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ABSTRACT

Coupled condensates with diverse coherence length scales interfere (interact) constructively or
destructively, which leads to unconventional non-single-condensate physics. In the Thesis we
investigate two phenomena governed by multiple condensates: the dependence of the
superconducting magnetic response on the number of contributing bands and the multiband
mechanism of screening the superconducting fluctuations. The first problem is related to the
tacit assumption that multiband superconductors are essentially the same as multigap
superconductors. More precisely, it is usually assumed that the number of excitation gaps in the
energy spectrum determines the number of contributing bands in a relevant superconducting
model capable to capture the essential physics. Here we demonstrate that contrary to this widely
accepted perception, the superconducting magnetic properties are sensitive to the number of
contributing bands even for degenerate excitation gaps. In particular, we find that the crossover
between superconductivity types I and II and the related intertype physics are affected by
difference between characteristic lengths of multiple contributing condensates. Coupled
condensates interfere (interact), which results in non-single-condensate physics regardless of a
particular structure of the excitation spectrum. The related formalism is based on the 7-
expansion of the microscopic equations, with 7 =1 — T /T, the proximity to the critical
temperature, and goes to one order beyond the standard Ginzburg-Landau (GL) approach to
capture a finite intertype crossover domain in the phase diagram of the superconducting
magnetic response. Previously this extended GL formalism has been constructed for single- and
two-band systems. In this work we generalize that formalism to the case of an arbitrary number
of contributing bands. The second problem is focused on the superconducting fluctuations in
systems with multiple coupled condensates. It is well known that superconductivity in quasi-
one-dimensional (Q1D) materials is hindered by large fluctuations of the order parameter. They
reduce the critical temperature and can even destroy the superconductivity altogether. Here we
demonstrate that the situation changes dramatically when a Q1D pair condensate is coupled to
a higher-dimensional stable one, as in recently discovered multiband superconductors with
QID band(s). The fluctuations are suppressed even by vanishingly small pair-exchange
coupling between different band condensates and the superconductor is well described by the
mean field theory. In this case the low-dimensionality effects enhance the coherence of the
system instead of suppressing it. As a result, the temperature of the multiband Q1D
superconductor can increase by orders of magnitude when the system is tuned to the Lifshitz
transition with the Fermi level close to the edge of the Q1D band.

Keywords: Superconductivity. Intertype Superconductivity. Extended Ginzburg-Landau
Formalism. Multiband Systems. Superconducting Fluctuations. Quasi-One-Dimensional
Condensates.



RESUMO

Condensados acoplados com diversas escalas de comprimento de coeréncia interferem
(interagem) construtivamente ou destrutivamente, o que leva a uma fisica ndo convencional de
condensado nao unico. Na Tese, investigamos dois fendmenos governados por condensados
multiplos: a dependéncia da resposta magnética supercondutora do nimero de bandas
contribuintes ¢ o mecanismo multibanda de blindagem das flutua¢des supercondutoras. O
primeiro problema esté relacionado a suposicdo tacita de que supercondutores multibandas sao
essencialmente os mesmos que supercondutores multigaps. Mais precisamente, geralmente ¢
assumido que o numero de gaps de excitacdo no espectro de energia determina o nimero de
bandas contribuintes em um modelo supercondutor relevante capaz de capturar a esséncia
fisica. Aqui, demonstramos que, ao contrdrio dessa percep¢do amplamente aceita, as
propriedades magnéticas supercondutoras sdo sensiveis ao nimero de bandas contribuintes,
mesmo para os gaps de excitacdo degenerados. Em particular, descobrimos que o cruzamento
entre os tipos de supercondutividade I e II e a relacionada fisica intertipo sdo afetadas pela
diferenca entre os comprimentos caracteristicos dos condensados multiplos contribuintes. Os
condensados acoplados interferem (interagem), o que resulta na fisica de condensado nao tnico,
independentemente de uma estrutura particular do espectro de excitacdo. O formalismo
relacionado ¢ baseado na expansdo em 7 das equagdes microscopicas, com T =1 —T /T, na
proximidade da temperatura critica e vai para uma ordem além da abordagem padrdo de
Ginzburg-Landau (GL) afim de obter um dominio finito do cruzamento intertipo no diagrama
de fase da resposta magnética supercondutora. Anteriormente, esse formalismo GL estendido
foi construido para sistemas de banda tinica e banda dupla. Neste trabalho, generalizamos esse
formalismo para o caso de um niimero arbitrario de bandas contribuintes. O segundo problema
esta focado nas flutuagdes supercondutoras em sistemas com condensados multiplos acoplados.
E bem conhecido que a supercondutividade em materiais quase unidimensionais (Q1D) é
prejudicada por grandes flutuagdes do parametro de ordem. Eles reduzem a temperatura critica
e podem até destruir completamente a supercondutividade. Aqui, demonstramos que a situacao
muda drasticamente quando um par condensado Q1D ¢ acoplado a um de dimensdo superior
estavel, como nos supercondutores multibandas recentemente descobertos com banda(s) Q1D.
As flutuagdes sao suprimidas inclusive por um pequeno par de acoplamento de troca entre os
diferentes condensados da banda e o supercondutor € bem descrito pela teoria do campo médio.
Nesse caso, os efeitos de baixa dimensionalidade aumentam a coeréncia do sistema em vez de
suprimi-la. Como resultado, a temperatura do supercondutor multibanda Q1D pode aumentar
em ordens de magnitude quando o sistema ¢ ajustado para a transi¢ao Lifshitz com o nivel de
Fermi proximo a borda da banda Q1D.

Palavras-chave: Supercondutividade. Supercondutividade intertipo. Formalismo estendido
de Ginzburg-Landau. Sistemas multibandas. Flutuagdes Supercondutoras. Condensados quase
unidimensionais
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1 INTRODUCTION

Concept of multiband superconductivity was introduced in 1959 [1], [2] as a possible
explanation of a multigap fine structure observed in the frequency dependence of the real
conductivity part of superconducting lead and mercury, extracted from the infrared absorption
spectrum [3], [4]. Despite the long history of the problem, detailed and unambiguous results
supporting this concept, were obtained only in 2000's after experiments with MgB,, see, e.g.,
Ref. [5] and references therein. The observation of two well distinguished energy gaps in the
excitation spectrum of MgB, [6], [7] have ignited a substantial interest in the problem and
boosted further experiments focused on the multiband superconductivity. Now, after a decade
of intensive investigations, it is clear that multiple overlapping bands are present in most of
superconducting systems, ranging from iron-based materials [8] to high-T. organic
superconductors [9] and even topological superconductors [10], [11]. Recent calculations have
indeed demonstrated that the Fermi surface of Pb is composed of two Fermi sheets, in

agreement with the multiband interpretation [1] of the pioneering experiments reported in Refs.

[31, [4].

By the historical reasons, the presence of the multiple energy gaps in the excitation
spectrum of a superconductor is still considered as a key marker for the multiband
superconductivity. For example, a standard expectation is that if the excitation spectrum does
not exhibit the multigap structure, the system is single-band or effectively single-band (if there
are several bands with degenerate excitation gaps) so that its superconducting properties are the
same as those of single-band materials. More generally, it is usually assumed that the number
of excitation gaps determines the number of contributing bands in a superconducting model
designed to capture essential physics of interest. The well-known example is MgB, which
exhibits two excitation gaps associated with m and o states [5]-[7]. Consequently,
superconducting models for MgB, include, as a rule, two contributing bands, see, e.g., Refs.
[5], [12]-[15]. However, first principle calculations demonstrate [16], [17] that MgB,, is in fact
a four-band superconductor with two o and two m bands, see also Ref. [5]. The two ¢ bands
have different microscopic parameters (diverse Fermi sheets) but degenerate excitation gaps
and the same holds for the m bands. Thus, a tacit common assumption is that multiband
superconductivity manifests itself via multiple energy gaps in the excitation spectrum and,

hence, multiband superconductors are essentially the same as multigap superconductors.
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However, there is another possible view on a multiband superconductor as the system
governed by a set of different and competing characteristic lengths. A fascinating consequence
of such competition can be, e.g., spontaneous pattern formation. Examples of systems with such
spontaneous patterns and textures are well-known in the literature and include magnetic films
[18], [19], liquid crystals [20], multilayer soft tissues [19], [21], lipid monolayers [22], granular
media [23], etc. Recently symmetry breaking patterns of vortices (labyrinths/stripes) caused by
the competition of two significantly different = and o coherence lengths have attracted interest
in the context of unusual mixed-state configurations in MgB,, see, e.g., Refs. [24], [25] and
references therein. Coupled condensates with diverse coherence length scales in one system can
interfere (interact) constructively or destructively, which leads to unusual non-single-
condensate coherent phenomena. In addition to the labyrinths of vortices mentioned above,
other effects can be listed, e.g., possible fractional vortices [26]-[31], chiral solitons [32], [33],
a giant paramagnetic Meissner effect [34], enhancement of the intertype superconductivity [35],
[36], hidden criticality [37], screening of superconducting fluctuations near the BCS-BEC
crossover [38], etc. The set of diverse and competing coherence lengths and the multigap energy
structure of the excitation spectrum in multiband superconductors are both consequences of a
complex Fermi surface that exhibits multiple sheets associated with different contributing
bands. However, a nontrivial interplay (interference) between band condensates is not directly
related to the presence of multiple excitation gaps. Thus, we can expect that in principle, non-

single-condensate physics can appear even when all such energy gaps are degenerate.
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1.1  SUPERCONDUCTIVITY

For more than a century, the phenomenon of superconductivity has fascinated many
scientists around the world, who despite the great discoveries there are still many problems
open. First observed by Kamerlingh Onnes in Leiden in 1911 [39], when it was observed that
a mercury sample abruptly loses its electrical resistivity when cooled below 4.2 Kelvin (K).
As low temperatures were only possible because of the liquefaction of helium first obtained in
1908, by K. Onnes, and thus 1911 he observed superconductivity in mercury. The transition
to the superconducting state was observed when at a sufficiently low temperature, called
superconducting critical temperature T, the electrical resistivity fell to zero. after which the
phenomena were observed in several other materials, cadmium (0.52 K), aluminum (1.18 K),
titanium (2.38 K), tin (3.72 K), lead (7.20 K) and some alloys, etc. Since then, great progress

has been made in understanding the phenomenon of superconductivity.

In 1933 physicists W. Meissner and R. Ochsenfeld [40], discovered an interesting
property of superconductors, which was the property that a superconducting material has to
exclude the magnetic field from its interior when it is subjected to an external magnetic field,
as would happen with a perfect diamagnetic material, which became known as the Meissner-
Ochsenfeld effect. In addition to the effect that occurs when a material is placed under an
external magnetic field above a critical value (H,.), the superconductivity disappears regardless
of the material's temperature. Thus, these and other properties of the superconductors aroused
a great interest in the researchers to make a theory that explained the causes and the true

description of the phenomenon.

In the first successful theory wrote by the London brothers, in 1935 [41], they proposed
a phenomenological theory based on the Maxwell equations of the classical electrodynamics.
The London equation describes the Meissner effect, i.e., the expulsion of the magnetic field
from a superconductor. However, in this theory, superconductivity should exist even in the
absence of an external magnetic field, so the London theory fails to attempt to explain the

superconducting state when there is no magnetic field present, and a better theory was needed.

Then in 1950, L. Landau and V. Ginzburg published the famous paper of the theory of
superconductivity [42], with the set of equations known as Ginzburg-Landau Equations. This
is a phenomenological theory, based on experimental observations and some assumptions that
could not be demonstrated from first principles at the time, but which brilliantly describes the

properties presented at the time about the superconductors. The approach was based on the
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general theory of second-order phase transitions proposed by Landau in 1937 [43]. This theory

was very successful in explaining several fundamental properties of superconductivity.

Although Ginzburg-Landau's theory has led to many experimentally confirmed
predictions [44], but this theory was not developed on a microscopic basis and could not
provide the true explanation for the phenomenon of superconductivity. Thus, it was reasonable
to suppose that this phenomenon could not arise from classical physics, which is, it is a

macroscopic manifestation of quantum mechanics.

Then a more fundamental theory was developed, capable of describing
superconductivity from the first principles, and came about in 1957 when J. Bardeen, L.
Cooper and J. Schrieffer [45] treated superconductivity as a purely quantum phenomenon, thus
obtaining a complete description of the phenomenon and explaining its microscopic origin,

which became known as the BCS theory of superconductivity.

Moreover, in 1959 [46], L. Gor'kov demonstrated a direct connection between the BCS
approach and the GL Theory. When using the Hamiltonian formulation of the BCS model by
Bogoliubov et al, Gor'kov derives from the quantum field theory the Ginzburg-Landau
equations, that is, the Ginzburg-Landau equations can be obtained as a limiting case of

microscopic theory.

1.2 INTERTYPE SUPERCONDUCTIVITY

The latest discoveries of new superconducting materials at high critical temperatures
[47], [48] have led to a review of many of the field's longstanding problems. One is a
classification of superconducting magnetic properties. As is well known, the Ginzburg-Landau
(GL) theory distinguishes ideally type I and type II diamagnetic superconductors, where the
field penetrates in the form of a regular Abrikosov lattice of a single quantum of vortices.
These types are dependent on the parameter GL k = 1/¢, with A and ¢ being, respectively, the
magnetic penetration depth and the coherence length GL. The change between types occurs

abruptly when « crosses the critical value k.

Already in the 1970s, it was shown that the reality is more complex than that of the GL
theory (see [51]-[55] and references therein): the table of superconductivity types separated by
the single point k is applied only at the limit T — T,. Below T, the intertype regime occupies
a finite interval of k, forming the inter-type domain between types Il and I in the (k, T) plane

[51]. This domain exhibits an unconventional field dependence of magnetization, in particular
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the first-order phase transition between the Meissner and the mixed states [51], [52].
Subsequent works have revealed that the physics of the intertype domain is closely related to
the self-duality Bogomolnyi [56], [57] that results in an infinite degeneration of the
superconducting state at the point of Bogomolnyi (x,, T.), see, e.g., [58]. This degeneracy
results from the symmetry of the GL equations in k, and implies that the mixed state comprises
an infinite number of different spatial patterns of the magnetic (condensed) flux, including the
very exotic ones. By lowering the temperature, degeneration is lifted and the Bogomolnyi point
unfolds into a finite domain on the phase diagram between types Il and L. In this case,

nonstandard flow patterns model the internal structure of the intertype domain.

A comprehensive investigation of possible condensed flow states in this domain has
not been presented so far. Theoretically, for bulk materials such research requires a greater
approach than the GL theory, which is technically very demanding, see, e.g., [53]. The
experimental study is also quite nontrivial because k should be changed by appropriate doping
to cross the intertype domain in the plane (x,T) [51], [52]. To date, only one long-range
attraction between the vortices of Abrikosov is well established in the intertype regime, bearing
the name of "type I/ 1" superconductivity [51] as opposed to the standard type II, referred to
instead as "type Il / 2", where the formation of giant vortices (multi-quantum) was considered
for superconductors with k~1. However, the results were contradictory. Therefore, the state
of the flux configurations in the bulk domain of superconductors remains unclear and requires

extensive further investigation.

1.3 EXTENDED GINZBURG-LANDAU THEORY

In conventional single-band superconductors, the intertype domain is insignificantly
small and therefore largely ignored in textbooks. However, it has recently been demonstrated
that this domain is increased in superconductors of two bands and this enlargement can be
attributed to the disparity between the microscopic parameters of the contributing bands [35].
It has also been argued that the effect is a generic phenomenon independent of the details of
the model for band states. Its origin is the nonlocality of interactions in the aggregate

condensate due to the appearance of multiple bands.

Thus, it is of importance to check this expectation and generalize the consideration of
the intertype domain in two-band superconductors to the case of multiband superconducting

materials with more than two contribution bands. In this project, the main purpose of our
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investigation is to study how the enlargement of the intertype domain is sensitive to increasing

the number of contributing bands.

Multiband superconductors are materials in which more than one carrier band
contributes to the formation of condensates. Since the discovery of superconductivity,
multiband superconductivity has been also expected in some materials, e.g., in conventional
Pb, but with the evolution of technology an infinity of multiband superconductors has been
discovered, such as metal borides and boron carbides such as MgB, [69] and OsB, are
observed, iron silicides such as LiFe3Sis [71], chalcogenides such as FeSe;_,, and pnictides
of iron [72]. Unconventional characteristics and significantly elevated transition temperature
have led to the general interest of such compounds as well as to the phenomenon of multiband

superconductivity.

The distinction between the types diamagnetic type-I materials and type-II

superconductors is routinely explained by the Ginzburg-Landau (GL), and occurs when the

GL parameter k = A/£ crosses the critical value x, = 1/+/2 [44], where the type of interaction
between the vortices is altered, being in the type-I attractive and repulsive in the type-II
superconductors. And, at k = k, , Bogomolnyi point, these vortices do not interact, due to the
of the fact that the GL theory at this point reduces to a pair of the first-order self-dual
Bogomolnyi equations. The self-duality, first discussed in the context of cosmological strings,
leads to an infinite degeneracy of different flux configurations, from which the absence of the

vortex-vortex interactions follows [35].

Beyond the GL theory, EGL theory, shows that the GL dichotomy of the
superconductivity types is achieved only in the limit T — T, ( T, is the critical temperature).
At T < T, the Bogomolnyi point unfolds into a finite temperature-dependent interval of k’s
(intertype domain), where the physics of this domain is not captured by the standard GL theory.
The physics of the transitional domain is commonly restricted to the long-range vortex-vortex
attraction. This, however, contradicts to the observation that other critical parameters exist
inside this domain with the corresponding changes of admissible intertype flux patterns.
Moreover, the number of such internal critical parameters is infinite due to the infinite
degeneracy of the Bogomolnyi point. The intertype domain has a complex structure with
different possible variants of the mixed state, structure that appears as a result of the removal

of the infinite degeneracy of the Bogomolnyi point when lowering temperature [35].
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The EGL theory offers a powerful and yet relatively simpler formalism for studies of
the mixed state in both single and multiband superconductors. While the GL theory predicts a
sharp interchange between type-I and Il at k = Ky, the microscopic calculations and
experimental results demonstrated that the border between types I and Il broadens at T < T,
into the finite interval of k’s, i.e., the intertype domain between types I and II in the (x, T)-
plane. Where the physics in this domain is not explained by the GL theory, the EGL theory

can reproduce the boundaries of the intertype domain in full agreement with the experiments.

The analysis revealed that when the GL parameter k is situated in the interval [k, kj;]
defined by the onset of the long-range vortex attraction (k;;) and the appearance of the mixed
state (k3 ), the system may demonstrate a great variety of unconventional magnetic states and
properties. This rich diversity is closely related to the infinite degeneracy of the Bogomolnyi
point, kK = kg and T = T.. When the temperature is lowered below T, this degeneracy is
gradually lifted, and the Bogomolnyi point projects itself onto the finite critical interval
(critical domain). Its appearance defines a new separate type of superconductivity that can be
tentatively called “critical superconductors”. In particular, the preliminary analysis revealed
the sub-domain in the critical domain, where the elementary entities are those twinning
Abelian Higgs multi-quanta vortices. Remarkably, the structure of the critical domain is
universal for single-band materials. Its boundaries are independent of the material parameters,

as long as the system is in the clean limit.

Analysis of two-band superconductors have shown a very interesting property that the
interplay between the bands leads to a systematic enlargement of the critical domain. A
physical interpretation of this enlargement relates it with the increased non-locality in
multiband systems, which is also responsible for the long-range vortex attraction. The previous
results also brought the following conclusions, that in the absence of an additional symmetry,
the GL order parameter in a multiband superconductor is single-component and defined by the
standard single-component GL theory, however, the coefficients in the relevant equations have
contributions of different bands. That, the difference between spatial profiles of different band
condensates can be correctly described only within an approach that goes beyond the standard
GL model, e.g., in the EGL formalism. The structure of the type-I/type-1I border (near-
Bogomolnyi regime) has been calculated for the single and two-band systems and exhibit a
wealth of nonstandard spatial flux distributions, found neither in type I nor in type II. With
patterns that far exceeds the complexity of these standard types, which were previously

discussed in the literature in the context of the long-range interaction of vortices. This
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distinctive complexity dictates introducing a separate type of superconductivity, which can be
tentatively called the critical type. In addition, it has been established that exotic magnetic
properties of single- and multiband superconductors are closely related: they have the same

origin, i.e., lifting of the infinite topological degeneracy of the Bogomolnyi critical state.

For multiband materials, it is generally believed that they could be modeled by the
standard BCS theory that accounts for the multiple-carrier band structure. The mean-field BCS
theory is then formulated in the form of multiband Bogoliubov-de Gennes (BdG), Gor’kov or
Ellenberger equations. In particular, the BdG equations with a chosen approximation for the
pseudo-potential are a convenient tool of studying clean systems with man-sized dimensions.
In principle, the BCS theory gives the most complete description of a multiband system;
however, fully microscopic calculations are not an easy task for strongly inhomogeneous
mixed states. Investigations of inhomogeneous superconducting state are notably simpler in
the vicinity of T., where the GL theory is legitimate. Moreover, Gor’kov built the bridge
between the microscopic BCS and the phenomenological GL theories by relating the order

parameter with the anomalous microscopic Green function.

Recently was developed a consistent extension of the GL theory, EGL theory, which
is based on using the proximity to the critical temperature Tt = 1 — T /T, as the unique small
parameter in the system. Where the implementation of this mathematical formalism has been
used in a series of preliminary works, for the single- as well as the two-band cases [35]. All
relevant physical quantities in this formalism are represented as the series expansion in 1 (the
so-called 7 - expansion). Equations for the order parameter and the magnetic field, also written
as the series expansion in 7, and are obtained from the condition of the stationary free energy
functional. With this approach, the standard GL theory follows from the two lowest orders in
the expansion: the first term defines the critical temperature and the second one yields the GL
theory. Corrections to it are provided by the higher orders terms. For a multi-band system, the
difference between the condensates, appear only in the leading order corrections to the GL

theory: one can describe the relevant phenomena only when they are retained.

Thus, it is important to verify the expected results and generalize the formalism
obtained in the single and two-band superconductors to the case of multiband superconducting

materials, with more than two contributing bands.
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Figure 1.3-1 Phase diagram of superconductivity types in the (x,T) plane derived from the EGL formalism and comparison
with experimental data(symbols), where it is shown the boundaries of the intertype domain for single-band
superconductors[35]
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1.4 OBJECTIVES

In this doctoral thesis we address two remarkable phenomena directly related to

multiple coupled condensates.

a) Intertype magnetic response of multiband superconductors with degenerate
excitation gaps.

The concept of multiband superconductivity has been introduced in 1959 [1], [2] as a
possible explanation of a multigap fine structure observed in frequency-dependent
conductivity of superconducting Pb and Hg, extracted from the infrared absorption spectrum
[4]. It has been confirmed only in 2000, after experiments with MgB, [5] by observations of
two distinct energy gaps in the excitation spectrum [6], [7] [density of states (DOS) of
superconducting electrons contains two peaks]. It is usually assumed that the number of
excitation gaps in the single-particle energy spectrum of a uniform superconductor determines
the number of contributing bands in the relevant superconducting model. So, if the spectrum
doesn't show multigap structure, the expected superconducting properties are those of single
band materials. A well-known example is M gB,, which exhibits two spectral gaps associated
with 7w and o states [5]-[7] and, thus, theoretical models that explain this superconductivity
consider only two contributing bands [5], [12]-[15], despite the fact that the first-principle
calculations reveal [16], [17] four single particle bands [5]. The two m bands of MgB, have
different microscopic parameters, but they exhibit degenerate excitation gaps. The same is true

for the two ¢ bands.

However, there is another approach which is followed by this doctoral thesis and
considers a multiband superconductor as a system governed by a set of competing
characteristic lengths associated with different bands [37], [101]. The single-particle spectrum
of superconducting electrons is usually measured for bulk superconductors to avoid problems
with the interpretation of nonuniform measurements. When the corresponding tunnelling
measurements reveal, for example, a single peak in the density of states, it does not mean that
the position-dependent gap functions of different contributing condensates are always the
same. Their characteristic spatial lengths can be different due to peculiarities of the Fermi

surface.
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The competition of different condensate length-scales can lead to non-trivial physical
consequences due to interference/interaction of different contributing condensates. It is of
importance that this competition can appear irrespective of the presence/absence of multiple
spectral gaps in the uniform superconducting state. These features appear on different levels
of the theory - the system can have multiple energy gaps in the excitation spectrum but a single
characteristic length and, vice versa, a multiband superconductor can have multiple coherence

lengths but a single excitation gap.

Here we demonstrate that the crossover between superconductivity types I and II—the
intertype (IT) regime - is strongly affected by the difference between healing lengths of
multiple contributing condensates even when the corresponding excitation gaps are degenerate
and cannot be distinguished. Our analysis is done using the formalism of the extended
Ginzburg-Landau (EGL) theory generalized to the case of an arbitrary number of contributing

bands.

b) Multiband material with a quasi-1D band as a robust high-temperature

superconductor.

It is well known that superconductivity in one-dimensional systems is suppressed due
to large fluctuations of the order parameter, which reduce the critical temperature T, and can
even destroy the superconductivity completely. The superconducting state can still be achieved
when several 1D structures (parallel chains of molecules or atoms) are coupled, thus creating
a weakly coupled matrix. Theoretical studies demonstrated that such quasi-1D (Q1D) materials
can superconduct [105]-[108] but the fluctuations still proliferate, reducing the critical
temperature significantly [105]. This theoretical prediction was confirmed by the discovery of
low temperature superconductivity in Bechgaard salts - organic Q1D superconductors [111],

[112].

Later theoretical efforts were focused on finding the conditions under which the critical
temperature of Q1D superconductors could be increased rather than reduced. In particular, it
has been suggested that such increase can be achieved in the vicinity of the Lifshitz transition,
at which the chemical potential approaches the edge of a Q1D single-particle energy band
[119]-[122]. However, the fluctuations, which are already very large due to the Q1D effects,
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are increased due to the Bose-like character of the pairing near the Lifshitz point, tending to

further deplete the condensate.

Recently the interest in Q1D superconductors has been boosted by the discovery of
Cr3Ass-chain based materials (such as K>Cr3Ass and KCrzAszHx). Such materials are
multiband superconductors where Q1D bands coexist with conventional 3D bands. Previous
investigations showed that the presence of the pair-exchange coupling between different bands
can reduce fluctuations due to the multiband screening mechanism [91], [125]. The second
part of this doctoral thesis is devoted to investigations of such screening mechanism in a
multiband system comprising Q1D and 3D bands in the vicinity of the Lifshitz transition. We
demonstrate that when a Q1D condensate is coupled to a 3D stable one, fluctuations are
suppressed even by a vanishingly small pair-exchange coupling between different band
condensates and the superconductor is well described by the mean-field theory. In this case,
when approaching the Lifshitz transition (the chemical potential approaches the edge of the
Q1D band), the low-dimensionality effects enhance the coherence of the system rather than
suppress it. As a result, the critical temperature of the Q1D multiband superconductor can

increase by orders of magnitude.
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2 BASIC CONCEPTS

2.1 GINZBURG-LANDAU THEORY

London's theory had a serious flaw because it ignored the possibility of a positive
surface energy, associated with a normal-superconducting interface [73]. Thus, to correct this
shortcoming, Ginzburg and Landau proposed a different phenomenological description, which

explains the surface energy in a natural way.

This theory was a great triumph of physical intuition, in which a pseudo wave function
Y was introduced as a parameter of complex order and [1|? represents the local density of the
superconducting electron. The theory was developed by applying the variational method to a
pre-defined expansion of the free energy density in powers of [|? and |V|?, resulting in a
pair of differential equations coupled to ¥ and the A vector potential. This result was a
generalization of the London theory to deal with situations in which the density of the
superconducting electron varied in space, and to deal with the nonlinear response to fields that
are strong enough to change these electrons. The local approach to electrodynamics in London

was remained.

The great value of this theory lies in the treatment of the macroscopic behavior of
superconductors, in which free energy is more important than the spectrum of excitations.
Thus, it will be quite reliable in predicting critical fields and the spatial structure Y of non-
uniform situations. In addition to also providing the qualitative structure helping to understand

the behavior of the supercurrent because of quantum properties on a macroscopic scale.

The basic postulate of GL is that if 1 is small and varies slowly in space, the free energy
f can be expanded in a series of the order parameter, where the odd terms are neglected in

favor of the phase symmetry

fo=futalpl + S gl + ”

The free energy related to others thermodynamic variables is represented by the
function f,, and will be treated as a constant independent of temperature, since it is assumed

that the other quantities are well behaved close to the transition.
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Then one must consider the superconducting case to happen when the part related to

the transition is negative:

f=f—-—f<o. 2.1-2

Being superconducting state is energetically more favorable than normal state. The
series should be truncated until the fourth in order to stay near the second-order phase transition
at T, where || - 0. The coefficient a represent the character of most phase transitions
a(T) = at,wheret =1 — T /T,,and § = b must be positive otherwise the lowest free energy
would occur for a arbitrarily large values of [|2. Two cases appear depending on if « is
positive or negative. For a positive value of a, T > T, , the minimum free energy occurs at
|p|? = 0, which is the normal state. If « is a negative, T < T,, value the minimum occurs

when

Y=o, = - 2.1-3

where 1, is conventionally used because 1 approaches this value infinitely deep in the
interior of the superconductor, where it is screened from any surface fields or currents. These

behaviors are shown in the figure below.

_Ilrs_JIrn f;_f,,
a=0 a<0
W
W ¥
H?
an

Figure 2.1-1 Ginzburg-Landau free energy functions for « positive and for a negative, the dots are the equilibrium positions,
and for simplicity \ has been taken to be real. Figure from [74].

In order to suppress spatial variations in 1, and the order parameter is uniform in the

absence of external fields, was added a term proportional to |Vi|?, in analogy with the

Schrédinger equation, and in presence of the magnetic field, the term is assumed to take the
gauge-invariant form. So, the extra term added is given by, D =V — i;—iA, where the first

term gives the extra energy associated with gradients in the magnitude of the order parameter
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and the second one gives the kinetic energy associated with supercurrents in a gauge-invariant

form. And, we have also included a term to represents the energy density of the magnetic field.

In this way, the free energy density becomes,
* 2. b 2
Fl 9", Al = arlp|? + 3 p]* + KDyl
1
+—(Vx A)2
8m

So, with the free energy density is possible to calculate the Gibbs free energy difference and

derive the thermodynamic critical field H., where is considered the energy necessary to take

the system from the uniform solution (Il,boo |2 = %) at zero field to the normal state:
G—f d _ gyl _HeB 215
- )9 g=/f 8m  4m’ o
2.1-6

S
0 4ma?t?
He= |—5—

This is the critical field of the Meissner state, where the magnetic field penetrates the
superconductor only up to a typical length A;, London penetration depth. The parameters a, b
and K are phenomenological and must be determined in order to match experimental results
and within the framework of a microscopic theory where it was possible to derive analytic

expressions for them in terms of microscopic parameters.

A stationary point of the functional given by Eq. 2.1-4 yields the main equations of the
GL theory, the Ginzburg-Landau Equations. So, the condition of minimum energy allows the

use of the Euler-Lagrange equations for the free energy density

of of _0
0q £ad(0q) 217

where for our case q is Y or A, then follow the GL equations
2e
atly|* + bly|* + KIDY|? = 0, VXVXA=4mi—K@'Dyp —yDy7). 21

Thus, the Ginzburg-Landau theory gives two coupled differential equations Eq. 2.1-8,
involving the order parameter and vector potential, which can be analytically solved in some

regimes of approximation to determine some properties of the superconducting state.
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Characteristic lengths

In the two simple cases in which exact closed form, solution can be found, the GL

equations provide us characteristic lengths.

First, we consider a case where in which no fields are present; then, we can take ¥ to

be real since the differential equation has only real coefficients. Moreover, introducing the

normalized wave function f = wl In addition, we assume that, x > 0 is filled with a

o)

superconductor and, x < 0, is a vacuum or normal material, we obtain (in one dimension)

2 K

d
2 _ £3 — 2 - }
f dxz +f f - Or f |a|'l', 2.1-9

where the characteristic length £ is called the coherence length, is one of the two fundamental
length scale associated with superconductivity, which importance is shown graphically in the
Figure 2.1-2. We see that 1 is close to P, far inside the superconductor, is zero at the interface
with the normal material, and has intermediate values in a transition layer near the interface

with a width in the order of ¢.

oS - —

1
a ] 2 a 4

x/E

Figure 2.1-2 Dependence of the normalized order parameter on distance inside a superconductor with a material that prevents
the formation of the superconducting condensate in the boundary in situations. The order parameter is larger for x > &. Figure
from [74].

The second characteristic length come into play when we consider a system with an
applied magnetic field with an essentially uniform order parameter 1 = v, spatial variations
of the order parameter can be neglected. So, the GL equations, Eq. 2.1-8, are reduced to the
London equation:

(2e)?
hZc

c
—(VXVXA)=-2 »|?A, 2.1-10
471( ) (Yoo



27

where can also be written as

1 2¢2 -
A, ,12=hc b 2.1-11

VXVXA:—Z 7 .
AL e? 32nK|alt

The second fundamental length of a superconductor is the A;, London penetration

depth. Which measures how much field penetrates in the superconductor.

- Normal F o3 Superconducting ——————— 3

Ay (x)

s

X

Figure 2.1-3 Dependence of the vector potential on distance x, where a constant applied magnetic field decays exponentially
inside the superconductor, becoming very small for x > A;. Figure from [73].

As 1 is interpreted as a wave function, || gives the local density of superconducting
particles. Then, for the uniform solution, this density reads ng = | |2 = |a|t/b. Also, |Dy|?
works as a kinetic term, thus one can define K = h?/2m, where instead of K, the
phenomenological quantity is the mass of the particles involved m. Therefore, with such
assumptions the London theory is recovered. This is the so-called London limit of the GL

equations.

We defined two characteristic lengths &(T) and A, (T), are phenomenological
quantities which determine the behavior of superconductor near the transition point. They both
diverge in T — T,, so it is conventional to introduce the Ginzburg-Landau parameter

A
M)

2.1-12



28

The cases studied before are limiting case of a more general picture where ¢ and 4;
may be comparable. Thus, the importance of the parameter k is better understood when is

studied the energy associated with a surface separating normal and superconducting material.

The possibility of a surface energy arises from the occurrence of the two lengths. Now
we will analyze the situation where the magnetic field is so strong that it destroys the
superconducting state for x < 0 and, as the order parameter recovers from zero to its maximum

value, the magnetic field tends to zero, for x > 0.
X — —oo: Y =0, B =H,.
x_)m: lp:lpOO) B:O- 2.1‘]3

Thus, we calculate the Gibbs free energy difference per unit area for this configuration,
the so-called surface energy, done through a Legendre transformation, where one obtains the
Gibbs free energy from the Helmholtz free energy by adding the term —H - B/4 to f; related
to the expulsion of the field.

* H-B
Osn = dx(gs — gn), Isn) = f:g(n T 4 2.1-14

2
where f; is given by Eqs. 2.1-4, 2.1-7and g,, = fr=0) + :—n. The external magnetic field H is
constant and its absolute value is equal to the thermodynamic critical field H,. In the normal
2
phase, B=H and H = B = H., which results in g, = fyp=0) + ZL”. ( We changed the

notation of B to h for a better understanding of the graphic in Figure 2.1-4)

8w

® b (h— H,)?
Osn =] dx (—Ellpl‘* +TC>. 2.1-15

@ b h— H_.)?
o= [ ax(artort + it + sy + C),

where, after integrating by parts and neglecting the surface term, and using the Eq. 2.1-7 in
order to obtain the concise form in the last line. This form clearly displays how oy, is
determined by the balance between the positive diamagnetic energy and the negative
condensation energy due to the superconductivity. By numerical solutions the GL equations
demonstrates that if the GL parameter is larger than x, = 1/+/2 , then g,,, becomes negative

and, otherwise, positive.
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[ E_, > ]
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K <1 K>1

Figure 2.1-4 Diagram of the variation of the field (h) and \ in a surface region between normal and superconductor
state. k < 1 we have a positive wall energy, refers to type I, k > 1 we have a negative wall energy, is a type 11
superconductor. Figure from [74].

In other words, this parameter determines whether the domain-wall solution is
energetically favorable. Materials are conventionally classified as type I or type II according

if a5, 1s positive or negative.
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2.2 MICROSCOPIC DERIVATION OF THE GINZBURG-LANDAU

As 1s known since the classical work by Gor’kov, the GL equations can be derived
from the microscopic BCS theory in the most elegant way via the Green function formalism.
So, in this topic we will present the Gorkov’s microscopic derivation of the Ginzburg-Landau
equations, which makes it possible to determine the phenomenological constants in terms of
the microscopic parameters. The core of this derivation relies on the assumption that the

excitation gap can be identified as the order parameter of the system[73], [74].

Our starting point is the Hamiltonian formulation of the BCS model by Bogoliubov et
al[73][74]. This Hamiltonian includes the usual kinetic part absorbing the chemical potential
in such a way that only the average number of particles is controlled (the grand canonical
formalism). The interaction part is the second term, the last two terms in the equation below.
Other terms related to the interaction between particles, the Hartree and Fock contributions,
are accounted as constants and hidden in the chemical potential u, once they do not have a

specific reason to vary significantly when crossing T.

Hocs = [ @x[)] Wi0Tao (0 + 9] OB + nWN @], 221

T, 1s the single-electron Hamiltonian, and the summation in the kinetic term is taken over the

coinciding spin indices

Ti= =5 (V—i—CA) — 2.2-2

the energy gap (the convention by Gor’kov, de Gennes used a minus sign) is given by
A(x) = g(r ()P (x)). 2.2-3
The Fermi field operators satisfy usual anticommutation relations:
Yo, 9], (X))} = 8,56 (x — x),
Wo(2), Y4 (x)} = 0. 2.24

Introducing the Heisenberg picture with imaginary time (t — real, imaginary time

representation) to derive the equations of motion.
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Then, the Heisenberg operators are defined as:
Yr(x,t) = exp(Hpcst/h)Pr(x)exp(—Hpcst/h),
Pi(xt) = exp(HBCSt/h)v,bI (x)exp(—Hpcst/h). 2.2-5

Then, we can find the equations of motion of the Heisenberg field operators in the imaginary-

time representation:
hatlpT (x' t) = _73'61/)T(xr t) - A(x)l/_}l (x' t):
hoapu(x,t) = —A" ()1 (x, 1) + TPy (x, 0). 2.2-6

Introducing the temperature (Matsubara) Green’s function:
1 —
Gxt,x't') = (T, (W1 OB ('),
1 - _
Flxt,x't) = =3 (T, (P (1))
- 1 _
Gt x't) = = (T (B e (') ),

Flxt,2't') = — (1 ey (), 227

And the generalized time-ordering procedure is given by:

T(A(®)B(")) = 0(t —tHA)B(t") — 6(t' — t)B(t)A(D),

So, the equations of motion for the temperature Green’s functions is obtained as:
—ho.G(xt,x't") = 5(x —xN)6(t — t') + T,G(xt, x't") + A(x)F(xt,x't"),
—ho,F(xt,x't) = A*(x)G(xt, x't") — T F(xt,x't"),

—ho.G(xt,x't") = 5(x —xN)6(t —t') + A*(xX)F(xt, x't') — T;G(xt, x't"),
—ho, F(xt,x't") = T, F(xt,x't") — A(x)G(xt, x't"). 2.2-8

So called the Gor'kov equations. Their original form was different because Gor’kov did not

work with the anomalous averages first introduced by Bogoliubov.

In his work, Gor'kov derived and used the first two equations 2.2-8. Supplemented with

the two additional relations, the Gor'kov equations can be rewritten as

{(hgt h%) (A’?(;Cf) A—(y?)} <gg?~ 9 =—6(x-x)6(t -1t ((1) 2) 2.2:9
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It can also be written in a short notation

gy = (S TG

’ C\F(xt,x't)) Glxt,x't"))

(T A(x)) | o
Hpqe = ( A(x) -T2 ) Bogoliubov-de Gennes Hamiltonian,
=_(1 0
1_(0 1)'

so, we can write Eq. 2.2-9 in an elegant form that is usually called Gor'kov-Nambu equation.
{n0,1 + Hpae}G(xt, x't") = =6(x — x")6(t — ¢)], 22.10
Using the boundary condition:
A(x,x',At) = —A(x,x',At + BR),  [A=G,G,F, F|, 2.2-11
results in the expansion in terms of the Matsubara frequencies (wy,):
_n(2n+1)

1 .
A(x,x',At)=Ez€_mw”“x‘1(%x',wn), On =g 2.2-12
n

And, being well-known that the temperature Green’s functions are defined only for —fh <

t —t' < Bh, due to the antiperiodic boundary condition. Thus, we arrive at:
S(t—t)= LN g -inon(e-) h< ' < Bh
- _ﬁfl e . - B t—t' < ph. 22.13
n

And allow us to write the Gor'kov-Nambu in the following form:

(5 a2~ SNEETED Eii)= e D

{ihw,1 — Ha}G, (x,x") = 8(x — x)],

(Qw (x,x',w,) F,(x,x, wn)) 2.2-14

G = il ! ~ !
@ :Fa)(xfx an) gw(x'x an)

To solve these equations, it is convenient to introduce new operators in the Hilbert

space defined as:

Yo

w

S E“ﬂ)

(x|Ap|x') = Ap(x,x) > G, = ( ) 2.2-15
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and
(x|T|x") = 6(x — x)T,
(x|A]x') = 8(x — xHARX), 2.2-16

The Hpy; operator can be expressed as the sum of the kinetic and interaction (condensate)

contributions:

= (T 0 0 A
T = ( ~ )' A = <A ) _
0 —_F & 0 22-17

Equation 2.2-14 become:

(

ihwn(x|Gyp|x') = 8(x — x)1 + HpyG, (%, x)
iR (x|Gy, |x') = (x|x")T + (x|(T + &) |x'). 2.2-18

With completeness relation of the Hilbert space, it is obtained the operator form of the

Gor’kov-Nambu equations:
(ihw, — T)G, = 1 + AG,, 2.2-19
To the normal state A = 0, and we obtain the normal or unperturbed Green function operator
(ihw, — T)GO =1, 2.2-20
And using Egs. 2.2-19 and 2.2-20 one obtains
G, =G® +GYAG,, 2.2-21
Which is the Gor’kov-Nambu formalism as Dyson equation for the Green function G,,. And
iterating
Go = GO 4+ GORGD + GORGVRGD + ..., 2.2-22

Now, we need to extract the equation for the anomalous Green function in order to construct
the self-consistency equation for the superconducting gap. So, from the Eq. 2.2-21

g w F, W) _ A(E)O) 0 A(E)O) 0 0 A g w F, )
o )= o | * -0 | (+. ), 2.2:23
F w g w 0 w 0 w A 0 Tw g w



thus, we obtain
gm _ (0) g(O)A £,
o = G BGo.

And we obtain the following after iteration:
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2.2-24

2.2-25

From Eq. 2.2-7 is obtained a relation between the energy gap and the anomalous Green

function

A(x) = g1 ()Y, (xN)) = —gh lim Alirjloﬂ-"(xt, x't),

A(x) = —gh lim lim — ) e @At F (x,x"),

x'->x At—0 ﬁfl

A(x) = —gT lim lim » e @At F (x,x),

x'—x At—0
w

-26

with g the (Gor’kov) coupling constant, and from Eq. 2.2-25 obtains the self-consistency

equation which is expanded in powers of the order parameter (gap function)

M@=fﬁy&@yM@)

+f(l_[ 1d Y; )Kb(x Y1, Y2, Y3)A)A (y2)A3)

+ [([T721d%y,) Ke (X, 71, Y2, 3, ¥4, ¥5) A A () A(y3) A (Y A(Ys) +

and the integral kernels are given

Ko(x,y) = —gT lim Z ~wat O (x )G (y, %),

Kpy(%,¥1,¥2,¥3)

= —gT lim e lwAtg(O)(x }’1)9(0)(3’1:}’2)9(5)0)(3’2:J’3)g_(5)0)()’3’x)’

At—0
w

K. (X, y1,..,¥5) =

—gT lim 5, e 6206, y)G5 01,7250 02, 366" 05, )G 94, ¥5)G6” (s, ).

2.2-
27

2.2
-28
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Equation 2.2-27 can be truncated to a desired order. To obtain the GL equations is necessary
keep only the first and third powers (the Gor’kov truncation). To obtain the EGL formalism,

it is of importance to include the fifth-power term.

For the normal-state temperature Green function G (E)O) (x,y), we have (at zero magnetic
field)
© d3k e—ik(x—y)

for a spherically symmetric Fermi surface and in the parabolic band approximation the single-

ZkZ

particle energy is given by &, = — u, measured from the chemical potential u, and

2m
69 y) = 60, x).

The inclusion of the magnetic field in the formalism is made by the field-induced
corrections through the field-dependent Peierls phase factor in the Green function obtained

before
g( ) (x x’) = e“("“)g( )(x x’) 2.2-30
Gor \"™ w ’ 4 :

From the equation for the normal Green function
, e
Ve ®(x, x) = - A(x), 2.2-31
in the semi-classical approximation is obtained
! e !
P(x, x) ~ - Ax) - (x — ). 2.2-32

And considering that typical length of the spatial variations of the gap becomes much larger
than the typical spatial length of the integral kernels, it is convenient to use the gradient
expansion:

[oe)

1
D) = Mx+2) = ) — (2 V)"A) 2233

n=1

And as the typical length of the spatial variations of the vector potential is much larger than

the characteristic lengths of the integral kernels in the self-consistency equation:

. e
el®@ =1 4 iEzA(x). 20-34
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Then finally, we can calculate Eq. 2.2-27, and in the presence of the magnetic field, in
particular, the GL equation is obtained when keeping only the first two terms, including K,

and Kj:

AQx) = j 32K, (2)AX) +% j 432 K, (2)22D?A(%)

: 2.2-35
* ,[ <1_[ d3yi) Ky (%, y1,¥2,¥3) 1A(x) [*A(x),
i=1

where D =V — i%A, the so-called gauge invariant derivative.

Expanding in terms of T, collecting terms of the order /2, gives the ordinary BCS

expression for the critical temperature T:

T, = ZTeyhooc exp[—1/gN(0)]. 2.2-36
Where T, is expressed in terms of the microscopic parameters of the superconductor, w,
denotes the Debye (cut-off) frequency used as regulator of the well-known ultraviolet
divergence by introducing the cut-off energy, which is identified with the Debye energy when
the superconductivity is mediated by phonons, g the coupling constant, y = 0.577 the Euler
constant, and N(0) the density of the carrier state (DOS) at the Fermi surface.

In the order 73/2, one recovers the standard GL equation:

atA + b|A|?A — KD?A = 0, 2.2-37
Where
7¢(3) b, ,
a—gN(O), b—gN(O) FTCZ, K—gfl VE.

With vg the Fermi velocity and {(...) the Riemann zeta function.
To find the GL equation for the current, Gor’kov has employed the linear response to
the magnetic field

. ~ ike _ . 2e? _ .
jGo = lim lim |— (V, = V)G (xt, x't") ———A()G(xt, x't) |, 2.2-38
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where the expression for G must be accounted up to the leading correction §G,,
o6 x) = Gor o x) +8G,(x,2),

8G, (x, x")
© © 2.2-39

== | @y 2G50 X Y)G0r.0 3 D00 (2 XN (NA().

The contribution of g‘é?,)m

(x,x") to j(x) is zero, considering the linear expansion in
the Peierls factor
_ ihe -, - 2e? -,
lim — (V, — V,.))G(x,x") = lim — A(x)G(x, x"), 2.2-40
x'-x m x'—-x MC

So, Eq. 2.2-38 becomes

. ieT = ' 2e*T ~ ’
J) = [V = 9,086, (6o = - AGO) ) 8G,, (6,17,
n n
j(x)
ieT . . .
— d3y d3z A(x)A* (Z)eltb(y,z)g(g)o) (y,2) {eltb(z,xr)gE(l)) (z,x)V, [elcb(y,x/)ggi)) (y, x)]
m 2.2-41
_ eifb(y,x)g(O) (y .X')V [eifb(xr,z)g(O)(xr Z)]} _ zeZTA(x)Z 69_ (x x’)
—w\J" X -w , mhc Gor,w \"*» '
n
By using Eq. 2.2-34, and due of the spherical symmetry, we obtain the second GL equation
eT
j@ = o [ @y 260 0,260 x DG 0.0 - 600,006 (. 2)
2ie
x[-ZZIBEPA® - (2 - 3) + A @) y- VAG) + () 7 TN ),
. 7{(3)n*vE .
Jj&x) = gN(0) ————[A"(x)DA(x) — A(x)DA*(x)]. 2.2-42

16m2T2
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2.3 EXTENDED GINZBURG-LANDAU FORMALISM

Over time, several theorists wished to develop an extension to the GL theory, with the
idea of improving the formalism and retaining some advantages of its original formulation.

Thus, several GL-type theories have been proposed.

In the first developments, the so-called "local superconducting" formalism there
appeared a complicated synthesis of the BCS and GL approaches. With a GL theory with
nonlocal corrections, including higher order parameter gradients, where it was used in higher
critical field anisotropy studies and the vortex structure in d-wave superconductors. In the
previous examples, the extension of the GL theory was based on the expansion of the self-
consistent gap equation, including higher powers of the order parameter and its spatial
gradients phenomenologically. But the calculation of these terms is not so simple, where the
fundamental problem is to correctly select all the relevant contributions of the same order of
magnitude. This problem does not arise in the derivation of the original GL theory for a single-
band superconductor, where only the first nonlinear term and the second order gradient of the
condensed wave function are included. But for the GL theory of a two-band superconductor,
it leads to the appearance of incomplete contributions of higher order. Such incomplete terms

may lead to misleading conclusions and should be avoided.

Thus, it is necessary to use a single small parameter in the expansion. In the case, such
a small parameter is the proximity to the critical temperature, i.e., T = 1 — T /T,. In fact, the
standard GL approach is the lowest order in the expansion 7 of the self-consistent gap equation.
However, the next orders in T are also of great importance, for example, to capture physics of
different healing lengths of different condensates in multiband superconductors. Higher orders

in T are also important in the case of single band, surprisingly improving the GL theory [65].

So, based on the formalism of the Gor'kov Green function, using the first three orders
of the expansion 7 of the gap equation, that is, T%/? with n = 1,2,3. We have, for the order
11/2 we find the equation for the critical temperature. The terms proportional to 73/2 give the
standard GL theory, giving the lowest order contributions (in 7) to the superconducting
condensate, that is, « t1/2, and the magnetic field, that is, « 7. Then, with the terms of the
order T5/2, is derived the equations for the next-to-leading corrections to the superconducting
order parameter and magnetic field, o« 3/2 and o« 72, respectively. The equations that control
the order parameter and the magnetic field up to the next-to-leading order in T constitutes the

extended GL formalism (EGL).
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So, with these considerations, we use the Taylor expansion of the gaps up to the fourth
order derivatives for the gaps inside the integrals (Eq. 2.2-27) involving K, up to the second
order inside the integrals involving K} and just the leading term inside the integral involving
K.. Due to the spherical symmetry of the kernels, some odd-order terms of these expansions
can be neglected and a systematic expansion of the gap equation in 7 can be facilitated by
introducing the scaling transformation for the order parameter, the coordinates, and the spatial

derivatives of the order parameter in the following form:
A = T1/24, x =124, v, = 11/2y,

In further calculations we omit the bars unless it causes any confusion (V, = V). The result

reads as

T1/2 3
7A = a;TY%A + a,7T3/?V?A + a375/2V%(V2A) — byT2|AJPA

— byrS/2[2A|VAJ? + 30%(VA)? + A2V2A* + 4|A]2V2A] 231

+ ¢, 52| A|*A,

the coefficients are given by

,l.Z

2"hw,
a1=ﬂ—a[1+7+0(r3)l, /l:N(O)ln( - ), a = —N(0),
s

b, = b[1 + 27 + 0(7?))], B 7¢(3)
b=N(0) g 7
- 2 b
a, = K[1+ 2t 4+ 0(z?)], K = ghzvﬁ,
c; =c[1+0(1)], 93¢(5)
=N(0) ——=———
¢ =NO) Tagrirs
az =Q[1+0()], 0 = — niv
30
bZ :L[1+0(T)], L = Shzvﬁ.
9

The solution to the gap equation 2.3-1 must also be sought in the form of a series expansion

inT.
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So, we can introduce the expansion in small deviation from the critical temperature

[ee]

Ax) = 77 Z 7 AW (x), 2.3-2

n=0

Then, collecting terms of the same order, we obtain a set of equations for each A™
(g7 —DA@ =0,
ar© + p|A@|*A@ — gy2A© = o,
aA® 1 p (2A<1>| A(°)|2 + A(l)*A(o)z) _KV2AD = F, 2.3-3
And F is given by
F= —%A(O) + 2KV2A© 4 QV2(V2A©) — 2b|A©@|*A©
— L[2a0|vA©|” + 30 (VA©)” 4 A@292p©
+4|A®| v2AO] + ¢[a©@[*A©

The solution to first equation, i.e., g4 = 1, gives the ordinary BCS expression for the critical

temperature, i.e., T, = % hw,exp[—1/gN(0)].

The extended equation is a linear differential inhomogeneous equation to be solved
after A is found from standard GL equation. Note that similar features in the r expansion of
the gap equation appear for a two-band superconductor as well. While the equation for A© is
nonlinear, the higher-order contributions to A will be controlled by inhomogeneous linear
differential equations. Such a system of equations is solved recursively, starting from the
lowest order, since solutions for previous orders will appear in the higher-order equations, but

not vice versa.

The solution to the system will thus be uniquely defined (when the relevant boundary
conditions are specified), ensuring consistency of the developed expansion. The structure of
Eq. 2.3-3 makes it possible to conclude that the next-to-leading term A is not trivially
proportional to A | For that reason, the spatial profile of AV is different compared to A(®.
This means that the characteristic length for the spatial variations of A in EGL differs from the
standard GL coherence length. However, both lengths have the same dependence on 7 ,

ie., VA®D o 7.
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2.4 INTERTYPE SUPERCONDUCTIVITY

The division of Abrikosov between types I and II of superconductivity was very
important in order to establish a pattern of interpretation of very complex phenomena in
superconductors, and the distinction between types of superconductivity for single-band
materials were well explained by the Ginzburg-Landau theory that ideally distinguishes type I
and type II superconducting materials. However, experimental investigations as well as
theoretical calculations beyond GL theory have shown that this GL dichotomy of

superconductivity types is achieved only at the limit T — T.

With the study of unconventional vortex configurations in MgB,, interest in other
possible types of superconductivity in multiband superconductors has been aroused, where

many carrier bands contribute to the state of condensation.

Vagov et al. considering single-band and two-band superconducting cases under the
effect of magnetic fields applied in the vicinity of x, = 1/v/2, brought in another physical
image for the unusual phenomena observed in multiband compounds, where they considered
the Bogomolnyi self-duality in the EGL equations, in order to describe the so-called intertype
domain between the standard types I and II in the plane (x,T) which can be significantly
increased to a two-band superconductor. Thus, it has been shown that the intertype domain
cannot be captured by the standard GL theory because of non-local effects beyond the GL

domain that must be considered [61].

In the presence of a magnetic field, the gap function A and the magnetic field B (or the
vector potential A) must also be expanded in powers of 7, so they are represented in the form

for a two-band system
A = tV/2(B® 4 1AW 4 ...),
B=1(B@®+BW +...),
A=1Y2(A0 4 AW ., 2.4-1

Matching the terms of the same order in 7 the EGL free-energy density, following the analysis

[35][61], we can write

f=r2(@ D 4 FO 4@ 4 L), 2.4-2
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where the lowest-order contribution reads
FED = (BO|L[E®), 243

with (...) denoting the scalar product of vectors in the band space. Here L for a two-band

system is a 2x2 matrix where the elements given by

Lij = vij — A;bij,
being §;; the Kronecker symbol, and y;; the inverse of the coupling matrix, where each
element is given by the term g;;(elements of the coupling matrix) that are symmetric, the

coupling constants. The gap vector must be proportional to the eigenvector associated with the

zero eigenvalue A = 1 (x)7,.

The next-order contribution to the free energy density is the GL functional
B(0)2 4 2
fO =——+ (BOL[E®) +c.c.) +Zan A(°)| += |A(°)| + K, DAY 244

D=V- 1—A(°) the gauge-invariant derivative with the leading order contribution of the

vector potential and the coefficients are related to the band n.

The leading correction to the GL functional is obtained in the form

B©@ .B® . . . .
FO = % +(EOWLED) +c.c.) + @EOILED) + Y (5D + £D),
n

where fn(’ll) contains only the lowest-order contributions to the band gap and the magnetic field,

) = A(°)| + 2K, |DA(O)| +§6;j£2 §<°>2|A£?)|2 +bn|A${’)|4
—Qn {|D2A(°)| +2 (z sz<°>)+ B(°)2|A(O)| } 2.4-6

- i : ) c 6
_7"{8|A59)| |DA$9)| + [A;O)Z(D*AE?) ) +e C]} _?n Aglo)| }
while fn(é) includes also the leading corrections to the band gap and the field,

) _ (an +b,[a? )(A;@*Ag}) +ec)
2.4-7
+ K [(DAD - D8P 4 ) - AW -y,

2.4-5
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i, = i;—i (A%O)D*A*n(o) — A;(O)DA;O)) is the supercurrent density contribution of band n, and

Qn, Ly, c,, are the coefficients each band. From this functional, it is possible to derive the Gibbs

free energy that is used in the criterion of the interchange between types I and II.

Now, we will check the switching between types I and II for an isotropic single-band
case, the criterion for such interchange utilizes the corresponding Gibbs free energy: when it
becomes smaller than that of the Meissner state at the thermodynamic critical field H.. The

respective difference between the Gibbs free energies is written as

H? H.B

8t 4m’

G = fgd3x, g=f+ 2.4-8

Then, the nucleation of a non-uniform condensate/field configuration can be investigated
based on the criterion G (k, T) = 0. That yields the corresponding GL critical parameter k*(T),
hereafter referred to as simply a critical parameter. On the (k, T) plane k* separates domains
with and without the flux/condensate configuration of interest, called types Il and I. Using this
criterion for various nonuniform configurations (e.g., for the single vortex solution, the domain
wall between the normal and superconducting state, etc.), it is possible to find the
corresponding value of k¥ above which a non-uniform pattern (representing the well-known

mixed state) becomes stable. In the following results it is convenient to use the dimensionless

quantities
x = Ax, =Y, g _ gOq_
V=Pt B=——B8, A=—S"A]4,
K2 K
3
. HC(O) - P HC(O)ZJ? ~ HC(O)Z_ e Hgo)z(l\/i) .
Ak i 7 9= 47 9 — '

In the following we write the dimensionless quantities without bars unless it causes any

confusion. The density of the Gibbs free energy difference is given by the expansion

where in the lowest order we have the GL contribution

1 <|B<0>|
2\ k2

2

1 1
—DY|% = [WI? + = |p]* 2.4-10
1) + 5 DY — [l + S 1",

g© =
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while the leading correction writes

(0) 2 2
g = <|B |_1> <1+£) i Wl Il + |DK1/;|

2 2" 3b?
aq
+oo 4K2{|Dz¢|z+ (V x BO®) +B(o)z|¢|z} 2.4-11

b BV RIDYE + 2D +c.c.} +op IS,

As we are interested in the boundaries between types I and II in the (x, T) plane it is useful to
expand G around x, = 1/v/2. So, expanding with respect to 8k, Sk = k — k,, we obtain

(0)

G =12 (G(O) + de

5K+TG(1)+"'>, 2.4-12

Ko

The derivative dG© /dk contains the direct contribution coming from the explicit appearance
of k and the indirect one related to the derivatives dip/dk and dA/dk. However, one can
immediately see that the indirect contribution is equal to zero because the corresponding terms

in the integrand are proportional to §G© /8y and §G© /8 A which are zero in the equilibrium.

. dg©®
The expression for ”

dg®  [BY)] <|B(°>| B 1)

dk - Kz\/i K\/E

At Kk = K solutions to the GL equations are obtained using the Bogomolnyi self-duality

reads

1 2
—;IDIIJI , 2.4-13

equations
(8, +i0, )Y = (A, — iA))Y,
|BO| =1- |y 2.4-14

that are useful to simplify the integrals in G, that can be written as

aQ al. ac 5aQ
G = Tz {-\/E:](SK-FT[(]. _ﬁ-}_zﬁ)j-l_ <2bK—ﬁ—§K2>J] + }, 2.4-15

With

7= f pI2(1 — [l dox, J= j I4(L = 1) d3x, 2416
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It is important to notice that G© is zero for any solution of the GL equations at k = .
manifesting the degeneracy of the Bogomolnyi point, so G comprises only two contributions,

« 0k and « T.

Substituting Eq. 2.4-15 into G (x, T) = 0 one obtains the general expression for critical

parameters up to the leading correction in 7,

ac aQ J(zaL ac 5aQ)]+---}, 2417

K* =K0{1+T[1—ﬁ+2F+7

Where the constants are not dependent on the material parameters, which points to the

robustness of the approach. Thus, we can calculate the critical parameter based on the criterion

of interchange, which is dependent to the ratio of 7 /7.

The first criterion is based on the appearance of a flat Normal-Superconductor domain

wall. The corresponding solution for this criterion is (J/J = 0.559. So,
Ks = Ko(1 — 0.0271), 2.4-18

The thermodynamic stability of an isolated Abrikosov vortex, given by the condition

H. = H. yieldsto J/J = 0.735. Thus
Ki = Ko(1 + 0.0937), 2.4-19

The condition of changing the sign of the long-range vortex-vortex interaction is
calculated using G for the state with two single-quantum vortices separated by distance R. In

the asymptotic case J/J = 2 (R = o)
Kj; = Ko(1+ 0.957), 2.4-20

Finally, onset of the superconductivity nucleation is defined by the condition H., =
H.. To solve this equation, we can use Eq. 2.2-19 and utilize the fact that in the limit B = H,,
and the order parameter vanishes. Thus, in this limit one obtains J/J — 0and the

corresponding critical parameter writes
K, = Kko(1 — 0.40771), 2.4-21

The boundaries between types I and II is given by the upper and lower limits x;; and
K, respectively, in the limit T — T, the difference disappears and one arrives at the standard
classification: type I is below k, while type II is above k,. Below T, is find the intertype

domain between types I and II.
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As we can see in the Figure 2.4-1:

! I - L=nk " I " I J 1.2

| transitional type Il

- domain 4 1.0
i single-quantum vortices "

i K* attractive at long ranges i

[ 0 S TMaee o, i

00 02 04 06 08 10
T/ 7;

Figure 2.4-1 Internal structure of the transitional (intertype) domain [k5(T), x;;(T)] as following from analysis of different
isolated-vortex solutions. The subdivision in the three subdomains is dictated by the presence of critical parameters i3 y(T)
displaying stability of N-quantum vortices in the interval [k(T), k1 (T)]. Figure from [35]



47

2.5 FLUCTUATION — DRIVEN SHIFT OF T,

Introduced by Landau, the notion of quasiparticles has promoted great success in low
temperature physics. Where, according to this hypothesis the properties of many body
interacting systems at low temperatures are determined by the spectra of some low-energy,
long-living excitations (quasiparticles). Phenomena which cannot be described by the
quasiparticle method or by mean field approximation (MFA) are usually called fluctuations.
A successful example of the use of both MFA and the quasiparticle description is, for example,
the BCS theory, explained before. And due the fact that fluctuations give small corrections to

the MFA results determined the success of the theory for traditional superconductors [104].

BCS Theory provides good results for the traditional superconductors, however in the
vicinity of transition, fluctuations lead to small corrections in the physical characteristics in a
wide range of temperatures. So, we can use the fluctuation theory to obtain the correction in

the critical temperature.

2.5.1 Partition function and free energy

The complete description of thermodynamic properties can be done through the
calculation of the partition function, in the vicinity of the superconducting transition, side by
side with the fermionic electron excitations, fluctuation Cooper pairs of a bosonic nature
appear in the system and they can be described by means of classical bosonic complex fields

Y (r) which can be treated as “Cooper pair wave functions”.

So, we need to find the free-energy functional with the fluctuation corrections, in D-

dimensions, and j is related for each direction, we have for the anisotropic model:

F= fL @ dalp @+ 5 @l +Zz<<f>|aj¢(r)|2 L

In order to find the fluctuation contribution, we have to write the order parameter as the sum

of the equilibrium, ¥, and fluctuation, n(r), parts.
PY() =Po +n(@). 2.5.1-2

where Py = [— %.
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So, the free energy can be written as
F= Fo+ H 2.5.1-3

Being, ¥, the mean field contribution to the free energy, and, # is called the fluctuation
Hamiltonian that is the fluctuation contribution to the free energy and has dependence on 71(r)

and n*(r).

Therefore, we can calculate the partition function

Z= jsz(r)DlP*(T)eXp{—;}'

ﬂ[n(r),n*(r)]}_ o

Z = exp {—%}f Dn(r)Dn*(r)exp {— T

Applying Y (1) = Yo (r) + n(r), into the equation of free energy Eq. 2.5.1-1, and considering
only the quadratic terms (|n|?, n%,1*?) in the fluctuation, odd terms do not contribute to

Gaussian fluctuation. Then, we have:

L. alp@I? = a(ho + 1) (o +1° (1) = aly,l® + alnl?;
2. 2@t =2 (o + () (o + 17 ()" =2 WE +n* + 2Pem)(WE + 17 +
2on") - 2 (W8 + PEn? + Wi’ + 4pdlnl?);
3. KD|ap@)|* = KDP[a; (o +n()|" » KD |am|”.
Collecting the terms only with dependence in Y, we can find

2

b a
r= [ arrfatpo + Bt = - So |
) jLD rlalpol? + 5w} = -2 25.1-5
With the remaining terms we can obtain the fluctuation Hamiltonian

b b
H=| dPr{(a+2byd)Inl*+ Engnz + Ewﬁn*z

LD

2.5.1-6

+ D KDlom|* .
j
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2.5.2 Gaussian fluctuation Hamiltonian in terms of the Fourier components

The fluctuation contribution to the partition function is written as:

Hn (), Ti*(r)]} .

2.5.2-1

Zpluc =fDTI(T)D77*(T)eXP {_ T

To solve this functional integral we perform a Fourier transform from configuration space to

the momentum space and separating into real and imaginary parts.

1 . . 1 _
n(r) = Wz e'971q ") =5m z e TG 2.5.2-2

q q

Rewriting the Gaussian Hamiltonian and separating the terms

b
#= @+ 2b) [ arinP +59 [ arip?e]
Lp Lp

b | , 2.5.2-3
+298 [ arrlp 2@+ Y KO [ avrlop
LP 7 LP

So, performing the transformation for each integral
1 (a—ar)-
L fpdPrin@mI? = [, dDrL_DZq,q'el(q N7 ne = Laq Nl Sqq = Z:q|77q|

1 ; n.
2. [pd®r[?@)] = [1pdPr 5 qq e g = Tqq MallgSa-q' = TqTql-q

as all coefficients are symmetric under q — —q, we assume 1q = 1_g;

3. [pdPr[n2 @] = [ 5 dPr 5T qq e Ty, = Taninty;
4. fpd®r|gm@" =[5 d°r 5 Tqq 9(e97ng) - 9(e™™ng) =
S dDrLiDZq,q'[(ineiq'r) - (—iqje™ g, )] = Xq q?|nq|2-

Collecting all these terms, we obtain

H= z a+ 2byi + z KW q? |qu| += 1/)0 (Ngqn-q +MinZq)|-  2.5.2-4
j

The real and imaginary parts of the fluctuation field can be separated in the following

form
Nq = Xq t 1Yq) 2.5.2-5

where, xq = Re{nq} and yq = Im{nq}.



50

And, the following term

Nall-q + NaN=q = (¥q + V) (x_q + ¥_q) + (Xq — i¥q) (¥=q — i¥-q) = 2XqX_q — 2YqYq.

So, our Gaussian Hamiltonian becomes

H= z a+ 2by3 + Z K9 g% | (x2 + y2) + by (xq¥—q — YaV-q) |
- .

J

That can be written as
H= Z[Aq(xé + }’5) + B(qu—q - yqy—q)]' 2.5.2-6
q
with Aq = a + 2byZ + ¥;KY q% and B = b3 .

2.5.3 Fluctuation part of free energy

Now, we have everything to our disposal to calculate the fluctuation part of free energy.

First, we need to rearrange the fluctuation Hamiltonian and express it in a matrix form.

Taking into account that we have a summation over all momenta (, we can change its sign to

express it in a more convenient form, in function of matrices.
— 2 2
H= Z(Aqxq + BxgX-q + Aq¥§ — BYgY-q),
q
Jr= o [(Agx2 + B ++B + Agx?
=3 (Agx§ + Bxgx_q X_gXq + AgxZg)
q

+ (AqY§ — BYqV-q — BY_q¥q + Aq¥%q)]-

=g e <o )@ en ol Z 0]

= Z [(xq X-q) (ilgq fq) (;_qq) + (Va V-q) (f; ;f) (}{qq)], 2.5;.3

where q,, = 0 assures that for each pair q and —q only one vector of the wavenumber is present

in the sum.
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In order to proceed, we need to get the diagonal representation for both x- and y-

contributions, so we need to find the eigenvalues and eigenstates of the matrices

()
(Xq X-q) (AB AB>(xq ) = (aq Bq) (E‘;+ E(((:x_)) (g:), 2.5.3-2

And

P B 0\ e 2.5.3-3
(Ya y—q)<_§ A )(y-qq):(f" (q)(c(l) Ecﬂy})(Z:)'

q
A, B
The unitary matrix U, is made of eigenvectors of ( B A ) then

(x)
U(A B)U _(Far O
B Ay *7 w0 )
0 E

and we can write

A
Similarly, the unitary matrix U, is made of eigenvectors of (_q ), then

B A4
6]
ot <Aq —B) U = Egy O
P\=B A4q/ 7 \ 0 EY
(y) 2.5.3-5
A, -B Eq $
T q T _ q

where Vq Y-q)U, = (§q ¢q) and T/T (;]qq) <§q>.
q

Our next step is explicitly the unitary transformations to find U, and U,. The

eigenvalue equation associated with U,

(x) (x) -
(Aq B) ug E(x) 2.5.3-6
B Aq (x) (x)

i i



a non-trivial solution to these equations exists when

(x)
det Aq_Eq’i B o) =0,
B A, —E*

For Eéﬁz we obtain

So, the components of the eigenvector are

@ _ 1 w_ 1

uy’ =— v = —

NoE

where we used the normalization condition uix)z + vix)z =1.

We can do the same for Ec(lfc_), and we get

u® = \/%, v® = —\/%,
Hence,
U 1 (1 1 )
*T 7z -1
1 a a 1
() =776 2D (e) (o) =z G 2G5
and

fdqux_q =fdaqdﬁq.

In addition, for the y-contribution, the eigenvalue equation associated with U,,.

6% 6%
(Aq _B> Y ) pon [ He
=B Aq)\,») " Fex| 0

52

2.5.3-7

2.5.3-8
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The correspondent non-trivial solution to these equations exists when

6))
A, — E —-B
det( a et (y)> =0,
—B Aq o Eq,J_r

and then

o _
Eq’i =Aq B,

Hence,

& 1 — 2.5.3-9
()=-%0 HEm
and

jdyqdy_q = jdfqd{q.

Using the new variables agq, Bq, $q, {q One can rewrite the fluctuation Hamiltonian as

=Yl s (™", 25 ()
9,qx20 2.5.3

A,+B 0 3 -10
@ o L)

and the fluctuation contribution for the partition function becomes

Zpluc = f 1_[ (daqdﬁq dfqd{q) exp {_ jL[[aq’ 18’;1 f(I’ (q]}

q,9,20

2.5.3-11

So, the fluctuation contribution for free energy is given by

Friue = —T In Zppyye, 2.5.3-12
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writing explicitly, we get

TFluc

:—Tlnf 1_[ (daqdBq d§qdSy) expy—= Z l(“q ﬁq) A +B AqO—B> (Z::)

q,qx20 q qx20

A +B 0
+ (Eq Zq) ( Aq _ B) <§:>l f

1
=T f [ | (dagdpydéodss)exo] -2 > [(aq +B)ag + (4g — B)SZ

4,920 4,920
+ (Aq + B)S(czl + (Aq o B)(é] :

That is a Gaussian integral with the following solution

<F Tl 1—[ nT T nT T
Fluc — —1 In
e Aq+B |Aq—B |Aq+B |Aq—B

q,9x20

Fe = =T ) (1 rin-2L
Flue = rlA 57 "a,-B)

q,9x=0

And finally, we arrive at the expression given in the book by Larkin and Varlamov[104]:

T nT nT
q

Aq+B=a+3b¢§+2KU)q§, Aq—B=a+blp5+2KU)q§.
- :

Some remarks due the eq. 2.5.3-13, this expression holds both for T > T,y and T < Ty, and
for T < T, the second term in this equation is divergent at q — 0, i.e., the Goldstone mode

appears in the system, this term is related to the phase fluctuations. We can also notice that

T
and
Aq+B Aq-B

are not dimensionless because in the introduction of d(Renq), and d(Imnq),

we introduce a dimension quantity under In. We can also notice that if we can multiply
d(Renq) and d(Imnq) by arbitrary factor it will not contribute to the fluctuation heat capacity

and the Ginzburg number.
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2.5.4 Ginzburg number, Ginzburg-Levanyuk parameter, and the
fluctuation heat capacity

From the fluctuation free energy now, it is possible to calculate the fluctuation for the
heat capacity. This fluctuation contribution is divergent at T, mean field critical temperature,
while the mean field contribution is regular. The temperature T* < T, at the heat capacity is
equal to the mean field contribution, is called the Ginzburg-Levanyuk Temperature. The
Ginzburg Number is defined as

Gi=1--—, 2.5.4-1
Teo

it measures the temperature interval below T,,, where the fluctuations are important.

The procedure to calculate Gi employs only the contribution from the temperature

dependence of Aqg = a + 2by¢ + Kq?. The fluctuation contribution of free energy Aq appears

T

T
and .
Aq+B Aq-B

in two terms

The first one at T < T,,, we have

Tl
2lal +X; K9 q3

and the second one

nT
this term is not dependent on the parameter a. We should keep in mind the infrared and
ultraviolet cut-offs here (temperature independent).

Thus, the divergent (critical) part of the fluctuation heat capacity is related to

q__(crit) . Teo T

= n - .
Fluc 2 - 2lal + Zj KO qi 2.5.4-2

So, in order to calculate the heat capacity, we need to calculate the entropy first

crit)
(crit) — _ aq:i‘luc
Fluc oT )
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: T, 0 .
serin) gzﬁ —(m2jal + Z KD g
q J

S(crit) — _@z 1 Zalal
Fluc 2 £ 2|la]l +X;KW q3 " oT’

. 1
(crit) __
Skiuc” = Tcoazq: 2lal + ZjK(j) Cl?' 2.54-3

where |a| = a(T,, — T).

Then we have everything to calculate the fluctuation contribution to the heat capacity,

from statistical mechanics we obtain that

(crit)

C(crit) = kT aSF?ZLlc

v,Fluc — "“B%c0 oT '
Clerity _ T2 942 z !
v,Fluc — "B%c0 ; 2

5 (2lal + ;KD g3)

CY) = 2kpTha? !
v,Fluc — <"B*c0 2.5.4-4

= (2lal + ;KD q2)"

C(crit)

It is important to note that integral (sum) in C;, zp,

is not divergent for T < T,y without any

cut-offs, so the cut-offs do not contribute at this stage and can be ignored.

C(crit)

It is instructive to consider the formula for v, Fluc

in the particular isotropic case with

K@ = K. So, it is convenient to write the Eq. 2.5.4-4 in function of the coherence lengths,

and we have ¢ = \/%, the Ginzburg-Landau coherence length that ¢ — oo(T — T,), and the

[k . .
zero temperature coherence length &, = — that &, is finite at T — T.,. Where
co

¢o~Epcs, €pes 18 the BCS coherence length or the cooper-pair size for the isotropic case.

Then, one finds

C(crit) _ ZkBTcZOaf2 1
v,Fluc — 4K?2 |a| 25 2’
q (e 4
K 2



C (crit) _ kB 1

v,Fluc — 4 2"
’ 2 2
45 (5-2 + 3 )
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2.5.4-5

And as £72 5 0 we have CT9 5 oo(T > T,,). So, the critical behavior is due to the

v,Fluc

divergence related to &, or due to the fact that |a| — 0 for T — T,,. This is why the dependence

of |a| on the temperature is decisive in the fluctuation in the free energy.

Further, we perform the calculations for the general case of an anisotropic system, from

the discrete to continuous variables by standard procedure

D
Zq: Y f (CZin;lD'

So, Eq.2.5.4-4 becomes

e = 2yt [ g b
' (2m)P (2|a| +Y,K0 qﬁ)
Changing the variables q jm - p;
LP d’p 1

it
Cé?‘lz)c = 2kg Tczo a®

M-, KD ) (2m)P (2|al + p?)?’

D
and, making a new changing of variables 2 _ m that means d” p= ( Ial) d’m

Vial

IP|a|P/? d®m 1

(crit) _ 2 2
C = 2kgT - ,
Blco® H?:lK(]) lal2 ) (2m)P (2 + m?)?

v,Fluc

as we know |a| = aT,yt, where T = 1 — T /T,,, then we can write

D/2
C(crit) — L’ 2k TCO aP/? ( d’m 1
vite = g2=p2 TR IR KO) ) (2m)P (2 + m2)?’
D/25D/2 ; 5) . ) ]
as we have aD TC‘E].) = — ! L (()]) = ’K— where f(()]) is the direction-dependent zero
HJ'=1K l_[j=1 0 aTeco

temperature coherence length.

Thus, finally we can obtain the critical fluctuation to the heat capacity as

(crit) _ ZkBLD 1 dem 1

v Fluc = -2-D/2 j D 2)2 "
t2-D/ H?:lf(()]) (2m)P (2 + m?)

2.5.4-6
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With this result one can see that

1 1 1 1
1-1/2 E(l) =@ 3)

0
11 1
Cécprzi)c x¢ D=2- 5(1) 5(2) ; 2.5.4-7

D =

1

D=1=>=r"m
0

\

We can see that the divergence of heat capacity is more pronounced in lower dimensions. This
divergence is connected with the Goldstone mode and sensitive to the presence of strong phase

fluctuations, which are beyond the Gaussian picture of the present analysis.

The results of integral of the Eq. 2.5.4-6 are given by

1
(D=3- ;
82
J d’m 1 B 1
QP 2+moz | DT g
1
D=1->——.
162
Then, we arrive at
LBk 1 1
= d
D (D) z3)
47-[\/5_[1/258 )f( )f( ) ( )
L*k 1
(crit) = B
Coftue = § D=2-—— S((1)5(2)' 2.5.4-8
Doy M 1
= - —_—
\ 8V273/2¢()
Recall that the phase fluctuations affect the divergence of Cécprli)c
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2.5.5 Ginzburg Number

Finally, to calculate the Ginzburg number from fluctuation heat capacity, we need to

find the mean-field contribution to C,,. The mean field contribution for free energy is

aZ

Fp . = ——1LP. 2.5.5-1
™ 2
For Entropy
0 Fm.y. plala
Smf. = o - L 2.5.5-2
So, the mean-field contribution for heat capacity (taken in the leading order 1)
aS
f.
Cv,m.f. = kBTCO%
T, a?
Comy. = LPkp= T 2.5.5-3
Now, we have everything at our disposal to calculate Gi from the equation
Cv,m.f. = C,E,C;li)c(f = Gi), 2.5.5-4
T,oa?> LP k
LD kB c0 B

b 2-D/2 ?'

However, before performing the calculations for different dimensions with the proper
numerical coefficients involved, let us derive a useful approximation for Gi, neglecting
numerical factors and anisotropy. Usually such formula is given in terms of the jump in the

mean-field capacity per unit of volume at T = T, i.e.

T, a?
AC = ky——. 2.5.5-5
Then,
AC~ kB _D — )
T,
Ci 1
L~ .
AC _p\2/¢D) 2.5.5-6
(7€)
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The zero-temperature coherence length &, plays an important role in the estimation of the
fluctuation impact, when &, decreases Gi increases together with the impact of fluctuations.

This increase of Gi is dependent on the dimension of the system, D, i.e.

i

D=3-—;
o
. 1
cat D=2~ 7 2.5.5-7
D=1t
=1->—.
¢o

Now, let us proceed to detailed calculations of Gi in the general anisotropic case

l. D=3;7=Gi:

L3k T, a? _ L¥kg 1
B - B )
b 41T \/5611/2551)552)5(()3)
3/273/2
il — b 1 a3/2T;]

Teo@? 4 N2 \[K D[k @\ [K 3

To have an idea about the value of Gi, we consider the particular anisotropic case of a single

band superconductor with a standard deep band in the clean limit

6i = —Teob” 2.5.5-8
32m2 aK3’ o
70(3) h2vE 77(3)
b=N0)——, K=N(0 —_—
( )87T2TCZO ) 6 8m2T3
N(0) mkp
=T, NOlo=s =52z
So, Eq. 2.5.5-8 becomes
C27mt TY
Gi = )
1473) (nzk2\*
(=)

4

27* (T \* T,
Gi = (L") ~102 (L") .
14 ¢(3) \E Er

To have an idea about the value of Gi, for aluminum for example

MeV
T.o=12K - T, = 1.2K - 0.086183T = 0.1 MeV,



Er =10 000 MeV,
Gi = 10718,
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This value is typical of elemental superconductors. For a shallow band Gi increases

significantly and can be of order 1, huge fluctuations. The reason is a drop in Ep, or a

corresponding drop in &,. Shallow bands have extremely slow charge carries

so that

characteristic velocity in the stiffness K is nearly to zero, K is decreased as compared to the

case of a deep band, and so is &.
2. D=2;1=¢Gi:

Teoat®  L’kg 1
b 4 Gifél)féz)'

2k,

1 b aT,,

4w a?Te [k JK®

Gi

For a single band isotropic superconductor with a standard deep band in the clean limit,

Gi— 1 b
"Tam ok
77(3) h2v2 7¢(3)
b=N(0 : K = N(0) ———=,
( )8712TCZO © 4 8mTZ
N(0) m
= N(O = = T
Eq.2.5.5-9 becomes
Teo Teo
Gi S 2 )
%hzvﬁ h2kg
m
Ep

Using again the values for aluminum

T.o = 0.1 MeV,
Er =10 000 MeV,
Gi = 10"°.

That is significantly larger than for D = 3.

2.5.5-9
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3. D=1;7t = Gi:

T.oa? Lkg 1

Lk - ,
b 8y26i32el

1/2
1 a'2TJ% b

Gi3/? = ,
8vV2 Jx@ a*Te
G2 = b ,
1/2
8 V2 [KWq3/2TY
Gi = (— b\ 2.5.5-10
"T\128KOTa3) o

A single band isotropic superconductor with a standard deep band in the clean limit

7((3) hzv,% 7((3)
b = N(0)——, —
O g2z K=NO =~ grz
N(0) m
a= T N(0)|p=2 = R

Eq.2.5.5-10 becomes

~ \128 8n2 Ez/)’
T 0
Gioc(i’) ~1.
Er

From this result, we can see that, superconductive fluctuations are extremely pronounced in

the case D = 1 and corresponding Gi does not depend on microscopic parameters.

So, we can obtain the general relation for the Ginzburg number at D = 3,2, 1 as

2(D-1)
Teo

4—-D
Gi (_) _ 2.5.5-11
l EF

Notice that Eq. 2.5.5-11 is considered for D = 3, 2, 1. However, it is an important remark that
Gi becomes infinitely small at D = 4. This reflects the fact that fluctuations are negligible in

the Ginzburg-Landau theory for D > 4.
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2.5.6 Isotropizing an anisotropic Ginzburg-Landau theory and Gi for the
initial anisotropic and eventual isotropic models

Here we return to the free energy functional of the Ginzburg-Landau theory.
b 2
F= jLD dPr [a|1,b(r)|2 + §|¢(r)|4 + K(x)|ax¢(r)|2 + K(y)layw(r)l + K(Z)|az¢(r)|2 ,

taken in the general anisotropic case. The model can be isotropic for D = 3 by the coordinate

transformation

X y . z
7 =

Ja@ Y= Ja® Ja@

with
0 K2 oo K2 e Sl
K K K
and
K = YKOKOK®,
Notice that
a@qMg® = 1,
and so, (D = 3)

d3r = d37,
which means
- b < 12
F= f d37 [a|¢|2 + §|¢|4 + K|y ]
L3
where V = (03, 85, 9;).

, ®
In principle, one could invoke the transformation such that a® = K?, K+ VKWKWK®@,

However, in this case an extra factor will appear in & because d°r # dP#. This factor should

be taken in account during the calculations of the fluctuation impact.
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Under the choice of the coordinate transformation, we can easily find that the

outcoming isotropic model yields at D = 3

which is the same as Gi of the initial anisotropic model

1 T.ob?
322 aKKW K@)

Gigyr = Gijp =

The critical temperature is also the same in both models. We note the transformation yields

the only solution of the equations

K® g g

a®@ g0 @’

The same we can do for D = 2, the isotropic transformation reads

a@aW g

@ =1,

- x ~ Y
X = ) y = .
4/ a(x) 4/ a(:)/)
with
() )
g0 =K o) = KT K = JKOKRD.
Here
a@q® =1, d*r = d*7.
Finally
1 b 1 b
Glout 0 Glm =
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2.5.7 General form of the Gaussian “Hamiltonian” and fluctuation-field
average

To proceed with our formalism, we need to generalize the fluctuation “Hamiltonian”.
In a similar way as we obtained before, but in this case, we can also have contributions of
terms like |n|* approximated (a kind of mean field approach) by « (|n|?)|n|?, in further
considerations of the fluctuation-driven shift in T,. Sometimes, such high-power terms are
called “fluctuations interactions”, just following the interpretation of the nonlinear term in the
Ginzburg-Landau equation, notice that, this interpretation is based on the similarity of the
Ginzburg-Landau equation with a nonlinear Schrédinger equation, in fact, this interpretation

1s rather conditional.

So, using the definition nq = x4 + iyg, for the Fourier component of the field n(r), the

general fluctuation “Hamiltonian”, in the Gaussian approximation reads
9= ) [en (o +98) + e (xgxq = Yoy-a)] 25.7-1
q

And after performing the diagonalization procedure, as we have done before, we obtain

H= Z [El,q(“czl + f&) + Ez,q(ﬁé + {é)]' 2.5.7-
q,qx20 2
€14 = €+ T £, €2q = E+ — £,
1 1
Aq = ﬁ (xq + x_q), Bq = ﬁ (xq - x—q)'
1 1
$q = E(Yq + y—q)' q = E(Yq - y—q)'
Aq = A_g, Bq = B-q $q = $-q (a=0-q
_ &9t &g &9 &2q
(@) = 21252 e =2
1 1
Xq = ﬁ (“q + ﬁq)' X—q = ﬁ (“q - ﬁq)'

1 1
Yq = ﬁ (ch + {q)' Y-q = ﬁ (_fq + {q)'
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and

T nT
Friue = — 3 E n_+ln_ : 2.5.7-3
2 p Elq Ezq e

Notice that, the functional integration here can be done only over the set qy, as
_q Bq=PB-q $q = $-q Sq = {—q- The choice of qy is not mandatory, we can adopt

qy =0,q, = 0.

It is also important to note that &, ¢ does not appear in the problem when only the real
fluctuation fields are included: ¢, 4 is related to phase fluctuations of the order parameter and,
so, to the Goldstone mode, this come from the fact that xq = x_q and yq = y_q for real

fluctuations.
Then, we can use this framework to calculate the average of the fluctuation fields.

For (n(r)), we have

J DInln(r)e

() = e
as
1) = o7 . 9
3
becomes
(0@ =17 Y. €0y,
3
with

J DinlngeM!

J Dnle-tm

As g = Xq + Yq and g = xq — iy, We have

(nq) =

<77q) = (xq> + i<yq):
and

J D[n]xqe M J/ D]y e

%) = T Dlgje D) =T n]eﬂ“’



Whereas
(nq) = (xq) — i{¥q),

Then,

{xq) =
) J Micreyz0 daid By déddx exp {— %Zk[ﬁ,k(“ﬁ + &) + &x(Bg + (ﬁ)]}

J gy dtgdzy C P ey (L1 o3 +.83) + 0065 + )

J daqdBy déqdqexp {_ % e1q(ad +68) + e24(BG + (&)]}

(xq) =

[ daqdBy (aq\}%ﬁq) exp [— % (e1qa2 + ez,qﬁé)]

1
J dagdBq exp [_T (e1qa2 + sz,qﬁé)]

(xq) =

In turn,

(yq> - 1
J Tk, 20 dad Py déxdy exp {— TZk[Sl,k(alz( + &) + ek (BE+ fﬁ)]}

F g gty S exp (Lo o (a3 + 3) + 2083 + )

[ datqdBy déqdlqexp {~ 7 [e1q(a2 + £2) + £2q(82 +¢2)])

(¥q) =

f dfquq % exp [_ % (El,qfé + Sz,q{é)]

(Vg) = 1 -0
fd{qd(q exp [_T (81,qfc2| + Ez,q{&)]

Thus, we conclude that
(ng) =g =0,
and

(n@))=m@))=0.

Obviously,

(Vn(@) =(Vn"(r)) =0

[ Thokyo Aty dicdlGicxq exp {— 1 S molern(@d + &2) + e (B2 + D))

B J Tk k20 dad By déxdliyq exp {— %Zk,kxzo[gl,k(alz( +&0) + &2 (Bi + 513)]}

67
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Now, we investigate the pair averages, and first we consider (|72 (7)), but in order to do this

calculation we need to rewrite the product n(r)n*(r) in terms of the variables with g, > 0

— 1 iqr — 1 iqr ;
n(r) = 2/, M=oz /¢ (xq + ivg).

q q

as we can do the change q —» —q

1 . .
n(r) = 21D/2 Z elq.r(xq + qu) + el_q.r(x—q + i)’—q),
q

1 . .
1) = 2o > €7 (g + i) + e (g + iy-y)]

q,qx20
_ 1 ar[(@atBa)  Catda)], i qr[(@a—Bq) .(=6a+%)
n(r)_”“quxzo{eq l 7 qﬁql“ q l R AR ql}
1 i i~qr
0 = quzo (e o+ 80) i+ 6]+ g = ) + ik + )

For the complex conjugate

1 —iqrr
(1) = LD/2 Z {eﬁ [(aq/ + Bqr) = i(Sq + /)]

q/,q/%x20
eiql-r .
S g = ) + i =)

Considering only the terms with q = q', other terms do not contribute, we obtain

1 az azeiZq-r aze—iZq-r az ,32 ﬁzeiZq-r ﬁze—iZq-r ,32
(HOIE1Y (—q+ R e i L L

2 2 2 2 2 2
q,qx20
N f_& _ féeiZq-r ~ fée—iZq-r N f_& +ﬁ N éeiZq-r N (ée—iZq-r +ﬁ
2 2 2 2 2 2 2 2 )

Calculating the average, of each term

fdaqaée'”_ J dagagexp (_%El,q“le) _ r %) 2 (El_q)

" _ _ T
(aq) f daqe'ﬂ f daqexp (—%314“5) 5 (El,q)% r (%) 2 €1,q
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fappie™_Jabafiew (~reafl) () 2(F) 17
T appon (~Fouat) g (af T() o

(Bg) =

The same we can do for (¢§) and ({¢), that read

And, now we can calculate the average

1
@) =75 > (@) +(B3) + (€) + (@3

q,9x=0

So, as we can see (ag) = (£5) and (B3) = ({¢), and (|n*(r)|) writes

2
i@ =75 > ((ad) +(63)

q,q4x20

1
I @) =75 ) (@) + (62)),
q

1 T T
2 — _ —_
(In“@1) >Ip E ( 81'q+ sz,q>' 2.5.7-4
q

The same procedure we can do for (n?(r)), using the previous results for n(r) in terms of the

diagonal variables ag, Bq, §q and {4

o“o 2 2 2 2 2 2
BRI ABD) (EDe™T (6D (EDe T (6] (e
2 2 2 2 2 2 2
G (ghem (g
2 2 2 )

as we can see (ag) = (£g) and (Bg) = ({§)

1
@Y =5 > (@) + () = (B3 — D)),

q,9,20
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Finally

) =55 (o=
n r - 2LD El‘q Ez,q ' 2 5.7-5
q

When ¢, 4 = &, ¢ (above the critical temperature, where there is no averaged condensate), we

have (n%(r)) = 0, while (|n?(r)|) # 0. Generally, |(n?)| < (|n?|), which is justified by the
presence of significant oscillations of 1? due to the phase variations. This, in particular,
dictates the random phase approximation, according which any average including different

numbers of 7 and n* is nearly zero due to oscillations caused by phase variations.

2.5.8 Fluctuation- Shifted critical temperature

In this section, from the formalism of the Gaussian fluctuations we will calculate how
the critical temperature is shifted from the mean field temperature, T,(. As is usual, the critical
temperature is found by the Ginzburg-Landau equation, by the temperature dependence in a.

So, our starting point is the Ginzburg-Landau equation

ap(@) + @I = Y KD opp(r) =0, 2581
j

Suppose that order parameter is given by its averaged value plus a fluctuation field. Y = ¢, +

n and Yo = (Y). So, the GL equation becomes

ao + 1) + b + My + 2 = D KD 0o +m) = 0,
J

a@po + 1) + b + Mo +1)" = ) KD 0o +1m) = 0,

J

@y + 1) + bEE + 177 + 2pom)* Wi + 1) = KD 0o+ 1) =0,
J

ay, +an + bl/J0|l/J0|2 + bl/)gn* + b’lzlps + b’l|71|2 + 2b77|1/)0|2 + 2b¢0|77|2

_ z KD 92, — z KD a2y =0,
j j
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Collecting the similar terms

aypo + biolol> = D KO 07 +an + bydn” + 2bylol? = ) KD P
j j

no fluctuation terms linearinn

+ bn*yY§ + bnlnl? + 2by,Inl* = 0

non-linear inn

Averaging above equation over 77, knowing that (n) = (n*) = (V25) = 0, and the non-linear
terms gives a contribution if they are normal (not anomalous) from the random phase

approximation, i.e. (n*) = (n[n|*) = 0, {|n|*) # 0.

We obtain the following

atpo + byolipol” + 2bvo(Inl?) = Y KD 92y = 0,
J

(a+ 250101V + blipolpo — Y KD 92y = 0. 25822

J

We can see that; this equation is a GL equation for Y. The solution of 1, depends on the

average (|n|?), the shape of the resulting equation dictates that 1y —» 0 when T — T,.
So, calculate at T = T,, T, is given by,
a(T, — Teo) + 2b(|n|2>Tc =0.

Then, the shifted value at T, reads
2b,
Te =Teo — 7(In| )7, 2.5.8-3
The equation for the fluctuation field can be represented in the form

(@ + 2blo|®)n + bén* + bygn? + (2bIn|? — 2b(In|*))P + bnln|? — Z k9o =0,
j

To get the related Gaussian functional, one needs to approximate (linearize) the terms bygn?,
(2b|n)? = 2b{In|*)Y, bn|n|?. However, to calculate Eq. 2.5.8-3, we need to use T = T, so

that Yo = 0. In this case the equation for the fluctuation becomes

an + bn|n|? — Z K9 o/ =o. 2.5.8:4
J
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Nonlinear term in 7 is not simply ignored in the GL equation, but is approximated to the mean-

field recipe, if the product of two “operators” obeys the relation
(AB) = (A) - (B),
then, we use the mean field approximation
AB = (A)B + (B)A — (A)(B),
if not AB = (AB).
For three “operators” we have

ABC = (A)BC + A(BC) — (AXBC) + (B)AC + B(AC) — (B){AC) + (C)AB + C(AB)
—(CX4B),

or ABC = (ABC), respectively
In1? = (Inl?),
n? = nin) + (mn — ()2,

nnl? = mm* = mnn* + n(n*) — Mm*) + mnn* + 0™y = )Xm*) + (" n?
+ 0" () — (" Mn?) = 2n(Inl?),

where we keep in mind that (n) = (n?) = 0, but (|n|?) # 0. This construction for n|n|? looks
a bit tricky, however its justification is also in the final result for the shift of the critical

temperature, that is known from the renormalization group analysis.

So, Eq. 2.5.8-4 becomes

(a + 2b{|n|*)n - z KD 92y = 0,
j
We obtain
&y :a+2b(|n|2)_zK(i) qu'; e =0,
j

and

€14 = €24 = a + 2b{|n|*) + ZKU) q;.
J
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So, one finds

(Inlhr, =75 i
TV TP Liat 2b(n?lr, + 2, KO @)

Finally, writing in it as a function of continuous variables

2 qu TC
(In |)TC =j D 2 2’
(2m)P a + 2b{In*|)r, + Kq

2.5.8-5

where K = VKOKOK®@ for 3D, K = K@K for 2D. As seen, we write (In*1)r, in

terms of the isotropic model.
Asa+2b(|n|*)r, =0,atT =T,

(In?)r =JAwdD_q L 2.5.8-6
c g (2m)P Kq? -

where the cutoffs are estimated as

Co Coo

o=y Ao =5

Justified by renormalization group analysis. Here é(Gi) is the Ginzburg-Landau length

calculated at the Ginzburg-Levanyuk temperature. For q > ;ﬁ should not contribute as &, is
0

the minimal lenght in the Ginzburg-Landau theory. q < % should not make contribution as

&(Gi) is an upper limit of the coherence radius in the system. The divergence at small momenta

appears at T,.
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To proceed further, we perform the calculations of the shifted temperature in the case

for 3, 2 and 1 spatial dimension
1. D=3:

Ao d3q T
(0?1, = j <q
A (2m)3Kq

0

T (cw G
T 2m2K (g f(Gi))'
as £(Gi) = &,/ V/Gi we obtain

21y, = 5o (1 2V

22K &, Coo
Inserting in Eq. 2.5.8-3

2b )
Teo =T, = ;(lnl )TC;

Too—Tc 2b 1 cq
T.  «a 2m%K §,

(1 — %\/ﬁ)

2
As from Eq.2.5.5-8, Gi = LTl ond & =/ K/aT,,, we get

32m2 akK3

TCO - TC Zb 1 aTco < CO )
== o (1= =2Gi),
T, @ 212K | K © o

T.o—T, Coo C
L= 2./32n2Gi (1 E —Ox/Gi).
T, T Coo

For Gi « 1 we can keep only the leading order contribution in VGi, i.e.,

TcO - Tc
T,

Coo
== \/32n2Gi,
T

which recovers the known result of the renormalization group at c,, = V2,

TcO - Tc
T,

8
N
T

2.5.9-1

2.5.9-2

2.5.9-3



(Il —fA” Tq T
TV =) @n?Ke?

(In?)r, = TKln(/,\\f) ZZH“(%”%)

as §(Gi) = &/ VGi

(2, = =& (C )
n“\r. = Co\/_

Inserting in Eq. 2.5.8-3

2b
Teo = Te = —(Inl*)r,.

TCO_TC Zb 1 l < Coo )
T, ‘a 2nK coVGi/)

As from Eq. 2.5.5-9, Gi = —iK we get

T — T, Co 1
6im(=L)
T, Co VGi

Using ¢y, /cy = 1/2, we recover the renormalization group result

ZGI<1>
B VY

Here the two leading terms are available —2Gi In Gi and —2Gi In 4.

TcO - Tc
T,

3. D=1:

75

2.5.9-4

2.5.9-5

2.5.9-6

Our previous calculations of Gi for one dimension produced the result Gi~1, meaning

the failure of the perturbation scheme based on the Gaussian fluctuations. For illustration we

will calculate the shift of the critical temperature due to the fluctuations for D = 1.

)y fA”dq I
hr.=| o
T A, 2mKQ?

T. (£(Gi
(e, = 5o (0 - &)
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(In?Dr, =

2.5.9-7

Inserting in Eq. 2.5.8-3 and {, = /K /aT,,

2b )
Teo =T, = ;(lnl )TC;

To—T. 2b 1 | K 1<coo 1 )
T, a 2nK |aT.y Co ’

Co VGi
Teo—Tc b K 1<cOo 1 1)
T,  anK |aT.yceo \Co Gi '
2 \1/3
As from Eq. 2.5.5-10, Gi = (o-——) " ~1, we get
c0

Teo — T, 1 Co 1 5.9-
=f= 128Gi3(———1>. 2.0

T, CooT

To—T. . [V128 <128

TTCo TCoo
~1 ~1

VGi |-

“
~1

which is certainly beyond the perturbation theory, fluctuations are huge, and we cannot

invoke any framework based on the gaussian picture of fluctuation.
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3 EGL FORMALISM FOR MULTIBAND SUPERCONDUCTORS

3.1 FORMALISM

The GL theory distinguishes ideally diamagnetic type I and type II, where the
paramagnetic contribution results in the mixed state with an Abrikosov lattice of single-
quantum vortices. The boundary between types I and II, in the GL picture, is the temperature-
independent line k = k, = 1/v/2, in the k-T plane [75], [76], [44]. However, this picture is
valid only in the limit T — T, while below T, there is a finite temperature-dependent interval
of k’s, separating types I and II. Thus, there is a finite domain of the crossover between types
I and II in k-Tplane [61], [51], [52], [60], [81], which is referred as intertype (IT) domain.
Inside this domain, the system exhibits a nonstandard field dependence on the magnetization
[77]-[80] with unconventional configurations of the mixed state [65], [85], [88], governed by

long-range attraction of vortices [80], [81], [60], and many-vortices interactions [63].

In this work, we employed the M-band extension of the two-band BCS model
introduced in [1], [2], with the s-wave pairing in all contributing bands and the Josephson like,
Cooper-pair transfer between the bands (tunneling from one band to another), a system in the
clean limit and that all available bands have a parabolic single-particle energy dispersion and
spherical Fermi surfaces. The pairing is controlled by the symmetric real coupling matrix g,

with the elements g,,,.

To describe the finite IT domain, we should go beyond the GL theory. Solving
microscopic equations for a nonuniform problem with an external magnetic field is a time
consuming and rather involved task. However, to reach the objective of our sturdy, it is enough
to use a perturbative expansion of these equations in T = 1 — T /T, to one order beyond the
GL theory, i.e., the extended GL approach [35]. Here, we generalize the EGL formalism,
developed previously for single- and two-band superconductors, to the case of an arbitrary

number of contributing bands [35].
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3.2 MULTIBAND NEUMANN-TEWORDT FUNCTIONAL

First of all, to construct our formalism we start with constructing a multiband
Neumann-Tewordt functional [92], [93]. The NT functional is obtained from the microscopic
expression for the condensate free energy by accounting for higher powers and higher
gradients of the band-dependent gap functions A, = A, (x), as compared to the GL functional.
Only the terms giving the GL theory and its leading corrections are taken into account. The
general expression for the free energy density of M-band s-wave superconductor, relative to

the normal state at zero field, is given by [36], [35].
B2 . . -
f=g+RgTE+ ) A, 320

where B denotes the magnetic field, the vector AT = (Aq, A, ..., Ayy) comprises the band order

parameters A, = A, (x), and the functional f, [A, ] reads

2n+1

Zn_l_ 1] 1_[ d3y] v2n+1(x {y}2n+1) 39

X AL (X)A, (¥1) . A (Y20 Ay (V2nt1),

with {y},,41 = {¥1, ---» Y2n+1}- The integral kernel in Eq. (3.2-2) is given by (m is odd)

Ky, }m) = =T Z 6B, y)GE) (31, ¥2) .-
3.0-3

X GOB Vi1 Vi) Girs Wrm, ),

where w is the fermionic Matsubara frequency, gv(ffj (x,y) is the Fourier transform of the
normal Green function calculated in the presence of the magnetic field and G, (B)(x, y) =

(B) » @ x). For G, (B) +(x,¥) we employ the standard approximation enough to derive the
extended GL theory

GE)(x,y) = exp [l = f A(2) - dz] Gra®Y), 3.2-4
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where the integral in the exponent is taken along the trajectory of a charge carrier in a magnetic

field with the vector potential A. The Green function for zero magnetic field is written as

d3k explik - (x —
o (xy) = plik- (x — )], 3.2-5
‘ 2m)?  ihw —§ (k)
where the band-dependent single-particle energy dispersion reads
27,2
k) = £,(0 — 1, 2
& (k) Ev()+2mv u 3.2-6

with m,, the band effective mass, &,(0) the band lower energy and u the chemical potential.

We invoke the gradient expansion for the gap functions and the vector potential in
order to obtain a partial differential equation structure
Av(}’) = Av(x) + ((y —Xx) - Vf)Av(x) + -,
3.2-7
A) =A@+ ((r —x) - Vg )AX) + .
So, it is possible to represent the non-local integrals in the functional f,, as a series in powers
of A,, its gradients and field spatial derivatives. The series is infinite so that a truncation
procedure is needed. For example, to get the GL formalism, the standard Gor'kov truncation
is employed [94]. To incorporate the leading corrections to the GL formalism, one needs to go
beyond the Gor'kov truncation and obtain a multiband generalization of the Neumann-Tewordt
functional [92][93][35]. As the form of f, is not sensitive to the number of contributing bands,
one can utilize the previous results for the two-band case [35][61]. Then, the multiband
Neumann-Tewordt functional reads
B2 —, —
= — tg-1
f 8 +ATG A
M 2
r 2 bV 4 Sy 6
) A e (T4 )| 162+ 2 A+ 2011 - 218,
v=1

3.2-8
4e?

1 ,
+K,(1+ 27)|DA,|? - Q, <|D2A,,|2 + ErotB i, + ey

BZIAVIZ>

|

814, 12IDA, |2 + (77 (DA,)? + C-C.)]},
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where D =V — i%A, i, = % [A,D*A;, — A, DA, ] and the band dependent coefficients

are given by

_ 2T, a, = —N,, 77(3) 93{(5)
Ay =Ny ln( T, ) Y ' by =N, A N"m
K, = 2 p22 Q, = 2 iyt L, = 2 p2p2

v — 6 v/ A% 30 Vo \Y 9 AVE)

where w, is the cut-off frequency, N,, is the band DOS, v, denotes the band Fermi velocity,

T, is in the energy units, {(---) the Riemann zeta-function and I' the Euler constant.

At first sight the Neumann-Tewordt approach is a natural and straightforward
extension of the GL theory. The initial motivation of its derivation was to construct a
formalism that goes beyond the GL theory but preserves, to some practical extent, useful
relative simplicity of the GL formalism, especially in the case of spatially nonuniform
problems with an external magnetic field. However, highly nonlinear equations for the
stationary solution of the Neumann-Tewordt extension of the GL theory are, in fact, not
easier than the exact microscopic equations, see, e.g., Eq. (3) in Ref. [95]. Furthermore, it
was demonstrated that the Neumann-Tewordt functional can lead to unphysical results
[95] such as weakly damped oscillations of the order parameter for a single-vortex
solution. This problem is related to the fact that the Neumann-Tewordt free energy is not

bound from below, as the coefficients c,, Q,, and L, are positive.

It was suggested for the single-band case (see Ref. [95] and references therein)
that to remedy the problem, the Neumann-Tewordt functional should be restructured by
applying the perturbative t-expansion. The point is that the stationary solution for the
order parameter within the Neumann-Tewordt approach contains all odd powers of 71/2
while the truncation of the infinite series in Eq.(3.2-3) does not distort only the two

lowest orders 7 (the GL term) and 73/2

(the leading correction to the GL term).
Incomplete (distorted) higher-order terms in t cause the problem and should be
removed by using the 7-expansion. When removing these terms, the unphysical results
disappear[95]. A similar situation should be, of course, expected in the multiband case,

for the functional given by Eq. (3.2-8).
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3.3 EXTENDED GINZBURG-LANDAU THEORY AND 7-EXPANSION

In order to obtain a consistent extension of the GL theory for multiband
superconductors, as mentioned above, the Neumann-Tewordt functional [92], [93] should be
restructured by applying the perturbative expansion in powers of T and keeping only the
lowest and next-to-lowest order contributions to the band order parameters (and also to the
field), eliminating higher-order contributions. For single-band superconductors such
eliminating procedure can be found in Refs. [95] and [61]. For two-band superconductors the
extended GL theory has been developed in Ref. [61]. Here we generalize the consideration of
this theory and investigate the 7-expansion of the functional given by Eq. (3.2-8) for an

arbitrary number of contributing bands M.

When employing the T-expansion, the band order parameters and fields are sought as

series in T given by [61]
B, = a0 40 4 ),
A=12(A® 4 LA® 4 .),
B = r(B© + BW + ...). 3.3-1

To obtain explicitly the 7-dependence of spatial derivatives, one needs to apply
the spatial coordinate scaling x' = t/2x. Below the prime is suppressed for simplicity,

unless it causes any confusion. Notice that to get the stationary solution in the two lowest

orders in 7, one also needs to operate with Ag,z) but only in intermediate expressions
Inserting Eq. (3.3-1) in Eq. (3.2-8), one obtains
f=r? [t OV + fO+of@ o], 3.3-2

The two lowest orders in the band gap functions and the field produce three lowest orders in

the free energy but, as is shown below, the contribution f =V is zero for the stationary point.

In Eq. (3.3-2) we have
FED = ROTLA©, 3.3-3

where AT = (A§°), A(ZO), ) and the matrix L has the elements

va’ = g;vl’ —_/'Zlv5vvr, 3.3-4
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with g;vl, the matrix element of ! and &,/ the discrete delta-function. The contribution f (©

is of the form

M
() B2 AO)TFAW©) ©
f :W-F(A LA +C.C.)+Zﬁ/ ) 3.3-5

v=1

where fv(o) is given by

2 b 4 2
A© +?v A9 4 g, D(O)A$°)| , 3.3-6

h v(O) =ay

with D@ = v — i;—iA(O). Finally, for the highest-order term in Eq. (3.3-2) we obtain

(B®.B®) . i
fO ==+ (BOTIE® + c.c.) + BOTLA® + z £, 3.3-7
v=1
where,
2 N a 2 4
FO = (av + b, |a® )(A(VO) AP +c.c)+ — (&) + by [

Cy

3
+ K, [(D@AY - DO 4 e ) - AW - i)

6 2
2P|+ 2k, [D©aS|

3.3-8

2 1 4e?
+ §(v x BO - i) + —— B2

(0)
h2c2 Ay

~ 0, {|D(o)zA$0) 2}
- LZ—V{8|AE,°)|Z|D(0)A$/0)|2 n [AE,O)Z(D(O)*AS,O)*)Z te C]}

and i = i% [AE,O)D(O)*AE,O)* — AE,O)*D(O)AE,O)] is the lowest-order term in the T-expansion of
the current, i,,.

To calculate the boundaries of the IT domain, the free energy at the stationary
point is needed. The equation for the stationary solution of the extended GL formalism
is obtained by calculating the functional derivatives of the free energy F with the density
given by Eq. (3.3-2). As the latter is a series in 7, the stationary solution is specified by a
set of equations associated with different order contributions in . So, taking the lowest

order in Eq. (3.3-2) the corresponding equation for the stationary solution reads
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— =A@ =, 3.3-9

where 71 is the contribution to the free-energy corresponding to £ 1. This equation has a

nontrivial solution for A(® only when
detL =0, 3.3-10

As L includes A, and, hence, depends on T, Eq. (3.3-10) gives zeros of an M degree

2Yhw,

polynomial function of a single indeterminate In ( ) The minimal zero of this polynomial

c

should be chosen, to get the maximal critical temperature. Once T, is determined, it is

convenient to introduce the eigenvalues and eigenvectors of L as
Le=0, 3.3-11
for the zero eigenvalue and
Lij; = Ay, 3.3-12
for the nonzero eigenvalues A; # 0. As the matrix L is real and symmetric, the vectors € and
7j; can be chosen such that 7€ = 1, €77j; = 0 and ﬁjﬁj = 6;j. We note that in principle, the
zero eigenvalue can be degenerate, and, in this case, there exist more than one corresponding
eigenvectors. This occurs when the superconducting system of interest has a symmetry,
additional to U(1) and the superconducting properties in the GL domain are governed by a
multi-component order parameter, see details in Refs. [61] and [68]. For our investigation,

however, it is enough to consider the standard nondegenerate formalism (all eigenvalues are

nondegenerate). Then, from Egs. (3.3-9) and (3.3-11) one obtains
A = P(x)é, 3.3-13

where W(x) is a single-component Landau order parameter of the M band superconductor
being discussed. Here we recall that the number of the Landau order parameter components is
determined by the dimension of the irreducible representation of the corresponding symmetry
group [75] (rather than by the number of the available bands). Equation (3.3-9) assures that
spatial profiles of all band condensates are controlled by the same position dependent function
Y (x) (€ does not depend on x but it does not give any information about ¥. To get an equation

for W, one needs to address the next order contribution to the free energy.
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The next-to-lowest order term in Eq. (3.3-2) yields two equations for the stationary

solution. The first one is given by

s FO
SAOt

= LA® + W[A@] = o, 3.3-14

where % is the contribution to the free-energy corresponding to f© and the components of

w [K(O)] are

2
W, = a, A + b,AP|AP|" — g, D@27 3.3-15
The second equation is given by
M
s 1
- - 0 _ :(0) _
SA© — 4m rotB Z K,i,” = 0. 3.3-16
v=1
0) 0)
The equation % = 0 is the same as Eq. (3.3-9) and % = 0 is trivial because f(® does
not depend of AV,

Projecting Eq. (3.3-14) on € and keeping in mind that 'L = 0, we obtain €W = 0,

which is written in the explicit form as

2
A$°)| — K,D©270] = 9, 3.3-17

M
z €y [aVAE,O) + vag,O)
v

where €, is the band component of €. Taking into account that the stationary solution obeys
Eq.(3.3-13), we get AS’) = €,'V, and Eq. (3.3-17) becomes
a¥ + b¥|¥|? — KD©2y = 0, 3.3-18

which is formally the equation for a single-component GL theory, however, the coefficient a,

b and K are averages over the contributing bands

M

M M
a=2av|6v|2, b =valev|“, K:ZKVIEVIZ' 3.3-19
v=1 v=1

v=1
Similarly, using A = €, ¥, Eq. (3.3-16) becomes
rotB® = 47Ki?, 3.3-20

where i$) = i% [WD©@ p* — g*DOY] s obtained from %9 by substituting A for .
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Equations (3.3-18) and (3.3-20) are the standard equations for the single-component
GL theory. The presence of multiple bands is reflected only in the expressions for the
coefficients a, b and K. Each of these coefficients is given by the summation over the M
available bands with the band contributions controlled by the components of €.

We have investigated only one projection of Eq. (3.3-14). To explore other projections

(on 7j;, we need to expand A as
M-1
AD = e + Z ®if;, 3.3-21
i=1
where we introduce the new position dependent functions ®(x) and ®;(x) [i =1,...,M —1].

So, we can insert Eq. (3.3-21) in Eq. (3.3-14),

LA® + W[A©®] = o, 3.3-22
M-1
(CD + ¢lﬁl> +W[A©®] =0, 3.3-23
i=1
M-1
A®ij; + W[A@] = 0. 3.3-24
i=1

And, projecting Eq. (3.3-24) into 7j;, we obtain

M-1
il {Z A D;ii; + W[A(O)]} =0,

i=1

1 = 3.3-25
P = —A—j(ajtp + B;¥|¥|? + I;DO2y),

where the coefficients @;, §; and T} are of the form

M

M

— * — * 2 —

aj - Z avnjvev' .Bj - Z bvr’jvevlevl ’ l-} -
v=1

v=1

K€y, 3.3-26

M

and 7, are the components of 7j;. Equations (3.3-21), (3.3-25) and (3.3-26) can be compared
with the corresponding expressions for the two-band formalism in Ref. [61]. Here, however,
one should keep in mind that the present formalism involves the orthonormal set of the vectors
€ and 7j; while A® in Ref. [35] was represented as a linear combination of two explicitly

chosen vectors that were not normalized and orthogonal. Therefore, to recover the expression
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for A in Ref. [35]it is not enough to insert N = 2 in Egs. (3.3-21) and (3.3-25). One should
also express the vectors defined by Eqs. (3.3-11) and (3.3-12) in terms of those of Ref. [35].

Thus, considering the two lowest order contributions to the free energy makes it
possible to derive the equations for A©® and B [A(®] and also algebraic expressions for the
M — 1 functions ®; that determine the second term in Eq. (3.3-21) for AM. To find the
remaining part of Z(l), involving @ and AV, one needs to investigate functional derivatives
of the free-energy term corresponding to f (. However, it is shown below that ® and A do
not contribute to the boundaries of the IT domain in the next-to-lowest order in T (and, of

course, in the lowest order as well). Therefore, the equations for ® and A are beyond the

scope of the present study.

34 FREE ENERGY AT THE STATIONARY POINT AND
THERMODYNAMIC CRITICAL FIELD

To pursue our goal, the Egs. (3.3-9), (3.3-14) and (3.3-16) [and the related ones
(3.3-18), (3.3-20) and (3.3-25)] are necessary to find the free energy density for the stationary
solution, and, in addition, to obtain the thermodynamic critical field which is also used in
calculations of the IT domain. When inserting the stationary solution, the free energy density

reads
=S o+, 3.4-1

where the term of the order 771 is absent by the virtue of Eq. (3.3-9). The lowest order term
in Eq. (3.4-1) is given by

(0)2

B b
=B i + 2wl + KO 3.4

where it is considered that ATLA® = 0,which follows from Eq. (3.3-9).
To simplify the expression for fs(tl), we first rearrange the terms in f( that include
As,l) and Af,(l). As the free energy is needed rather than the free-energy density,

we can utilize the substitution

_A;(l)D(O)ZAgo) N D(O)AE/O) . D(O)*Agl)*' 3.4-3
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which is correct up to a vanishing surface integral in the free energy. Based on Eq. (3.4-3), the

sum of the terms involving AE,D and A;(l) can be represented for the stationary solution as

A

M
— [— 2 *
AWTLAW 4 Z [(av + b, ) (a2a + c.c.)
v=1

+ K, (D@AP - D@ A" 4 c.c. )] =

A

M
— ~—> 2 %
AWTLAW 4 Z [(av + b, ) (a2a + c.c.)
v=1

—m(ﬁgmwﬂﬁp+c¢)]=

AWTIAD 4 AW 4+ WHAD = _AWT[AD® 3.4-4

where Eq. (3.3-14) was considered to find the relation. Using Egs. (3.3-17) and (3.3-24), we

obtain

M-1
ADTIAD = AW [ de + Z @75 |,

j=1

M-1 t /mM-1
AR =<¢g+2¢iﬁi> @A ),

i=1 j=1

M-1
AWTLR® = z Ayl @il

=1

and
a b
DO2y = — _y _ _y|y|?
X % g

S0,

1 ) a

w+bwmwﬂ
] K ’

—
8
|
ow
=18
N——"
s
+
VS
RS
|
ow
=] o
N————
£
£
L N ]




finally, we obtain

- - — q2|a b*|B;
AWTLAD = WZZ— lpﬁz ‘
¥ Ay + ¥ 2. A

where the dimensionless parameters @; and f3; are defined as

_ o I s _Bi L

“=TTr PTh T

88

3.4-5

3.4-6

Then, f given by Eqs. (3.3-7) and (3.3-8), can be represented for the stationary solution in

the form

M-1
D B@ .BMW _ AM . ot B® N a azldilz I\PIZ
st 4 2

M-1 _— M-1 5=
+ <b — Z ab(aiﬁ/l\f}' C'C')> |W|4 _ (§+ Z b |181

i=1 i=1
+ 2K|D@w|*
1 4e?B(0)2
—Q l|D(°)2‘P|2 +5 1ot B - i + ey b

- %{8|‘P|2|D(°)‘P|2 + w2 (D@ 9) + c.c. |},

where

M M
Q=) olal L= Llelt =Y alel,
v=1 v=1

v=1

3.4-8

Now we have everything at our disposal to find the thermodynamic critical field H, in the

lowest and next-to-lowest orders in t. According to the well-known definition of H., we have

HE f
81 st,0»

3.4-9

where f; o is the value of the free energy density for the spatially uniform stationary solution

—-a

l'pij(): T
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Following Eq. (3.4-1), the T -expansion of H,. is obtained in the form
He =t[H® + H® + -], 3.4-10

Using (3.4-1), (3.4-2), (3.4-7), and (3.4-10), one finds

4ma?
HO = /T’ 3.4-11

and
M—1 . _
@ _—afa a?|a;|?
L0 T p \2 A
i=1 '
M-1 M—-1_ . =2
R CON I RIS el
b 4 A, 3T LA )
i=1 =1
M-1 | _ M-1 ,_,
o —1+ ala;|? N l_za(alﬁl+cc)
StO — p 2 Lo N 4 A;
i=1 =1
b2|3.

-M—1 ]

a 1 ca a
A (=) K D (L5 +(“ﬁ‘+”)+|ﬁ‘|)}’
L =1 )

) M—1 1
@ _a’ |/l ca a
fs =G 3 | 2w (e 181 + @ifi+ ) }

1 ca a _ 2
@ _ _
f:?tO (2 3b2>+ A_ilai_ﬁil .

Now we can calculate Hc(l)

He= J-8ne2[f 0+ o)+ ]

H. = 87‘[7.'2f(0)
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as the second term is small, we can expand the square root, and the critical field can be written

as

f(l)
H, = H"t <1 +r-= )

(0)
2 fst 0

So, Hc(l) reads
0) £(1)
w _ e fseo

¢ PO}
SR AY:

HY %2[(%+3C;2) iwll/ﬁ“z ﬁl|]

© 2

H @

HY

) _E_W_ZA ~ il e
Cc

Comparing Eq. (3.4-11) with the corresponding result for the two-band case [35], one finds

that HC(O) is formally the same as that of the two-band system (but a and b are now averages

over M contributing bands). As for Eq. (3.4-12), the third term in the left-hand side has a

different form as compared to its counterpart in the two-band expression for HC(O) in Ref. [35].
The reason is the same as mentioned in the discussion after Eq. (3.3-26). Namely, the
orthonormal set of vectors defined by Eqgs. (3.3-11) and (3.3-12) is used in the present study
while the two-band formalism of [35] involved two linearly independent vectors that were not
orthonormal. The latter was given by explicit analytical expressions, which was convenient

for solving two-band equations.

3.5 GIBBS FREE ENERGY DIFFERENCE

As is known from textbooks, only spatially uniform distribution of the condensate can
appear in bulk type-I superconductors. For a sufficiently low applied field H, such a system is
in the Meissner state with a nonzero position-independent condensate density. When the
applied field amplitude H exceeds the thermodynamic critical field H,, the system undergoes
an abrupt transition to the zero-condensate solution (normal state). Switching from type I to
type II occurs when a spatially inhomogeneous condensate-field configuration becomes more

thermodynamically favorable at the thermodynamic critical field than the spatially uniform
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condensate. As the system is under an external magnetic field, the thermodynamic potential in
charge is the Gibbs free energy. Thus, investigating the switching between superconductivity
types I and II, one needs to compare the Gibbs free energy of a uniform and nonuniform
condensate solutions at H = H,, i.e., to calculate the corresponding Gibbs free energy

difference. The Gibbs free energy density for a superconductor in an external magnetic field
HE

H =H_, is givenby g = f4; — %. For the uniform solution we have B = 0 and f5; o = — P

2
and so go = — :—;. Therefore, the density of the Gibbs free energy difference gy = g — gy 1s
given by

H.B H?

- 3.5-1
41 + 8’

ga = fst —

where B = |B]|.

To proceed further and find the T-expansion for g,, it is convenient to introduce the

dimensionless quantities

%= — A=r— B = v
= ) =K—, =KV2—,
A2 LH® ©
~ ¥ 41t g, ~ 4Gy
Y= 98 = oz 6y = ey % 3.52
Yo HC(O)Z HC(O)Z(AL\/Ef .

where G, is the Gibbs free energy difference and

hc b y) a 3.3
A =—— |——ro K=—2=1, |——
e 32nKa’ gL K

Here we recall that to get the T-expansion of the microscopic formalism in the explicit form,
we have previously introduced the scaled spatial coordinates x' = t'/?x, suppressing the
prime for convenience. Therefore, the expressions for the GL coherence length &;; and the
magnetic London penetration depth A, given by Eq. (3.5-3), should be divided by 7%/? to
obtain the standard definitions of these characteristic lengths. Below we use the GL equations

for the dimensionless order parameter and magnetic field.



First, we must find D(® in dimensionless quantities

v (07 (0) & (0% (0)
DO —y_i2a0__V__2eAH ATV 2eMHo A |
hc V2 he K MN2 ke )
h|—%
_E\/_ b \/47‘[612 K(O)]
) 1 1. Ze\/_ e 32nKa b
DWW =——_|V—-i—+/2 ,
N2 hc ~a
K
D© — 1 (V+ iA*(o)) — ol
V2 N2

Now, we can rewrite the first GL equation

a¥ + b¥|¥|? — KD©2y = q,
~ ~ | ~12 lPO ~ ~
a® P + bW, |W, |2 P|P|” — ﬁKD(O)Z‘P =0,
L

bP| | + —— KDO2P =,

2(x23)
IS R
P — |7 +7D(°)2‘P=O.

\P a
Ty

The second GL equation
©) 110 e 28 Tun @ _ prp©
rotB©® = 4riKiy = 4711K%[‘{’D p* —yrpOy],

(0)
1 H, _ 2e
rot B = 4miK — |¥, |2
V2 k2 hc' °

~ e~

[FDO*F* — PDOF],

N2

- 2e K\/f
rot B® = 47iKk ———
hcy®

(o

_hc /_ b _a
e 32nKa K

H

|¥ |2[PDOF* — DO F],

|, 2 [PD©* P — T DOF],

- 2e
rotBO = 4niKE\/§
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/ b

16T /—QN\ r~~ . s~

i — ) [PD@+F* — P*POFP],

" 47‘[61.2( b )[ ]
b

~

6t BO = i[FDO T — T HOF],
So, the GL equations for the dimensionless order parameter and magnetic field reads

~ —_ 1 - _ _ )
‘P(l - I‘PIZ) +ﬁD(O)2‘P =0, r3tB® =1y, 3.54

where D@ =V + iA©, ig,)) = i[PDO*P* — P*D@F], and the vector differential operators
are associated with the dimensionless radius vector X.

Based on Egs. (3.3-1), (3.4-1), and (3.4-2), the t-expansion for g, is obtained in the

form
ga = Tz[ggo) + ngl) + - ], 3.5-5
where
B (0)2 b 2 H(O)B(O) H(O)Z
o) _ 2 L 2 w4 (0) ¢ ¢
=——+al|l¥Y|*+=|¥ KDWYy —
9a =gz Tal¥I’+5 ¥ +K| | ar ' en

©) 2 b )
< 1) +al¥)? + 2wt + K|DOw|,

_ H(EO)Z
H

8w

4 |HO? (BOHO ’ —a b ,—an2
~(0) _ c c ~ 12 4
I = o Ter (K\/EHC(O) R a(T) #° +5(5) 19

—-a 1\ 2
_“ ©
+K(b)<AL\/§> D@7,

02 /5 0
JO H? (BOR®
A HC(O)Z 8T K\/EHC(O)

? a2 2 a2 4 a2 K (0) 2
R £ 61 RN | 17 e £ 2 (D)7
1) (@[ + | DO’

2b ar?

here and in the results below the tilde is suppressed for brevity

2

1/B© 1 QMR
0 _ 2 4
=2 (=—-1) - wr+ |y -1 3.5-6
gA 2(}(\/5 ) I I 2| I 2K_2

with B©® = |B©)|.
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Before the next derivation, we need to rearrange Eq. (3.4-7) by inserting
A® - rotB® = A® - rot| B - HY),
and then performing the substitution
AD . 1ot BO© — BO . [B(m _ H£0>]_ 35.7

According to Gauss's theorem, this substitution results in an additional surface integral in G,

that vanishes because B(®) approaches HEO) at infinity. Then,

B@pR® _ g [B(m _ HC(O)] [HC(O)B(l) n Hc(l)B(O)] HOHO
— +

g(l)
A 4 41 4
M-1 . _ M-1 =
a a‘|a;| ab(aiﬁi+c.c.)
==Y —]Iw)2+ b—z P4
(2 s )| | ( . T @]
i=1 i=1
_1 _
c
— =+ b6 w6 + 2K |D@w]|*
37 L A
i=

4e ZB(O)Z

1
—Q[|D<O>2w| ~rotB@ i + o=

I‘Plzl

- E{8|tp|2|D(°hP|2 + [w2(D@ ) +c.c.|},

_H® [B(o) H(O)] M-1

— 27,12 M-l 75
a _ c c a a‘|a;| 5 ab(aiﬁi + c.c.) .
= —_— lIJ —
9a 4r + (2 Z A; P17+ b Z A, ]

i=1 =1
2
B (g_}_ Z b |ﬁz| >|‘P|6 + 2K|D(°)‘P|
i=1
1 © 4¢?B ()2
-Q [|D<O>2w| ~rotBO - +W|W|Zl

_ E{8|xp|2|D(°)lP|2 + [w2(D@ ) +c.c.|}.



Now, we will write each part of this equation in terms of dimensionless parameters

050 -]
4T )

l.

1 0)]
_Hc( )[B(O) — Hc( )_ —HC(O)Z
4m 4

_HC(O)2 B© ) -1+ca+za _ _lz
" am \iv2 2tap T a1 &AL

b i b?|B;
7. (2_ {wl1a|a|)|q,|z (b yM- 1a(afl+cc))|q,|4 <+ZM1 |B >|‘P|6

2

2K|DOw|;

a M_lazldil2 —ay 2 M_lab(&fﬁ_i+c.c.) —a\2 4
(6= ) @er (o g ) G o

=1 =1
M—1 . -2 2
c b2|B:|"\ /—a\3 6 oy 2
— = —_ — (0
(3+ 1 Ay >(b)|Lp| +2K(b)(L 2> |DOLP|
i=
3 a_zl M_lal&llz ik a? . M_la(al*ﬁl+cc) 4
AVE A, | |+? _Z A, 7]
=1 =1
+a2 ac M_1a|_i|2 o[° a? [DOP|’
73 R vl | LI ey
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B HC(O)Z _(l_M—1a|&l|2) |ffl|2 N (1 _Mz_la(afﬁl +c.c )>|~|4
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2R(0)2
3. —Q |D(°)2‘P| + 1ot B© - z“’H%MZ]:

[ 4 (0)
—-a 1 — .2 1 1 H 2e /—a 1 —
-0 |(— DO2P|" y € sgg—(— 5tBO . {0
¢ (b )<AL\/2> | | +31L\/2 Nz hc( b )/IL\/ZFO e

(0)2 2
H 1 1 a8m e
02§ 0). 0 g2
Q[WA DO — ot BO )+ S B
(0)2
_H 0 | (0)2~| 1 lrotB(o) 0 _ ———BO2|P|°|,
4a;c4 4KK*e}; 3 Y 422KkK?
(0)2
_H; a1l
== 224,(4 [|D(°)2‘P| + Lo ~“’)+B(°>2|‘P|]

4, —§{8|‘P|2|B<°>‘P|2 + [‘PZ(B@*‘P*)Z +ecl}

_gk(%§<Z%F>|w|uﬂww|+( Y(Air>[¢%ﬁm”¢ﬂz+aa”

(2

i 4b12 {8|q’|2|5(°)q’|2 + [‘le(ﬁ(o)*ff’*)z + c.c.]},
L

— Hgmz L @2 1550 |2 G2 (7 (0)+F+)>
T 4n 4bnggL{8|‘P| [D@P| +[‘P2(D° ) +c.c.]},

H®La 1

= Kb4K2{8|‘P| IDOF|* +[‘P2(D(°>*‘P) +cc]}

So, the next-to-lowest order correction of Gibbs free energy in dimensionless quantities

where the tilde is suppressed for brevity is written as
=12

M-1
B© 1 a; — B 1 a|?
QD‘<77_1>_+5+ Al (3 SRy
KV2 2 - Ai 2 Ai

1
M-1 — M-1,~-,2 2
ap;+c.c. ; DOy
+(1- ) 22— 1wt + c+2@ |W|6+#
; Ai i & 3.5-8
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with the dimensionless parameters

_ L_a - N 3.5-9

When utilizing Eq. (3.5-7), we find that the next-to-lowest order correction to the magnetic
field does not appear in the Gibbs free energy difference. In addition, one notes that the
contribution ggo) is not sensitive to the number of available bands. However, ggl) depends

explicitly on M, which is the basis for the main conclusions of the present study.

3.6 BOGOMOLNYI SELF-DUALITY AND INTERTYPE DOMAIN

As is discussed in Sec.3.1, the IT domain is located on the k — T plane near k = k,

so that it is convenient to expand the Gibbs free energy difference G,, integration of ggo), in

powers of 8k = k — k. Keeping only terms up to order t~dk, we obtain

(0)

dG
Gr=72|G"|  +oK—E
A ' A K=Kg K dk

+600 ), 3.6-1

K=K

K=Kgo

where the derivative of GA(O) with respect to k is not dependent on the number of contributing
bands (ggo) is not sensitive to M, as is mentioned above) and, so, we simply quote the two-

band result of Ref. [35]

dG”
dk

_ _f *x[V2BO(B© 1) + 2v2]p@w[’], 3.6:2

K=Kgo
where we recall that k, = 1/+/2.

A significant advantage of using the expansion in dk is related to the special property
of the GL theory at k = k. This property is called the Bogomolnyi self-duality [57], or the
matching between the magnetic-field and condensate spatial profiles given by [35], [57]

BO =1—|y|2 3.6-3

This local relation between the order parameter and magnetic field amplitude is consistent

with the GL equations (3.5-4) when [35], [57]

DY =, 3.6-4
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where Dio) = D,EO) + iDj(,O), with D,Egz the x- and y-components of D). Here B(®) is assumed

to be along the z-direction so that W is not dependent on z and D©2 = p{¥p©® 4 p©)
Equations (3.6-3) and (3.6-4) are usually called the Bogomolnyi equations [57] (they are also
known as the Sarma solution [44]). Using Egs. (3.5-4) and (3.6-3) and also the substitution

|D(°)‘P|2 - P*D@2y (producing a zero surface integral), we find

1 1
¢ = f d3x [5 (B® —1)" — w2 + S W1t - ‘P*D(O)Z‘P],

K=Kgo

1 1
GO = j d*x [— Wl — W2 + S|Pt - ‘P*D(O)Z‘P],
K=Kgo 2 2

" =- f Bx W [W(1 - [¥]2) + DO2y] = o,

K=Kgo

S0,

G0

= jd3x (lw)* — |¢|2 — w*D©2y) = 0. 3.6-5
K=Kgo

This result is valid for any stationary solution of the GL formalism at k = K, and reflects
another benchmark property of the Bogomolnyi self-duality: at the thermodynamic critical
field all possible GL solutions are degenerate (there is an infinite number of GL self-dual
configurations, including very exotic patterns, see Appendix C in Ref. [35]). Above H. the
normal state ¥ = 0 is stable while below H. the Meissner state ¥ = 1 is favourable. Thus, the
mixed state appears only at the single point H = H, and all exotic self-dual patterns of the
field and condensate are locked at this point. However, corrections to the GL formalism break
the Bogomolnyi degeneracy and successive self-dual patterns determine the properties of the

IT mixed state.

Similarly, to the procedure used to obtain Eq. (3.6-5), we rewrite Eq. (3.6-2) as

(0)
aG
e f dx[(1 - [$DW]? + 2(¢¥*DO2w)],
K=K0
(0)
aG
e f dx[(1 - [$DW]? + 2(¢*DO2w)],
K=K0
(0)
aG
G _ 7 f Bx[|P)? — [P]* + 20t — [¥]D)],
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G
s =2 [ @ - 1),
dk
K=Kgo
S0,
(0)
= | d3x|P|2(|¥|* - 1).
iy [ @xwpawe - 366
K=Kgo

The terms contributing to GA(D and containing D® can be rewritten by applying

Gauss's theorem with vanishing surface integrals and using Egs. (3.5-4), (3.6-3), and Eq.
(3.6-4). We also have (D(O)‘P)2 = (D(O)*‘P*)2 = 0 resulting from D@ = iDj(,O)‘P, see Eq.

(3.6-4). Notice that at the same time |D(°)‘P|2 # 0, as is seen from Eq. (3.6-5).

1. [DOw|® 5 |wi2(1 - [w]2),

2. |p@2y|*.
fd3x|D(°)2‘P|2 =fd3x|‘P(|‘P|2 N
fd3x|n(°>2w|2 = f d3x (W] + W2 - 2|¥]%),

f dx|DO2y|” = f Ex [P0 - [9[2) — W1 — [¥]2)].

3. |W|2|D(O)‘P|2:
fd'°’3c|‘{’|2|D(°)‘P|2 :fd3lel-p|2Dj(O)lij(0)*lP*:
J
[ @ reripOl’ = [y win®vets e w)
Jj

where Dj(o) is the component of D© given by Eq. (3.5-4), d; is the component of V, and 8 is

defined so that VO = A Then, we obtain

fd39? %2 [D@w]|” = f @¥x ) (0,19 DO wer) - wee 0, (e|w)2DOw )]
7

where the first term yields, by virtue of Gauss's theorem, a vanishing surface integral (¥ is

zero at infinity).
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Hence,
fd3x w2 D@y|*

_ f d3xz [\P*Dj“’)wajwﬁ + lp*|W|2e-ieaj(ei90j(°)w)],
7

WD Owa; w2 + W w|?D "y

i
- _ j d3xz—‘P*Dj(o)‘{’aj(eiee_ie‘{"}’*) + 92Dy
L
f Z w2Dwe 109, (W) + W WDV wei®9; (e 0w")
j
+ 92Dy
=— f &x[¥?(DOW)" + |92 [DOW|" + ¥ |w> DOy
Here the first term is equal to zero because D,EO)‘P = iDJ(,O)‘P, as is seen from Eq. (3.6-4).
jd3x|‘PIZ|D(°)‘P|2 = —f &*x [|9]?[DOw|" + ¥ w2 DOy].
Then, we obtain
2]d3x|‘PIZ|D(°)‘P|2 = —fd3xlp*|tp|2D<°>Lp.
Now, using the scaled GL equations (3.5-4), we conclude that
2 1
[ @xipozef = - [ ax i - i,
2 1
jd3x|D(°)2‘P| =§fd3x|tp|4(1— w2).

4. rotB© . i&?):

j d*xrot BO - i) = f dPx i)’
= f d3x (1) (WD©* g+ — g pOy)?,

= - f @x [W2 (DO w)" + w2 (DOW)" — 2w 2 DOY[’].
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Here the first and second terms are equal to zero because D,EO)‘P = iDj(,O)‘P - (D(O)‘P)2 =

(D(O)*‘P*)2 = 0, as is seen from Eq. (3.6-4).
fd3xrotB(°) i = 2]d3x|‘PIZ|D(°)‘P|2,
jd3xrotB(°) i fd3 P41 = |9P2).

Now, we can rewrite the terms contributing to G A(l) and containing D(® by using the following

substitutions:
DOV~ w1 - ),
|D(0)2qj|2 N |[I_J|2(1 _ |l{J|2) — |LP|4(1 - |lp|2)’

1
%2 [p@w[" - §|W|4(1 - 191,

rotB@ - il 5 [W|*(1 - [¥]?), 3.6-7
Then, GA(D reads
M-1 — 2 M-1
1 la; — Bi 1 la;|?
1) 3 2 = { l { 2
G = | d3x{-|¥|?|=+ +Z_— —{=- Y
b =, J x{ "l 2" " i=1 A (2 i=1 A, v

|2

M-1 o M—1|
a; pi C.C.
+ 1—2% W+ c+z W[5 + 2|W|2(1 — |¥|?)
i=1 Ai A;

i=1

|| =1

_ 1
+ QWP = 912 = [ = (W] + 5 1WA = 1912 + 9121 = )2

+2L|¥|*(1 - I‘PIZ)}.

M—1_,—

1 a; B, +c.c.

6" (w2 — it ) ===
i

i=1

M-1 =
1B
+(wl° - |w|>(§ +

i=1

— 2
FQ{IPA - WD) - SIW1 = 1) + [+ el — 2]

+ 2Ll¥|*(1 - |w|2)}.
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So,

GV W21 - [W]2) — e[|PI*(1 - [¥[2) + W2 (1 — [¥]D)]

= f d3x
K=Kg

M-1 —
a;B; +c.c.
+ (PR - ) Y A
i=1 !

_ [lqj|4(1 - |lp|2) + Iq_ylz(l |\P| )] (Z |ﬂl| )

i=1 L
_ 5 -
+Q 21912 — WP = 2 A= 191D + 2L - wm}.
Then, it follows from Egs. (3.6-6) and (3.6-8) that G, can be expressed in terms of the two

integrals defined by

3.6-9

I= fd3xllvlz(1— |®]?), g= fd3xllvl‘*(1— |®]?).

Utilizing Egs. (3.6-5), (3.6-6), (3.6-8), and (3.6-9), we can rewrite G, given by Eq. (3.6-1) in

the form
Gy = t2[—V218Kk + (A1 + BY)), 3.6-10

where the coefficients 4 and Bread

I
o af. +a;B. — |B.
ﬂ:l—c+2Q+z L |l|
Ai
i=1
M-1,_ 2
@zZZ—E—EE— Bﬂﬁ 3.6-11
3 A

with the dimensionless parameters ¢, L, Q, @;, §; and A; given by Egs. (3.4-8) and (3.5-9).

Now we have everything at our disposal to determine the boundaries of the IT domain
on the k — T plane. This domain with the general remark that the superconductivity types are
related to the way the magnetic field penetrates the bulk superconductor and produces a
nonuniform configuration of the flux/condensate, is found when the Gibbs free energy
difference becomes smaller than that of the Meissner state at the thermodynamic critical field

H_, and this flux/condensate in question can appear. The appearance/disappearance marks the



103

mixed state and separates the domains[35], the onset of this nonuniform state is found from

the equation

Gpo(k, T) =0, 3.6-12

that yields the corresponding GL critical parameter k*(T), referred to as simply a critical
parameter. On the k¥ — T plane k*(T) separates domains with and without the flux/condensate

configuration of interest.

Using Eq. (3.6-12) into Eq. (3.6-10), and k™ = k™ — Kk, one obtains the general

expression for critical parameters up to the leading correction

V2I5k* = (A1 + BY),
T

V2

Ox* =

A+ BJ/D. 3.6-13

We obtain

k" =Kol + 1A+ BJ/D]. 3.6-14

The lower boundary k,;,, (T) marks the appearance/disappearance of the mixed state.
The condensate vanishes at H., and so the Gibbs free energies of the normal and condensate
states become equal. At the same time the normal and Meissner states have the same Gibbs

free energy at H.. Therefore, when type I separation of the IT domain approaches the, ¥ — 0.

Using this information and considering that 7/ — 0 for ¥ — 0, from Eq. (3.6-10) we find

Kmin = Ko(1 + TA4). 3.6-15

The upper boundary k. (T) separates type-1I and IT regimes and is determined by
zero long-range interaction between superconducting vortices [35]: this interaction is repulsive
in type II whereas it is attractive inside the IT domain. To calculate k. (T), one solves the
Bogomolnyi equations for the case of two vortices at a distance R apart and finds the asymptote
of ¥ at R = oo. The position dependent part of this asymptote is plugged into Eq. (3.6-12). As
the Gibbs free energy of the normal state is not dependent on R, this procedure yields the long-
range asymptote of the Gibbs free energy of two vortices or, in other words, their long-range
interaction potential. The scaled GL equations (3.5-4) and, in turn, the Bogomolnyi equations
are not sensitive to the number of contributing bands M, we can adopt the long-range

asymptote of the two-vortex solution ¥ found previously in the two-band case [35], which

yields J/I = 2. Then, we get
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Kinax = Ko(1+ (A4 + 2B)). 3.6-16

Equations (3.6-15) and (3.6-16) are generalization of the expressions for the boundaries

of the IT domain obtained previously for the two-band case [35]. As is already mentioned
above, within the two-band formalism, A© and A® were represented as linear combinations
of two explicitly chosen vectors[61] and the IT boundaries were expressed in terms of their

components [35]. In the case of M > 2, the extended GL formalism is obtained in a more

compact form when A© and AD are written as linear combinations of the eigenvectors of the
matrix L [see Eq. (3.3-4)]. Then, to use Egs.(3.6-15) and (3.6-16), one needs first to solve Egs.

(3.3-11) and (3.3-12) to determine the eigenvalues and eigenvectors of L.

In the next chapter we will investigate how the IT domain boundaries given by Egs.
(3.6-15) and (3.6-16) are sensitive to the number of contributing bands M for multiband
systems with degenerate gaps. Analyzing Eqgs. (3.3-19), (3.3-26), (3.4-6), (3.4-8), (3.5-9), and
(3.6-11), one finds that K, ;,, and Kk, depend on the following microscopic parameters: the
dimensionless couplings A,/ = g,,/N (with N =}, N, the total DOS), the relative band
DOSs n, = N, /N, and the band velocities ratios v, /v; (here the Fermi velocity of band 1 can
be replaced by another band characteristic velocity). Since T, « Ac, the cut-off frequency w,

. * *
does not contribute to k;, and Kpyax-

For two-band models available in the literature (see Ref. [35] and references therein)
the intraband couplings A1, 4,, are usually in the range 0.2-0.7 (they are larger for MgB,),
the interband coupling A4, is typically much smaller than the intraband ones, and the relative
band DOSs n; and n, are usually close quantities. Thus, we can expect in general that 0.2 <

A S 07,4, KAy andn, = n,r.

To have an idea about the ratio v, /v;, we can invoke available results of the first
principle calculations for multiband superconductors. For example, the averaged Fermi

velocity in the a-b plane of MgB, is estimated[99] as v*?) = 4.4 x 105m/s and v* ™ =

5.35 x 10°m/s for o and m bands, respectively. One sees that véa_b) is about 20% smaller

than véa_b). However, for the c-direction one obtains[99] that v5 = 7 X 10*m/s is by an
order of magnitude smaller than that v¢ = 7 X 10°m/s. In addition, ARPES measurements
can be also employed. For instance, these measurements demonstrate that there exist three
contributing bands in iron chalcogenide FeSe;5Tej s and the maximal ratio of the band

Fermi velocities is about 4, see Ref. [100] and discussion in Ref. [101]
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3.7 RESULTS AND CONCLUSIONS

As is mentioned in the Introduction, it is usually assumed that the number of the energy
gaps in the excitation spectrum determines the number of contributing bands in a
superconducting model designed to capture essential physics in the multiband system of
interest. The results given in the below demonstrate that this common expectation is an
oversimplification and the magnetic properties of multiband systems with the same excitation

gaps but with different numbers of bands can be significantly different.

For illustration, we first consider a two-band superconductor with degenerate
excitation gaps and compare the boundaries of the IT domain for such a system with those for

a single-band superconductor. The excitation gaps are calculated from the BCS equations

hw¢

A
A, = Z Ay’ 7 f 2; [1-2f(E, )], 3.7-1
g hwc v!

with E,, = /€2 4+ |A,|? and f(E,) the fermi function. In the two-band case we choose

/111 = /122 = 03, /112 = 005, ny = n,. 3.7-2
L5 \ ] i Number of Bands 8 o
\ ¥ —_—1
0f |\ / I
\ / 5
0.5
! dL | d)6-¢
1.0 dr 0.0 ] ;-_" dr
| 4
-0.5
-1.0f ! 2
Band Index
—— v=1(1o0r 2 bands) !
----- v=2 (2 bands) -1.5 e et
0.0 s sevio s cia o gl L A
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 0 2 4 6 8
TIT; B B

Figure 3.7-1 “Reference-[131] ", The two-band system with the couplings and relative DOSs given by Eq. (3.7-2) versus the
single-band system with the coupling 1 = 0.35: (a) The single temperature dependent gap for both systems,; (b) The t-
derivatives of the IT boundaries kg, (two upper lines) and Ky, (two lower lines) versus the band Fermi velocities ratio
B = v, /vy for the two-band (dotted) and single-band (solid) cases, the single-band results are material independent
quantities 0.67 and 0.29, see Ref. [35], (c) The derivative d|&é, — &,|/dt versus B, where |é, — &, | is the absolute value of

the difference of the band healings lengths &, and &, for the two-band system in question.

The results of A; and A, (in units of T, A, in units of T, does not depend on hw,.), are
given by the solid and dotted lines and merge into one curve (degenerate), as seen from Figure

3.7-1 a). To get the same excitation gap for the single-band case, one needs to adopt the
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dimensionless coupling 0.35, which is the sum of 1,; and 1;, given by Eq. (3.7-2), see Figure
3.7-1 a). Thus, the excitation spectra of the chosen two-band and single-band systems exhibit
the same single energy gap. Notice that there are infinite combinations of parameters resulting
in a single excitation energy gap in the two-band case: one simply needs to use 411, = A5,n,.
However, our qualitative conclusions are not sensitive to a particular choice of the couplings

and DOSs.

In Figure 3.7-1 b) the derivatives dx* /dt for k;,, and kp,,x are shown versus the ratio
B = v, /v, for the single-gap system with two bands (dotted lines). The same quantities for
the single-band system are universal material-independent constants [35] given by the solid
lines. One sees that the boundaries of the IT domain of the two-band system are sensitive to
the velocity ratio f and, in general, differ significantly from the single-band boundaries. We
arrive at the conclusion that the superconducting magnetic properties depend on features of a
Fermi surface with multiple band Fermi sheets, irrespective of the appearance of a multigap

structure in the excitation spectrum.

To gain deeper understanding, it is of importance to emphasize that the IT domain
boundaries of the both systems in Figure 3.7-1 b) coincide at § = 1. To clarify this point, we
utilize the formalism of Ref. [101] and calculate the derivative d |, — &;|/dt, where |&, — & |

is the absolute value of the difference of the band healings lengths &, and &; for the two-band

system in question. To the next-to-lowest order in 7, we have &, = EO) + Tféo), with 6150) =

&1, see Refs. [61][101][102][103]. [Due to using the scaling transformation ¥' = t'/2%, this

-1/2

healing-length expression should be multiplied by t to return to the standard definition].

Therefore, taken to one order beyond the GL theory, d|é, — &;|/dz, is equal to |€2(1) - 61(1)|

and is not t-dependent. The result is given in Figure 3.7-1 c) [in units of the GL coherence
length &g;.] and one sees that &, and &; coincide at f = 1. As is seen, when the band
condensates are controlled by the same characteristic length, we find no difference in the
superconducting magnetic properties as compared to the single-band case. Thus, the most
promising regime of searching for non-single-condensate superconducting magnetic effects is

the one with diverse and competing lengths of multiple contributing condensates.

For another illustration we compare the boundaries of the IT domain calculated for the
two- and four-band systems with two different energy gaps in the excitation spectrum. Now

the dimensionless couplings and relative DOSs are chosen as, the two-band system
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/111 = 0175, /122 = 0125, 112 = 005, ny =Ny, 3.7-3
and for the four-band one
111 = 122 = 03, 133 = 144 = 02, AVV’ = 005, n, = nv’, 3.7-4

Two energy gaps obtained from Egs. (3.7-3) and (3.7-4) are shown in Figure 3.7-2 a).
As in the previous illustration, there again exist infinite variants the couplings and DOSs. From

Eq. 3.7-1 we can see that, the excitation gaps become degenerate when the quantity

M
A, = Z Ayt N1, 3.7-5
vi=1

assumes the same value for several bands.

Band Index \

0.5 v=1,2 (4 bands), \
’ v=1 (2 bands) \
————— v=3,4 (4 bands),
v=2 (2 bands)
0.0L, ‘ . : ; L a ’ L
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8
TIT. B

Figure 3.7-2 “Reference-[131] ", The four-band system with the couplings and relative DOSs given by Eq. (3.7-4) versus the
two-band system with A, and n,, given by Eq. (3.7-3): (a) The two temperature dependent gaps for both systems; (b) The t-
derivatives of the IT boundaries Kyqy (two upper lines) and iy, (two lower lines) versus B for the two-band (dotted) and
single-band (solid) cases, where B = v, /v for the two-band case and v, /v, = v3 /v, = B and v, /v, = 2 for the four-band
— A(24b) — Aga) 4 /1(413).”(‘}'”)
v Y

For example, to get Ag‘}b) , WE can use ),r_;

v=1,2

12/:1/11(}21/13)711(}2,17)’ similar expression with obvious alterations is needed to obtain Ag4b) =
Affb) = Aga). We note again, however, that a particular choice of the couplings and DOSs

does not influence our qualitative results.
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The IT domain boundaries (their t-derivatives) for the two-band system with two
distinguished gaps governed by Eq. (3.7-3) are shown in Figure 3.7-2 b) versus f = v, /v,
(solid lines). One can see that in general, the corresponding IT domain is significantly different
from the two-band IT domain shown in Figure 3.7-1 b). However, the two-band IT boundaries
in Figure 3.7-2 b) are still close to the single-band ones in vicinity of f = 1, recall that
diax/dt and dky,;, /dt in the single-band case are universal material-independent constants
0.67 and 0.29, respectively. Close to f = 1 the healing lengths ¢, and &; are nearly the same
and the two-band system exhibits a nearly single-band superconducting magnetic response
despite the presence of two excitation gaps. We again observe that the presence/absence of
diverse characteristic lengths of multiple condensates coexisting in one material is more
important for the superconducting magnetic properties than the presence/absence of multiple

gaps in the excitation spectrum.

The quantities dkpax/dT and dk;,;,,/dt for the four-band system with two excitation
gaps controlled by Eq. (3.7-4) are given by dotted lines in Figure 3.7-2 b). Here we use the
parametrization of the band Fermi velocities as v, /v, = v3/v; = B and v,/v; = 2. The
adopted parametrization is not crucial: our study demonstrates that the IT domain boundaries
for the four-band system are always very sensitive to the choice of the band Fermi velocities
and in general different from the IT boundaries for the single- and two-band systems. In
particular, we can see that the IT domain for the four-band case is always larger than the IT
domain for the single-band system [c.f. Figure 3.7-2 b)]. More complex results are obtained
when comparing the two- and four-band cases. The two-band and four-band lines
corresponding to dkp,.x/dT intersect at § =~ 2.5 while the corresponding lines for dk;,; /dt
cross each other at the larger value § = 3. One sees that the IT domain boundaries for the four-
band case are close to those for the two-band case at § = 2.5-3. However, at § = 6-8 the size
of the IT domain is notably larger for the two-band case whereas the four-band IT domain is
more pronounced for f < 2. Thus, the number of bands always matters, regardless the

presence/absence of degenerate excitation gaps.

We have demonstrated that the superconducting magnetic properties are sensitive to
the number of contributing bands even for degenerate excitation gaps. We have compared
single-band results for the boundaries of the IT domain with those for the two-band case with
degenerate superconducting gaps. In addition, the IT domain boundaries have been calculated
for a four-band system with two excitation gaps and compared with the corresponding

boundaries of a two-band case with the same two gaps in the excitation spectrum. We have
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found that nontrivial competition between diverse characteristic lengths of different
contributing band condensates can result in non-single-condensate magnetic response even
when the excitation spectrum of a superconductor exhibits a single energy gap. At the same
time, we have observed that a superconductor can demonstrate a nearly single-condensate
magnetic response in the presence of multiple excitation gaps. Characteristic lengths of
multiple condensates are directly related to the complex Fermi surface made of different band
Fermi sheets. The set of diverse and competing coherence lengths and the multigap energy
structure of the excitation spectrum are both results of a complex Fermi surface with multiple
Fermi sheets associated with different contributing bands. However, interference between
different band condensates is not directly related to multiple excitation gaps. Thus, multiband

superconductors are not the same as multigap ones.

Our analysis has been performed within the EGL approach that considers the leading
corrections to the GL theory in the perturbative expansion of the microscopic equations in T =
1 — T /T,. This formalism, previously constructed for single- and two-band systems, has been
extended in the present work to the case of an arbitrary number of contributing bands. Its
advantage is that it allows one to clearly distinguish various effects appearing due to the
multiband structure in different types of superconducting characteristics. It particular, it
reveals solid correlations between changes in the IT domain with the competition of multiple

characteristic lengths of the contributing condensates.
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4 MULTIBAND MATERIAL WITH A QUASI-1D BAND AS A HIGH
TEMPERATURE SUPERCONDUCTOR

It is a common knowledge that superconductivity in 1D systems is suppressed due to
fluctuations of the order parameter. The superconducting state can still be achieved when
several 1D structures (parallel chains of molecules or atoms) are coupled one to another,
creating a weakly coupled matrix. Earlier theoretical studies demonstrated that such quasi-1D
materials can superconduct [105]-[110] but the fluctuations significantly reduce the critical
temperature T, [105]. These predictions were confirmed by observations of the low-
temperature superconductivity in Bechgaard salts-organic quasi-1D superconductors [111],
[112]. Subsequent theoretical analysis revealed that in some situations the critical temperature
in quasi-1D systems can be enhanced rather than suppressed. In particular, this was calculated
for weakly interacting stripes formed due to a particular transformation of the
antiferromagnetic insulator [109], [110] and the enhancement is achieved under subtle balance

of different physical mechanisms.

The interest in quasi-1D superconductors has been recently boosted by the discovery
of CryAssz-chain based quasi-1D materials [113]-[116]. Results of the first principle
calculations of the electronic band structure of those compounds led to a conclusion that these
quasi-1D superconductors are multiband materials with some of the contributing bands being
quasi-1D ([116], [117]), multiband quasi-1D superconductors. In particular, there are two
quasi-1D Fermi surface sheets coexisting with one 3D sheet in K,Cr;As; [13] and also in
KCr3As;Hy [12]. Furthermore, it was demonstrated that in KCrz As; Hy the Fermi level is lifted
by changing the H-intercalation [116], which gives rise to alterations in topology of the Fermi
surface manifested in Lifshitz transitions. It is expected that proximity to a Lifshitz transition
has a profound effect on the superconducting properties. For example, the mean field
calculations reveal a considerable increase in the critical temperature when the chemical
potential approaches the edge of a quasi-1D band [119]-[122]). However, the fluctuations,
being already strong due to quasi-1D effects, severely increase due to the Bose-like character
of the pairing in this regime. This can rule out any expectations based on the mean-field

arguments.
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On the other side, the interband coupling between condensates in different bands can
reduce the fluctuations due to the multiband screening mechanism [118]. However, this
mechanism was previously investigated only for quasi-2D bands and it is not clear how
effective it is for quasi-1D superconductors. In the present thesis, motivated by recent
experiments with multiband quasi-1D superconductors, we investigate a two-band system with
coupled quasi-1D and 3D condensates. The goal of this work is to demonstrate that under a
fairly general assumptions on the microscopic details, this system is a robust mean-field
superconductor. This result opens promising prospects to engineer quasi-1D superconducting

materials with higher critical temperatures.

4.1 QUASI-ID BAND

It is known that the GL theory in the vicinity of the mean-field critical temperature T,
is obtained from the BCS microscopic formalism via the Gor’kov derivation. Below, for the
reader convenience, we outline this derivation, specifying important features of the quasi-1D
band in the vicinity of the Lifshitz transition (shallow quasi-1D band). The initial step of the
Gor’kov procedure is the integral equation for the superconducting order parameter A(x) =

(W)Y, (x)) (g is the Gor’kov coupling) in terms of the normal-state temperature Green

functions G and G, i.e.,

Ax) 3
"2 [ @y Koo
g 4.1-1
+ I(H?ﬂ dgyi) Ky (%, ¥1, Y2, ¥3)A()A (¥2)AY3),
where the kernels are given by
Ka(x,y) = T Z el 6V (2, )G (v, %),
w
Ky (%, 1,¥2,¥3)
i = = 4.1-2
=T e 60, y)GS 31,7268 32, Y65 3, ).
w
The normal-state temperature Green functions are expressed as
d3k explik-(x —y)]
© _ P Y 4.1-3
w (%) (2m)3 ihw—%, ' i



112

and _(E)O) (y,x) = —QE(B (x,y). The integral kernels involve, as usual, the summation over the
fermionic Matsubara frequencies w,, = nT(Z: D (here the Boltzmann constant kg is set to 1).

The magnetic field is zero in the present consideration. The quasi-1D Fermi surface is
modelled in such a way that the dispersion relation has very large effective electronic masses
in two directions, say, m,, m, > m,. Then the related single-particle energy becomes

32k h2k?

& = — U 4.1-4

i 2my 2my
with u the chemical potential (the Fermi level) and m, set to the free electron mass m.
Considering only the linear contribution to the gap equation given by Eq. (3.7-1) and

making its expansion

j A3y K,(x, y)A(y) = f d3zK,(x,x + z)A(x + 2),

j d3zK,(x,x + z)A(x + z)

Ef61321<a(9€,?€+2) A(x)+zll—|VA(x)+(Z'2'V) A(x) + - |,
- !
= jd3zKa(x,x+z) [A(x)+ (z Z'V) A(x) + - |,

f d3zK,(x,x + 2)A(x + z)
4.1

(z-v)” Ax) 5

2!

= jd3zKa(x,x+z)A(x) +fd3zl(a(x,x+z)
+ cee,

Now, we deal with the local term [ d3z K, (x, x + z)A(x) = a;,A(x)

@y, =T f @3z ) e 600 x + DG (x + 2,2),
w

B 5 _iwot [ @k expl—ik-z] ( d*q expliq - z]
a;s=-T|d°z ) e COEE 3 )
™3 hw — & (2m)3 ihw + &

w

G1s = Z ¢ 1 2m)3 ihw — & ihw + &’
w
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3 TZ i+ [ K 1 1
T1s = ¢ (2103 ihw — & ihw + &
w

e [Pk 11 1
“1s=—TZe 2 32_<'h T )
— (2m)3 25 \ihw — &, ihw + &

d3k 1 e—iw0+ e—iw0+
=-T | ——— —_— —_—
s (21'[)3 sz <z ihw — Ek Z ihw + Ek>,

w w

T d*k 1 1 1 +1 1
s = — ——| —= — ,
a mE28\ T g0y q T ot y1

d’k 1 1 1
s = - - ,
1s (21-[)3 sz e‘%ik + 1 e%gk + 1

—f @’k 1 t h(Ek> 4.1-6
“s = | oz 2g, 2T 7

Introducing the dimensionless coupling A that is defined as

v2) m o2
A = gN, = go©” = . -
s = 9N =997 I3 eense. I 4, 417

dky dk,
2T 2T

Here 092 is given by

s — ~(ayaz)‘1, 4.1-8

and introduced to account for the states in y and z directions. It is proportional to the inverse

product of the lattice parameters a,, and a,. The auxiliary quantity N; is the effective DOS in
the quasi-1D band at the energy Aw,, and we also introduce the effective band velocity vy that

is determined by the cutoff energy (Aw.), where w. is the cut-off frequency, as vg = %

So, from this considerations and eq. 4.1-4, eq. 4.1-6 becomes

dk, 1 &
= 502) Xt h(—)
hs =0 f 2m 28, 2T/

changing to the energy space, dk, = w’%\/;ﬁ_ﬂ’
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(vz) hoc
_Uy \/;] %%tanh(zﬁl‘)

3

hwe’

Normalizing the energies in function of the cutoffs Aw,, &€ = ——, i = — and temperature

T=-""and changing to the normalized variables

hogd’
32112h3ooc aJE+as 2T

1 E)
_N = h - |, -
fﬁmitan <2T 4.1-9

a5 = A, — ag[t + 0(2)].

Where T = 1 — T /T,, one obtains

f £ 1 h( 3 ) 4.1-10
—tan ,
avE+ s

as

e ()

sechz( = ). 4.1-11
ZTCO-]-,L{ E+ 01 2T

From eq. 4.1-10, we can find T, due to the fact that 4, = 1.

Now, we will solve the square-gradient term [ d3z K, (x, x + z)( zv)” A(x),

ZA(x)

fd3zK(xx+z)( A()—Zfd3zl((xx+z)

Zy
= z U d3zK,(x,x + z) 7] V2A(x).

n

Solving this term first
2

z
ag’;) fd3z K,(x,x + 2z) 7”

a25

o = g ] d3z e 190" 6 ()2, G (—2) (—2,)(—1),



115

o =3[ @ D 6 @G o)) 4112

And the relations

. 1 1 .
d3 (0) —lk'Z' - fds (0) —lk'Z'
o= | @260 @e W= = | PrmG @e
:fd3zg‘(0)(z)e—ik-z' _la 1 fd3ZZ g(o)(z)e—ik-z'
iho + &, @ " ihw + & e
1 1 .
— - 3 (0) ik-z
T " | €7 G e
So,
6P = [ K (- ),
" (2m)3 i/ Fnihew — &,
d3k ) 1 1
~(0) — —ikz|_ _ a
(=2)6u" (=2) f(21'r)3e ( ) "ihw + &

Then, eq. 4.1-12 becomes

)
azrsl

, et [Pk 1 1 d3q . 1 1
ey E ST P Ny T B P
2 (2m)3 i/ "ihw —§, ) (2m)3 i/ "o + &
w

So, one obtains

a(n) Zze—i(uo"' d*k 9 1 0 1 1-13
25 =77 22 7% tho — &, Ckn the + & 1
w

Solving this equation, and 9y, = 0 in y and z direction.

1
ihw—Ek
@ — ZZf d’k 1 h_zk ) h_zk
2s 2 2m)3 (ihw —§)2m *(iho+§)2m *
w
(x) — ZJ d3k 1 1 h_sz
(2m)3 (ihw — &)? (ihw + §)2m ™

T h? ) d3k 1
ag) = _Z e iw0" 2(& + 1),
w

2m (2m)3 (h2w? + &%)2
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; _ (vz) — [ Ekydks
changing to the energy space, dk, > hZ \/_ and using o = o
hwe
ald = T— G(yZ)Zf G+ u) 4.1-14
2s K2 . Zﬁ\/ET (h2e? + £2)2 :
and here we use the tabled infinite summation over fermionic Matsubara frequencies(n = —1)

Z (flzm21+ £2)2 - ZTEZ (CU(O §) +ny (E))

where
. sinh(b/T)
Cn(a, ) = 2b(COSh(a/T) -7 COSh(b/T)).
Then,
1
cr(0,%) Z—Etanh (%)
And
1
nr] (E) E/T _ 'r’

For fermions

ne(®) = 3|1~ tanh (%)]
So,
-

Finally, one obtains the infinite summation over fermionic Matsubara frequencies

(thZ ez zlzT [ 12 tanh (22) - %SeChZ (22)]

Z _ [T sinh <E> E] sech? (ZET) L
4 (h2w? + £2)2 8372
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Then using this equation in 4.1-14, reads

@ _p " h? o U(yz) j'hwc dE\/ET [T sinh <%) - E] sech? <%)

D25 = 2mm 8E3T2

Normalizing the energies in function of the cutoffs and changing to the normalized variables

w0 _ / 52 f vE 8) _ ¥leeanz (2
Gos = 161ThooC thmc @ ( T sech 2T)
i vz) — = ’@
using o = N,4mhvg and vg = o
1 v 1 LoJE+a g 3 3
ag’;) = > N 4mhv, f dE E_ £ sinh E —i sech? i— ,
16Tw /2w, | 2R wc _y & T T 2T

N VE+A[  (E\ % 3
= h?y, 28h2 zfﬂdE z lsmh <$>—% sech? (ﬁ)

Thus, we obtain

V)

A(x) = Z U A3z K, (%, x + 2) ZZ—’Z‘l V2ZA(x),

n

fd3zK (xx+z)(
Z aPvzA(x) = aPV2A(x),

al? = K11 + 0(0)].

B I R )
— | — =] sech — |,
Teo Teo 2T¢o 16

and the stiffnesses of the gap parameter along the other orthogonal directions is zero.

So,

K& = n2v, 5'28h2 2] dg
-

Now we will deal with the last term given by the cubic contribution from Eq. (3.7-1).
It is enough to consider only the zero-order contribution of the gap in the Taylor expansion on

the coordinates (i.e. it becomes independent of the gap) and thus the integral becomes
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f (n dy )Kb(x Y1, Y2, ¥3)Ay)A (¥2)A(y3)

= —TZ ] (H d*y )Q DX, 165 01,9265 2,736 3, )AL (72)A(Ys),

=-T Z ] (1_[ d3zl) 690 (=2)69 (2, — 2,)69 (2, — 23)G (2)A(x + y,)A* (x

+ ¥2)A(x +y3),

withz, =y, —x,z, =y, —x,23 =y; — x.

f (1_[ d3yl-> Ky (%, Y1, Y2, ¥3)A(y)A (¥2)A(y3)
i=1

=—T2f<nd3zl>g(o)( Z1)g(0)(z1 Zz)g(o)(zz Z3)g(0)(z3)A(x
)(x + )A (x + ...)A(x + ),
= —TZ | <1_[ d%)g(m( 2068 (21— 2068 (2, - 2)G5 (2) A )

Then,

=—TZ ] ( zl)géf’)( 2602y — 2,)63 (2, — 23)G3 (25),  4.1-17

,i. 5 d3ki d3k eik'(—l1) eik1'(l1—lz) eikz-(zz—z3) eik3-z3
) \LL “2m)? ) 2n)? tho — & iho + &, iheo — &, ho + &,

i=

,i. 5 d3k
by, = —TZU: f ( [ ki> Gy Sk = )6 — k)o ke

i=1
1 1 1 1
ihw — Ek ihw + Ekl ihw — Ekz ihw + Ek3'

d3k 1
— —TZ j (21_[)3 (hzwz + E}Z{)z'

= k3)
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= [ Ltk

and using ¢ 0% =
2m 2T

changing to the energy space, dk, = th T

hw¢
b,s = -T ’ a(yZ)Zj !
2h? " Zn./z +p (RPw? +82)%

And using Eq. 4.1-15, we obtain

st _lrmlf) ()

u 2T[ E + 8EBT2

changing to the normalized variables
2 (& .
A S . [ Y
1s 2n3w, 16m(hw)? ) B+ 1 T) T
As, 002 = N, ’m
m
32n2h3mcf . sech® (% E
2h3wc 161T(hooc)2 E s
§ _
N 1 _sech2<
by = ——2 f dE 2T lsinh(i)—i.
a

4;120)% T 23 /E+M T

Finally

] (1_[ dgyl.)Kb(x,yl,yz,y3)A(y1)A*(y2)A(y3) = by5|A(X)|*A(x),

bis = —bs[1 + 0(1)],

3 ) _
rect” (ZTCO) [sinh <_i> - _il 4.1-18

b, = —s f 1 dt
Tanet) S e g Teo
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4.2 TWO-BAND SUPERCONDUCTOR WITH A QUASI-1ID AND 3D
BAND

We consider a two-band superconductor with the s-wave pairing in quasi-1D and 3D
bands, with their partial condensates coupled by the Josephson-like Cooper pairs transfer. To
describe this system, we adopt a standard two-band generalization of the BCS model given in
Refs. [1], [2]. The intra- and interband pairing is determined by the real matrix g of the
coupling constants g,,,, = g,y (v = 1,2). For simplicity we assume the parabolic momentum
dispersion of the single-particle energy in both bands. For the same reason the Fermi surface
of'the 3D band (v = 1) is taken spherically symmetric. The principal axis of the quasi-1D band
(v = 2) is chosen parallel to the x-axis, while in the y - and z directions the energy dispersion
is degenerate. We assume the effective finite integral of the density of states (DOS) for both
these directions. The single-particle energy in both bands, shifted by the chemical potential u,
are thus given by

h2k? w  h2K?
_M, k [

=g+ —u 4.2-1

2m1 Zmz

where m, , are the effective masses and k = (kx + ky + kz). The energy and u are measured
relative to the the bottom of the quasi-1D band. The lowest energy of the 3D band is thus
negative &, < 0 and we adopt also that |€,| > 0. Our study is focused on the superconducting
state near the Lifshitz point u = 0. The system is considered in the clean limit (the role of

impurities is negligible). In what follows we set kg = 1 for the Boltzmann constant.

Following Refs. [1], [2], the mean-field Hamiltonian of the two-band superconductors

is written as

#= | d3r{;22 (3!, 1., @) + B, )a,0) +hec]

4.2-2
+ (2, g*Z)},

where () and ,,,(r) are the field operators for the carriers in band v, T, (r) is the single-

particle Hamiltonian with the single-particle energies given by Eq. 4.2-1, and A, (r) is the
superconducting gap function for band v. We also use vector notations A = (A;,A,), where

(.,.) denotes the scalar product in the band vector space, and ™ is the inverse of the coupling
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matrix. The band dependent superconducting gap functions satisfy the self-consistency

condition, known as the matrix gap equation,
A=JR, 4.2-3
where components of R are the anomalous Green functions R, = (Y1 (1), Py, (1)),

The model based on Egs. 4.2-2 and 4.2-3 is used to calculate the mean-field critical
temperature T, and then the fluctuation-shifted T,. T, is obtained by solving the linearized
variant of the gap equation 4.2-3. The fluctuations are investigated by using the expansion for
the free energy functional for the two-band system with respect to the band superconducting
gap functions, which essentially gives the two-band Ginzburg-Landau (GL) free energy

functional.
Assuming T, is known, one expands the r.h.s. of Eq. 4.2-3 with respect to A,. The

lowest order terms of this expansion are given by [21-27]

RIA) = (1, —a)s, —bals P+ ) KVEa, Y

i=x,y,Z

where the coefficients 4, a,, b,, and Kéi) are to be calculated using the microscopic model

for each band, and external fields are assumed to be zero.

For the 3D band, v = 1, with the spherically symmetric Fermi surface, one obtains the

standard result
2Yhw, 73(3)
Ay =Ny ln( oo )» a; = —thy, by =N FTCZO'
h2v?
Kl(x) _ K1(y) — K1(Z) =— 1 by, 4.2-5

where 7 = 1 —T/T,y, w,. is the energy cutoff (assumed to be the same for both bands), y is
the Euler constant, {(x) is the Riemann zeta function, the DOS of the 3D band at the Fermi

energy is N; = m kg /2m?h? and the 3D band Fermi velocity v, = hkp/m, is determined by
the corresponding Fermi wavenumber kp = /2my(u — &,) /A.

For the quasi-1D band near the Lifshitz transition, at |u| < hw,, the expressions for

the coefficients are given by the integrals to be evaluated numerically, i.e.
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4.2-6

1 £ = = _
K@ = hzvszL dE E_+ £ 1sinh _i — | sech? E )
? -u EB TCO

3
8h2 00% TCO c0

where we use the scaled quantities T,y = T.o/hw, and @ = u/hw,, and the effective band
velocity v, is determined by the cutoff energy as v, = /2hw./m, (independent of u). The

effective DOS of the quasi-1D band is given by N, = ¢ /4mhv, where the factor o*¥)

accounts for the contribution to DOS by the x, y dimensions.

The mean-field critical temperature T,, is obtained by solving the linearized gap

equation which reads as (see Eqs. 4.2-3 and 4.2-4)
IE=o, r=5-(3 4). 427

This is the matrix equation with the solution in the form
A =y, 4.2-8

where 7j is an eigenvector of L corresponding to its zero eigenvalue while 1 (7) is a coordinate
dependent GL parameter of the system [133]. A non-trivial solution to Eq. 4.2-7 exists only

when the determinant of L is zero, which gives the equation

(ga2 — GA)(911 — GA,) — 91, =0, 4.2-9

with G = g119,, — g%,. Of the two solutions to Eq. 4.2-9, one chooses the maximal T,,. The

corresponding eigenvector 7j can be adopted in the form

i=(3) 5=

4.2-10
1 912

Notice that this choice is unique up to the normalization factor which is absorbed by Y (r).
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The actual critical temperature T, is lower than its mean field value T., due to
fluctuations [104]. The fluctuation-induced correction to T, is obtained by using the standard
Gibbs distribution exp(—F/T), where the free energy functional writes as (see e.g. [123],
[124])

F= de’r[z f, + (&, LB)], 4.2-11

v=1,2

with
2, bv 4 Digza |2
fo = B2+ 218,14 ) KPIVEA, P 41212
i=x,y,z
The stationary solution of this functional satisfies the gap equation 4.2-3. The fluctuation
corrections are obtained by assuming the standard Gibbs distribution exp(—%/T), with the free
energy F given by Eqgs. 4.2-11, 4.2-12.
The calculations are simplified by representing A as a linear combination of the

contributions proportional to 7} and to the orthogonal vector g? =(1,-5)T as

A(r) = Y(@)7i + p(r)E, 42-13

where @ (r) is the second spatial mode. The free energy functional is then expressed using i

and ¢ as

F= j a*r (fy + fo + fo)- 4.2-14

Here contributionsfy, and f, have the same structure as given by Eq. 4.2-12, where A, is
replaced by Y (r) and ¢ (1), respectively, and a set of coefficients {a,, b,, K,,} is changed to
{ay, by, Ky} and {a,, by, K,}. The contribution f,, represents the coupling between the

two modes Y (r) and ¢(r).

Coefficients in fy, one obtained as

ay = S*a; + a,, by = S*by + by,
O _ o2 @ 4 @
Ky’ =S*K;" +K,", 4.2-15
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whereas the coefficients in f, are given by

a, = a; + S%a,, b, = by + S*b,,
@ _ ©® ®
K,” = K" + S?K,", 4.2-16
with
1+ 52)?
al = S 4.2-17
SGg12
Here aé,o) # 0 since S is real. This means that only f;, represents the critical fluctuations in

the vicinity of the superconducting transition because @, — 0 in the limit T — T¢y. The
contribution f,, describes non-critical fluctuations and can be safely omitted [125]. Thus, the
fluctuations are determined by the GL functional f,, with the single component order
parameter Y (1). Due to the presence of the quasi-1D band, this functional is anisotropic with

.y (2)
Kw * Kw .

With this simplification we can apply the known results for the fluctuation-driven shift
of the critical temperature in the single-component GL theory. Using the renormalization
group approach, performed in the section 2.5.9, we obtain that the actual 3D critical

temperature is related to the mean-field one by

T —T. 8
Q< -G, 42-18
T, T

where Gi is the Ginzburg number (Ginzburg-Levanyuk parameter). For the 3D anisotropic GL

functional it reads

Gi 1 Tcobi
L= g 4.2-19
3272 1 ) ) 1 (2)
ayK, K, K,
with ay, = day,/dT. Using Eq. 4.2-15, this above expression can be rearranged as
. . (by/by + 5%)?
Gi=Gizp 4.2-20

(ay/a, + S2)(KP /KD + 5254
2 1

where Gisp is the Ginzburg number of the uncoupled (standalone) 3D band, given by Eq.

4.2-19 with the substitution {aw, by, Kg)} - {al, by, Kl(x)}-
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4.3 RESULTS AND CONCLUSIONS

Using the obtained expressions, we can now calculate both the mean-field T,y and
fluctuation-shifted T, critical temperatures. Essential parameters of the model are the three

coupling constants g, and the band DOSs N,,, while the cutoff Aw, sets the energy scale. It

is convenient to introduce the dimensionless coupling constants 4, = gwf\m . The
parameter S, which controls Egs. (4.2-18)-(4.2-20) and also Ty, depends on 1,4, A5,, 41, as
well as on the ratio N, /Nj. In the calculations we assume A,, = 0.2 and 4;; = 0.18, which is
in the range of typical values of the dimensionless couplings in conventional weak-coupling
superconductors [126]. We also take N,/N; = 1 for simplicity. Finally, we need also to
specify N; which defines Gisp,. We follow a different path and use an estimate Gizp = 10719
by taking into account that the Ginzburg number of most 3D superconductors is in the range
1076-1071 [127], being Gisp =~ (T.1/Er)* with T, the critical temperature of the standalone
band 1 and Er = h2?k%/2m, (for the stable 3D condensate T.; < Ef ). Notice, that our results
are not sensitive to a particular choice of the microscopic parameters unless the dimensionless
intraband coupling of the 3D band is significantly larger than that of the quasi-1D band and

the two-band system approaches a routine 3D superconductor.

0.20 : 0.20

b)

15=0.05

0.15 0.15} A1,=0.01

Irf}

T,

T f
0.10¢ - 0.10}
. fiew, {

112=0.005

0.05

0,05/
2=0.0025

-04 =02 0.0 0.2 04 0.6 0.8 1.0 04 02 0.0 0.2 0.4 0.6 0.8 1.0
whow, e,

Figure 4.3-1 “Reference-[132] ", a) The mean-field critical temperature Ty versus the chemical potential u, calculated for
A1y = 0.05 and A1, = 0; the insert demonstrates the energy dependent DOSs with the van Hove singularity of the quasi-1D
DOS at the Lifshitz point u = 0. b) The fluctuation-shifted critical temperatures Tc as a function of u, calculated for selected
values of the dimensionless pair-exchange coupling constant A1, = 0.001, A,, = 0.025, 1;, = 0.005, A,, = 0.05 at the
Ginzburg number Gisp, = 10710 of the uncoupled 3D band.
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Numerical results for T,, and T, versus the chemical potential u, calculated for several
values of the dimensionless pair-exchange coupling 4,,, are shown in Figure 4.3-1. One sees
from a) that when p is sufficiently below zero, the quasi-1D band does not contribute and T,
is determined by the uncoupled band 1. In the vicinity of the Lifshitz transition at u = 0, T,
rises sharply. At larger u, T, decreases, approaching the critical temperature of the decouple
3D band again. As is well known, the reason for this sharp rise is the increase in the energy-
dependent quasi-1D DOS that has the van Hove singularity at the band edge, as illustrated in
the inset in Fig. 1 a). It is remarkable that T,, is almost insensitive to the pair-exchange
coupling as long as 1, < A;4. Consequently, in the vicinity of the Lifshitz transition, the
superconducting properties of the two-band system on the mean field level are fully

determined by the quasi-1D band.

In contrast, the fluctuation-induced shift of the critical temperature strongly depends
on the pair-exchange coupling. In the limit A;, = 0 the fluctuations suppress the
superconductivity. However, this suppression ceases rapidly with increasing the pair-exchange
coupling. Figure 4.3-1 b) demonstrates that the presence of even a vanishingly small coupling,
A2 K A,,7, 1s enough to quench the fluctuations and to eliminate the shift. In particular, T,
approaches T, already at 4;, = 0.01 and at 1;, = 0.05 the two critical temperatures are

practically indistinguishable.

Concluding, our calculations demonstrate that coupling to a stable 3D condensate
“screens” out the severe thermal fluctuations of the quasi-1D superconducting condensate.
This coupling gives rise to a single critical mode that controls the thermal fluctuations of the
condensate gap functions A; (r) and A, (r). In other words, “light” excitations of the quasi-1D
condensate are always accompanied by “heavy” excitations of the stable 3D condensate.
Therefore, such a two-band system becomes a robust mean-field superconductor. The
superconductivity enhancement, based on the interaction between a quasi-1D condensate near
the Lifshitz point and a BCS-like condensate, is general and does not depend on the model
details. Thus, it opens a possibility for a significant amplification (up to orders of magnitude)
of the critical temperature by tuning the Lifshitz transition. Notice that in addition to the
chemical engineering, Lifshitz transitions can be tuned by an appropriate doping of multiband

superconducting compounds, as e.g. reported in [129].
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Finally, we note that although our results are obtained for the model with the s-wave
pairing, one can expect that the fluctuations screening mechanism, based on the coupling of
multiple condensates, applies also to materials with the d-wave symmetry and even to the case
of the triplet pairing, having the multicomponent order parameter. In this regard we note that
first theoretical calculations of the possible pairing symmetry in quasi-1D multiband
superconductors A,CrzAs; (with A = K, Rb, Sc) are in favor of the triplet pairing [128]. A

detailed analysis of the fluctuations for the triplet pairing requires a separate investigation.
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5 CONCLUSIONS

These remarkable phenomena related to multiple coupled condensates addressed
during the doctorate brought good results, ending with a published article and another one in

the submission process.

a) Intertype magnetic response of multiband superconductors with degenerate
excitation gaps.

In the first problem addressed by the thesis, we were able to demonstrate that the
presence of multiple competing lengths, each connected with corresponding partial
condensate, is a more fundamental feature of a multiband superconductor for its magnetic
properties than the presence of multiple gaps in the excitation spectrum. This is illustrated by
considering boundaries of the IT domain in the phase diagram of the superconducting magnetic
response. For example, our results have revealed that a superconductor can have many gaps in
the excitation spectrum while exhibiting standard magnetic properties of a single-band
material. There is also a reverse situation, when a superconductor has a single energy gap in
the excitation spectrum but multiple competing characteristic lengths of contributing band
condensates, which results in notable changes of the superconducting magnetic properties in

the IT regime as compared to the single-band case.

Generally, our analysis shows that the multi-condensate physics can appear irrespective
of the presence/absence of multiple spectral gaps. Two superconductors with different
numbers of the contributing bands but with the same energy gaps in their excitation spectra
(some of the spectral gaps are degenerate) can exhibit different magnetic properties sensitive
to the spatial scales of the band condensates. This discrepancy between different
manifestations of multiple bands in superconducting materials must be taken into account in

analysis of experimental data and, generally, in studies of multiband superconductors.

In addition, given the significant advances in chemical engineering of various
materials, including multiband superconductors, it is of great importance to search for systems
that enrich our knowledge of and understanding the physics of the materials. Multiband
superconductors with degenerate excitation gaps can be a good example of such systems,

clearly demonstrating that ‘multiband’ can be dramatically different from ‘multigap’. Our



129

analysis has been performed within the EGL approach that considers the leading corrections
to the GL theory in the perturbative expansion of the microscopic equations int =1 — T /T,.
This formalism, previously constructed for single- and two-band systems, has been extended
in the present work to the case of an arbitrary number of contributing bands. Its advantage is
that it allows one to clearly distinguish various effects appearing due to the multiband structure
in different types of superconducting characteristics. It particular, it reveals solid correlations
between changes in the IT domain with the competition of multiple characteristic lengths of

the contributing condensates.

b) Multiband material with a quasi-1D band as a robust high-temperature

superconductor.

In the second problem addressed in the thesis, we were able to demonstrate that the
coupling to a stable 3D condensate “screens” large fluctuations of a Q1D condensate by means
of two mechanisms. First, the resulting GL free energy functional becomes the 3D anisotropic
one, which makes it possible to employ the result of the 3D renormalization group for T,.
Second, the pair-exchange coupling creates a single critical mode that controls the fluctuations
of both A,(r) and A,(r). Physically, one can be said that "light" excitations of the Q1D
condensate are always accompanied by “heavy” excitations of the stable 3D condensate,
reducing the amplitude of the fluctuations. Mathematically, the characteristic length of this
critical mode is the sum of length Q1D and length 3D, both multiplied by corresponding
weighing factors. As the length of the 3D stable condensate is large, the resulting length is also
large, suppressing fluctuations so that the two bands system becomes a robust mean-field

superconductor, even in the vicinity of the Lifshitz transition.

Our results are obtained for the model with s-wave pairing, however, one can be
expected that the fluctuation screening, based on the coupling of multiple condensates, also
applies to materials with d-wave symmetry of even for the case of the triplets pairing, having
the multicomponent order parameter. A detailed analysis of the superconducting fluctuations
for the triplet pair requires further investigation. We also observed that the specific values of
the increase in T, can be influenced by smoothing the van Hove singularity. It occurs because
the Q1D Fermi sheet is often curved due to dispersions in the direction perpendicular to the

main axis of the Q1D band.
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Finally, although this work studies the effect of thermal fluctuations on T, a similar
suppression of quantum fluctuations can be expected at low temperatures, near the upper
critical field. Thus, the superconductivity enhancement, based on the interaction between a
QID condensate near the Lifshitz point and a BCS-like 3D condensate, is a generic
phenomenon that opens a possibility for a significant critical temperature amplification by

adjusting the Lifshitz transition.
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There i= & tacit assumplion that multiband superconductors are essentially the same as multigap
superconduciors. More precisely, it is usually assumed that the number of excitation gaps in
the single-particle energy spectrum of a uniform superconductor (1.e. nomber of peaks in the
density of states of the superconducting electrons ) determines the number of contributing
bands in the corresponding superconducting model. Here we demonsirate that contrary to this
widely accepted viewpoint., the superconducting magnetic properties are sensitive to the
number of coniriboting bands even when the spectral gaps are degenerate and cannot be
distingmished. In particular, we find that the crossover between superconductivity types T and

I—the interty pe regome—is strongly affected by the difference between characteristic lengths
of multiple contnbuting condensates. The reason for this is that condensates with diverse
characteristic lengths, when coexisting in one system. interfere constructively or destructively,
which results in multi-condensate magnetic phenomena regardless of the presence/absence of
the multigap spectrum of a superconducting multiband material.

Keywords: multiband superconductors, superconducting properties. superconducting

magnelic response

(Some figures may appear in colour only in the onling joumal )

1. Introduction

The concept of the multiband superconductivity Wwas intro-
duced in 1959 [1. 2] as a possible explanation of o multigap
fine structure observed in frequency dependent conduc ovity
of superconducting Pb and Hg, extracted from the infrared
absorption spectrum [3]. Despite the long history of the con-
cept and several other experimental results about the multi-
gap characier of some superconductons [4, 5], its detailed and
unambiguous confirmation was obtained only in 20005 after
expenments with MgBa (see. e g.. reference [6] and references
therein). The observation of two well distinguished energy
gaps in the excitation spectrum of MgB, [7, 8] [the density

* Auhor i whon aiy comespondence should be addrssed.

136 1-648X. 0455702+ 13533.00

of states (DOS) of the superconducting eléctrons contains fwo
peaks] ignited widespread interest in multiband superconduc-
tivity. beosting further experimental and theeretical smudies.
After a decade of intensive investigations, it became clear
that multiple overlapping single-particle bands are present in
many supercenducting materiald, ranging from iron-based [9]
to organic high-T, [10] and even topological superconductors
[11. 12]. Recent first principle calculations have demonstrated
that the Fermi surface of Ph comprises two Fermi sheets, con-
firming multiband nature of its superconducting state proposed
[1] 10 explain proneering experiments in [3].

It 1s widely assumed that a key marker for the muli-
band superconductivity is the appearance of multiple energy
gaps in the single-particle spectrum of a homogeneous (bulk)

02020 10F Publishing Lbd  Printed in lhe LK
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superconductor. Then, if the spectrum does not exhibin
the multigap structure, the superconducting properties are
expecied o be those of single-band materials. More gener-
ally, it is usoally assumed that the member of spectal gaps
determimes the number of contributing bands in a supercon-
ducting model that capures the essential physics of interest.
A well-known example is MgB; which exhibits two spectral
gaps assocuted with 7 and @ states [6—-8]. Accordingly. the-
oretical models for superconductivity in MgBa consider two
contributing bands (see. e.g.. references [6, 13-19]) despite
the fact that the first princaiple calculations reveal [20, 21] four
single-particle bands for Mg Ba. see also reference [6]. The two
« bands have differént microscopic parameters (diverse Fermu
sheets) but degenerate excitation gaps and the same holds for
the mbands. A peneral perception is that the two-band model is
sufficient o fully describe the superconducting siate with the
Iwo spectral gaps,

However, there exists another approach that regards a mulii-
band superconductor as a system governed by a set of compet-
ing characteristic fengths associated with different bands, see
calculations of the healing lengths for different partial conden-
sales in. e.g., references [18, 19, 22-25]. The single-particle
spectrum of superconducting electrons is usually measured for
bulk superconductors to avoud problems with the interpreta-
tion of nonuniform measurements. When the comesponding
mnnelling measurements reveal, for example, a single peak
in the DOS. it does oot mean that the posibon-dependent gap
functions of different contributing condensates are always the
same. Their characteristic spatial lengths can be different due
1o peculiarities of the Fermi surface.

For clean systems (under consideration in the present work )
such difference appears due fo the presence of the band-
dependent Fermu velocities. It is well-known that the Fermi
velocity affects the condensate length in the single-band case,
Similarly, the band-dependent Fermi velocities have an effect
on the lengths of the partial condensates in muoltiband mate-
rials. However, here the physics 15 more complicated because
of the interaction between the condensates. There 1s complex
competition of the interband interactions with the disparity of
the band Fermi velocities, and it becomes even mode nontrivial
in the presence of magnetic effects. In general. the disparty
of the Fermi velocities increases the difference berween the
condensate lengths while the interband interactions support
the so-called ‘léngths-locKing " regime (see the details of the
‘lengths-locking” regime in [25]). Thus, the appearance of
multiple characteristic lemgths and the existence of many exci-
tation gaps are both consequences of muliiple sheets of the
Fermi surface, interpreted as separate single-particle bands.
However, these features appear on different levels of the the-
ory—the system can have multiple energy gaps in the excita-
tion spectrum but a smgle condensate length and, vice versa,
i multiband superconductor can have multiple condensate
lengths but a single spectral gap,

As 15 well known, the competition of different length-
scales can lead to non-trivial physical consequences, eg., o
the spontanecus pattern formation [26]. Examples of sys-
tems with spontaneous patterns are well-known in the litera-
e and include magnetic films [26, 27]. liguid crystals [28],

multilaver soft tssees [29], lipid monolavers [30], granular
media [31] etc. A possibility of symmetry breaking patterns
of vortices (labyrinth and stripes) induced by the presence
of two condensate components with significantly different
coherence lengths has recently attracted much interest in the
context of unusual mixed (Shubnikov) phase configurations
chserved in MgBa (see. eg., references [32, 33] and refer-
ences therein). Coupled condensates coesisting i one material
with diverse coherence lengths can interfere (interact) con-
structively or destructively, giving rise to phenomena absent
in superconductors with a single-band condensate. In addi-
tion to the labyrinths and stripes of vortices mentioned above,
other effects can be listed, e.g.. chiral solitons [34-36], possi-
bie fractional vortices [37—42]. hidden criticality [23], unusual
oscillations in the current carrying siate [43], enhancement
of the intertype superconductivity [44, 45], unconventional
Shapira steps in the Josephson junctions [46, 47], the muli-
band vortex splithng effects [37, 48], a giant paramagnetic
Meissner effect [49], multiband screening of superconducting
flucations [50], gapless states and the related phase depen-
dence of the excitation spectrum due 1o crossband paring [31].
efe.

In the present work we demonstrate that the crossover
between superconductivity tvpes I and IT—the intertype (IT)
regime (see, eg. [44. 45])—is strongly affected by the dif-
ference between healing lenpths of muoltple contributing con-
densates even when the corresponding excitation gaps dare
degenerate and cannot be distinguished. Our analysis 15 done
by using the formalisin of the extended Ginzburg—Landau
(EGL) theory [52, 53] generalized to the case of an arbi-
trary number of contributing bands. Here we consider sys-
tems in which the position-dependent gap functions associated
with different contributing condensates have the same phases,
ie. there is no frustration related to the broken time-reversal
symmetry, see e.g. [54-56]. The case of the gap functions
with different phases [54-56] can also be appealing and can
provide additional illusrafions supporting our present con-
clusions. However. it requires a different variant of the EGL
formaliam and separate consideration.

The paper is organized as follows. In section 2 we dis-
cuss our formalism based on the r-expansion of the micro-
scopic equations, with =1 = T/T, the proximily o the
critical temperature. It goes to one order bevond the stan-
dard Ginzburg—Landau (GL) approach, which is sufficient to
describe a fimte IT domain between types I and 1 in the phase
diagrim of the superconducting magnetic response. This for-
malism 15 then wsed in section 3, where boundaries of the
IT domain are obtained for different configurations of the
multiband structure. Conclusions are given in section 4.

2. Muitiband EGL formalism

The EGL formalism 15 a convenient tool that can be emploved
when the plysics beévond the GL theory is of interest but full
microscopic calculations are impractical. A eelevant example
is the crossover between superconductivity types 1 and [1—the
IT regime. It 15 well known that within the GL theory, the
crossover s reduced (0 a single point—it takes place ot the
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critical GL parameter [ST-59] k = 5y = II."-.,-"E{H =M /SEqs
where AL and £¢ are the London magnetic penetration depth
anid GL coberence length). However, as is known since 70,
this GL-based picture 15 valid only in the limi T - T, (more
precisely, in the lowest order in 7). AL T < T (beyond the low-
estorderin ) there is a finite temperature-dependent crossover
mterval of x's [60-76], which the GL theory does not cap-
ture. In the corresponding finite domain in the -T plain {the
IT demain), the system has nonstandard field dependence of
the magnetization [60-65] with unconventional spatmal con-
figurations of the mixed state [44, 61, 69-76], zoverned by
long-range attraction of vortices [60-68] and many-vortex
interachions [92]—the so-called intermediate mixed state.

For the denvation of the EGL formahsm, we employ the M-
band generalization of the two-band BCS model [1, 2] with the
s-wave pairing in all contributing bands and the Tosephson-like
Cooper-pair transfer between the bands. For illustration, we
consider o system in the clean [imit and assurme that all avaal-
able bands have parabolic single-particle energy dispersions
with 3D spherical Fermi surfaces. The pairing is controlled by
the symmetric real coupling matrix g, with the elements g,
The dervation of the formalism comprises two main steps: (1)
the multiband Neumann-Tewordt (NT) functional is obtained
from the microscopie model and (2) the +-ex pansion 15 applied
o reconstruct the NT functional. We outline main details of
these steps, highlighting important differences in comparison
with the two-band EGL approach [33]. The obtained formal-
ism 15 then wsed in the analysis of the boundaries of the IT
domain in the s-T phase diagram.

2.1 Multiband Neumann-Teword! functional

The NT functional [77, 78] is obtained from the microscopic
expression for the condensate free energy by accounting for
higher powers and higher gradients of the band-dependent gap
functions A, = A, (x), as compared to the GL functional.
(Notice that from here on we use the notion “gap function”
for A (x) while the excitation or spectral gap is the feature of
the single-particle spectrom of the uniform superconductor.)
Only the terms giving the GL theory and its leading correc-
tions are faken into account. The generl expreéssion for the
free energy density of M-band s-wave superconductor (rela-
tive to that of the normal state at zero ficld) can be written as
[44. 53]

B B . M
f=—+{&g"A)+ 3 fIA

(1}
Bm

=) |
where B is the mapnetic field, & = (A Ao . Ay

{d.B) = 5, apk, denotes the scalar product of vectors & and
b in the band space, and the functional F| A ] reads
Int1

fo==2 =51 I @'y Koni st fyhasn)

=ik f=1

% AUAN ) - AUY ANt b (2}

with {¥}aer = {Fpieees ¥a1 ) The integral kernels in
equation (2 are given by (m is odd)

KimiX, {¥}a) == T _000x y )02 (y1. ¥2)-.-

A T-E_I.I-{-}Im- ke }Im}g:f_’um' X}, (3
where w is the fermionic Matsubara frequency, Qr,'q_f.{x, ¥l is
the Fourier ransform of the single-particle Green function cal-
culated in the presence of the magnetic field and G (x,y) =

G (v, x). For ¢ we employ the standard approximation
sufficient to derve the extended GL theory

X
g™ ix. ) = exp [1‘ ﬁ[ Azl clz] olixy, (4
¥
where the integral in the exponent is taken along the classical

trajectory of a charge carrier in a magnetic feld with the vector
potential A. Here the Green function for zero field writes

d'k explik - (x - y)]

Glixy) =

where the band-dependent single-particle energy dispersion
reads .
Irk’

Lulk) = 5,000 + M 1)

with sy, the band effective mass, £,(0) the band lower edge,
and g the chemical potential.

To get simpler differential structure of the functional (1)
one invokes the gradient expansion for the band gap functions
and the vector potential as

A=A+ (Y = x) - W) Ay 4. ..,

Ayl =AIx)+(y - x) T OAX) + ..., )

which makes it possible (o represent non-local integrals in [,
as a senes in powers of A, s gradients and field spatial
derivatives. The series are infimte and therefore a truncation
procedure is needed. The GL theory follows from the standard
Gor'kov truncation [79]. To incorporate the leading comrec-
tions w the GL formalism, one needs to go bevond the Gor'kov
approximation. As the formof [, is not sensitive o the number
of contributing bunds, one can apply the runcation procedure
to cach of the band contributions separately and utilize the
previous resulis derived for the single- and two-band cases,
see reference [33]. The resulting multiband NT functional

i {[.-1,, - (r-r g}] AP

I.I?. " Cp 5
+ (1 20 A = A + K1+ 27)|DAL

B ooy )
f=—++ (A" AY 4
B

1 422
-9, (mﬂa].ll + grot B, + hi—;n-m.,si)

-I':g.- T L] 3 El
- = [BIAFDA ] + (ATDA, ) 4 c.c.]l]}. (%)
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with D=V — i{2¢/lic)A and I, = (4e¢/lic) Im [ﬁ,‘,D&,,'!.
The band dependent coefficients in equation (&) are

2el b, 743
A, =N In ( «T, ) v a, = =N, by =N ETrlTI’:}.'

X 93(5) g b, 4 3 _ Crgg 4
=N s =N Q=i

L= %ft:'ﬂ's,

(9
where w, 15 the cut-off frequency, N, is the band DOS, v,
denotes the band Fermi velocity. T, is in the enérgy units, and
G f. - ) and [N are the Riemann zeta-function and Euler constant.,
The NT functional appears as a natural extension of the
GL theory. The inttial motivation of its derivation was (o have
an approach beyond the GL theory, which preserves, o some
extent, the ssmphicity of the GL formalsm. Such an approach is
especially important in the case of spatially nonuniform prob-
lems. Unfortunately, the stationary point equations derived
fromm the NT functional are rather complex even for the single-
band case and not easier o solve than the original microscopic
equations (see, e.g. equalion (3) in reference [80]). Further-
mare, these equations admit unphysical solutions [80] such as
weakly damped cscillations of the condensate near the core
of o single vortex state. The roots of this problem lie in the
fact that the NT free energy functional is not bound from
below because the coefficients c, €, and £, are positive.
We also note m passing thit a similar functional 15 commonly
used in the analysis of the Fulde—Ferrel-Larkin—Ovchinnikov
(FFLO) painng (see, e.g., references [81-83]) however. in
that case the sign of ¢, €, and £, is changed due the
spin—magnetic imteraction, which marks the appearance of the

stable FFLO regume.

2.2 Parturbalive r-axpansion

It was suggested for the single-band case {see reference [80]
and references therein) that to eliminate the nonphysical solu-
tions, the NT functional should be restructured by applying
the perturbative r-expansion, based on the fact that the fun-
damental small parameter of the miceoscopic equations is the
proximity to the critical temperature 7. The stationary solution
for the order parmmeter within the NT approach contains afl
odd powers of 71/ while the truncation of the infinite series
in equation (3} does not distort only the twe lowest orders
e {the GL term) and e (the leading correction to the GL
term). Incomplete higher-order terms in + should be removed
by means of the T-expansion. A similar approach was subse-
quently applied to the two-band NT functional [53]. Here we
generalize il to the case of an arbitrary number of contributing
bands M.
Following this approach, we represent the band gap func-
tions and fields in the form of 7-series [52, 53]
A, =1l [.-1]_“' + Al 4 . ] s
A= TJ.—J [}\.‘"' 4 _I_Allll 4 .__] ’ (1)

B=r[B" + 78" +..].

One also takes e account divergent condensate and field
characteristic lengths ~ v~ '/? that affect spatial gradients in the
NT functional. This s formally done by iniroducing the spa-
tial scaling as X —+ 2% (see discussion after equation (10)in
reference [32]). Notice that to get the stationary solution in the
two lowest orders in 7, one also needs to operate with A but
only in intermediate expressions.

Inserting equation { [0 into equation (8) and applying the
scaling x — 717x, one obtains the free energy density as

F=P e M.

Notice that the two lowest orders in the band gap functions and
the field produce three lowest orders in the free energy but. as
is shown below, the contribution ' " is zero for the stationary
puoint. This contribution reads as

Ir-! 1§ — I:.nilu'l..[..'ilm}, le!
where the matrix elements of L are defined as
Ly = HH,!' ™ -"'1-"':.;1-#1 {13)

with gwl. being elements of the inverse coupling matrix g"
and &, denoting the Kronecker symbol. The pext-order term
™ s the GL functional

B-:l:nl

i _
Jr—

M
" (ij':m'1i_£1|":| X C.C.) 4 Z;-'I‘"J‘ (14

i

where ™ is ziven by

¥ 5 o~ F
LI:I:Il j.l rj :mll : b_; 1|j :I!u|4 + K—L-|D‘m E 1!5}5_'1 “5!
and B = ¥ i 2e frl.‘}ﬁml. Finally, the hi st-order term
Y.
ik ﬂqu:xtiuul 11} is gi"-'E'l‘l bj-'

L] ih)
m_ BYBY

f e

( {R® FA™ 4¢ .c.}

M
4 c‘ﬁrllrﬂrll} + Z-F:.I-II~

p=f

(16}
where
d, .
F = (g, + b,,|_.1:!:-;1] {J:E"' AN Goee) 4 T‘g_ﬁ:h 2
': £ P 1y
AT = AP + 2K, VAT

F I, [(DDAD . DO ALK 4 cc) — A (9]

" M | 4 B ;
92 g2 2 LU LT A2
- G (|IEIJL Al 4 3mlB i e [ASY

ik
2
+ [AI e A et 4-4_'.1:.-'},

{Si&:?_ll’lln_ﬂhﬁ:!hl‘_‘
(17}

and i is the lowest-order term in the r-expansion of ..
The r-expansion of the NT functional is then used to derive

i setof the stationary -point equations for the gap functions and
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fields coniributions—esch of the eguations correspond (o a
particular order of the r-expansion. The equation in the lowest
order reads

(18}

where 7' the free energy contribution oblained by integral-
ing f'"". This is the lincarized gap equation in the multiband
BCS theory that determines T.. It has a nontrivial solution
whien

det i =0. (19)

Recalling the definition of L, which includes 4, and. hence.
depends on T, one sees that eguation (19) determines zeros
of an M-degree polynomial of the vardable In(2e’ fuc, /7 T,).
One should choose the smallest root of this polynomial. which
gives the largest T, Here we assume that this solution is
non-degenerate. This implies that the solution of the gap
equation (18) corresponds to & one-dimensional irreducible
representation of the system symimetry group. The opposite
occurs in a particular case when the superconducting sysiem
has a symmetry additional w £71), which is reflected ina spe-
cial symmetry of the matrix L and results in the APPEATANCE
of multi-component order parameter {see references [55. B4,
B51).

Once T, is determuned, it is convement (o mniroduce the
eigenvalues and eigenvectors of L as

Le=0 (200
with the zero eigenvalue and
Lifi = Al (21)

with nonzero eigenvalues A # (0L As the matrix L is real and
symmetric, the vectors € and 1, can be chosen such that they
form an orthonormal basis so that (5, €} = 1, (E.45,) = Dand
{5} = &y Then o general solution to the gap equation (18)
reads in the form

A = ), (22)

whiere ti(x) controls the spatial profiles of all band condensates
in the lowest order in 7.

The shape of (x) is governed by the stationary point
equations associated with the GL functicnal ( 14). The first one
of those is given by

470

3 AT

= LAM & WA™ =0, (23)

where F' s the free-energy term corresponding 1o ™ and
the components of W read

W, = a6, AT + B AMAD? — G DA @24)
The second (Maxwell) equation 1= obtained as
¥ g S R~ _
o . o _
= ™ B Z. KA =0 (25)

Notice that the equation 87" /6A"" =0 coincides with
equation (18) while §7/fA" =0 is an identity rela-
tion because A does not contribute 1o Y. By projecting

equation (23) onto £ and keeping in mind that 'L = 0, one
pets

a4+ hi.!-‘!'r."|: . K]]":"lr_' =0, (26}

where coefficients o, b and I are averages over the contribut-
kg bands

M u
a= Eﬂ.-ln-lz. b= ‘Zﬁ.-iﬂ A

peax |

M

K=3 Kalal
= |
’ (27)

and €, are the components of < Simalarly, equation (25) is
reduced 1o

el

rot BV = 4201, (28)

where 1" is obtained from I by substituting «+ for A,

Therefore, the GL equations for the M-band system are
gven by equations (26) and (28). The corresponding conden-
sale state is described by a single-component order parumeter
y(x). in full agreement with the Landay theory in the case of
& non-degenerate solution for T, see also references | 16, 86,
BT7]. We note that the number of the components of the order
parameter is determined by the dimensionality of the rele-
vanl irreducible representaion of the corresponding symmetry
group [57, B4], not by the number of the bands. The single-
component order parameter means that the standard classifica-
tion of the superconducting magnetic response is applied here:
we have types T and IT with the IT regime in between. The pres-
ence of multiple bands is reflected only in the expressions for
the coefficients o, b and X2

Using the eigenvectors of L as the basis, we represent the
next-to-leading contribution to the gap function as

-1
EIII - ','-'f-‘]F 4 Z .,':,-['I}J}'.L_

dms ]

(29)

with new position-dependent functions o and o, 0 be fownd.
Inserting equation (29) o equation (23), one obtims the
equation

M-

3 Avpiy + WA =0.

(30)

Equation {30) is solved by projecting it onto 7, which yields
M — 1 squations for o), i.e,

| o 7o
o= .E{uju- F A =T D), (31)
where the coefficients ey, 4, and ') are of the form
M At
o= Eu,-u;_u., 8y = Z ﬂ.,rJ;,_{¢,|£,.i1.
== jima |
At
M= Kot (32)

=]

and ¢, are components of 7. Equations (29}, (31), and (32}
generalize the corresponding expressions for the two-band
case [33]. One should keep in mind that the present formalism
involves the eigenvectors of L while AU i reference [53] was
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represented as o linear combination of other explicitly chosen
vectors. Therefore, o recover the expression for A i refer-
ence [53], one needs 1o express £ and o7 for M = 2in terms of
the vectors used in reference {33].

