Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.ufpe.br/handle/123456789/7300
Title: Hiperplanos conexos em matróides binárias
Authors: Raquel Brito de Melo, Tereza
Keywords: Colaço; Cocircuito não-separador; Dimensão; Co-simples; Simples; Binária; 3-conexa; Conexa; Matróide; Planares; Grafos
Issue Date: 2005
Publisher: Universidade Federal de Pernambuco
Citation: Raquel Brito de Melo, Tereza; José Machado Soares Lemos, Manoel. Hiperplanos conexos em matróides binárias. 2005. Tese (Doutorado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2005.
Abstract: Circuitos e cocircuitos não-separadores são muito importantes para a compreensão das matróides gráficas. Por exemplo, Tutte [27] caracterizou os grafos 3-conexos planares usando o conceito de circuitos não-separadores. Bixby e Cunningham [2] generalizaram esse resultado para a classe das matróides binárias. Kelmans [11] e independentemente Seymour (veja [16]) provaram que cada matróide binária, conexa, simples e co-simples tem pelo menos um cocircuito não-separador. McNulty e Wu [15] provaram que essas matróides têm no mínimo quatro cocircuitos não-separadores, sendo este resultado o melhor possível. Lemos [14] calculou, para matróides binárias 3-conexas, a dimensão do subespaço do espaço dos cociclos gerado pelos cocircuitos não-separadores que evitam um elemento da matróide. Nesta tese, á fornecido um limite inferior para a dimensão de um tal subespaço gerado pelos cocircuitos não-separadores que evitam um conjunto com no mínimo dois elementos da matróide. Inicialmente, será feita uma abordagem geral da teoria das matróides utilizada para provar os principais resultados encontrados nesta tese, apresentados em seguida. No segundo capítulo, o problema de encontrar cocircuitos não-separadores de uma matróide binária, conexa, simples e co-simples será reduzido ao problema de encontrar cocircuitos não-separadores evitando, no máximo, dois elementos em matróides binárias 3-conexas. No terceiro capítulo, serão caracterizadas as matróides binárias 3-conexas sem cocircuitos não-separadores que evitam um 2-subconjunto do conjunto de elementos da matróide. Este resultado é essencial para o cálculo da dimensão do subespaço do espaço dos cociclos gerado pelos cocircuitos não-separadores que evitam um 2-subconjunto do conjunto de elementos de uma matróide binária 3-conexa. Será feito ainda o cálculo da dimensão de um tal subespaço quando o subconjunto de elementos evitado por esses cocircuitos é um triângulo da matróide. Além disso, será determinada a dimensão do mesmo subespaço para cocircuitos não-separadores que evitam uma coleção qualquer dos elementos de uma matróide binária 3-conexa, desde que a restrição da matróide a esse conjunto não tenha colaço
URI: https://repositorio.ufpe.br/handle/123456789/7300
Appears in Collections:Teses de Doutorado - Matemática

Files in This Item:
File Description SizeFormat 
arquivo8545_1.pdf1.36 MBAdobe PDFView/Open


This item is protected by original copyright



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.