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Abstract

This work analyzes how latent-space size and bottleneck structure affect reconstruction
quality and downstream utility in convolutional autoencoders. We implement and evaluate
four variants—standard (conv_ae), sparse (conv_sparse), denoising (conv_denoising) and
variational (conv_vae)—on CIFAR-10 across five latent dimensions (16, 32, 64, 128, 256).
Reconstructions are assessed with MSE, SSIM, PSNR, ERGAS and UQI; latent embeddings
are evaluated with supervised classifiers (Logistic Regression, MLP, Random Forest, KNN)
and unsupervised clustering (KMeans, GMM, HDBSCAN) using ARI and NMI. Results indi-
cate that conv_sparse attains the best perceptual reconstruction scores (e.g., MSE ≈ 0.0021,
SSIM ≈ 0.89 at d = 256), conv_denoising yields the most discriminative embeddings for
classification (best MLP accuracy ≈ 0.5471 at d = 256), and conv_vae underperforms at
small d. Unsupervised clustering recovery is weak (ARI/NMI typically < 0.2), motivating
future work on contrastive and clustering-aware objectives and modified VAE losses.

Keywords: Autoencoders; Classification; Data Reconstruction; Dimensionality Reduction; La-
tent Space

1 Introduction
The success of deep learning in computer vision owes much to the ability of neural networks
to learn compact, semantically meaningful representations of data. Among the most versatile
tools in this regard are Autoencoders—neural architectures designed to reconstruct inputs
through a compressed latent representation. Their use spans tasks from dimensionality reduction
(HINTON; SALAKHUTDINOV, 2006) and anomaly detection (AN; CHO, 2015) to generative
modeling (KINGMA; WELLING, 2013) and pretraining (ERHAN et al., 2010).

The latent space is the core of an autoencoder. It encodes the high-dimensional input
into a lower dimensional manifold, ideally retaining only essential semantic information. Yet,
despite the centrality of the latent space, the impact of its size and structural regularization
remains underexplored in systematic, comparative studies—especially in convolutional contexts.
While some works address information bottlenecks (TISHBY; ZASLAVSKY, 2015) or visual
disentanglement (HIGGINS et al., 2017), few quantify the trade-offs imposed by different latent
dimensionalities and constraints under controlled experimental conditions.

This paper addresses this gap found in the literature. We conduct a thorough empirical
investigation of the effects of latent space dimensionality and structure on reconstruction qual-
ity in convolutional autoencoders. Our methodology includes training four CAE (Convolutional
Autoencoders) variants—standard, sparse, denoising, and variational—on the CIFAR-10 dataset
across varying latent dimensions. We evaluate performance using both traditional and percep-
tually aligned metrics.
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1.1 Contributions

• We implement and compare four convolutional autoencoder variants under consistent ar-
chitectural and training regimes.

• We evaluate the effect of latent dimensionality using five latent space sizes (16, 32, 64,
128, 256, 512, 1024, 2048).

• We assess reconstruction quality with MSE, SSIM, PSNR and other metrics, ensuring both
quantitative and perceptual evaluation.

• We provide a reproducible experimental framework and publicly available code repository.

• We discuss the implications for representation learning, model design, and interpretability
in downstream tasks.

1.2 Objectives

The main goal of this work is to investigate how the dimensionality and structure of the latent
space affect the reconstruction quality and semantic organization in convolutional autoencoders.

1.2.1 Specific objectives include:

• Implement and compare standard, sparse, denoising, and variational autoencoders under
a consistent architecture.

• Evaluate reconstruction quality across different latent dimensions using perceptual and
pixel-wise metrics.

• Analyze the discriminative capacity of latent embeddings using supervised classification.

• Assess latent space organization through visualization and clustering techniques.

2 Related Work
Autoencoders, introduced by Rumelhart et al. (RUMELHART; HINTON; WILLIAMS, 1986)
and popularized in deep learning by Hinton & Salakhutdinov (HINTON; SALAKHUTDINOV,
2006), are widely used for unsupervised learning. Convolutional variants (CAEs) exploit the
spatial locality of image data (MASCI et al., 2011), making them suitable for vision tasks.

Sparse Autoencoders (SAEs) encourage minimal activation in hidden units, promoting com-
pact and disentangled representations (NG, 2011). Denoising Autoencoders (DAEs) (VINCENT
et al., 2010) train the network to recover clean inputs from corrupted versions, improving ro-
bustness and generalization. Variational Autoencoders (VAEs) (KINGMA; WELLING, 2013)
combine reconstruction with probabilistic latent modeling, making the latent space smooth and
generative.

The structure of the latent space affects not only reconstructions but also interpretability
(HIGGINS et al., 2017), robustness (ZHANG et al., 2018), and downstream task performance
(BENGIO; COURVILLE; VINCENT, 2013). Studies like (BENGIO; COURVILLE; VINCENT,
2013) suggest that low-dimensional spaces often force generalization, but too aggressive com-
pression can eliminate semantic content. Others have examined topology and continuity in the
latent manifold (LOCATELLO et al., 2019; BALLE; LAPARRA; SIMONCELLI, 2017).

However, most prior works either focus on a single architecture or analyze performance qual-
itatively. Our study differs in scope and rigor by combining multiple model types, dimensional
scales, and evaluation metrics under consistent conditions.
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3 Methodology

3.1 Dataset

We use CIFAR-10 (KRIZHEVSKY, 2009), a well-established benchmark in image classification
and reconstruction. It contains 60,000 color images of size 32x32 across 10 object categories, with
50,000 used for training and 10,000 for testing. Images are normalized to [0, 1] and optionally
augmented for robustness analysis.

3.2 Model Architectures

All models share the same convolutional backbone (ConvEncoder + bottleneck linear layer +
ConvDecoder); they differ only in their bottleneck behavior and loss regularization. The encoder
and decoder components are implemented as the ConvEncoder and ConvDecoder modules, re-
spectively.

• Backbone: In deep learning, the term backbone refers to the core feature extractor shared
across different models. In our case, it comprises the encoder architecture followed by a
linear projection layer (latent bottleneck) and the decoder.

• Encoder: The encoder performs hierarchical feature extraction via stacked convolutional
blocks that progressively increase the receptive field and spatial abstraction. Each block
applies convolution, normalization and a nonlinearity, with strided downsampling used to
condense information into lower-resolution feature maps; the final feature map is flattened
and projected by a linear layer to produce the latent vector z. This design captures local
and compositional image patterns across scales, yielding compact, semantically meaningful
embeddings for downstream analysis.

• Latent Bottleneck: This is the compressed representation of the input data in a low-
dimensional latent space Rd. It serves as the information bottleneck where the encoder
output is projected before being passed to the decoder. The structure and dimensionality
of this bottleneck directly influence the recosntruction performance and representation
quality.

• Decoder: The decoder maps the latent representation back into the original input space.
It is implemented via a stack of transposed convolutional layers that upsample the feature
maps, recosntructing the spatial dimensions of the original image.

The following model variants are explored (code available at GitHub).

a. Standard Convolutional Autoencoder (ConvAE)

• Encoder: The ConvEncoder consists of six convolutional blocks, each implemented
as Conv2d + BatchNorm2d + ReLU. Downsampling is achieved via stride-2 convolu-
tions in the 2nd, 4th, and 6th layers.

• Latent bottleneck: The final feature map of size 256×4×4 is flattened and passed
through a linear projection layer (fc_enc) to obtain a latent vector z ∈ Rd.

• Decoder: The ConvDecoder projects z back to the original input size. It includes a
linear layer that reshapes the latent code to 256 × 4 × 4, followed by three transposed
convolutional blocks and a final Conv2d(3,3,1,1) with a Sigmoid activation.

• Forward pass: The standard forward pass involves encoding an input x to obtain
z, and decoding z to reconstruct x.
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Figure 1: Standard Convolutional Autoencoder Architecture

b. Sparse Convolutional Autoencoder (Sparse ConvAE)

• Inherits the same backbone as ConvAE.
• Latent bottleneck: Same as above; however, an L1 penalty is applied to the latent

vector z during training to promote sparsity in the learned representation.
• Motivation: Sparse representations are encouraged to improve interpretability and

reduce redundancy in the latent space.

c. Denoising Convolutional Autoencoder (Denoising ConvAE)

• Architecturally identical to ConvAE.
• Forward pass: During training, the input image x is corrupted with additive Gaus-

sian noise (noise_factor = 0.3), and the model is trained to reconstruct the original
clean image. This encourages the model to learn robust features that generalize better
to noisy data.

d. Variational Convolutional Autoencoder (ConvVAE)

• Shares the same encoder and decoder modules, but replaces the deterministic latent
bottleneck with a probabilistic one.

• Latent bottleneck: Two separate linear layers map the flattened encoder output
to vectors µ and log σ2 in Rd, representing the mean and log-variance of a learned
Gaussian distribution.

• Reparameterization: To allow backpropagation through sampling, we compute
z = µ + exp

(
0.5 log σ2)

⊙ ϵ, where ϵ ∼ N (0, I). This transformation enables end-to-
end optimization despite the stochastic nature of the sampling.

• Loss function: The total loss is composed of the reconstruction loss (e.g., MSE) and
the Kullback–Leibler divergence between the approximate posterior N (µ, σ2) and the
unit Gaussian prior N (0, I).

3.3 Latent Space Dimensions

We vary the size of the latent vector in {16, 32, 64, 128, 256, 512, 1024, 2048}, simulating
undercomplete and overcomplete representations. The impact of latent space scale is analyzed
per architecture and across metrics.
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3.4 Training Setup

All models were implemented in Python using the PyTorch framework. Training was conducted
on a machine equipped with an NVIDIA RTX 3050 GPU (12GB VRAM), Intel Core i5, and 8GB
of RAM, running Windows 11. Each model was trained from scratch using the Adam optimizer
with default parameters (β1 = 0.9, β2 = 0.999). The learning rate was set to 1 × 10−3 and
batch size to 128. Training was performed for 50 epochs with early stopping based on training
loss monitored over a patience of 5 epochs. The loss function used for standard, sparse, and
denoising models was the Mean Squared Error (MSE) loss. For the sparse model, an additional
L1 penalty was applied to the bottleneck activations with a regularization factor λ = 1 × 10−4.
For the variational autoencoder (VAE), the total loss combined the reconstruction MSE with the
Kullback-Leibler divergence (KL) between the approximate posterior and the standard normal
prior. Gaussian noise with standard deviation σ = 0.3 was added to the input images in the
denoising autoencoder during training. No data augmentation (e.g., flips or rotation) was used
to isolate the effects of latent structure. Each experiment was repeated for eight different latent
dimensions: 16, 32, 64, 128, 256, 512, 1024, 2048. All models were trained using a fixed random
seed to ensure consistency across runs.

3.5 Evaluation Metrics

• Mean Squared Error (MSE): Measures the average squared pixel-wise difference be-
tween the original and reconstructed image. Penalizes larger errors more strongly. Lower
is better.

• Root Mean Squared Error (RMSE): Square root of the MSE. Indicates the average
magnitude of reconstruction errors in pixel intensity. Lower values denote better recon-
struction quality.

• Peak Signal-to-Noise Ratio (PSNR): Represents the ratio between the maximum
possible pixel value and the power of reconstruction error. Higher values indicate better
reconstruction fidelity and less noise.

• Structural Similarity Index (SSIM) (WANG; BOVIK et al., 2004): Evaluates
perceptual similarity between original and reconstructed images based on luminance, con-
trast, and structural information. Values close to 1 indicate higher perceptual quality.

• Universal Quality Index (UQI) (WANG; BOVIK, 2002): Assesses structural fi-
delity by combining luminance, contrast, and correlation metrics into a single value.

• Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) (WALD; RANCHIN;
MANGOLINI, 2000): Originally used in remote sensing, ERGAS estimates normalized
global error between two images. Lower values imply higher reconstruction accuracy.

• Adjusted Rand Index (ARI): Measures the similarity between clustering results and
ground truth labels, correcting for change. Values range from -1 to 1, where 1 indicates
perfect clustering, 0 corresponds to random labeling, and negative values suggests anti-
correlation.

• Normalized Mutual Information (NMI): Quantifies the mutual dependence between
predicted clusters and true labels. It ranges from 0 (no mutual information) to 1 (perfect
correlation).
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4 Experiment and Results
This section presents a comprehensive evaluation of the proposed convolutional autoencoder
architectures. We analyze quantitative reconstruction metrics, qualitative reconstructions ex-
amples, latent space visualizations, supervised classification results, and unsupervised clustering
outcomes across different latent dimensions. The goal is to understand the interplay between
latent space size and the performance and interpretability of each autoencoder variant.

4.1 Quantitative Evaluation

To evaluate the fidelity of image reconstructions, we use the metrics defined in Section 3.5. These
were computed for each autoencoder variant—conv_ae (Standard Autoencoder), conv_sparse
(Sparse Autoencoder), conv_denoising (Denoising Autoencoder), and conv_vae (Variational
Autoencoder)—across eight latent dimensions: 16, 32, 64, 128, 256, 512, 1024, 2042.

Across all models, increasing the latent dimensionality improves reconstruction performance.
The conv_sparse model achieved good results at d = 256, with MSE = 0.0021, ERGAS = 1.60,
SSIM = 0.89, and PSNR = 27.29.

In contrast, conv_vae performed significantly worse at lower latent sizes. For instance,
at d = 16, it yielded MSE = 0.0638, SSIM = 0.13, and PSNR = 12.59, indicating very blurry
reconstructions. Its performance only approached the others at higher dimensional sizes.

These results confirm the critical roles of latent space capacity and architecture choice in
determining reconstruction quality.

Figure 2: MSE for each model across latent dimensions.
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Figure 3: PSNR values indicating reconstruction quality across models.

Figure 4: Perceptual similarity (SSIM) as a function of latent size.

Table 1: Quantitative reconstruction results (latent size = 256). Best values in bold.

Model MSE SSIM PSNR ERGAS UQI
conv_ae 0.0025 0.88 26.74 3.44 0.98
conv_sparse 0.0021 0.89 27.29 1.60 0.99
conv_denoising 0.0089 0.62 20.74 4.00 0.98
conv_vae 0.0034 0.20 15.09 4.47 0.98
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4.2 Qualitative Results

To complement the quantitative analysis, we show examples of reconstructed images for each
model and latent dimension. These visualizations reveal perceptual differences not always cap-
tured by numerical metrics.

As expected, reconstructions improve visually as latent dimension increases. The
conv_sparse and conv_ae models produce sharp and detailed images even at 64 dimensions,
while the conv_vae model shows noticeable blurriness and loss of texture, particularly for small
latent spaces.

The qualitative differences are aligned with SSIM and UQI scores, reinforcing their validity
as perceptual quality indicators.

Figure 5: Original and reconstructed CIFAR-10 samples at conv_ae 64 dimensions.

Figure 6: Original and reconstructed CIFAR-10 samples at conv_sparse 64 dimensions.

4.3 Latent Space Visualization

To assess how each autoencoder organizes semantic information, we project the learned embed-
dings into two dimensions using both Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE). PCA captures global linear variance, while t-SNE
emphasizes local neighborhood structure on the underlying manifold. By comparing both pro-
jections, we obtain a more complete picture of latent-space geometry.

PCA Projections. Figure 7 shows the first two principal components of the test-set embed-
dings for conv_ae, conv_sparse, and conv_vae at representative dimensions. All models exhibit
a largely isotropic cloud in PCA space, with only slight elongations along the first component.
This indicates that linear variance alone does not separate CIFAR-10 classes distinctly in the
bottleneck.

8



t-SNE Projections. Figure 7 presents t-SNE embeddings for the same models and dimen-
sions. Unlike PCA, t-SNE reveals small, ephemeral clusters in deterministic autoencoders. In
particular:

• conv_sparse (d = 256)—t-SNE uncovers localized groupings of same-class points, sug-
gesting that sparsity encourages tighter semantic neighborhoods.

• conv_ae (d = 128)—clusters are less compact but still discernible, reflecting the model’s
ability to encode class information without explicit regularization.

• conv_vae (d = 64)—embeddings remain diffusely mixed, consistent with the VAE’s
emphasis on distributional smoothness over class separability.

Interpretation. The PCA results confirm that global axes of maximum variance do not align
with semantic class boundaries in any model. In contrast, t-SNE highlights that deterministic
architectures (standard and sparse ConvAE) can learn locally coherent clusters, particularly at
higher latent dimensions. The absence of distinct clusters in the VAE—even where t-SNE is most
sensitive—underscores its trade-off between reconstruction fidelity and latent-space regularity.

(a) PCA: sparse, d = 256. (b) PCA: standard, d = 128. (c) PCA: variational, d = 64.

(d) t-SNE: sparse, d = 256. (e) t-SNE: standard, d = 128. (f) t-SNE: variational, d = 64.

Figure 7: Latent-space projections of test-set embeddings. Top row: PCA (global linear struc-
ture). Bottom row: t-SNE (local neighborhood structure). Color denotes true CIFAR-10 class.

4.4 Analysis and Discussion

This section synthesizes the findings from all metrics and evaluations to provide a holistic un-
derstanding of each model’s performance and the role of latent dimension.

4.4.1 Reconstruction Analysis

All models benefit from increasing latent space size. The conv_sparse model consistently out-
performed others in MSE, SSIM, PSNR and ERGAS, indicating high-quality and compact re-
constructions. conv_denoising offered competitive results but slightly inferior to conv_sparse.

The conv_vae model underperformed in all metrics except when latent size was large ( >=
256), where regularization becomes less restrictive. This confirms that VAEs suffer from poor
reconstructions at low capability due to the KL divergence constraint.
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No overfitting was observed in any model—the steady improvement in all metrics across
dimensions suggests generalization is preserved.

4.4.2 Supervised Classification Analysis

To quantify the discriminative power of the latent embeddings, we train four simple classi-
fiers—Logistic Regression (LR), a single-hidden-layer MLP, Random Forest (RF) and a K-
Nearest Neighbors (KNN) classifier on the CIFAR-10 test embeddings. Table 2 summarizes
accuracy for each model and latent dimension.

Table 2: Classification accuracy on CIFAR-10 test embeddings.

Model Classifier 16 32 64 128 256

conv_ae

LR 0.3544 0.3816 0.3935 0.4075 0.4179
MLP 0.4659 0.5119 0.5216 0.5204 0.5168
KNN 0.4288 0.4657 0.4341 0.3884 0.3379
RF 0.4617 0.4694 0.4579 0.4484 0.4454

conv_de

LR 0.3442 0.3750 0.3852 0.4394 0.5361
MLP 0.4630 0.5069 0.5163 0.5332 0.5471
KNN 0.4170 0.4358 0.4288 0.4106 0.4200
RF 0.4520 0.4639 0.4644 0.4657 0.4777

conv_sp

LR 0.3560 0.3831 0.3927 0.4125 0.4183
MLP 0.4716 0.5100 0.5155 0.5158 0.5029
KNN 0.4328 0.4539 0.4211 0.3575 0.2733
RF 0.4601 0.4700 0.4566 0.4518 0.4417

conv_vae

LR 0.2678 0.2973 0.3439 0.3832 0.4455
MLP 0.3297 0.3526 0.3886 0.4160 0.4601
KNN 0.2764 0.2894 0.3057 0.3310 0.3786
RF 0.3301 0.3386 0.3601 0.3891 0.4304

The supervised classification results indicates that deterministic autoencoder variants
(conv_ae, conv_sparse, and conv_denoising) generally produce more discriminative embed-
dings that the variational model, but the performance is far from perfect. Across classifiers
and latent sizes, accuracies mostly fall in the 0.30-0.55 range. The best observed result in
our experiments is approximately 0.55 (for the denoising model with MLP at d=256), while
many configurations-especially those using small latent sizes-yield accuracies near 0.35-0.45. The
conv_vae embeddings are the weakest overall at small dimensions and improve with larger latent
size, but they still do not match the deterministic models in our setup. These outcomes suggest
that deterministic reconstruction objectives produce embeddings with more class-discriminative
information that the VAE’s probabilistic bottleneck under the architectures and training regi-
men applied here; however, none of the evaluated models produce near-perfect linear separability
on CIFAR-10 embeddings in this protocol.

4.5 Classification Pipeline

The classification stage was designed to systematically evaluate the discriminative capacity of the
learned embeddings produced by each autoencoder variant. This pipeline comprises five main
stages: extraction of embeddings, shape considerations, preprocessing, classifier instantiation,
and final training/evaluation.

Data and Embeddings Extraction. For each model and latent dimension combination, the
trained autoencoder is loaded and the extract_embeddings procedure is executed over both
the training and test dataloaders. The model is set to evaluation mode and all computations
are performed without gradient tracking. In deterministic autoencoders, the encoder outputs
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(hconv, hflat), which are projected to the latent vector z through the fully connected encoder layer
(fc_enc). In variational autoencoders (VAE), both the mean vector zµ and the log-variance
vector zlog σ2 are computed, and the latent representation is formed by their concatenation:

z = concat(zµ, zlog σ2 , dim = 1).

Additionally, an intermediate pooled feature hpooled is obtained via mean pooling over the con-
volutional feature maps. This pooled feature is concatenated with z to create the final combined
feature vector. All embeddings and their corresponding labels are stored in serialized .pt files
for subsequent processing.

Shape Considerations. In VAEs, the latent vector z has dimensionality equal to 2 ×
latent_dim due to the concatenation of mean and log-variance. In deterministic models, z
retains a dimensionality equal to latent_dim. This architectural difference results in different
feature dimensionalities that must be handled consistently during preprocessing.

Preprocessing. Before classification, embeddings undergo normalization or transformation
according to one of the following strategies:

• Standard Scaling: zero mean and unit variance.
• Robust Scaling + PCA: scaling robust to outliers, followed by Principal Component

Analysis.
• Min–Max Scaling + Feature Selection: scaling to [0, 1] interval, followed by

SelectKBest with ANOVA F-test.
All preprocessing transformations are fit exclusively on the training set and applied to the test
set to prevent data leakage. The best-performing preprocessing method for each classifier is
determined based on the highest test accuracy.

Classifiers. The following classifiers are evaluated, with hyperparameters optimized via
GridSearchCV (3-fold cross-validation):

• Logistic Regression: solver = liblinear, max_iter = 1000.
• MLPClassifier: hidden layers = (128, 64, 32), early stopping enabled.
• Random Forest: n_estimators = 200, max_depth = 20.
• K–Nearest Neighbors: k = 5, weights = distance.

Training and Evaluation. For each preprocessing strategy:
1. Perform hyperparameter tuning on the processed training set.
2. Compute mean and standard deviation of 5-fold cross-validation accuracy scores.
3. Retrain the classifier on the full training set using the selected hyperparameters.
4. Evaluate on the held-out test set.

For each model/latent size combination, the classification results are recorded as {Test Accuracy,
CV Mean, CV Std} for every classifier. The highest test accuracy observed across all prepro-
cessing–classifier pairs is reported as the final supervised classification score for that embedding
configuration.

11



Figure 8: Logistic Regression accuracy across latent dimensions for each autoencoder variant.

Figure 9: MLP Classifier accuracy across latent dimensions for each autoencoder variant.

4.5.1 Unsupervised Clustering Analysis

We evaluate whether embeddings naturally form clusters without label information. We apply
K-Means, Gaussian Mixture Models (GMM), and HDBSCAN to each set of latent vectors and
compute the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI). Results
are summarized in Table 3, and the K-Means and GMM metrics are visualized in Figure 10.
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Table 3: Unsupervised clustering metrics (ARI, NMI) on latent embeddings (test split).

Model Method Latent Dim.
16 32 64 128 256

conv_ae
KMeans (0.06, 0.11) (0.06, 0.11) (0.06, 0.11) (0.05, 0.10) (0.06, 0.11)
GMM (0.07, 0.13) (0.08, 0.14) (0.11, 0.17) (0.09, 0.15) (0.10, 0.16)
HDBSCAN (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

conv_sparse
KMeans (0.06, 0.11) (0.06, 0.11) (0.06, 0.10) (0.05, 0.09) (0.03, 0.06)
GMM (0.07, 0.12) (0.10, 0.16) (0.08, 0.14) (0.08, 0.14) (0.08, 0.14)
HDBSCAN (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

conv_denoising
KMeans (0.05, 0.09) (0.04, 0.08) (0.05, 0.09) (0.04, 0.08) (0.04, 0.07)
GMM (0.06, 0.11) (0.06, 0.12) (0.07, 0.13) (0.06, 0.12) (0.06, 0.12)
HDBSCAN (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

conv_vae
KMeans (0.03, 0.06) (0.03, 0.07) (0.03, 0.07) (0.02, 0.06) (0.04, 0.10)
GMM (0.04, 0.08) (0.04, 0.07) (0.05, 0.08) (0.04, 0.08) (0.05, 0.09)
HDBSCAN (0.00, 0.01) (0.00, 0.03) (0.00, 0.01) (0.00, 0.00) (0.00, 0.01)

Each entry is (ARI, NMI). Values are computed on the test split and rounded to two decimal places.
Note: The modest GMM gains suggest that soft, Gaussian-like class structure exists in some

Table 3 reports ARI and NMI values that are low but non-zero across models and latent dimen-
sions. KMeans achieves ARI ≈ 0.03–0.06 and NMI ≈ 0.056–0.114, while Gaussian Mixture
Models (GMM) attain higher agreement (ARI up to ≈ 0.105; NMI up to ≈ 0.172, observed for
conv_ae at d = 64). HDBSCAN yields virtually no meaningful clusters in most runs.

These numbers indicate that, although reconstruction-only training does not produce well-
separated, high-quality clusters, there exists a weak, recoverable grouping signal (better captured
by GMM than by KMeans). Thus, supervised classifiers can exploit class information that is
present in the embedding geometry, even when that information is not organized as compact
clusters readily recovered by off-the-shelf clustering methods.
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Figure 10: Unsupervised clustering scores (ARI, NMI) across latent dimensions for GMM. Scores
are low overall, but GMM recovers modestly higher agreement (NMI up to ≈ 0.17) for some
model/dimension pairs.

4.5.2 Overall Assessment

• Deterministic models (conv_ae, conv_sparse, conv_denoising) tend to produce more
discriminative embeddings than the variational model under our setup. Observed test
accuracies range approximately between 0.35 and 0.60 depending on model, latent size and
classifier; the best observed configuration is conv_denoising + MLP and conv_denoising
+ LR at values that can reach ≈60

• Sparse regularization (conv_sparse) yields modest improvements in some configurations
(e.g., conv_sparse + MLP peak ≈ 0.5158) but does not guarantee perfect separability;
classification remains imperfect across settings.

• The denoising objective provides robustness and, in our experiments, leads to the strongest
overall downstream classification when paired with a high-capacity classifier (MLP), par-
ticularly at larger latent dimensions. At intermediate dimensions there is a small trade-off
between compactness and separability.

• The variational model (conv_vae) displays lower accuracy at small latent dimensions and
improves as d increases (best observed MLP accuracy are observed at higher latent dimen-
sions), which indicates that the VAE’s regularization reduces discriminative information
unless its latent capacity is increased.
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• Unsupervised clustering metrics remain low overall, but not strictly zero. GMM consis-
tently gives the highest cluster agreement (ARI up to ≈ 0.105, NMI up to ≈0.172), espe-
cially for some deterministic models at intermediate latent sizes (e.g., conv_ae at d = 64).
KMeans shows smaller but non-negligible scores (ARI ≈ 0.03–0.06). HDBSCAN typically
fails to recover stable clusters under the default hyperparameters. Together, these results
indicate a weak clustering signal in the embeddings: class information is present but not
arranged into compact, off-the-shelf clusters.

5 Conclusion and Future Work
This work investigated the impact of latent space size and training objectives on convolutional
autoencoder representations. We systematically evaluated reconstruction quality, supervised
classification performance, and latent-structure metrics across four architectures (standard,
sparse, denoising, variational) and five latent dimensions.

Main findings

• Reconstruction. Deterministic sparse autoencoders achieved the best reconstruction
fidelity (e.g., conv_sparse at d = 256: MSE ≈ 0.0021, SSIM ≈ 0.89, PSNR ≈ 27.3). The
variational model (conv_vae) produced markedly blurrier reconstructions at small d (e.g.,
d = 16: MSE ≈ 0.0638, SSIM ≈ 0.13, PSNR ≈ 12.6), improving only with larger latent
capacity.

• Supervised classification. The best downstream classification was obtained with
conv_denoising + MLP and LR with (accuracy ≈ 0.6). Nonlinear classifiers (MLP)
consistently outperformed linear models and KNN, indicating that discriminative infor-
mation is encoded in a non-linear way.

• Unsupervised clustering. Unsupervised cluster scores remain low overall: ARI and
NMI are typically < 0.20. KMeans produced small but nonzero ARI (roughly 0.05–0.11
across many settings) and GMM recovered a weak signal in some cases (NMI up to ≈ 0.17).
HDBSCAN returned mostly noise labels under default parameters.

• Dichotomy. There is a clear dissociation between supervised separability and unsuper-
vised clusterability: embeddings can contain class information usable by discriminative
classifiers while failing to form compact clusters recoverable by standard clustering algo-
rithms.

Practical implications and recommendations

1. When reconstruction is the priority: prefer deterministic architectures (especially
sparse variants) or increase VAE capacity / reduce KL weight if using VAEs.

2. When clustering is required: adopt objectives that explicitly encourage same-class
proximity (contrastive/self-supervised methods such as SimCLR/BYOL or clustering-
aware objectives such as DeepCluster/DEC).

3. Clustering pipeline tuning: perform targeted hyperparameter searches
for clustering (KMeans k, GMM covariances and components, HDBSCAN
min_cluster_size/min_samples) and consider applying PCA/UMAP before clus-
tering.

4. Robust evaluation: use nested CV or bootstrap confidence intervals for classifier accu-
racy, run permutation tests / bootstrap CIs for ARI/NMI, and report per-class metrics
(precision, recall, F1) alongside global scores.

5. Diagnosis and visualization: complement numeric metrics with qualitative inspection
of reconstructions and 2D projections (t-SNE/UMAP) for the best/worst model+d pairs
to guide targeted interventions.
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Bottom line

Deterministic reconstruction objectives (conv_ae, conv_sparse, conv_denoising) provide supe-
rior reconstruction quality and generally more discriminative embeddings under the current pro-
tocol; however, embeddings are not reliably cluster-friendly with off-the-shelf clustering methods.
Improving unsupervised clusterability requires changes to the learning objective, preprocessing,
and careful pipeline tuning.
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