Thus. M — | functions o, which determine the second term
for A™ in equation (29), are found from the simple algebraic
expressions (31) when using solutions to the GL eguations { 26)
and (28). To find the first term in equation (29), that depends
on = and the leading comrection o the Geld A", one needs
1o selve the system of equations resulting from the projection
of equation (30} onto the eigenvector £ and Zero fuictional
derivatives of the free-energy contribution corresponding o
£ However, as will be shown below, - and A™ do not con-
tribiite to the boundiries of the 1T domain. We note, however,
that 7 15 necessary to calenlate the band healing lengths—this
calculation is outlined in the appendix A.

2.3. Free energy at the stationary point and thermodynamic
critical fiekd

The stationary free energy density is found by substiuting the
obtained stationary solutions into the corresponding expres-
sions for the free energy functional, Le.

where the erm of the order v is absent by the virtue of
equation (18) and the first non-vanishing contribution is the
GL free energy

Fi5eyn [.r:,‘” 7 (33)

iH2
i ‘ :.r*"f."lz 1 b
|
2

oy

% = = h;l_l-i } ’C|Drm‘-':'|!-

[34)
we have also tiken into account that {A™ LAY = 0, which
follows from equation { 18).

To find the leading order correction to the stationary GL
free energy, we first rearrange the terms in " that include
A and A For the stationary solution the sum of these
terms in equation { 16) can be represented as

(R FAMY 4. ({EJ”, W) 4 :_u.) = — (AN LAY (35)
where eqguation (23) iz wken into consideration. Using

equations (26) and (31), we further obtain that (A", LA
cin be expressed only in terms of o as

w— A ~ ab Rela} 4]

fﬂll:l‘ijllh = [y 2 a‘ln-,-, 2 nE P

{ y=| lg—-ﬁ. |9} g—-"‘:
M-l

AR
ey
ety |

(36)

where the dimensionless parameters &, and 3, are defined by

) o I 3
= — = — 3=

(37}

7|

4
a K b E

Then, ", given by equations { 16) and (17), can be repre-
sented for the stationary solution in the form

K] il
mo Bi '-B
Ju

AV ot B 2
 Jag

4= RETT

+ me]* - %lc’-‘l" + 2K D)

o) (l[}]“lza‘:?il " lmt RO {0 4R 3)
3 y

fi2g2 Ly

-E{suppoer +re [0y}, o9

where
M M M
Q=3 Qlul. L=3 Llel =) elalt
=] wa| [T
{30)
and
Mo a0 s M1 =
o | ab Rela] 5]
o = 2 — a=hb=2 —_—

M= ow Slig
b &
T =cC+ EZ |T|
o T

Using the above result, one can caleulate the thermody-
namic critical field H_ which is also sought in the form of the
T-Expansion

(S]]

H=7[AY+r8"+..]. i41)
By virtue of the definiton, B, can be abtained from
H?
3_.. = =fan. i42)
"

where £, 18 the free energy density of the Meissner state. In
the lowest (GL) order, the umform solution of equation ( 26) 15
given by oy = 4 /|a|/b. This yields the corresponding contri-
bution to the thermodynamic crifical field as

|4
)

0 _
HY =g i43)

see equations (33), (34), and (41). H' is formally the same
as that for the single- and two-band cases [52, 53] but with
the difference that o and b are now averages over M contribut-
ing hands. The next-order comnbution to M, 15 obtaned from
equations (33}, { 38), and (41}, which gives

-1

o i -
- F = ZE'FM ";:rglz.

=l

B 44)
lI:'ﬂ_l e 9

Here the third term in the lefi-hand side has o different form

as compared to the correspending expressions for the single-

and two-band cases in references [532, 53], The origin of the

differences has been already discussed after equation (32].
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2.4. Gibbs free anergy difference

A type I superconductor can only have a spatially uniform
Meissner condensate state. which undergoes an abrupt tran-
sifion (0 the normal state when the amplitude of the applied
field H exceeds A, Type [ superconductors. in addition to the
Meissner phase, develop a nonuniform (muxed) state between
the lower My and upper H . critical felds, where B, < H_ <
.. A formal criterion for switching from type 1 to type 11
is that at H = H_ the Meissner state becomes less energet-
ically favoursble than the mixed state. It is investigated by
using the Gibbs free energy so that the switching criterion is
obtained as the vanishing difference between the Gibbs free
energies of the Meissner and nonuniform states. The Gibbs
free energy density for a superconductor at H = H is given by
g = [y = H_B/4r where B is directed along the external field
H and found from the siationary-point eguations for the cor-
responding condensate state. For the Meissner state we have
B=0andg=py= fun= —er,."Fr:r. Thus, the density of the
Gibbs free epergy difference g = ¢ = gg I8 wrillen as

HB H

47 i )

a =.|r:.| .

To calculate g. it 18 convenient 1o the use dimensionless guan-
lifies

X - A - B
= —. A= B=+2x .
\.‘E}i ALHII?H HII;“I 45}
= W __ 4mg &= 4nls y
W= E" g= P = H.nq:FEAL :I"-
where (7 is the integral of g and
L -—J‘L—Afﬂ (47)
Lo e \I,"I 32xK|a] "t VX

We note that equation (47) differs from the conventional defini-
tions for the GL coberence Jength £4; and London peneirition
depth A by the absence of the factor 7~ '/2. This difference
appears due to the scaling x — v/ x used in the derivation of
the r-expansion. Using the dimensionless units, we write the
GL equanons as
i 1:"?1"'1 k- #DI“I:"_-, =0 1B = iﬂllilll_ (48}

D =V +iA" i) = 2 Im [¢D"" "] and the spatial gra-
dients are also dimensionless. Hereafter we omil the tlde for
brevity.

The m-expansion for g is obtained from equations (33), (34),
(38), and (43) in the form

49)

where

(30)

P J F Cavalcans af &l
and
BN r3 Ya
- i~ LT N e
o —(' '_.-—VEH)(E &Y, ‘u) =T + Fnhd|
— !Dll'.lln.'r-,ll Q —— lH.HE —
B !l."lﬁ i h.l _,.m 5D“L'l'|"'|_ +1-T|\ BI L'T."l'
i el 2 a2 2 (it 0 2 =
po— 4 Bl D™t o Re |97 ) pe (5
A
where the dimensionless parameters are given by
ca Char La . A
[ — T — ﬁ:—_' A :—'11
BT Q=5 b =2
Fa = 21 T = l;. AR 1. (52)

=

We note that o derive equation (31), we rearrange
equation (38) by using the identity A'" . ror B™ = A1,
rot (B™ — H™). It is then imegrated by pans, giving B''.
(B — H™) while surface integrals vanish, This makes sure
that the nexi-to-lowest order contribution to B does not appear
in the Gibbs free energy difference, similarly to o contribut-
ing to A Thus, the Gibbs free energy difference, taken in
the lowest and next-to-lowest orders in 7+ depends only on the
solution fo the GL equations. One also notes that the GL con-
tribution g™ is not sensitive to M which enters only its leading
correction g'!'.

2.5. B point and Intertypa domain

Integrating equation {49} yields the Gibbs free energy differ-
ence 7. However, since the goal of our study is supercon-
ducting properties in the vicinity of the B point, in addition
to the r-expansion we apply the expansion with respect to
A = K — kg, which gives
G dG"

T = Glnl -

s ds

ik + GV,

(53)

where only the linear contributions in = di and ~ T are kept
and the expansion coefficients are calculated at & = sy A
significant advantage of this approach is thal ot g the GL
theory simplifies considerably because the condensate-field
configurations become self-dual being related by [B8]

S |

|}, (54

while the order parameter ¢ satisfies the first order differential
equation
(o
X

Here the field is taken along the -direchon so that o is
not dependent on z and one can use DY = D" 4 pinY,
Equations (34) and (35) are often referred to as the Bogomaol-
nyviequations [B8] (in the context of superconductivity they are
also known as the Sarma selution [38]). Using these equations,
one can demonstrate that the first contribution (o the Gibbs
free energy difference ¢ vanishes identically for any solu-
tion of the GL equations, which is a manifestation of the fsct
that at A = M, the self-dual GL theory is infinitely degener-
ate. The GL theory predicts that at so the normal state o = 0

D) e =10, (55)
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is stable above He while below H. the Meissner state == 1
appears. Then, the mixed state appears only at i = i hosting
a plethora of exotic condensate-figld configurations. Correc-
tions (o the GL theory break the degeneracy and specessive
self-dual configurations of the magnetic flux and condensate
determine the properties of the IT mixed state.

With the Bogomodny: equations, the Gibbs free energy
difference given by equation (33) is reduced 1o
= —V2Ték +(ZA+TBir,

FiE T

(56)

where L is the system size along the direction of the field, T
and .7 are given by the integrals

I= [d—‘xhs-;l (1-1f).
' (57)
while coefficients 4 and 5 are given by

A=Hl+ D =% -5,  B=12l gﬂuﬁp

(58}
Apart from the constants, that depend on M contributing bands,
this expression for the Gibbs free energy difference is the same
as obtained earlier for single- and two-band superconductons
[44].

MNow we have everything at our disposal o determine the
boundures of the IT domain on the s-T plane. lis lower
boundary s, (T) separates tvpe I and IT regimes and marks
the appearance/disappearance of the mixed state [44]. Ax this
boundary the upper critical field H.» approaches H.. The con-
densate vanishes ut M and so the Gibbs free enengies of
the normal and condensate stales become equal. At the same
time the normal and Meissner states have the same Gibbs free
energy at A Therefore, the lower boundary of the IT demain
is found from the eriterion & = () taken together with the con-
dition v — 0. The latter means J/T = 0 in equation {56).
Then one finds

Ko = Kol 4+ T.A4). (599

The upper boundary w5 (T) separates type I1 and IT
regimes and 15 determined by changing the sign of the long
range interaction between vortices [44]—at is repulsive in type
[T and attractive in the IT domain. In order o calculate 57 (T,
one finds the asymptote of the GL solution for two vortices at
large distance between them. The position dependent pant of
this asymptotic solution is plugeed into equation {56}, which
yields the long-range interaction potential between two vor-
tices. As the scaled GL equations (48) are independent of the
number of contributing bands, one can adopt the long-range
asymptole of the two-vortex solution « found previously in the
rwo-band case [44], which yields 7 /T = 2. Then, the upper
boundary is obtained as

¥y = K |1 + 7 (A +2B)]. 60)

g:fﬁmwuwﬂ~

3. Role of multiple bands

3.1 General chservations

A transparent structure of all contributions in the EGL formal-
ism makes it possible 1o obtain important preliminary resulis
before calculating v and gg,, . The most significant obser-
vanon is that the multgap structure and the disparity between
charecterstic lengths of different band condensates appear on
different levels of the theory. leading w different physical con-
sequences. Multiple excitation gaps appear in the lowest order
in T of the EGL theory: following equation (22), 4 multihamnd
superconductor in the GL regime has, in general. multiple exci-
tation gaps while the contributing band condensates are gov-
ermed by the unique GL coherence length £, - Thus, on the
level of the GL theory superconducting magnetic properties of
a multiband system are the same a5 those of the single-band
superconductor having the enly energy gap in the excitation
Spectrim.

Differences between the condensate characteristic lengths
and, thus, between spatial profiles of different band conden-
sates appear only when the corrections to the GL theory are
taken into gccount. ie., in the next-to-lowest order in 7. Using
the EGL approach, one calcolates the band condensate healing
lengths, to find a band-dependent leading correction o g as
[£,— £0| = 7Eq; (see appendix A and reference [24]). Thus,
one can expect that phenomena sssociated with the dispar-
ity between the band condensate lenpths are notable only at
sufficiently low emperatures.

However. an important exception is the vicinity of the B
point, 1. the IT domain between types 1 and IL Here the GL
theory is close to degeneracy and the nexi-to-lowest cormec-
tions in T (and, thus, the difference between the band conden-
sate lengths) play a crucial role in shaping the superconduct-
ing magnetic properties. In this case the mixed siate becomes
very sensilive 1o all characteristics of the multiband system,
including the number of contributing bands and parameters of
multiple Fermi sheets comprising the complex Fermi surface.
The multiband structure can. therefore, have o notable effect
on the IT domain, justifying the focus of this work.

It 85 also of significance, that the number of the energy gups
in the excitation spectrum of & uniform multiband supercon-
ductor is not always equal to the number of the contribut-
ing bands M, which can be seen from the corresponding gap
equation

M s, A
Ae=T¥" An£ de E— [ =2F(EN], (61)

where E. = /e + |A]® is the single-panticle excitation
energy, Ao = g, N denotes the dimensionless coupling con-
stnl, N = F° N, is the total single-particle DOS, n, = N, /N
is the relative DOS for band o, f(E.) is the Fermi distri-
bution function. For example, all the excitation gaps A, =
AT (e, the gap functions for the uniform case) become
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degenerate when the quantty
L)

= Z bV

W

(62)

assumes the same value for all contributing bands.
3.2, Microscopic parameters

The IT domain boundaries s}, and k7, depend on the follow-
ing microscopic parameters: the dimensionless couplings A,
= g (with N = Eh N, the total DOS), the relative band
DOSs i, = N, /N, and the band velocities ratios v, ). Since
Ty o o, the cut-off Trequency w,. does not contribute o &7,
and k..

For the calculations we choose realistic values of the param-
eters. recalling that in two-band superconductors the intraband
dimensionless couplings are typically in the range 0.2-0.7
while the interband coupling is much smaller {see reference
[44] and references therein ). The relative band DOSs are usu-
ally similar for all bands so below we wse n, = 1 /M for any
i+. The range of v /1 can be estimated from the first principle
calculations as well as from the ARPES measurements. For
example. the angle-averaged Fermi velocities in the a—b plane
of MgB; are calculated from first principles as v b= 44 %
LF m s~ ! for the o states and o ¥ = 535 « 10F m s for
the 7t states [89]. However, for the c-direction such calculanons
yield vl = 7 = 10° m s~ which is by an order of magnitude
smaller than v = 6 = 10° m 57, In addition, ARPES mea-
surements for iron chalcogenide FeSeq asTenss have revealed
three contributing bands with the maximal ratio of the band
Fermi velocities close 1o 4 (see reference [90] and discussion
in reference [24]).

In order to illustrate the role of the multiband stracture in
the presence of degenerate gaps, we consider models with one
and two spectral gaps. In particular, in fgure 1 for the one-
band system we use A = 0.35 whereas for the two-band system
A= Aaa =03, A2 = 0.05 (0. = 1/2, a5 mentioned in the
previous paragraph). This choice ensures that the both vanants
exhibit the same single energy gap in the excitation spectrm.
In figwre 2 we consider multiband superconductors compris-
ing M contributing bands. with M = 3, 4_ 5. The dimensioniess
couplings are chosen so that to get the same single excitation
gap as in figure I, namely, we adopt A, . = 0,05 and Ay =
(L35 = (LOS(M — 1} In this case £}, given by eguation (62)
does not depend on ¢ (with m, = 1 /M) To consider the two-
fap case. we investigate the two- and four-band materials, see
figure 3. We take Ay = 0175, day = 00125, Ay = (005 for the
two-band system and A = Az = 0.3, Aoy = A = 0.2 and
Ay = 0LO5 for the four-band saperconductor; the relative
band DOSs for all contributing bands are assumed eqgual. To
illusrate variations in the bounduries of the IT domain, we
assume that the relative Fermi velocities depend on the vari-
able parameter 3. For the two band system in figures | and 3
we nse 3 = vz /v, For the M-band models in figure 2 we set

4 = wafuy and v, = va for ¢ > 2. Finally, for the four-band
muwdel in figure 3 we utilize a more complicated parametriza-
tion 3 = va/1y = vy vy = va /2. We stress that our qualita-

tve conclusions do not depend on a particelar choice of the
MICTOSCOPIC parimelers.

3.3, Numarical results for the IT damain boundaries

Using the chosen microscopic parameiers, we exuming exci-
tafion gaps, the boondaries of the IT domain as well as the
condensate healing lengths for superconductors with one, two
and four bands.

Figure | illustrates a comparison between the one- and two-
band models. The both models exhibit the same single energy
gap in the excitation spectrom, as shown in Ggore Ha). How-
ever, the difference between them is apparent in figure 1(h)
which shows de; /dr and dw |, /dT as functions of the Fermi
velocities ratio § = vy /vy, The caleulation reveals a notable
dependence of the IT domain boundaries of the two-band
model on F (dotted lines) in comparison with the one-band
case, for which the IT boundaries are given by the material-
independent constants ~0.29 and 0.67. [44] as ilustrated by
solid lines. The difference between the two cases 5 maximal
in the limits 3 < 1 and 4 3 1 but disappears when 5 = 1.

To clanfy the physical roots of the obtaned resulis, we
utilize the formalism of reference [24] (for reader’s conve-
nience, outlingd in appendix A}, and calculate the denvative
djEy = £, fdr, where £, — £,| is the absolute value of the dif-
ference of the band healing lengths £, and £, for the two-band
system in question. To the next-to-lowest order in m. we have
£, =M 4 el with £ = £, | see references [24, 53, B6,
87]. {This bealing-length expression should be multiphed by
+ 12 4o retum to the standsrd definition.) Therefore, taken
to one order beyond the GL theory, dj€s — £]/dr is equal
to |¢4" — £1""] and is not T-dependent. The result is given in
figure 1(c) in units of the GL coherence length £ . Com-
paring figures I{b) and (c) demonstrates that the size of the
IT domain closely follows the healing length difference—the
domain size grows with increasing the difference. One can thus
see that even though the two-band system has a single pap
in its excilalion spectrum, i1 magnelic properties are sirongly
affected by the presence of multiple condensates with different
charscterstic lengths and, in general, diftfer significantly from
those of the single-band case. The only exception is the case of
£, = Ea. when the excitation spectra and magnetic properties
of the single- and two-band systems become indistingtnshable.
Af this point the quantity d|£; — £,|/d7 exhibits a pronounced
minimum at which the slope of d{£, — £,|/dr, as a function
of H, changes its sign abruptly. Notice that this discontinuity
of the derivative with respect to 4 15 not a consequence of any
phase transition but appears because the lengths £; and £3 cross
each otherar 3 = 1.

To gann a further insight, figure 2 demonstrates the bound-
aries of the I'T domain for maltiband superconductors with the
number of the contributing bands M = 3,4.5. These multi-
band superconductors have the only excitation gap being the
same as in figure 1. One observes that the IT domain bound-
aries are sensitive o a particular value of M so that the results
are different from those for the one-band and two-band mod-
els. This difference is pronounced for § < | and 3 3% 1, ie.
when the characteristic lengths of the partial condensates devi-
ate significanily from each other. Due 1o the choice of the
band Fermi velocities, we have two distinguished condensate
lenpths £, and £, the latter is equal to £, with i > 2. Similarly
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Figure 1. Resolts for one- and two-band superconductons with the microscopic parameters given in section 3.2, chosen so that both materials
have the same excitation gap, degenerate for the two-band system, shown in panel (a) a5 a function of T {in units of T.). Fanel (b plots

slopes of the IT domain boundaries de;  /d7 (two opper lines) snd di

fd7 {two lower fines) versus 3 = v, /vy for the two-hand {(doted)

and =ingle-hand (solid) cases. the single-band results are material independent quantities —(0.2% snd (L67. Panel (c) shows the derivative
d|£, — £, | fdr versus 3. where [£, — £,| is the absolule value of the difference of the band healings lengths £, and £, for the two-band

SYstem in question.

R T O TR N Rt A R e P T

3.
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Figure 2. The siopes of the IT dunain boundaries de]  /d7 (upper
lines) and dr ], fd7 {lower lines) for the case of a single spectral
gap in the model with the number of bands M = 3 (dashed line),
M = 4 (dotted) and M = 5 {doshed-dotted). The microscopic
parameters are discussed in section 3.2 and chosen so that all the
given muterials have the same temperature-dependent gap as in
figure 1. The resolis are versus 0 = o020y, -with v, = w2 for v > 2
the sangle-hand boundaries are the universal constants —0.29 and
(L6T shown as a guide for the eve by the solid line.

o figure |, when £y = £, e for 8 = 1. the IT boundaries of
the M-band mode] approach the boundaries of the IT domain
for the one-band model. One sees again that the crossover
between types | and IT is determined by the number of con-
tributing bands and by the interplay of the related condensate
characteristic lenpths. Obviously. the IT behavior cannot be
captured by the model with the number of bands equal o the
number of gaps i the single-particle spectrum of the unform
supercondocior.

A further illustration is given in figure 3 which compares
results for the two- and four-band systems. The pammeters
are chosen such that both systems have the same (wo exci-
tation gaps (see figure 3a)). In particular. spectral gaps are

10

it e
— 3
i
— 2 ]
wu il i

T n& [V

i,

(=] 7]

Figure 3. Results for two- and four-band materials, calcolated with
the microscopic parumeters given in section 3.2 and chosen such
that both materials have two excitation gaps. Pancl (n) shows the
gaps versus tempernture (in units of T, ). Panel (b) plots slopes of the

IT domain boondaries de,,, /dr (two opper linesy and de,, dT

(two Jower lines) as functions of 4 = v /v (for the two-band case,
solid lines) and 3 = va /vy = vs/e) = vy /20y (for the four-band
syslem, dashed lincsb.

degenerate for bands 1, 2 and 2, 3 in the four-band case. The IT
domain boundaries {their m-derivatives) for the two-band svs-
tem are shown in figure 3(b) versus 3 = vz /vy by solid lines.
One can see thal in general, the corresponding IT domain is
significantly different from the two-band IT domain shown in
figure 1(b}, which is a consequence of the two excitation gaps
in the present case. However. the two-band IT boundaries in
figure 3(b) are sull close (o the single-band ones in vicimity
of 4 = 1. Here the difference between the healing lengths £
and £, is minimal and the two-band system exhibits a nearly
single-band superconducting magnetc response, despite the
presence of two excitation gaps. We agan observe that the
presencefabsence of diverse charsctenstic lengths of muoli-
ple condensates coexisting in one material i3 more essential
for the superconducting magnetic properties than the pres-
ence/absence of multiple gaps in the excitation spectrum of
the uniform superconducios.

The quantities de,, /dr and de, /dr for the four-band
system are given by dotted lines in figure 3(b) versus 7 =
vy /vy = vs /ey = vy 2. One sees that the IT domain bound-
aries for the four-band case are close to the two-band I'T bound-
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aries at 4 ~ 3. For 4 2 3 the size of the IT domain for the
two-band system is notably larger and, on the contrary, for
A = 3 the IT domain s larger in the four-band case. One also
notes that unlike the two-band case the IT domain for the four-
band system in figure 3(b) never approaches the single-band
result (of figure 1(b)). In general, one can expect that the larger
15 the number of competing superconducting condensates with
different characteristics, the more significant are the deviations
from the single-condensate physics.

4. Conclusions

In this work we have demonstrated that the presence of mul-
tiple competing lengths, esch connected with correspond-
ing parial condensate, is a more fundamental feature of a
multiband superconductor for its magnetic propertics than the
presence of multiple gaps in the excitation spectrum. This
is illustrated by considering boundaries of the I'T domain in
the phase dingram of the superconducting magnelic response.
For example. our results have revealed that o superconductor
can have many gaps in the excitation spectrum while exhibii-
ing standard magnetic properties of a single-band material.
There is also a reverse situation, when a superconductor has
a1 single enérgy gap in the excitation spectrum but multiple
competing characteristic lengths of contributing band con-
densates. which results in notable changes of the supercon-
ducting magnetic properties in the IT regime as compared o
the single-band case. Generally, our analvsis shows that the
multi-condensate physics can appear irrespective of the pres-
encefabsence of multiple spectral gaps. Twe superconductors
with different numbers of the contributing bands but with the
same energy gaps in their excitation spectra (some of the spec-
tral gaps are degeneraie) can exhibit different magretic prop-
erties sensilive 1o the spatal scales of the band condensates.
Thas discrepancy between different manifestations of multple
bands in superconducting materials must be taken into account
in analysis of experimental data and. generally, in smdies of
multiband superconductors. In addition, given the significant
advances in chemicul engineering of various materials, inclod-
ing multiband superconductors, it is of greal imporance (o
search for systems that enrich our knowledge of and under-
standing the physics of the materials. Multthand superconduc-
tors with degenerate excitation gaps can be a good example of
such systems, clearly demonstrating that “multiband” cin be
dramatically different from ‘multigap’.

Our analyzis has been performed within the EGL approach
that makes into account the leading corrections o the GL the-
ory in the perturbative expansion of the microscopic equations
in T/T.. This formalism, previously constructed for
single- and two-band sysiems. has been extended in the present
work to the case of an arbitrary number of contributing bands.
Its advantage is that it allows one (o clearly distinguish var-
ious effects appearing due (o the multiband structure in dif-
ferent types of superconducting characteristics. It particular, i
reveals solid correlations between chonges in the IT domain
with the competition of multiple characteristic lengths of the
contributing condensatas.
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Appendix A. Leading correction to the GL
coherence length

He we employ the EGL approsch to calculate the band depen-
dent healing lengths £ up to the leading corrections o the GL
coherence length. The GL theory of multiband superconduc-
tors has a single order parameter which yields equal healing
lengths for different band condensates. (A multiband super-
conductor can have more than ong order parameter in the GL
regime when the solution of the linearized gap equation for
T is degenerate [55]; this case is not considered here.) How-
ever, when one takes into account the leading corrections to
GL theory, band healing lengths become different. These cor-
rections have been calculated earlier [24] for the one-band and
twio-band systems, and we now recall those results and extend
them b the case of an arbiirary number of contributing hands.

We consider the condensate that occupies a half space x = 0
and is suppressed for x < 0. Each band condensate recovers its
bulk value in a distance {measured from the mierface © = )
that is called the band healing length £, . This length is defined
from the eriterion

Ae) APV

= . Al
Auloe)  Ae) &
where £, 15 given by the r-expansion
E=8 (14 7L, (AT)

and. taken in the lowest order in 7. the band healing length
coincides with the GL coherence length £ = £5, . We solve
the GL equation (48) without magnetic field and with the
boundary conditions ¢{0) = ¢/{2c) =0, with ¢ the firsi
dervative with respect to x measured in umts of £, . The
well-known solution reads as [91]

tr = tanh (.1.' ,-"\/E) s
where ¢ is given in units of ¢y = (/la|/b. One sees from
equation (22) that 1 controls A,

The next-to-lowest contribution w A, is given by
equation (29 In this equation 7, are explicitly expressed via

(A3
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tr by equation (31) bat o should be obtained from the sta-
tinnary equation 471 (AA™ = 0, where 7! corresponds to
1 in equation (11). The projection of this equation onto the
eigenvector € yields the equation for oo that can be wrilten as

o+ D",

(1 =3¢"p+ " =Ad + By + Cf° (A4)
where & is in units of v, " is the second derivative with

respect to the scaled varmable x, and the coefficients read as
3 %
=3+ Z

1 .
B=5F-4Q - EZ Ly

- |'3| : Ee l&:l’.‘h_&;
KA,

(ALS)

C=3%+30 5;:432:

) ; > i,
[ o

=1

D=6 -5

where T, 2, @, £, &;, 3, and A are given by equations (27),

(32}, (37), and (32). Here we consider that vectors £ and if, have

only real components, ie. oy = of, & = 8 and I, =17
The solution of equation (A4) at o0 =) =10 is

obtained as
o EMJ-BHSC-LDm“h X . 20+ D
L 6 V2 6

x A - f;

?5) V2 ekt (?17) » 8

Then, using equations (22}, (29}, (A.3), and (A_6). one fnds

i) (ERT)
(AT)

We note that only the last term in this expression contributes
i the difference between the healing lengths of two different

bands 1+ and 1. so that
with ¢+(1//2) = 0.86.

Let vs consider, for illustrtion, equation (A7) for the two-
band sysiem with depenerate excitation gaps. In this case
the eigenvector of the matrix £ with zero eigenvalue satisfies
£ = e2. Then, for equal band Fermi velocities the parameter
i =0as 3 /b="1/K, see the definition of these quanti-
ties in section 2.2, Since only ¢ = 1 contributes to the sum in
equation (A7), we find £ = &', Thus, the healing lengths
£y and £2 are the same (at least up 1o the leading correction (o
the GL theory). which is in agreement with the results givenin

figure lic). where the healing length difference drops (o zero
at vz = . The same conclusion can easily be obtained for

« tanh? (

7

ety
g T

A=-C
2

B,

( Thas

T.fu- !

Eps

£ —ﬂSﬁTL‘{'.LZ

£ (A8)

A

12

M = 2, when all excitation gaps are degenerate and the bands
have the same Fermi velocity.
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