Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.ufpe.br/handle/123456789/65322
Comparte esta pagina
Título : | Control results for Korteweg-de Vries type systems |
Autor : | SILVA, Jandeilson Santos da |
Palabras clave : | Equações dispersivas; Controlabilidade na fronteira; Comprimentos críticos; Método do retorno; Grafos estrelados; Abordagem flatness |
Fecha de publicación : | 11-jul-2025 |
Editorial : | Universidade Federal de Pernambuco |
Citación : | SILVA, Jandeilson Santos da. Control results for Korteweg-de Vries type systems.Tese (Doutorado em Matemática) - Universidade Federal de Pernambuco, Recife, 2025 |
Resumen : | This thesis investigates boundary controllability for dispersive systems governed by the Korteweg- de Vries (KdV) type equation. The main goal is to steer the system’s state using boundary controls. We first focus on the well-known KdV equation in a bounded domain with purely Neumann boundary conditions and a single control input. A central difficulty arises when the spatial domain length is critical, rendering the associated linear system uncontrollable. To address this, we employ the return method to establish controllability of the nonlinear system. The second problem considers the KdV equation on a star-shaped graph, modeled as a system of N KdV-type equations defined on intervals (0, lj ), coupled through a condition at the central node. We demonstrate controllability using N boundary controls, which may be Neumann, Dirichlet, or a combination of both. We identify the corresponding sets of critical lengths through detailed spectral analysis for each boundary configuration. Lastly, we explore the controllability of the fifth-order KdV equation, also known as the Kawahara equation, using two boundary controls. Here, we adopt the flatness method—a nonstandard approach that bypasses the need for an observability inequality. This method ex- presses the state and control variables in terms of so-called “flat outputs” in Gevrey spaces. Within this framework, we address two key problems: achieving null controllability and char- acterizing the set of states reachable from zero, thereby identifying a functional space where exact controllability holds. |
URI : | https://repositorio.ufpe.br/handle/123456789/65322 |
Aparece en las colecciones: | Teses de Doutorado - Matemática |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TESE Jandeilson Santos da Silva.pdf | 1,2 MB | Adobe PDF | ![]() Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons