Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/65398
Compartilhe esta página
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor | REN, Tsang Ing | - |
dc.contributor.author | PAZ, Anthonny Dayvson Lino | - |
dc.date.accessioned | 2025-08-25T15:31:29Z | - |
dc.date.available | 2025-08-25T15:31:29Z | - |
dc.date.issued | 2025-08-14 | - |
dc.date.submitted | 2025-08-21 | - |
dc.identifier.citation | PAZ, Anthonny Dayvson Lino; REN, Tsang Ing. Exploring the latent space: compact representations with autoencoders. 2025. 17 f. TCC (Graduação) - Curso de Ciência da Computação, Cin, Universidade Federal de Pernambuco, Recife, 2025. | pt_BR |
dc.identifier.uri | https://repositorio.ufpe.br/handle/123456789/65398 | - |
dc.description.abstract | This work analyzes how latent-space size and bottleneck structure affect reconstruction quality and downstream utility in convolutional autoencoders. We implement and evaluate four variants—standard (conv_ae), sparse (conv_sparse), denoising (conv_denoising) and variational (conv_vae)—on CIFAR-10 across five latent dimensions (16, 32, 64, 128, 256). Reconstructions are assessed with MSE, SSIM, PSNR, ERGAS and UQI; latent embeddings are evaluated with supervised classifiers (Logistic Regression, MLP, Random Forest, KNN) and unsupervised clustering (KMeans, GMM, HDBSCAN) using ARI and NMI. Results indi cate that conv_sparse attains the best perceptual reconstruction scores (e.g., MSE ≈ 0.0021, SSIM ≈ 0.89 at d = 256), conv_denoising yields the most discriminative embeddings for classification (best MLP accuracy ≈ 0.5471 at d = 256), and conv_vae underperforms at small d. Unsupervised clustering recovery is weak (ARI/NMI typically < 0.2), motivating future work on contrastive and clustering-aware objectives and modified VAE losses. | pt_BR |
dc.format.extent | 17p. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.rights | openAccess | pt_BR |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_BR |
dc.subject | Autoencoders | pt_BR |
dc.subject | Classification | pt_BR |
dc.subject | Data Reconstruction | pt_BR |
dc.subject | Dimensionality Reduction | pt_BR |
dc.subject | Latent Space | pt_BR |
dc.title | Exploring the latent space: compact representations with autoencoders | pt_BR |
dc.type | bachelorThesis | pt_BR |
dc.degree.level | Graduacao | pt_BR |
dc.contributor.advisorLattes | http://lattes.cnpq.br/3084134533707587 | pt_BR |
dc.subject.cnpq | Áreas::Ciências Exatas e da Terra | pt_BR |
dc.degree.departament | ::(CIN-DCC) - Departamento de Ciência da Computação | pt_BR |
dc.degree.graduation | ::CIn-Curso de Ciência da Computação | pt_BR |
dc.degree.grantor | Universidade Federal de Pernambuco | pt_BR |
dc.degree.local | Recife | pt_BR |
Aparece nas coleções: | (TCC) - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TCC - Anthonny Dayvson Lino Paz.pdf | 5,68 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons