonstrate that coupling to a stable 3D condensate 

“screens” out the severe thermal fluctuations of the quasi-1D superconducting condensate. 

This coupling gives rise to a single critical mode that controls the thermal fluctuations of the 

condensate gap functions Δଵ(𝒓) and Δଶ(𝒓). In other words, “light” excitations of the quasi-1D 

condensate are always accompanied by “heavy” excitations of the stable 3D condensate. 

Therefore, such a two-band system becomes a robust mean-field superconductor. The 

superconductivity enhancement, based on the interaction between a quasi-1D condensate near 

the Lifshitz point and a BCS-like condensate, is general and does not depend on the model 

details. Thus, it opens a possibility for a significant amplification (up to orders of magnitude) 

of the critical temperature by tuning the Lifshitz transition. Notice that in addition to the 

chemical engineering, Lifshitz transitions can be tuned by an appropriate doping of multiband 

superconducting compounds, as e.g. reported in [129].  
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Finally, we note that although our results are obtained for the model with the s-wave 

pairing, one can expect that the fluctuations screening mechanism, based on the coupling of 

multiple condensates, applies also to materials with the d-wave symmetry and even to the case 

of the triplet pairing, having the multicomponent order parameter. In this regard we note that 

first theoretical calculations of the possible pairing symmetry in quasi-1D multiband 

superconductors AଶCrଷAsଷ (with A = K, Rb, Sc) are in favor of the triplet pairing [128]. A 

detailed analysis of the fluctuations for the triplet pairing requires a separate investigation. 
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5 CONCLUSIONS 

 

These remarkable phenomena related to multiple coupled condensates addressed 

during the doctorate brought good results, ending with a published article and another one in 

the submission process. 

 

a) Intertype magnetic response of multiband superconductors with degenerate 
excitation gaps.  

 

In the first problem addressed by the thesis, we were able to demonstrate that the 

presence of multiple competing lengths, each connected with corresponding partial 

condensate, is a more fundamental feature of a multiband superconductor for its magnetic 

properties than the presence of multiple gaps in the excitation spectrum. This is illustrated by 

considering boundaries of the IT domain in the phase diagram of the superconducting magnetic 

response. For example, our results have revealed that a superconductor can have many gaps in 

the excitation spectrum while exhibiting standard magnetic properties of a single-band 

material. There is also a reverse situation, when a superconductor has a single energy gap in 

the excitation spectrum but multiple competing characteristic lengths of contributing band 

condensates, which results in notable changes of the superconducting magnetic properties in 

the IT regime as compared to the single-band case.  

Generally, our analysis shows that the multi-condensate physics can appear irrespective 

of the presence/absence of multiple spectral gaps. Two superconductors with different 

numbers of the contributing bands but with the same energy gaps in their excitation spectra 

(some of the spectral gaps are degenerate) can exhibit different magnetic properties sensitive 

to the spatial scales of the band condensates. This discrepancy between different 

manifestations of multiple bands in superconducting materials must be taken into account in 

analysis of experimental data and, generally, in studies of multiband superconductors.  

In addition, given the significant advances in chemical engineering of various 

materials, including multiband superconductors, it is of great importance to search for systems 

that enrich our knowledge of and understanding the physics of the materials. Multiband 

superconductors with degenerate excitation gaps can be a good example of such systems, 

clearly demonstrating that ‘multiband’ can be dramatically different from ‘multigap’. Our 
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analysis has been performed within the EGL approach that considers the leading corrections 

to the GL theory in the perturbative expansion of the microscopic equations in 𝜏 = 1 − 𝑇/𝑇௖. 

This formalism, previously constructed for single- and two-band systems, has been extended 

in the present work to the case of an arbitrary number of contributing bands. Its advantage is 

that it allows one to clearly distinguish various effects appearing due to the multiband structure 

in different types of superconducting characteristics. It particular, it reveals solid correlations 

between changes in the IT domain with the competition of multiple characteristic lengths of 

the contributing condensates. 

 

b) Multiband material with a quasi-1D band as a robust high-temperature 

superconductor. 

 

In the second problem addressed in the thesis, we were able to demonstrate that the 

coupling to a stable 3D condensate “screens” large fluctuations of a Q1D condensate by means 

of two mechanisms. First, the resulting GL free energy functional becomes the 3D anisotropic 

one, which makes it possible to employ the result of the 3D renormalization group for 𝑇௖. 

Second, the pair-exchange coupling creates a single critical mode that controls the fluctuations 

of both Δଵ(𝐫) and Δଶ(𝐫). Physically, one can be said that "light" excitations of the Q1D 

condensate are always accompanied by “heavy” excitations of the stable 3D condensate, 

reducing the amplitude of the fluctuations. Mathematically, the characteristic length of this 

critical mode is the sum of length Q1D and length 3D, both multiplied by corresponding 

weighing factors. As the length of the 3D stable condensate is large, the resulting length is also 

large, suppressing fluctuations so that the two bands system becomes a robust mean-field 

superconductor, even in the vicinity of the Lifshitz transition. 

Our results are obtained for the model with s-wave pairing, however, one can be 

expected that the fluctuation screening, based on the coupling of multiple condensates, also 

applies to materials with d-wave symmetry of even for the case of the triplets pairing, having 

the multicomponent order parameter. A detailed analysis of the superconducting fluctuations 

for the triplet pair requires further investigation. We also observed that the specific values of 

the increase in 𝑇௖ can be influenced by smoothing the van Hove singularity. It occurs because 

the Q1D Fermi sheet is often curved due to dispersions in the direction perpendicular to the 

main axis of the Q1D band. 
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Finally, although this work studies the effect of thermal fluctuations on 𝑇௖, a similar 

suppression of quantum fluctuations can be expected at low temperatures, near the upper 

critical field. Thus, the superconductivity enhancement, based on the interaction between a 

Q1D condensate near the Lifshitz point and a BCS-like 3D condensate, is a generic 

phenomenon that opens a possibility for a significant critical temperature amplification by 

adjusting the Lifshitz transition. 
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