Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/25480

Comparte esta pagina

Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorSOUSA, Antonio Fernando Pereira de-
dc.contributor.authorSILVA, José Deibsom da-
dc.date.accessioned2018-08-08T18:30:24Z-
dc.date.available2018-08-08T18:30:24Z-
dc.date.issued2017-06-20-
dc.identifier.urihttps://repositorio.ufpe.br/handle/123456789/25480-
dc.description.abstractVamos generalizar um Princípio do Máximo no Infinito no caso parabólico dado por Ronaldo F. de Lima em seu trabalho A Maximum Principles at Infinity for surfaces with Constant Mean Curvature in Euclidean Space e por Ronaldo F. de Lima e William Meeks no artigo Maximum Principles at Infinity for surfaces of Bounded Mean Curvature in R³ and H³ onde agora teremos hipersuperfícies M₁ e M₂ do Rⁿ⁺¹, disjuntas com bordos (possivelmente vazios) ∂M₁ e ∂M₂, de curvatura média limitada com um Contato Ideal no Infinito, porém agora sem restrição sobre a curvatura Gaussiana de qualquer hipersuperfície. Como aplicação geométrica apresentaremos alguns resultados que estendem para hipersuperfícies mergulhadas M₁ e M₂ do Rⁿ⁺¹ com bordos vazios, uma generalização do Princípio do Máximo de Hopf para hipersuperfícies disjuntas que se aproximam assintoticamente. Uma vez obtidos esses resultados, introduzimos uma estrutura de variedade Riemanniana ponderada em Rⁿ⁺¹ e obtemos algumas generalizações dos resultados antes obtidos sob hipóteses dos objetos agora existentes, tais como f-curvatura média, f -Laplaciano, variedades ponderadas f-parabólicas, para as hipersuperfícies M₁ e M₂ do Rfⁿ⁺¹ .pt_BR
dc.language.isoporpt_BR
dc.publisherUniversidade Federal de Pernambucopt_BR
dc.rightsopenAccesspt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectGeometria diferencialpt_BR
dc.subjectVariedades ponderadaspt_BR
dc.titleUm princípio do máximo para hipersuperfícies com um contato ideal no infinito e aplicações geométricaspt_BR
dc.typedoctoralThesispt_BR
dc.contributor.authorLatteshttp://lattes.cnpq.br/0608252560446484pt_BR
dc.publisher.initialsUFPEpt_BR
dc.publisher.countryBrasilpt_BR
dc.degree.leveldoutoradopt_BR
dc.contributor.advisorLatteshttp://lattes.cnpq.br/2467726574611453pt_BR
dc.publisher.programPrograma de Pos Graduacao em Matematicapt_BR
dc.description.abstractxWe will generalize a Maximum Principle at Infinity in the parabolic case given in paper A Maximum Principles at Infinity for surfaces with Constant Mean Curvature in Euclidean Space by Ronald F. de Lima and Ronaldo F. de Lima and William Meeks in paper Maximum Principles at Infinity for surfaces of Bounded Mean Curvature in R³ and H³ where we will now have hypersurfaces M₁ and M₂ of Rⁿ⁺¹ disjoints, with boundary (possibly empty) ∂M₁ e ∂M₂ of the bounded mean curvature and with Ideal Contact et Infinity, but now without restrictions on the Gaussian Curvature of any hypersurface. As geometric application we will present some results that extend for embedded hypersurfaces M₁ and M₂ in Rⁿ⁺¹ with empty boundaries a generalization of Hopf’s Maximum Principle for disjoint hypersurfaces that get close asymptotically. Once obtained these results, we inserted a structure of a weighted Riemannian Manifold in Rⁿ⁺¹ and obtained some generalizations of the results previously achieved under some hypothesis of the objects now found, such as f-mean curvature, f-Laplacian, f–parabolic weighted manifold, in the hypersurfaces M₁ and M₂ from Rfⁿ⁺¹ .pt_BR
Aparece en las colecciones: Teses de Doutorado - Matemática

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TESE José Deibson da Silva .pdf564,19 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons