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RESUMO

Esta tese investiga a controlabilidade por condições de contorno para sistemas dispersivos
governados por equações do tipo Korteweg-de Vries (KdV). O objetivo principal é conduzir
o estado do sistema por meio de controles aplicados nas fronteiras. Inicialmente, focamos na
conhecida equação de KdV em um domínio limitado com condições de contorno puramente de
Neumann e utilizando um único controle. Uma dificuldade central surge quando o comprimento
do domínio espacial é crítico, tornando o sistema linear associado incontrolável. Para contornar
esse obstáculo, utilizamos o método do retorno, que permite estabelecer a controlabilidade do
sistema não linear.

O segundo problema considera a equação de KdV em um grafo em forma de estrela,
modelado como um sistema de 𝑁 equações do tipo KdV definidas nos intervalos (0, ℓ𝑗),
acopladas por uma condição no nó central. Demonstramos a controlabilidade do sistema por
meio de 𝑁 controles de fronteira, que podem ser de Neumann, de Dirichlet ou uma combinação
de ambos. Através de uma análise espectral detalhada para cada configuração de controle,
identificamos os conjuntos de comprimentos críticos correspondentes.

Por fim, estudamos a controlabilidade da equação de KdV de quinta ordem, também
conhecida como Equação de Kawahara, utilizando dois controles de fronteira. Neste caso,
adotamos o método flatness — uma abordagem não convencional que dispensa o uso de
desigualdades de observabilidade. Esse método consiste em parametrizar as variáveis de estado
e de controle por meio dos chamados “flat outputs”, as quais são funções pertencentes a
espaços de Gevrey. Dentro desse arcabouço, abordamos dois problemas principais: alcançar a
controlabilidade nula e caracterizar o conjunto de estados alcançáveis a partir do estado zero,
identificando assim um espaço funcional no qual é possível obter controlabilidade exata.

Palavras-chaves: Equações dispersivas; Controlabilidade na fronteira; Comprimentos críticos;
Método do retorno; Grafos estrelados; Abordagem flatness.



ABSTRACT

This thesis investigates boundary controllability for dispersive systems governed by the Korteweg-
de Vries (KdV) type equation. The main goal is to steer the system’s state using boundary
controls. We first focus on the well-known KdV equation in a bounded domain with purely
Neumann boundary conditions and a single control input. A central difficulty arises when the
spatial domain length is critical, rendering the associated linear system uncontrollable. To
address this, we employ the return method to establish controllability of the nonlinear system.

The second problem considers the KdV equation on a star-shaped graph, modeled as a
system of N KdV-type equations defined on intervals (0, ℓ𝑗), coupled through a condition at
the central node. We demonstrate controllability using 𝑁 boundary controls, which may be
Neumann, Dirichlet, or a combination of both. We identify the corresponding sets of critical
lengths through detailed spectral analysis for each boundary configuration.

Lastly, we explore the controllability of the fifth-order KdV equation, also known as the
Kawahara equation, using two boundary controls. Here, we adopt the flatness method—a
nonstandard approach that bypasses the need for an observability inequality. This method ex-
presses the state and control variables in terms of so-called “flat outputs” in Gevrey spaces.
Within this framework, we address two key problems: achieving null controllability and char-
acterizing the set of states reachable from zero, thereby identifying a functional space where
exact controllability holds.

Keywords: Dispersive equations; Boundary controllability; Critical lengths; Return method;
Star-graphs; Flatness approach.
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1 INTRODUCTION

In this thesis, we are concerned with the controllability property of dispersive systems
governed by partial differential equations of the KdV type. More specifically, we want to know
whether a given system can be driven from any initial data to any pre-established final data,
through the appropriate choice of a control acting internally or at the boundary of the domain.

The results obtained here provide controllability properties for the KdV equation posed
on a bounded interval or a star graph, and for the Kawahara equation also on a bounded
domain. Before presenting these results, it is interesting to bring some considerations about
the emergence of these dispersive models.

1.1 HISTORICAL ASPECTS ABOUT DISPERSIVE EQUATIONS

The systems addressed here arise as models for solitary waves, a phenomenon first observed
in 1834 by Scottish naval engineer John Scott Russell. He was working at the Union Canal
connecting Edinburgh with Glasgow in Scotland, and was impressed by a wave traveling slowly
without changing its shape and speed, which he called “Wave of Translation” (RUSSELL,
1844). With this fascination, for approximately the next ten years, Russell carried out several
experiments to better understand this phenomenon. His empirical findings led him to the
following relationship:

𝑐2 = 𝑔(ℎ+ 𝑎)

where 𝑐 is the velocity of the solitary wave, 𝑎 is the maximum amplitude above the water
surface, ℎ is the finite depth, and 𝑔 is the acceleration of gravity. His discoveries revolution-
ized 19th-century naval engineering and earned him the Gold Medal of the Royal Society of
Edinburgh in 1837.

However, until that point, Russell’s studies were still viewed with some skepticism by the
scientific community, and people had difficulty describing his observations. Although he con-
tinued his research for a while, he decided to stop his experiments when he saw contradictions
between his results and the work of famous mathematicians, such as G.B. Airy’s theory of
water waves (AIRY, 1845) and G.G. Stokes’ theory of shallow water waves (STOKES, 1847).
The reason for so much disagreement is that Russell’s observations were a consequence of
nonlinear effects, which were disregarded at the time. An analytical demonstration of the exis-
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tence of uniformly traveling waves would then be necessary, which challenged the mathematical
community in the following years.

It took a few decades until, in 1871, the French mathematician Joseph Valentin Boussinesq
published a work where nonlinear terms were considered, and the solutions obtained had
characteristics similar to those of the solitary waves observed originally by Russell. Boussinesq
studied a model of long, incompressible, and rotating-free waves in a shallow channel with
rectangular cross-section, disregarding friction along the boundary, arriving at the following
equation

𝜕2ℎ

𝜕𝑡2
= 𝑔𝐻

𝜕2ℎ

𝜕𝑥2 + 𝑔𝐻
𝜕2

𝜕𝑥2

[︃
3ℎ2

2𝐻 + 𝐻2

3
𝜕2ℎ

𝜕𝑥2

]︃

where (𝑡, 𝑥) are the coordinates of the fluid particle at time 𝑡, ℎ is the amplitude of the wave,
𝐻 is the height of the water in equilibrium and 𝑔 is the gravitational constant (BOUSSINESQ,
1871). Unfortunately, these Boussinesq results did not receive due attention in England.

Five years later, the English physicist Lord Rayleigh confirmed Russell’s results, indepen-
dently of Boussinesq, by giving a solitary wave profile. He assumed the existence of a stationary
wave vanishing at infinity and considered only the spatial dependence, which led him to the
equation (︃

𝑑ℎ

𝑑𝑥

)︃2

+ 3
𝐻3ℎ

2(ℎ− ℎ0) = 0

with the same previous notation and ℎ0 being the crest of the wave (RAYLEIGH, 1876). The
solution to this equation can be expressed explicitly by

ℎ(𝑥) = ℎ0sech2

⎛⎝√︃ ℎ0

4𝐻3𝑥

⎞⎠ .
In the same paper, Rayleigh gave credit for the results obtained there to Boussinesq (1871):

I have lately seen a memoir by M. Boussinesq (1871, Comptes Rendus, Vol.
LXXII.), in which is contained a theory of the solitary wave very similar to
that of this paper. So far as our results are common, the credit of priority
belongs, of course, to M. Boussinesq (RAYLEIGH, 1876).

Finally, in 1895, two Dutch mathematicians provided the most well-known model for the
waves observed by Russell, which is still widely studied today. Diederick Johannes Korteweg
and his doctoral student Gustav de Vries included the effect of surface tension in Rayleigh’s
equation, obtaining the famous KdV equation.

𝜕𝜂

𝜕𝜏
= 3

2

√︂
𝑔

𝑙

𝜕

𝜕𝜉

(︃
1
2𝜂

2 + 2
3𝛼𝜂 + 1

3𝜎
𝜕2𝜂

𝜕𝜉2

)︃
, (1.1)
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where 𝜂 denotes the surface elevation above the equilibrium level 𝑙, 𝛼 is a small arbitrary
constant related to the motion of the liquid, 𝑔 is the gravitational constant and 𝜎 = 𝑙3

3 − 𝑇 𝑙
𝜌𝑔

,
with surface capillary tension 𝑇 and density 𝜌 (KORTEWEG; VRIES, 1895). Performing the
change of variables

𝑡 =
√︂
𝑔

𝑙𝜎
𝜏, 𝑥 = − 1√

𝜎
𝜉, 𝑢 =

(︂1
2𝜂 + 1

3𝛼
)︂

in (1.1) we obtain the KdV equation in its best-known form

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (1.2)

Below we provide a brief presentation of the dispersive models addressed in this thesis,
which arise from improvements in (1.2), aiming at generalizations or greater fidelity to the
physical context.

1.2 DISPERSIVE WAVE EQUATIONS

In physical terms, a wave is called dispersive when the phase velocity is different from the
group velocity, which also means that the phase velocity is not constant; it depends on the
frequency. Thus, different frequencies travel at different speeds. Roughly speaking, it is not a
wave but a group or packet of waves within which each wave travels at its speed, different
from the speed of the group as a whole. As time evolves, these different waves disperse in the
medium, resulting in a single rise of water dividing into wave-trains.

In general, these waves are modeled mathematically by differential equations of the form

𝐹 (𝜕𝑥, 𝜕𝑡, )𝑢(𝑥, 𝑡) = 0 (1.3)

where 𝐹 is a polynomial in two variables. As Linares and Ponce (LINARES; PONCE, 2015)
explains, we try to find solutions 𝑢 satisfying

𝑢(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)

where 𝐴 is the amplitude, 𝑘 is the wave number and 𝜔 is the frequency, which happens if and
only if

𝐹 (𝑖𝑘,−𝑖𝑤) = 0.
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This equation is called the dispersion relation and, in several models, it allows us to write 𝜔
as a real function of 𝑘, namely

𝜔 = 𝜔(𝑘).

In these terms, the differential equation (1.3) (so the waves modeled by it) is called dispersive
when 𝑤′′(𝑘) ̸= 0. By definition, the phase velocity 𝑣𝑝 and the group velocity 𝑣𝑔 are given by

𝑣𝑝 = 𝜔

𝑘
and 𝑣𝑔 = 𝑑𝜔

𝑑𝑘
.

The relationship 𝑤′′(𝑘) ̸= 0, which defines a dispersive wave, means that the group velocity
𝑣𝑔 is not constant and consequently the phase velocity 𝑣𝑝 is also not constant, exactly as we
mentioned initially.

In this work, we address problems concerning two models of dispersive equations: the KdV
equation and the Kawahara equation.

1.2.1 The KdV equation

The KdV equation, given in (1.1) and (1.2), is one of the best-known dispersive models in
the literature and can be considered a prototype for models of waves traveling in a rectangular
channel of relatively shallow depth. Actually, as Benjamin, Bona, and Mahony (1972) point
out, by appropriately redefining the dependent and independent variables in (1.1), the KdV
equation can be obtained in the form

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (1.4)

According to Bona and Winther (1983), equation (1.4) is a more appropriate model for waves
in a uniform channel than equation (1.2), due to physical issues associated with the temporal
variable.

1.2.2 The Kawahara equation

In the KdV equation (1.2), the coefficient of the dispersion term (third-order derivative
term) can vary according to the medium and can be very small or even zero. In such cases, we
must consider higher-order dispersion terms to balance the effect of the nonlinearity. This is
what occurs in the propagation of the magneto-acoustic wave in a cold collision-free plasma,
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where the third-order derivative disappears and is replaced by a fifth-order derivative, which
was done in (KAKUTANI; ONO, 1969). The resulting equation is of the form

𝑢𝑡 + 3
2𝑢𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥 − 𝛽𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (1.5)

where 𝛼 and 𝛽 are constants representing the dispersion effect and may be either positive or
negative. Equation (1.5) is due to Hasimoto (HASIMOTO, 1970) and Kawahara (KAWAHARA,
1972) and known as the generalized KdV equation or the Kawahara equation.

1.3 MAIN RESULTS AND STRUCTURE OF THE WORK

One of the main objectives when studying models represented by differential equations is
to obtain qualitative properties that carry useful information about the physical context being
modeled. Among the most desired properties, the possibility of making predictions about the
behavior of the system under study or even controlling this system stands out. The latter is
the core of control theory, where the aim is to manipulate the system so that, at a given time,
it is in a predetermined state.

Our goal here is to investigate the controllability property of the KdV equation posed on
a bounded domain or a star graph, and of the Kawahara equation on a bounded domain.

1.3.1 Boundary controllability of the Korteweg-de Vries equation: The Neumann

case

The first problem studied in this thesis concerns the controllability for the KdV equation
under boundary conditions purely Neumann⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑢𝑥𝑥(0, 𝑡) = 𝑢𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝑇 ),

𝑢𝑥(𝐿, 𝑡) = ℎ(𝑡), in (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥), in (0, 𝐿),

(1.6)

where ℎ(𝑡) will be considered as a control input. Recently, Caicedo, Capistrano-Filho and
Zhang (2017) proved that system (1.6) is exactly controllable around an equilibrium 𝑢 ≡ 𝑐,
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provided the length 𝐿 of the spatial domain does not belong to ℛ𝑐, where 𝑐 ̸= −1 and

ℛ𝑐 :=

⎧⎨⎩ 2𝜋√︁
3(𝑐+ 1)

√
𝑚2 +𝑚𝑙 + 𝑙2; 𝑚, 𝑙 ∈ N*

⎫⎬⎭ ∪
{︃

𝑚𝜋√
𝑐+ 1

; 𝑚 ∈ N*
}︃
.

Naturally, the following question arises:

Question 𝒜1: Is the system (1.6) exactly controllable around 𝑐 when 𝐿 ∈ ℛ𝑐?
In our first work, we give a positive answer to this question, which consists of proving the

theorem below.

Theorem 1.1 Let 𝑇 > 0, 𝑐 ̸= −1 and 𝐿 ∈ ℛ𝑐. The system (1.6) is exactly controllable
around 𝑐 in 𝐿2(0, 𝐿), that is, there exists 𝛿 > 0 such that, for every 𝑢0, 𝑢𝑇 ∈ 𝐿2(0, 𝐿) with

‖𝑢0 − 𝑐‖𝐿2(0,𝐿), ‖𝑢𝑇 − 𝑐‖𝐿2(0,𝐿) < 𝛿

it is possible to find ℎ ∈ 𝐿2(0, 𝑇 ) such that the corresponding solution of (1.6) satisfies

𝑢(·, 0) = 𝑢0 and 𝑢(·, 𝑇 ) = 𝑢𝑇 .

The difficulty in proving this result lies in the fact that, when 𝐿 ∈ ℛ𝑐, the linearization of (1.6)
around 𝑐 is not exactly controllable, so a standard argument using only fixed point theorems
does not work in this case. We need to combine this technique with the so-called return
method. To do this, it is necessary to establish the following auxiliary result, which says to us
that the set of critical lengths ℛ𝑐 is sensitive to small disturbances in equilibrium 𝑐.

Theorem 1.2 Let 𝑇 > 0, 𝑐 ̸= −1 and 𝐿 ∈ ℛ𝑐. There exists 𝜀𝑐 > 0 such that, for every
𝑑 ∈ (𝑐 − 𝜀𝑐, 𝑐 + 𝜀𝑐)∖{𝑐}, 𝑑 ̸= −1, we have 𝐿 /∈ ℛ𝑑. Consequently, the linearization of (1.6)
around 𝑑 is exactly controllable; and the nonlinear system (1.6) is exactly controllable around
the steady state 𝑑 in 𝐿2(0, 𝐿).

1.3.2 Boundary observation of the KdV equation on graphs

The second problem addressed in this work concerns the KdV equation posed on a star-

graph 𝒯 :=
𝑁⋃︁

𝑗=1
𝑒𝑗, where 𝑒𝑗 are the edges.

𝑒1

𝑒2

𝑒3

Figure 1 – Star-graph with 3 edges
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Naturally identifying each edge with an interval 𝐼𝑗 = [0, ℓ𝑗], the pivot space for data is

L2(𝒯 ) :=
𝑁∏︁

𝑗=1
𝐿2(0, ℓ𝑗)

and our system can be written as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑗(𝑡, 𝑥) + 𝜕𝑥𝑢𝑗(𝑡, 𝑥) + 𝜕3
𝑥𝑢𝑗(𝑡, 𝑥) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, ℓ𝑗), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), ∀𝑗 = 2, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑢𝑗(𝑡, 0) = −𝛼𝑢1(𝑡, 0) + 𝑔0(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢𝑗(𝑡, ℓ𝑗) = 𝑝𝑗(𝑡), 𝜕𝑥𝑢𝑗(𝑡, ℓ𝑗) = 𝑔𝑗(𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(0, 𝑥) = 𝑢0
𝑗(𝑥), 𝑥 ∈ 𝐼𝑗,

(1.7)

where 𝛼 > 𝑁
2 . This system arose with the proposal of the KdV equation as a model for blood

pressure waves.
Controllability properties for a system of type (1.7) were considered for the first time, as far

as we know, in (AMMARI; CRÉPEAU, 2018), where the authors proved the exact controllability
of (1.7) by using 𝑛+1 controls, namely 𝑔0, 𝑔1..., 𝑔𝑁 , provided that #{ℓ𝑗 ∈ 𝒩 } ≤ 1, where 𝒩

is the critical set for a single KdV equation with Dirichlet boundary conditions and Neumann
control, introduced by Rosier in (ROSIER, 1997). Recently, Parada (PARADA, 2024) obtained
null controllability to the system (1.7) employing a mixed configuration of 2(𝑁 − 2) Neumann
and Dirichlet controls, 𝑔2, ..., 𝑔𝑁 , 𝑝2, ...., 𝑝𝑁 . Here, our goal is to obtain the exact controllability
for (1.7) with a smaller number of controls, that is, we are concerned with answering the
following question.

Question ℬ1: Given 𝑇 > 0 and 𝑢0, 𝑢𝑇 ∈ 𝐿2(0, 𝐿), can one find a number of control inputs
𝑝𝑗, 𝑔𝑗 less than 2(𝑁 − 2) such that the corresponding solution 𝑢(𝑥, 𝑡) of (2.2) satisfies

𝑢(𝑥, 𝑇 ) = 𝑢𝑇 (𝑥)? (1.8)

Specifically, we want to use only 𝑁 controls, which leads us to situations with critical
lengths whose characterization depends on the number of Neumann and Dirichlet controls
used, and involves the sets

𝒩 :=
{︃

2𝜋√
3

√
𝑘2 + 𝑘𝑙 + 𝑙2 : 𝑘, 𝑙 ∈ N*

}︃
, (1.9)
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introduced in (ROSIER, 1997) as the set of critical lengths for a single KdV equation with
Dirichlet boundary conditions and one Neumann control, the set 𝒩 * given by

𝒩 * =

⎧⎪⎪⎨⎪⎪⎩𝐿 ∈ R+∖ {0};
∃(𝑎, 𝑏) ∈ C2 such that 𝑎𝑒𝑎 = 𝑏𝑒𝑏 = −(𝑎+ 𝑏)𝑒−(𝑎+𝑏)

and 𝐿2 = − (𝑎2 + 𝑎𝑏+ 𝑏2)

⎫⎪⎪⎬⎪⎪⎭ , (1.10)

introduced in (GLASS; GUERRERO, 2010) as the set of critical lengths for a single KdV equation
with one Dirichlet control and, finally, the set

𝒩 † =

⎧⎪⎪⎨⎪⎪⎩𝐿 ∈ R+∖ {0};
∃(𝑎, 𝑏) ∈ C2 such that 𝑎2𝑒𝑎 = 𝑏2𝑒𝑏 = (𝑎+ 𝑏)2𝑒−(𝑎+𝑏)

and 𝐿2 = − (𝑎2 + 𝑎𝑏+ 𝑏2)

⎫⎪⎪⎬⎪⎪⎭ , (1.11)

a new critical set in the literature for the KdV equation, introduced in this work.

Theorem 1.3 Let 𝑇 > 0 and 𝑢0, 𝑢𝑇 ∈ L2(𝒯 ). Consider 𝛼 = 𝑁 , ℓ𝑗 = 𝐿 for 𝑗 = 1, . . . , 𝑁

and denote by 𝑚 ∈ {1, ..., 𝑁} the number of Neumann controls used.

1. If 𝑁 = 2, then for any 𝐿 > 0, there exist controls (𝑔1, 0) ∈ [𝐿2(0, 𝑇 )]2 and (0, 𝑝2) ∈

[𝐿2(0, 𝑇 )]2 such that the unique solution 𝑢 of (1.7) satisfies (1.8).

2. If 𝑁 ≥ 3 and 𝑚 = 1 then, there exist controls (𝑔1, 0, ..., 0) ∈ [𝐿2(0, 𝑇 )]𝑁 and
(0, 𝑝2, ..., 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique solution 𝑢 of (1.7) satisfies (1.8),
if and only if 𝐿 /∈ 𝒩 *.

3. If 𝑁 ≥ 3 and 𝑚 = 𝑁 − 1 then, there exist controls (𝑔1, ..., 𝑔𝑁−1, 0) ∈ [𝐿2(0, 𝑇 )]𝑁 and
(0, ..., 0, 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique solution 𝑢 of (1.7) satisfies (1.8), if
and only if 𝐿 /∈ 𝒩 .

4. If 𝑁 > 3 and 1 < 𝑚 < 𝑁−1 then, there exist controls (𝑔1, ..., 𝑔𝑚, 0, ..., 0) ∈ [𝐿2(0, 𝑇 )]𝑁

and (0, ..., 0, 𝑝𝑚+1, ..., 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique solution 𝑢 of (1.7) sat-
isfies (1.8), if and only if 𝐿 /∈ 𝒩 ∪ 𝒩 *.

5. If, 𝑁 ≥ 2, then there exist controls (𝑔1, ..., 𝑔𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique
solution 𝑢 of (1.7) satisfies (1.8), if and only if 𝐿 /∈ 𝒩 ∪ 𝒩 *.

6. If, 𝑁 ≥ 2, then there exist controls (𝑝1, ..., 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique
solution 𝑢 of (1.7) satisfies (1.8), if and only if 𝐿 /∈ 𝒩 * ∪ 𝒩 †.
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As is well known in the literature, proving controllability for system (1.7) is equivalent
to establishing an observability inequality for the adjoint system. To do this, we will use
the same strategy as Rosier (1997), combining the multiplier method with contradiction and
compactness arguments.

1.3.3 Control of Kawahara equation using flat outputs

Our third problem concerns the controllability of the Kawahara equation on a bounded
domain. Precisely, we are interested in the control properties of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (𝑥, 𝑡) ∈ (−1, 0) × (0, 𝑇 ),

𝑢(0, 𝑡) = 𝑢𝑥(0, 𝑡) = 𝑢𝑥𝑥(0, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(−1, 𝑡) = ℎ1(𝑡), 𝑢𝑥(−1, 𝑡) = ℎ2(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (−1, 0),

(1.12)

where 𝑢(𝑡, ·) is the state at time 𝑡 ∈ (0, 𝑇 ) and ℎ1, ℎ2 are the controls. The problem of
internal controllability for the Kawahara equation has been widely studied in recent years,
as can be seen for example in (ZHANG; ZHAO, 2012), (ZHAO; ZHANG, 2015), (CAPISTRANO-

FILHO; GOMES, 2021), (PAZOTO; SOTO, 2023), (CAPISTRANO-FILHO; SOUSA; GALLEGO, 2023)
e (AHAMED; MONDAL, 2025). However, the boundary controllability for the linear equation in
(1.12) is still a challenging and developing topic. Motivated by this, we are interested in the
following problem.

Question 𝒞1: Is the system (1.12) null controllable in 𝐿2(0, 𝐿), that is, given 𝑇 > 0 and
𝑢0 ∈ 𝐿2(−1, 0) can we find controls ℎ1, ℎ2 (in suitable spaces) such that the solution of
(1.12) satisfies 𝑢(𝑇, ·) = 0?

In Chapter refchap.flat-kawa we will give a positive answer to this question using the
flatness approach, introduced in (FLIESS et al., 1995) for finite-dimensional systems and in
(LAROCHE; MARTIN; ROUCHON, 2000) for the case of infinite dimension. This is a method
in which the state and control variables are explicitly expressed as a function of an output
variable (called the flat variable) and its derivatives. In our case, the method allows us to trace
trajectories of the system that end in the null state, that is, zero is a state that can be reached
from any initial state. Naturally, the question arises as to which states can be reached from
zero, which motivates a second problem.
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Question 𝒟1: Can we find a space ℛ with the property that, if the final data 𝑢1 ∈ ℛ then
one can get control functions ℎ1, ℎ2 such that the solution 𝑢 of the system (1.12) with 𝑢0 = 0

satisfies 𝑢(·, 𝑇 ) = 𝑢1?
Using the same approach, we will present a particular space of states reachable from the

null state, answering 𝒟1. It is important to emphasize that the problem of determining all
directions that can be reached from zero by system (1.12) constitutes a difficult task whose
complete realization means fully understanding the behavior of the Kawahara equation on
bounded domains from the point of view of control theory.

1.3.4 Structure of the thesis

We conclude this introductory chapter with a brief overview of the organization of the
results presented in the subsequent chapters. In Chapter 2, we address the control problem
for the Korteweg-de Vries (KdV) equation under purely Neumann boundary conditions, pro-
viding answers to Question 𝒜1. Chapter 3 is devoted to the study of the KdV equation on
star-shaped graphs. In response to Question ℬ1, we present several scenarios in which control-
lability is achieved using 𝑁 controls, depending on the nature of the spatial domain length 𝐿.
In Chapter 4, we apply the flatness approach to establish the controllability of the Kawahara
equation on a bounded domain, employing two boundary controls and thereby answering Ques-
tion 𝒞1. Furthermore, we exhibit an example of a reachable state space from zero, which yields
a satisfactory answer to Question 𝒟1. In Chapter 5 we provide a perspective for continuing
the investigation of the problems addressed here, with some open questions that may encour-
age new work. The Appendix A addresses elements of the theories that underpin this work,
particularly about functional spaces, semigroup theory, and control theory. Finally, Appendix
B brings some important characteristics about 𝒩 †.
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2 BOUNDARY CONTROLLABILITY OF THE KORTEWEG-DE VRIES EQUA-

TION: THE NEUMANN CASE

In this chapter, we are interested in the exact controllability property for the KdV equation
posed on an interval [0, 𝐿] under Neumann boundary conditions, when 𝐿 belongs to the critical
lengths set

ℛ𝑐 :=

⎧⎨⎩ 2𝜋√︁
3(𝑐+ 1)

√
𝑚2 +𝑚𝑙 + 𝑙2; 𝑚, 𝑙 ∈ N*

⎫⎬⎭ ∪
{︃

𝑚𝜋√
𝑐+ 1

; 𝑚 ∈ N*
}︃
,

with 𝑐 ̸= −1. Precisely, we show that the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝑦𝑥 + 𝑦𝑥𝑥𝑥 + 𝑦𝑦𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑦𝑥𝑥(0, 𝑡) = 𝑦𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝑇 ),

𝑦𝑥(𝐿, 𝑡) = ℎ(𝑡), in (0, 𝑇 ),

𝑦(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿),

(2.1)

is exactly controllable arround 𝑐 in 𝐿2(0, 𝐿) for the critical case, i.e., when 𝐿 ∈ ℛ𝑐, using only
a control input, namely ℎ(𝑡). The result is achieved using the return method together with a
fixed point argument.

2.1 SETTING PROBLEM AND MAIN RESULTS

The control problem for the KdV equation was presented in a pioneering work of Rosier
(ROSIER, 1997) that studied the following system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, 𝑢𝑥(𝐿, 𝑡) = 𝑔(𝑡), in (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥), in (0, 𝐿),

(2.2)

where the boundary value function 𝑔(𝑡) is considered as a control input. Precisely, the author
addressed the following control problem for the system (2.2):

Question 𝒜2: Given 𝑇 > 0 and 𝑢0, 𝑢𝑇 ∈ 𝐿2(0, 𝐿), can one find an appropriate control input
𝑔(𝑡) ∈ 𝐿2(0, 𝑇 ) such that the corresponding solution 𝑢(𝑥, 𝑡) of the system (2.2) satisfies

𝑢(𝑥, 0) = 𝑢0(𝑥) and 𝑢(𝑥, 𝑇 ) = 𝑢𝑇 (𝑥)? (2.3)
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From the answer given by Rosier to this question, the phenomenon of critical lengths for the
KdV equation arose. He proved that the linear system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, 𝑢𝑥(𝐿, 𝑡) = 𝑔(𝑡), in (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥) in (0, 𝐿),

(2.4)

associated to (2.2), is exactly controllabe if, and only if, 𝐿 /∈ 𝒩 , where

𝒩 :=
{︃

2𝜋√
3

√
𝑘2 + 𝑘𝑙 + 𝑙2 : 𝑘, 𝑙 ∈ N*

}︃
.

In this sense, the positive real numbers 𝐿 ∈ 𝒩 are called critical lengths for the problem (2.4).

Definition 2.1 A spatial domain (0, 𝐿) is called critical for the system (2.4) if its domain
length 𝐿 belongs to 𝒩 .

Thus, if 𝐿 is not a critical length, the system (2.4) is controllable, so, using a point fixed
theorem, we get the property of local controllability for the nonlinear system (2.2) (ROSIER,
1997). When 𝐿 ∈ 𝒩 , this approach does not work to prove the controllability for (2.2).
However, Rosier was still able to prove that the space of directions unreachable from zero for
(2.4) has finite dimension. Precisely, given 𝐿 ∈ 𝒩 , there exists a finite-dimensional subspace of
𝐿2(0, 𝐿), denoted by ℳ = ℳ(𝐿), such that for every nonzero state 𝜓 ∈ ℳ and 𝑔 ∈ 𝐿2(0, 𝑇 ),
the solution of (2.4) corresponding to 𝑔 and 𝑢0 = 0 satisfies 𝑢(·, 𝑇 ) ̸= 𝜓.

The question of the behavior of (2.2) under the critical length regime waited until 2004
to begin to be unraveled, when Coron and Crépeau (CORON; CRÉPEAU, 2004) proved the
controllability of such a system for 𝐿 = 2𝑘𝜋. Using the power series expansion method, they
proved that the effect of nonlinearity gives the system back the possibility of reaching the
directions missed by the linear problem, that is, the space ℳ(𝐿) is reachable for (2.2). After
that, the work of Cerpa and Crépeau (CERPA, 2007; CERPA; CRÉPEAU, 2009) extended this
result to any critical length and sufficiently large time. In summary, we have the following
result.

Theorem 2.1 (Coron, Crépeau and Cerpa) For any 𝐿 ∈ 𝒩 , there exists 𝑇𝐿 > 0 such
that, for any 𝑇 > 𝑇𝐿, the nonlinear system (2.2) is locally exactly controllable at time 𝑇 .

The above theorem remains valid in 𝑇𝐿, as justified in (CERPA, 2007), where a description
of 𝑇𝐿 is also given. Recently, Coron, Koenig, and Nguyen (CORON; KOENIG; NGUYEN, 2024)
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proved that small-time local controllability does not hold in general for system (2.2) when
𝐿 ∈ 𝒩 and the data are taken in more regular spaces than 𝐿2. Specifically, they identified a
class of critical lengths for which controllability does not hold, as stated below.

Theorem 2.2 Let 𝑘, 𝑙 ∈ N* be such that 2𝑘 + 𝑙 ∈ 3N*. Assume that

𝐿 = 2𝜋
√︃
𝑘2 + 𝑘𝑙 + 𝑙2

3 .

Then system(2.2) is not small-time locally null-controllable with controls in 𝐻1 and initial
and final datum in 𝐻3(0, 𝐿) ∩ 𝐻1

0 (0, 𝐿). Precisely, there exist 𝑇0 > 0 and 𝜀0 > 0 such that,
for all 𝛿 > 0, one can find 𝑦0 ∈ 𝐻3(0, 𝐿) ∩ 𝐻1

0 (0, 𝐿) with ‖𝑦0‖𝐻3(0,𝐿) < 𝛿 such that for all
𝑢 ∈ 𝐻1(0, 𝑇0) with ‖𝑢‖𝐻1(0,𝑇0 < 𝜀0 and 𝑢(0) = 𝑦′

0(𝐿), we have

𝑦(·, 𝑇0) ≡ 0,

where 𝑦 ∈ 𝐶([0, 𝑇0];𝐻3(0, 𝐿)) ∩ 𝐿2([0, 𝑇0];𝐻4(0, 𝐿)) is the unique solution of (2.2).

The problem (2.1) was addressed by Caicedo, Capistrano-Filho, and Zhang in (CAICEDO;

CAPISTRANO-FILHO; ZHANG, 2017), where the authors established results of well-posedness,
regularity, and complete characterization of the set of critical lengths associated with the
problem. Their result can be read as follows.

Theorem 2.3 (Caicedo, Capistrano-Filho and Zhang, 2017) Let 𝑇 > 0, 𝑐 ̸= −1 and
𝐿 /∈ ℛ𝑐. There exists 𝛿 > 0 such that for any 𝑦0, 𝑦𝑇 ∈ 𝐿2(0, 𝐿) with

‖𝑦0 − 𝑐‖𝐿2(0,𝐿) < 𝛿 and ‖𝑦𝑇 − 𝑐‖𝐿2(0,𝐿) < 𝛿

one can find ℎ ∈ 𝐿2(0, 𝑇 ) such that the system (2.1) admits a unique solution

𝑦 ∈ 𝒵𝑇 := 𝐶
(︁
[0, 𝑇 ];𝐿2(0, 𝐿)

)︁
∩ 𝐿2

(︁
0, 𝑇 ;𝐻1(0, 𝐿)

)︁
satisfying 𝑦(𝑥, 𝑇 ) = 𝑦𝑇 (𝑥).

As in (ROSIER, 1997), the first step is to obtain a control result for the linear system,
namely, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣𝑡 + (1 + 𝑐)𝑣𝑥 + 𝑣𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑣𝑥𝑥(0, 𝑡) = 𝑣𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝑇 ),

𝑣𝑥(𝐿, 𝑡) = ℎ(𝑡), in (0, 𝑇 ),

𝑣(𝑥, 0) = 𝑣0(𝑥), in (0, 𝐿).

(2.5)
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Precisely, the authors in (CAICEDO; CAPISTRANO-FILHO; ZHANG, 2017) proved the following
result.

Theorem 2.4 (Caicedo, Capistrano-Filho and Zhang, 2017) For 𝑐 ̸= −1, the linear sys-
tem (2.5) is exactly controllable in the space 𝐿2(0, 𝐿) if and only if 𝐿 /∈ ℛ𝑐. Otherwise, that
is, if 𝑐 = −1, the system (2.5) is not exactly controllable in the space 𝐿2(0, 𝐿) for any 𝐿 > 0.

With this in hand, they extend the result for the nonlinear system (2.1) using a fixed point
argument, achieving Theorem 2.3 whenever 𝐿 /∈ ℛ𝑐. In this context and following the spirit
of the results about (2.2), a natural question appears:

Question ℬ2: Is the system (2.1) exactly controllable around 𝑐 ̸= −1 when 𝐿 is a critical
length? In other terms, given 𝑇 > 0, 𝐿 ∈ ℛ𝑐 and 𝑢0, 𝑢𝑇 ∈ 𝐿2(0, 𝐿) close enough to 𝑐, can
one find an appropriate control input ℎ ∈ 𝐿2(0, 𝑇 ) such that the solution 𝑦 of the system
(2.1), corresponding to ℎ and 𝑦0, satisfies 𝑦(·, 𝑇 ) = 𝑦𝑇 ?

The main result in this chapter provides an affirmative answer to the Question ℬ2. Precisely,
we have the following:

Theorem 2.5 Let 𝑇 > 0, 𝑐 = 0 and 𝐿 ∈ ℛ0. Then, system (2.1) is exactly controllable
around the origin 0 in 𝐿2(0, 𝐿), that is, there exists 𝛿 > 0 such that, for every 𝑦0, 𝑦𝑇 ∈ 𝐿2(0, 𝐿)

with

‖𝑦0‖𝐿2(0,𝐿), ‖𝑦𝑇 ‖𝐿2(0,𝐿) < 𝛿

it is possible to find ℎ ∈ 𝐿2(0, 𝑇 ) such that the corresponding solution of (2.1) satisfies
𝑦(·, 𝑇 ) = 𝑦𝑇 .

This previous result can be generalized for any 𝑐 ̸= −1, giving us Theorem 1.1, whose
proof is analogous to that of Theorem 2.5. To prove them we need an auxiliary property that
ensures that, for 𝑐 near enough to 0 (small perturbations of 0), the system (2.1) is exactly
controllable in a neighborhood of 𝑐 in 𝐿2(0, 𝐿) for 𝐿 ∈ ℛ0. In general, for 𝑑 close enough to
𝑐 ̸= −1 one has 𝐿 /∈ ℛ𝑑 so that the system (2.5) corresponding to 𝑑 is exactly controllable.
In other words, the set of critical lengths is sensitive to small disturbances in equilibrium 𝑐,
and the result can be read as follows.
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Theorem 2.6 Let 𝑇 > 0, 𝑐 ̸= −1 and 𝐿 ∈ ℛ𝑐. There exists 𝜀𝑐 > 0 such that, for every
𝑑 ∈ (𝑐−𝜀𝑐, 𝑐+𝜀𝑐)∖{𝑐}, 𝑑 ̸= −1, we have 𝐿 /∈ ℛ𝑑. Consequently, the linear system (2.5), with
𝑐 = 𝑑, is exactly controllable; and the nonlinear system (2.1) is exactly controllable around
the steady state 𝑑 in 𝐿2(0, 𝐿), that is, there exists 𝛿𝑑 > 0 such that, for any 𝑦0, 𝑦𝑇 ∈ 𝐿2(0, 𝐿)

with

‖𝑦0 − 𝑑‖𝐿2(0,𝐿) < 𝛿𝑑 and ‖𝑦𝑇 − 𝑑‖𝐿2(0,𝐿) < 𝛿𝑑,

one can find ℎ ∈ 𝐿2(0, 𝑇 ) such that the system (2.1) admits a unique solution 𝑦 ∈ 𝒵𝑇

satisfying 𝑦(·, 𝑇 ) = 𝑦𝑇 .

2.2 HEURISTIC AND CHAPTER’S OUTLINE

The proof of Theorem 2.6 is based on the topological properties of real numbers together
with Theorem 2.3. Moreover, with this in hand, both results stated in the previous paragraph
(Theorems 2.5 and 1.1) rely on the so-called return method together with the fixed point
argument.

It is important to point out that the return method was introduced by J.M. Coron in
(CORON, 1992) (see also (CORON, 1993)) and has been used by several authors to prove
control results in the critical lengths for the KdV-type equation (see, for instance, (CRÉPEAU,
2001; CORON; CRÉPEAU, 2004; CERPA, 2007; CERPA; CRÉPEAU, 2009)). This method consists
of building particular trajectories of the system (2.1) starting and ending at some equilibrium
such that the linearization of the system around these trajectories has good properties. Here, we
use a combination of this method with a fixed point argument, successfully applied in (GLASS,
2008). We mention that this method can be applied together with quasi-static deformations
and power series expansion. We refer the reader to the nice book of Coron (CORON, 2020) for
more details of the method.

Concerning the construction of solutions to the Theorems 2.5 and 1.1 we follow the fol-
lowing procedure: In the first time, we construct a solution that starts from 𝑦0 and reaches
at time 𝑇/3 a state which is in some sense close to 𝑑 (which is yet to be defined). Then
we construct a solution (close to the state solution 𝑑 ), which starts at time 2𝑇/3 from the
previous state. In the last step, we bring the latter state to 0 via a function 𝑦2, as we can see
in Figure 2 below. For details of this construction, see the characterization of the function 𝑦
in (2.27).
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Figure 2 – Solutions driving states close to 0 to constants and vice-versa

We finish this section with an outline of this chapter, which consists of three parts, including
this introduction. Section 2.3 gives an overview of the well-posedness of the system (2.1).
Section 2.4 is devoted to proving carefully the controllability of the system (2.1) when 𝐿 ∈ ℛ𝑐.
Precisely, in the first part of Section 2.4, we deal with the proof of Theorem 2.6. In the second
part, we prove the construction of the function 𝑦 mentioned before, and finally, in the third
part of Section 2.4, we use these previous results to achieve Theorem 2.5.

2.3 OVERVIEW OF THE WELL-POSEDNESS THEORY

In this section, we review the well-posedness theory for the KdV equation. The results
presented here can be found in (BONA; SUN; ZHANG, 2003; CAICEDO; CAPISTRANO-FILHO;

ZHANG, 2017; KRAMER; RIVAS; ZHANG, 2013). For that, consider 𝐿 > 0 and 𝑇0, 𝑇1 ∈ R with
𝑇0 < 𝑇1. We define the space

𝒵𝑇0,𝑇1 := 𝐶
(︁
[𝑇0, 𝑇1];𝐿2(0, 𝐿)

)︁
∩ 𝐿2

(︁
[𝑇0, 𝑇1];𝐻1(0, 𝐿)

)︁
which is a Banach space with the following norm

‖𝑦‖𝒵𝑇0,𝑇1
:= max

𝑡∈[𝑇0,𝑇1]
‖𝑦(·, 𝑡)‖𝐿2(0,𝐿) +

(︃∫︁ 𝑇1

𝑇0
‖𝑦(·, 𝑡)‖2

𝐻1(0,𝐿)𝑑𝑡

)︃1/2

.

For any 𝑇 > 0 we denote 𝒵0,𝑇 simply by 𝒵𝑇 .
Additionally, let 𝑇 > 0 be given and consider the space

ℋ𝑇 := 𝐻− 1
3 (0, 𝑇 ) × 𝐿2(0, 𝑇 ) ×𝐻− 1

3 (0, 𝑇 )
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with a norm

‖(ℎ1, ℎ2, ℎ3)‖ℋ𝑇
:= ‖ℎ1‖

𝐻− 1
3 (0,𝑇 )

+ ‖ℎ2‖𝐿2(0,𝑇 ) + ‖ℎ3‖
𝐻− 1

3 (0,𝑇 )
.

The next proposition, showed in (CAICEDO; CAPISTRANO-FILHO; ZHANG, 2017, Proposition
2.5), provides the well-posedness to the following system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 𝑓, in (0, 𝐿) × (0, 𝑇 ),

𝑢𝑥𝑥(0, 𝑡) = ℎ1(𝑡), 𝑢𝑥(𝐿, 𝑡) = ℎ2(𝑡), 𝑢𝑥𝑥(𝐿, 𝑡) = ℎ3(𝑡), in (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0, in (0, 𝐿).

(2.6)

Proposition 2.1 (Caicedo, Capistrano-Filho and Zhang, 2017) Let 𝑇 > 0 be. For any
𝑣0 ∈ 𝐿2(0, 𝐿), h = (ℎ1, ℎ2, ℎ3) ∈ ℋ𝑇 and 𝑓 ∈ 𝐿1(0, 𝑇, 𝐿2(0, 𝐿)), the IBVP (2.6) admits a
unique mild solution 𝑢 ∈ 𝒵𝑇 , which satisfies

𝜕𝑗
𝑥𝑢 ∈ 𝐿∞

𝑥 (0, 𝐿;𝐻(1−𝑗)/3(0, 𝑇 )), 𝑗 = 0, 1, 2.

Moreover, there exists 𝐶1 > 0 such that

‖𝑢‖𝒵𝑇
+

2∑︁
𝑗=0

⃦⃦⃦
𝜕𝑗

𝑥𝑢
⃦⃦⃦

𝐿∞
𝑥 (0,𝐿;𝐻(1−𝑗)/3(0,𝑇 ))

≤ 𝐶1
(︁
‖𝑢0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))
)︁
.

Remark 2.1 We highlight that the constant 𝐶1 in the above result depends on 𝑇 . However,
for any 𝜃 ∈ (0, 𝑇 ], the estimates in the Proposition 2.1 hold with the same constant 𝐶1

corresponding to 𝑇 .
In fact, let 𝑢0 ∈ 𝐿2(0, 𝐿), h ∈ ℋ𝜃, 𝑓 ∈ 𝐿1(0, 𝜃;𝐿2(0, 𝐿)) and 𝑢 ∈ 𝒵𝜃 the solution of

(2.6) corresponding to these datas. We extend h and 𝑓 to [0, 𝑇 ] (we will also denote these
extensions by h and 𝑓) putting

h = 0 in (𝜃, 𝑇 ] and 𝑓 = 0 in (𝜃, 𝑇 ].

Now, denote by 𝑢̃ ∈ 𝒵𝑇 the corresponding solution of (2.6). Then, from Proposition 2.1, we
have 𝑢̃

⃒⃒⃒
[0,𝜃]

= 𝑢 and

‖𝑢‖𝒵𝜃
≤ ‖𝑢̃‖𝒵𝑇

≤ 𝐶1
(︁
‖𝑢0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))
)︁

= 𝐶1
(︁
‖𝑢0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁
.

Using the Proposition 2.1, we can get properties for the linear problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (𝑎𝑦)𝑥 + 𝑦𝑥𝑥𝑥 = 𝑓, in (0, 𝐿) × (0, 𝑇 ),

𝑦𝑥𝑥(0, 𝑡) = ℎ1(𝑡), 𝑦𝑥(𝐿, 𝑡) = ℎ2(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = ℎ3(𝑡), in (0, 𝑇 ),

𝑦(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿),

(2.7)
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where 𝑎 ∈ 𝒵𝑇 is given. To do this, the following lemma will be very useful and was proved in
(KRAMER; ZHANG, 2010, Lemma 3).

Lemma 2.1 (Kramer, Zhang (KRAMER; ZHANG, 2010)) There exists a constant 𝐶 > 0

such that
∫︁ 𝑇

0
‖𝑢𝑣𝑥(·, 𝑡)‖𝐿2(0,𝐿)𝑑𝑡 ≤ 𝐶

(︁
𝑇

1
2 + 𝑇

1
3
)︁

‖𝑢‖𝒵𝑇
‖𝑣‖𝒵𝑇

,

for every 𝑢, 𝑣 ∈ 𝒵𝑇 .

With these previous results in hand, the following proposition gives us the well-posedness
of the general system (2.7), which will be used several times, so, for the sake of completeness,
we will give the proof.

Proposition 2.2 For any 𝑦0 ∈ 𝐿2(0, 𝐿), h = (ℎ1, ℎ2, ℎ3) ∈ ℋ𝑇 and 𝑓 ∈ 𝐿1(0, 𝑇, 𝐿2(0, 𝐿)),
the IBVP (2.7) admits a unique mild solution 𝑦 ∈ 𝒵𝑇 , which satisfies

𝜕𝑗
𝑥𝑦 ∈ 𝐿∞

𝑥 (0, 𝐿;𝐻(1−𝑗)/3(0, 𝑇 )), 𝑗 = 0, 1, 2,

and

‖𝑦‖𝒵𝑇
≤ 𝐶2

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))
)︁
,

for some positive constant 𝐶2 which depends only on 𝑇 and ‖𝑎‖𝒵𝑇
. In addition, the solution

𝑦 possesses the following sharp trace estimates
2∑︁

𝑗=0

⃦⃦⃦
𝜕𝑗

𝑥𝑦
⃦⃦⃦

𝐿∞
𝑥 (0,𝐿;𝐻(1−𝑗)/3(0,𝑇 ))

≤ 𝐶2
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))
)︁
.

In particular, the map (𝑦0,h, 𝑓) ↦→ 𝑦 is Lipschitz continuous.

Proof: Let 𝑦0 ∈ 𝐿2(0, 𝐿), h ∈ ℋ𝑇 and 𝑓 ∈ 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿)) be given. Consider 𝜃 satisfying
0 < 𝜃 ≤ 𝑇 and define the map Γ : 𝒵𝜃 → 𝒵𝜃 in the next way: for 𝑦 ∈ 𝒵𝜃, put Γ𝑦 being the
solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 𝑓 − (𝑎𝑦)𝑥, in (0, 𝐿) × (0, 𝜃),

𝑢𝑥𝑥(0, 𝑡) = ℎ1(𝑡), 𝑢𝑥(𝐿, 𝑡) = ℎ2(𝑡), 𝑢𝑥𝑥(𝐿, 𝑡) = ℎ3(𝑡), in (0, 𝜃),

𝑢(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿).
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Consider the set

𝐵 = {𝑦 ∈ 𝒵𝜃; ‖𝑦‖𝒵𝜃
≤ 𝑟} ,

with 𝑟 > 0 to be determined later. From Proposition 2.1 and Lemma 2.1 we have for any
𝑦 ∈ 𝐵 the following estimate

‖Γ𝑦‖𝒵𝜃
≤𝐶1

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿)) + ‖(𝑎𝑦)𝑥‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

≤𝐶1
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

+ 2𝐶1𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑎‖𝒵𝜃
‖𝑦‖𝒵𝜃

≤𝐶1
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

+ 2𝐶1𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑎‖𝒵𝑇
‖𝑦‖𝒵𝜃

.

(2.8)

Choosing
𝑟 = 2𝐶1

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

and 𝜃 satisfying

2𝐶1𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑎‖𝒵𝑇
<

1
2 , (2.9)

the inequality (2.8) give us

‖Γ𝑦‖𝒵𝜃
≤ 𝑟

2 + 𝑟

2 = 𝑟,

that is, Γ(𝐵) ⊂ 𝐵. Furthermore, Γ𝑦 − Γ𝑤 solves⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥𝑥𝑥 = [𝑎(−𝑦 + 𝑤)]𝑥, in (0, 𝐿) × (0, 𝜃),

𝑢𝑥𝑥(0, 𝑡) = 𝑢𝑥(𝐿, 𝑡) = 𝑢𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝜃),

𝑢(𝑥, 0) = 0, in (0, 𝐿).

So, from Proposition 2.1, Lemma 2.1 and inequality (2.9), we have

‖Γ𝑦 − Γ𝑤‖𝒵𝜃
≤ 𝐶1‖[𝑎(𝑦 − 𝑤)]𝑥‖𝐿1(0,𝜃;𝐿2(0,𝐿))

≤ 2𝐶1𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑎‖𝒵𝜃
‖𝑦 − 𝑤‖𝒵𝜃

≤ 2𝐶1𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑎‖𝒵𝑇
‖𝑦 − 𝑤‖𝒵𝜃

<
1
2‖𝑦 − 𝑤‖𝒵𝜃

.
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Thus, Γ : 𝐵 → 𝐵 is a contraction so that, by Banach’s fixed point theorem, Γ has a fixed
point 𝑦 ∈ 𝐵 which is a solution to the problem (2.7) in [0, 𝜃], corresponding to data (𝑦0,h, 𝑓).
Additionally, inequalities (2.8) and (2.9) yields that

‖𝑦‖𝒵𝜃
≤ 𝐶1

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

+ 1
2‖𝑦‖𝒵𝜃

and, therefore,

‖𝑦‖𝒵𝜃
≤ 2𝐶1

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁
.

Since 𝜃 depends only on 𝑎, with a standard continuation extension argument, the solution 𝑦
can be extended to interval [0, 𝑇 ] and the following estimate holds

‖𝑦‖𝒵𝑇
≤ 𝐶2

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))
)︁
, (2.10)

for some suitable constant 𝐶2 > 0 which only depends on 𝑇 and ‖𝑎‖𝒵𝑇
. Therefore, it follows

from (2.10) that the map (𝑦0,h, 𝑓) ↦→ 𝑦 is Lipschitz continuous and, as a consequence of
this, we have the uniqueness of the solution 𝑦 in 𝒵𝑇 . The sharp trace estimates follow as a
consequence of the Proposition 2.1, showing the proposition. □

Now, we will study the well-posedness of the nonlinear problem, namely:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (𝑎𝑦)𝑥 + 𝑦𝑥𝑥𝑥 + 𝑦𝑦𝑥 = 𝑓, in (0, 𝐿) × (0, 𝑇 ),

𝑦𝑥𝑥(0, 𝑡) = ℎ1(𝑡), 𝑦𝑥(𝐿, 𝑡) = ℎ2(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = ℎ3(𝑡), in (0, 𝑇 ),

𝑦(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿).

(2.11)

The result can be read as follows.

Proposition 2.3 Let 𝑇 > 0, 𝑎 ∈ 𝒵𝑇 and 𝜆 > 0 be given. For every 𝑦0 ∈ 𝐿2(0, 𝐿), h =

(ℎ1, ℎ2, ℎ3) ∈ ℋ𝑇 and 𝑓 ∈ 𝐿1(0, 𝑇, 𝐿2(0, 𝐿)) satisfying

‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇
+ ‖𝑓‖𝐿1(0,𝑇 ;𝐿2(0,𝐿)) < 𝜆,

there exists 𝑇 * ∈ (0, 𝑇 ] (denpending only on 𝜆) and a unique mild solution 𝑦 ∈ 𝒵𝑇 * of (2.11)
which possesses the hidden regularities

𝜕𝑗
𝑥𝑦 ∈ 𝐿∞

𝑥 (0, 𝐿;𝐻(1−𝑗)/3(0, 𝑇 *)), 𝑗 = 0, 1, 2.

The corresponding solution map (𝑦0,h, 𝑓) ↦→ 𝑆(𝑦0,h, 𝑓) is Lipschitz continuous, that is, there
exists a positive constant 𝐿 = 𝐿(𝜆) such that, for every

(𝑦0,h, 𝑓0), (𝑦1, g, 𝑓1) ∈ 𝐿2(0, 𝐿) × ℋ𝑇 × 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿))
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with
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓0‖𝐿1(0,𝑇 ;𝐿2(0,𝐿)) < 𝜆,

‖𝑦1‖𝐿2(0,𝐿) + ‖g‖ℋ𝑇
+ ‖𝑓1‖𝐿1(0,𝑇 ;𝐿2(0,𝐿)) < 𝜆,

we have

‖𝑆(𝑦0,h, 𝑓0) − 𝑆(𝑦1, g, 𝑓1)‖𝒵𝑇 * ≤𝐿𝜆

(︁
‖𝑦0 − 𝑦1‖𝐿2(0,𝐿)

+‖h − g‖ℋ𝑇 * + ‖𝑓0 − 𝑓1‖𝐿1(0,𝑇 *;𝐿2(0,𝐿))
)︁
.

In addition,
2∑︁

𝑗=0

⃦⃦⃦
𝜕𝑗

𝑥𝑦
⃦⃦⃦

𝐿∞
𝑥 (0,𝐿;𝐻(1−𝑗)/3(0,𝑇 *))

≤𝐶3
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇 * + ‖𝑓‖𝐿1(0,𝑇 *;𝐿2(0,𝐿))

)︁

for some constant 𝐶3 > 0.

Proof: We will proceed as follows: First, we will show the existence of a solution and obtain
the desired estimates. Secondly, we will get an estimate that provides the uniqueness of the
solution and guarantees that 𝑆 is locally Lipschitz continuous.

To do that, consider 𝑦0 ∈ 𝐿2(0, 𝐿), h ∈ ℋ𝑇 and 𝑓 ∈ 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿)) with

‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇
+ ‖𝑓0‖𝐿1(0,𝑇 ;𝐿2(0,𝐿)) < 𝜆.

Let 𝜃 satisfying 0 < 𝜃 ≤ 𝑇 and define the map Γ : 𝒵𝜃 → 𝒵𝜃 in the following way: For 𝑦 ∈ 𝒵𝜃,
pick Γ𝑦 as solution of the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + (𝑎𝑢)𝑥 + 𝑢𝑥𝑥𝑥 = 𝑓 − 𝑦𝑦𝑥, in (0, 𝐿) × (0, 𝜃),

𝑢𝑥𝑥(0, 𝑡) = ℎ1(𝑡), 𝑢𝑥(𝐿, 𝑡) = ℎ2(𝑡), 𝑢𝑥𝑥(𝐿, 𝑡) = ℎ3(𝑡), in (0, 𝜃),

𝑢(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿).

Consider the set

𝐵 = {𝑦 ∈ 𝒵𝜃; ‖𝑦‖𝒵𝜃
≤ 𝑟} ,

with 𝑟 > 0 to be determined later. Using Proposition 2.2 and Lemma 2.1 we obtain, for any
𝑦 ∈ 𝐵,

‖Γ𝑦‖𝒵𝜃
≤ 𝐶2

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿)) + ‖𝑦𝑦𝑥‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

≤ 𝐶2
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

+ 𝐶2𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑦‖2
𝒵𝑇

≤ 𝐶2𝜆+ 𝐶2𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑦‖2
𝒵𝑇
.

(2.12)
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Choosing

𝑟 = 4𝐶2𝜆

and 𝜃 satisfying

𝐶2𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁
𝑟 <

1
4 , (2.13)

inequality (2.12) give us

‖Γ‖𝒵𝑇
≤ 𝑟

4 + 𝑟

4 = 𝑟

2 < 𝑟,

that is, Γ(𝐵) ⊂ 𝐵. Moreover given 𝑦, 𝑤 ∈ 𝐵, Γ𝑦 − Γ𝑤 solves⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + (𝑎𝑢)𝑥 + 𝑢𝑥𝑥𝑥 = −𝑦𝑦𝑥 + 𝑤𝑤𝑥, in (0, 𝐿) × (0, 𝜃),

𝑢𝑥𝑥(0, 𝑡) = 0, 𝑢𝑥(𝐿, 𝑡) = 0, 𝑢𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝜃),

𝑢(𝑥, 0) = 0, in (0, 𝐿).

Therefore, from Proposition 2.2,

‖Γ𝑦 − Γ𝑤‖𝒵𝜃
≤ 𝐶2‖𝑦𝑦𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜃;𝐿2(0,𝐿)).

Note that

𝑦𝑦𝑥 − 𝑤𝑤𝑥 = 1
2
[︁
(𝑦 + 𝑤)𝑥(𝑦 − 𝑤) + (𝑦 + 𝑤)(𝑦 − 𝑤)𝑥

]︁
.

Then, thanks to the Lemma 2.1, we get that

‖𝑦𝑦𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜃;𝐿2(0,𝐿))

≤ 1
2
[︁
‖(𝑦 + 𝑤)𝑥(𝑦 − 𝑤)‖𝐿1(0,𝜃;𝐿2(0,𝐿)) + ‖(𝑦 + 𝑤)(𝑦 − 𝑤)𝑥‖𝐿1(0,𝜃;𝐿2(0,𝐿))

]︁
≤ 1

2
[︁
𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑦 + 𝑤‖𝒵𝜃
‖𝑦 − 𝑤‖𝒵𝜃

+ 𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑦 + 𝑤‖𝒵𝜃
‖𝑦 − 𝑤‖𝒵𝜃

]︁
= 𝐶

(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑦 + 𝑤‖𝒵𝜃
‖𝑦 − 𝑤‖𝒵𝜃

≤ 2𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁
𝑟‖𝑦 − 𝑤‖𝒵𝜃

and, using (2.13) yields

‖Γ𝑦 − Γ𝑤‖𝒵𝜃
≤ 2𝐶2𝐶

(︁
𝜃

1
2 + 𝜃

1
3
)︁
𝑟‖𝑦 − 𝑤‖𝒵𝜃

<
1
2‖𝑦 − 𝑤‖𝒵𝜃

.
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Hence, Γ : 𝐵 → 𝐵 is a contraction so that, by Banach’s fixed point theorem, Γ has a fixed
point 𝑦 ∈ 𝐵 which is a solution to the problem (2.11) in [0, 𝜃], corresponding to data (𝑦0,h, 𝑓).
Due to the inequalities (2.12) and (2.13), we have

‖𝑦‖𝒵𝜃
≤ 𝐶2

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

+ 1
4‖𝑦‖𝒵𝜃

.

So we can write

‖𝑦‖𝒵𝜃
≤ 𝐶3

(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁
, (2.14)

for some suitable constant 𝐶3 > 0 which only depends on 𝑇 and 𝑎.
Using one more time the Proposition 2.2 together with Lemma 2.1, we obtain

2∑︁
𝑗=0

⃦⃦⃦
𝜕𝑗

𝑥𝑦
⃦⃦⃦

𝐿∞
𝑥 (0,𝐿;𝐻(1−𝑗)/3(0,𝜃))

≤ 𝐶2
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿)) + ‖𝑦𝑦𝑥‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

≤ 𝐶2
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

+ 𝐶2𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑦‖2
𝒵𝜃
.

Since 𝑦 ∈ 𝐵 we have

𝐶2𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁

‖𝑦‖2
𝒵𝜃

≤ 𝐶2𝐶
(︁
𝜃

1
2 + 𝜃

1
3
)︁
𝑟‖𝑦‖𝒵𝜃

and from (2.13) we get

2∑︁
𝑗=0

⃦⃦⃦
𝜕𝑗

𝑥𝑦
⃦⃦⃦

𝐿∞
𝑥 (0,𝐿;𝐻(1−𝑗)/3(0,𝜃))

≤ 𝐶2
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁

+ 1
4‖𝑦‖𝒵𝜃

.

Thus, by (2.14) it follows that

2∑︁
𝑗=0

⃦⃦⃦
𝜕𝑗

𝑥𝑦
⃦⃦⃦

𝐿∞
𝑥 (0,𝐿;𝐻(1−𝑗)/3(0,𝜃))

≤ 𝐶3
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝜃

+ ‖𝑓‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁
,

where 𝐶3 := 𝐶2 + 𝐶3/4.
Now, consider

(𝑦0,h, 𝑓0), (𝑦1, g, 𝑓1) ∈ 𝐿2(0, 𝐿) × ℋ𝑇 × 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿))

with
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓0‖𝐿1(0,𝑇 ;𝐿2(0,𝐿)) < 𝜆,

‖𝑦1‖𝐿2(0,𝐿) + ‖g‖ℋ𝑇
+ ‖𝑓1‖𝐿1(0,𝑇 ;𝐿2(0,𝐿)) < 𝜆.
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Write h = (ℎ1, ℎ2, ℎ3) and g = (𝑔1, 𝑔2, 𝑔3). Let 𝑦 and 𝑢 be solutions of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (𝑎𝑦)𝑥 + 𝑦𝑥𝑥𝑥 + 𝑦𝑦𝑥 = 𝑓0, in (0, 𝐿) × (0, 𝜃),

𝑦𝑥𝑥(0, 𝑡) = ℎ1(𝑡), 𝑦𝑥(𝐿, 𝑡) = ℎ2(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = ℎ3(𝑡), in (0, 𝜃),

𝑦(𝑥, 0) = 𝑦0(𝑥) in (0, 𝐿),

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + (𝑎𝑢)𝑥 + 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 𝑓1, in (0, 𝐿) × (0, 𝜃),

𝑢𝑥𝑥(0, 𝑡) = 𝑔1(𝑡), 𝑢𝑥(𝐿, 𝑡) = 𝑔2(𝑡), 𝑢𝑥𝑥(𝐿, 𝑡) = 𝑔3(𝑡), in (0, 𝜃),

𝑢(𝑥, 0) = 𝑦1(𝑥) in (0, 𝐿),

respectively. Then, 𝑤 = 𝑦 − 𝑢 solves the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑤𝑡 +
[︁ (︁
𝑎+ 1

2(𝑦 + 𝑢)
)︁
𝑤
]︁

𝑥
+ 𝑤𝑥𝑥𝑥 = 𝑓0 − 𝑓1, in (0, 𝐿) × (0, 𝜃, )

𝑤𝑥𝑥(0, ·) = ℎ1 − 𝑔1, 𝑤𝑥(𝐿, ·) = ℎ2 − 𝑔2, 𝑤𝑥𝑥(𝐿, ·) = ℎ3 − 𝑔3, in (0, 𝜃),

𝑤(𝑥, 0) = 𝑦0(𝑥) − 𝑦1(𝑥), in (0, 𝐿).

From Proposition 2.2 it follows that

‖𝑦 − 𝑢‖𝒵𝜃
≤ 𝐷

(︁
‖𝑦0 − 𝑦1‖𝐿2(0,𝐿) + ‖h − g‖ℋ𝜃

+ ‖𝑓0 − 𝑓1‖𝐿1(0,𝜃;𝐿2(0,𝐿))
)︁
, (2.15)

where 𝐷 is a constant which depends on 𝜃 and ‖𝑎+ 1
2(𝑦 + 𝑢)‖𝒵𝑇

. But, using (2.14) we have

‖𝑎+ 1
2(𝑦 + 𝑢)‖𝒵𝑇

≤‖𝑎‖𝒵𝑇
+ 1

2 (‖𝑦‖𝒵𝑇
+ ‖𝑢‖𝒵𝑇

)

≤‖𝑎‖𝒵𝑇
+ 𝐶3

2
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖h‖ℋ𝑇

+ ‖𝑓0‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))
)︁

+ 𝐶3

2
(︁
‖𝑦1‖𝐿2(0,𝐿) + ‖g‖ℋ𝑇

+ ‖𝑓1‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))
)︁

and, consequently,

‖𝑎+ 1
2(𝑦 + 𝑢)‖𝒵𝑇

≤ ‖𝑎‖𝒵𝑇
+ 𝐶3𝜆.

Hence, the constant 𝐷 can be chosen depending only on 𝜃 and ‖𝑎‖𝒵𝑇
(and also on 𝜆), so that,

(2.15) gives us the uniqueness of the solution which turns the solution map 𝑆 well-defined.
Moreover, from (2.15)

‖𝑆(𝑦0,h, 𝑓0) − 𝑆(𝑦1, g, 𝑓1)‖𝒵𝜃
≤𝐷

(︁
‖𝑦0 − 𝑦1‖𝐿2(0,𝐿)

+‖h − g‖ℋ𝑇
+ ‖𝑓0 − 𝑓1‖𝐿1(0,𝑇 ;𝐿2(0,𝐿))

)︁
,
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which concludes the proof. □

Finally, the following Lemma, whose proof can be found in (ROSIER, 1997), will be useful
in the next section.

Lemma 2.2 (Rosier, 1997) If 𝑦 ∈ 𝒵𝑇 then 𝑦𝑦𝑥 ∈ 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿)) and the map

𝒵𝑇 −→ 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿))

𝑦 ↦−→ 𝑦𝑦𝑥,

is continuous. More precisely, for every 𝑦, 𝑧 ∈ 𝒵𝑇 we have that

‖𝑦𝑦𝑥 − 𝑧𝑧𝑥‖𝐿1(0,𝑇 ;𝐿2(0,𝐿)) ≤𝐶4
(︁
‖𝑦‖𝐿2(0,𝑇 ;𝐻1(0,𝐿))

+‖𝑧‖𝐿2(0,𝑇 ;𝐻1(0,𝐿))
)︁

‖𝑦 − 𝑧‖𝐿2(0,𝑇 ;𝐻1(0,𝐿)),

where 𝐶4 is a positive constant that depends only on 𝐿.

Remark 2.2 We end this section with the following remarks.

1. For every 𝑎 ∈ 𝒵𝑇 , the Proposition 2.2 give us the well-definition for the solution operator

Λ𝑎 : 𝐿2(0, 𝐿) × ℋ𝑇 × 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿)) → 𝒵𝑇

where, for each (𝑦0,h, 𝑓) ∈ 𝐿2(0, 𝐿) × ℋ𝑇 × 𝐿1(0, 𝑇 ;𝐿2(0, 𝐿)), Λ𝑎(𝑦0,h, 𝑓) is the
corresponding solution to the problem (2.7). Furthermore, the Proposition 2.3 guarantees
that Λ𝑎 is a bounded linear operator.

2. Of course, the constant 𝐶2 > 0 in the Proposition 2.2 depends on ‖𝑎‖𝒵𝑇
. However,

given 𝑀 > 0, the same constant 𝐶2 can be used for every 𝑎 ∈ 𝒵𝑇 with ‖𝑎‖𝒵𝑇
≤ 𝑀 .

2.4 BOUNDARY CONTROLLABILITY IN THE CRITICAL LENGTH

In this section, we study the controllability of the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝑦𝑥 + 𝑦𝑥𝑥𝑥 + 𝑦𝑦𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑦𝑥𝑥(0, 𝑡) = 0, 𝑦𝑥(𝐿, 𝑡) = ℎ(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝑇 ),

𝑦(𝑥, 0) = 𝑦0(𝑥) in (0, 𝐿),

(2.16)

around 𝑐 ̸= −1 when 𝐿 is a critical length, that is, 𝐿 belongs to the set

ℛ𝑐 :=

⎧⎨⎩ 2𝜋√︁
3(𝑐+ 1)

√
𝑚2 +𝑚𝑙 + 𝑙2 ; 𝑚, 𝑙 ∈ N*

⎫⎬⎭ ∪
{︃

𝑚𝜋√
𝑐+ 1

; 𝑚 ∈ N*
}︃
.
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We will use the return method together with the fixed point argument to ensure the control-
lability of the system (2.16) when 𝐿 ∈ ℛ𝑐. Before presenting the proof of the main result, let
us give a preliminary result that is important in our analysis.

2.4.1 An auxiliary result

As mentioned earlier, the proof of the main result in this chapter is based on the return
method, an approach in which we rely on the already known controllability of some system to
achieve the controllability of the desired nonlinear system. The initial idea is that this auxiliary
system is the linearization of the nonlinear system itself around one of its trajectories. However,
it may happen that these linearizations are not useful, so that, to try to apply this method,
we have to rely on systems that are not necessarily linearizations of the one studied. See, for
instance (CORON, 1993).

In our case, we want to study the controllability of (2.16) around an equilibrium 𝑦 ≡ 𝑐

when 𝑐 ̸= −1 and 𝐿 ∈ ℛ𝑐. Hence, the natural system to think of as auxiliary is the linearization
of (2.16) around this equilibrium, namely,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (1 + 𝑐)𝑦𝑥 + 𝑦𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑦𝑥𝑥(0, 𝑡) = 0, 𝑦𝑥(𝐿, 𝑡) = ℎ(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝑇 ),

𝑦(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿),

(2.17)

But as seen before, when 𝐿 ∈ ℛ𝑐, the linear system (2.17) is not exactly controllable. So, in
this section, we first give the proof of Theorem 2.6, which, among other things, provides an
idea of systems on which we can rely to apply the return method.
Proof of Theorem 2.6: Let 𝑐 ̸= −1 and 𝐿 ∈ ℛ𝑐. We will split the proof into two cases.

First case: 𝐿 = 2𝜋
√

𝑗2+𝑗𝑘+𝑘2√
3(𝑐+1)

for some (𝑗, 𝑘) ∈ N* × N*.

Consider 𝑑 ̸= −1 and assume that 𝐿 ∈ ℛ𝑑. Then

𝐿 = 2𝜋
√
𝑚2 +𝑚𝑙 + 𝑙2√︁

3(𝑑+ 1)
; 𝑚, 𝑙 ∈ N* (2.18)

or
𝐿 = 𝑚𝜋√

𝑑+ 1
; 𝑚 ∈ N*. (2.19)

If (2.18) is the case, we have that

2𝜋
√
𝑗2 + 𝑗𝑘 + 𝑘2√︁

3(𝑐+ 1)
= 2𝜋

√
𝑚2 +𝑚𝑙 + 𝑙2√︁

3(𝑑+ 1)
,
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which implies
𝑑 = (𝑐+ 1)(𝑚2 +𝑚𝑙 + 𝑙2)

𝑗2 + 𝑗𝑘 + 𝑘2 − 1

with 𝑚, 𝑙 ∈ N*.
Otherwise, if (2.19) holds, so

2𝜋
√
𝑗2 + 𝑗𝑘 + 𝑘2√︁

3(𝑐+ 1)
= 𝑚𝜋√

𝑑+ 1

giving that
𝑑 = 3𝑚2(𝑐+ 1)

4(𝑗2 + 𝑗𝑘 + 𝑘2) − 1

where 𝑚 ∈ N*. Therefore, if 𝐿 ∈ ℛ𝑑 then we necessarily have 𝑑 ∈ 𝒜1 ∪ ℬ1. Here,

𝒜1 :=
{︃

(𝑐+ 1)(𝑚2 +𝑚𝑙 + 𝑙2)
𝑗2 + 𝑗𝑘 + 𝑘2 − 1, 𝑚, 𝑙 ∈ N*

}︃

and
ℬ1 :=

{︃
3𝑚2(𝑐+ 1)

4(𝑗2 + 𝑗𝑘 + 𝑘2) − 1; 𝑚 ∈ N*
}︃
.

We are now in a position to prove that 𝒜1 ∪ ℬ1 is discrete. To do that, consider 𝑥, 𝑦 ∈ 𝒜1

such that 𝑥 ̸= 𝑦 in the form

𝑥 = (𝑐+ 1)(𝑚2
1 +𝑚1𝑙1 + 𝑙21)

𝑗2 + 𝑗𝑘 + 𝑘2 − 1

and
𝑦 = (𝑐+ 1)(𝑚2

2 +𝑚2𝑙2 + 𝑙22)
𝑗2 + 𝑗𝑘 + 𝑘2 − 1,

with 𝑚1, 𝑙1,𝑚2, 𝑙2 ∈ N*. Note that

𝑥− 𝑦 = 𝑐+ 1
𝑗2 + 𝑗𝑘 + 𝑘2

[︁
(𝑚2

1 +𝑚1𝑙1 + 𝑙21) − (𝑚2
2 +𝑚2𝑙2 + 𝑙22)

]︁
.

Since 𝑥 ̸= 𝑦 we have
(𝑚2

1 +𝑚1𝑙1 + 𝑙21) ̸= (𝑚2
2 +𝑚2𝑙2 + 𝑙22).

Thus ⃒⃒⃒
(𝑚2

1 +𝑚1𝑙1 + 𝑙21) − (𝑚2
2 +𝑚2𝑙2 + 𝑙22)

⃒⃒⃒
≥ 1

so that
𝑑(𝑥, 𝑦) ≥ 𝑐+ 1

𝑗2 + 𝑗𝑘 + 𝑘2 , ∀𝑥, 𝑦 ∈ 𝒜1, 𝑥 ̸= 𝑦.

Analogously, we get

𝑑(𝑥, 𝑦) ≥ 3(𝑐+ 1)
4(𝑗2 + 𝑗𝑘 + 𝑘2) , ∀ 𝑥, 𝑦 ∈ ℬ1, 𝑥 ̸= 𝑦.
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Now, let 𝑥 ∈ 𝒜1 and 𝑦 ∈ ℬ1 with 𝑥 ̸= 𝑦, as follow:

𝑥 = (𝑐+ 1)(𝑚2 +𝑚𝑙 + 𝑙2)
𝑗2 + 𝑗𝑘 + 𝑘2 − 1

and
𝑦 = 3𝑝2(𝑐+ 1)

4(𝑗2 + 𝑗𝑘 + 𝑘2) − 1,

where 𝑚, 𝑙, 𝑝 ∈ N*. Observe that

𝑥− 𝑦 =(𝑐+ 1)(𝑚2 +𝑚𝑙 + 𝑙2)
𝑗2 + 𝑗𝑘 + 𝑘2 − 3𝑝2(𝑐+ 1)

4(𝑗2 + 𝑗𝑘 + 𝑘2)

=4(𝑐+ 1)(𝑚2 +𝑚𝑙 + 𝑙2)
4(𝑗2 + 𝑗𝑘 + 𝑘2) − 3𝑝2(𝑐+ 1)

4(𝑗2 + 𝑗𝑘 + 𝑘2)

= 𝑐+ 1
4(𝑗2 + 𝑗𝑘 + 𝑘2)

[︁
4(𝑚2 +𝑚𝑙 + 𝑙2) − 3𝑝2

]︁
.

Since 𝑥 ̸= 𝑦 we have that 4(𝑚2 +𝑚𝑙 + 𝑙2) and 3𝑝2 are distinct natural numbers so
⃒⃒⃒
4(𝑚2 +𝑚𝑙 + 𝑙2) − 3𝑝2

⃒⃒⃒
≥ 1

and, consequently, we have
𝑑(𝑥, 𝑦) ≥ 𝑐+ 1

4(𝑗2 + 𝑗𝑘 + 𝑘2) .

From all the above, we conclude that

𝑑(𝑥, 𝑦) ≥ 𝑐+ 1
4(𝑗2 + 𝑗𝑘 + 𝑘2) , ∀ 𝑥, 𝑦 ∈ 𝒜1 ∪ ℬ1, 𝑥 ̸= 𝑦,

which implies that 𝒜1 ∪ ℬ1 is discrete.
Note that 𝑐 ∈ 𝒜1 ∪ ℬ1 since

𝑐 =
[︃

(𝑐+ 1)(𝑗2 + 𝑗𝑘 + 𝑘2)
𝑗2 + 𝑗𝑘 + 𝑘2 − 1

]︃
∈ 𝒜1.

As any point in 𝒜1 ∪ ℬ1 is isolated, there exists 𝜖1 > 0 such that

(𝑐− 𝜖1, 𝑐+ 𝜖1) ∩ [𝒜1 ∪ ℬ1] = {𝑐}.

Therefore for 𝑑 ∈ (𝑐− 𝜖1, 𝑐+ 𝜖1)∖{𝑐} we have that 𝑑 /∈ 𝒜1 ∪ ℬ1 and, therefore, 𝐿 /∈ ℛ𝑑.

Second case: 𝐿 = 𝑘𝜋√
𝑐+1 for some 𝑘 ∈ N*.

Let 𝑑 ̸= −1 and suppose that 𝐿 ∈ ℛ𝑑, that is, (2.18) or (2.19) holds. If (2.18) holds, then

𝑘𝜋√
𝑐+ 1

= 2𝜋
√
𝑚2 +𝑚𝑙 + 𝑙2√︁

3(𝑑+ 1)
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giving that
𝑑 = (𝑐+ 1)(𝑚2 +𝑚𝑙 + 𝑙2)

3𝑘2 − 1,

with 𝑚, 𝑙 ∈ N*. If (2.19) is the case, thus

𝑘𝜋√
𝑐+ 1

= 𝑚𝜋√
𝑑+ 1

so that
𝑑 = (𝑐+ 1)𝑚2

𝑘2 − 1.

Therefore, if 𝐿 ∈ ℛ𝑑 then we have necessarily 𝑑 ∈ 𝒜2 ∪ ℬ2 where

𝒜2 :=
{︃

(𝑐+ 1)(𝑚2 +𝑚𝑙 + 𝑙2)
3𝑘2 − 1; 𝑚, 𝑙 ∈ N*

}︃

and
ℬ2 :=

{︃
(𝑐+ 1)𝑚2

𝑘2 − 1; 𝑚 ∈ N*
}︃
.

As done before, taking 𝑥, 𝑦 ∈ 𝒜2 with 𝑥 ̸= 𝑦, such that

𝑥 = (𝑐+ 1)(𝑚2
1 +𝑚1𝑙1 + 𝑙21)
3𝑘2 − 1

and
𝑦 = (𝑐+ 1)(𝑚2

2 +𝑚2𝑙2 + 𝑙22)
3𝑘2 − 1,

where 𝑚1, 𝑙1,𝑚2, 𝑙2 ∈ N*,yields that

𝑥− 𝑦 = 𝑐+ 1
3𝑘2

[︁
(𝑚2

1 +𝑚1𝑙1 + 𝑙21) − (𝑚2
2 +𝑚2𝑙2 + 𝑙22)

]︁
and, as 𝑥 ̸= 𝑦 we have

⃒⃒⃒
(𝑚2

1 +𝑚1𝑙1 + 𝑙21) − (𝑚2
2 +𝑚2𝑙2 + 𝑙22)

⃒⃒⃒
≥ 1.

Consequently,
𝑑(𝑥, 𝑦) ≥ 𝑐+ 1

3𝑘2 ,∀𝑥, 𝑦 ∈ 𝒜2, 𝑥 ̸= 𝑦.

In an analogous way,
𝑑(𝑥, 𝑦) ≥ 𝑐+ 1

𝑘2 , ∀𝑥, 𝑦 ∈ ℬ2, 𝑥 ̸= 𝑦

and
𝑑(𝑥, 𝑦) ≥ 𝑐+ 1

3𝑘2 , ∀𝑥 ∈ 𝒜2, 𝑦 ∈ ℬ2, 𝑥 ̸= 𝑦.

Therefore,
𝑑(𝑥, 𝑦) ≥ 𝑐+ 1

3𝑘2 , ∀𝑥, 𝑦 ∈ 𝒜2 ∪ ℬ2, 𝑥 ̸= 𝑦.
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Proceeding as in the first case, we conclude that there exists 𝜖2 > 0 such that, for every 𝑑 ∈

(𝑐−𝜖2, 𝑐+𝜖2)∖{𝑐} we have 𝑑 /∈ 𝒜2∪ℬ2 so that 𝐿 /∈ ℛ𝑑. Considering 𝜖𝑐 := min{𝜖1, 𝜖2}, thanks
thanks to the (CAICEDO; CAPISTRANO-FILHO; ZHANG, 2017, Proposition 3.6) and Theorem 2.3,
the proof is completed. □

2.4.2 Construction of the trajectories

In this subsection, for simplicity, we will consider 𝑐 = 0. Given 𝑇 > 0 and 𝐿 ∈ ℛ𝑐, note
that by Theorem 2.6 there exist 𝜖0 > 0 such that for every 𝑑 ∈ (0, 𝜖0), the system (2.17)
is exactly controllable around 𝑑. Henceforth, we use 𝐶,𝐶1, 𝐶2 and 𝐶3 to denote the positive
constants given in Proposition 2.3, corresponding to 𝑇 . One can see that, for every 𝜏 ∈ [0, 𝑇 ],
the same constants can be used to apply the corresponding results for ‖ · ‖𝒵𝜏 . To simplify
some notations, we will define 𝜏 = 𝑇

3 .
The first result of this subsection ensures that we can construct solutions for the system

(2.16) which starts close to 0 (left-hand side of the spatial domain) and achieves some non-null
equilibrium in a certain time 𝑇/3. The result is shown by a fixed-point argument.

Proposition 2.4 There exist 𝛿1 > 0 such that, for every 𝑑 ∈ (0, 𝛿1) and 𝑦0 ∈ 𝐿2(0, 𝐿)

with ‖𝑦0‖𝐿2(0,𝐿) < 𝛿1, there exists ℎ1 ∈ 𝐿2(0, 𝑇/3) such that, the solution of (2.16) for
𝑡 ∈ [0, 𝑇/3], satisfies

𝑦(·, 𝑇/3) = 𝑑.

Proof: Let 𝛿1 ∈ (0, 𝜖0) be a number to be chosen later. Consider 𝑑 ∈ (0, 𝛿1) and 𝑦0 ∈ 𝐿2(0, 𝐿)

satisfying
‖𝑦0‖𝐿2(0,𝐿) < 𝛿1.

For 𝜀 ∈ (0, 𝜖0) such that

𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝜀‖𝒵𝑇
< 𝛿1 and 𝐶

(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝜀‖2
𝒵𝑇

< 𝛿1, (2.20)

where 𝐶 > 0 is the positive constant given in Lemma 2.1, (CAICEDO; CAPISTRANO-FILHO;

ZHANG, 2017, Proposition 3.6) guarantees the existence of a bounded linear operator

Ψ𝜀 : 𝐿2(0, 𝐿) × 𝐿2(0, 𝐿) → 𝐿2(0, 𝜏)
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such that, for any 𝑢0, 𝑢𝜏 ∈ 𝐿2(0, 𝐿), the solution 𝑢 of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + (1 + 𝜀)𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝜏),

𝑢𝑥𝑥(0, 𝑡) = 0, 𝑢𝑥(𝐿, 𝑡) = ℎ(𝑡), 𝑢𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝜏),

𝑢(𝑥, 0) = 𝑢0(𝑥), in (0, 𝐿),

with the control ℎ = Ψ𝜀(𝑢0, 𝑢𝜏 ) satisfies 𝑢(·, 𝜏) = 𝑢𝜏 .
We will denote, for simplicity, the operator Λ1+𝜀 (given in Proposition 2.2 and Remark 2.2

with 𝑎 = 1 + 𝜀) by Λ𝜀. Observe that, if 𝑦 is solution for (2.16) for some control ℎ, then 𝑦 is
a solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (1 + 𝜀)𝑦𝑥 + 𝑦𝑥𝑥𝑥 = −𝑦𝑦𝑥 + 𝜀𝑦𝑥, in (0, 𝐿) × (0, 𝜏),

𝑦𝑥𝑥(0, 𝑡) = 0, 𝑦𝑥(𝐿, 𝑡) = ℎ(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝜏),

𝑦(𝑥, 0) = 𝑦0(𝑥) in (0, 𝐿),

that is,

𝑦 = Λ𝜀(𝑦0, ℎ,−𝑦𝑦𝑥 + 𝜀𝑦𝑥) = Λ𝜀(𝑦0, ℎ, 0) + Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥). (2.21)

Let 𝑦 ∈ 𝒵𝜏 and ℎ𝑦 ∈ 𝐿2(0, 𝜏) given by

ℎ𝑦 = Ψ𝜀
(︁
𝑦0, 𝑑− Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)(·, 𝜏)

)︁
.

Define the map Γ : 𝒵𝜏 → 𝒵𝜏 by

Γ𝑦 = Λ𝜀(𝑦0, ℎ𝑦, 0) + Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥).

Note that if Γ has a fixed point 𝑦, then, from the above construction, it follows that 𝑦 is a
solution of (2.16) with the control ℎ𝑦. Moreover, from (2.21) we have

𝑦 = Λ𝜀(𝑦0, ℎ𝑦, 0) + Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)

so, by definitions of Λ𝜀, ℎ𝑦 and Ψ𝜀, we get that

𝑦(·, 𝜏) = Λ𝜀(𝑦0, ℎ𝑦, 0)(·, 𝜏) + Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)(·, 𝜏)

= 𝑑− Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)(·, 𝜏) + Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)(·, 𝜏)

= 𝑑,

and our problem would be solved. So we will focus our efforts on showing that Γ has a fixed
point in a suitable metric space.
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To do that, let 𝐵 be the set

𝐵 = {𝑦 ∈ 𝒵𝜏 ; ‖𝑦‖𝒵𝜏 ≤ 𝑟} ,

with 𝑟 > 0 to be chosen later. By (2.21) and Proposition 2.2 (together with Remark 2.2) we
have, for 𝑦 ∈ 𝐵, that

‖Γ𝑦‖𝒵𝜏 ≤ ‖Λ𝜀(𝑦0, ℎ𝑦, 0)‖𝒵𝜏 + ‖Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)‖𝒵𝜏

≤ 𝐶2
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖ℎ𝑦‖𝐿2(0,𝜏) + ‖ − 𝑦𝑦𝑥 + 𝜀𝑦𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

)︁
.

From Lemma 2.1 and Young’s inequality, we ensure that

‖𝑦𝑦𝑥 − 𝜀𝑦𝑥‖𝐿1(0,𝜏,𝐿2(0,𝐿)) = ‖(𝑦 − 𝜀)𝑦𝑥‖𝐿1(0,𝜏,𝐿2(0,𝐿))

≤ 𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝑦 − 𝜀‖𝒵𝜏 ‖𝑦‖𝒵𝜏

≤ 𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁ 1

2
(︁
‖𝑦 − 𝜀‖2

𝒵𝜏
+ ‖𝑦‖2

𝒵𝜏

)︁
≤ 𝐶

(︁
𝜏

1
2 + 𝜏

1
3
)︁ 1

2
[︁
(‖𝑦‖𝒵𝜏 + ‖𝜀‖𝒵𝜏 )2 + ‖𝑦‖2

𝒵𝜏

]︁
≤ 𝐶

(︁
𝜏

1
2 + 𝜏

1
3
)︁ 1

2
(︁
‖𝑦‖2

𝒵𝜏
+ 2‖𝑦‖𝒵𝜏 ‖𝜀‖𝒵𝜏 + ‖𝜀‖2

𝒵𝜏
+ ‖𝑦‖2

𝒵𝜏

)︁
≤ 𝐶

(︁
𝜏

1
2 + 𝜏

1
3
)︁ 1

2
(︁
‖𝑦‖2

𝒵𝜏
+ ‖𝑦‖2

𝒵𝜏
+ ‖𝜀‖2

𝒵𝜏
+ ‖𝜀‖2

𝒵𝜏
+ ‖𝑦‖2

𝒵𝜏

)︁
.

Thus,

‖𝑦𝑦𝑥 − 𝜀𝑦𝑥‖𝐿1(0,𝜏,𝐿2(0,𝐿)) ≤ 𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁ 3

2‖𝑦‖2
𝒵𝜏

+ 𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝜀‖2
𝒵𝜏

and, by (2.20) we obtain

‖𝑦𝑦𝑥 − 𝜀𝑦𝑥‖𝐿1(0,𝜏,𝐿2(0,𝐿)) ≤ 𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁ 3

2‖𝑦‖2
𝒵𝜏

+ 𝛿1,

that is,

‖𝑦𝑦𝑥 − 𝜀𝑦𝑥‖𝐿1(0,𝜏,𝐿2(0,𝐿)) ≤ 𝐶‖𝑦‖2
𝒵𝜏

+ 𝛿1,

where

𝐶 := 3𝐶
2
(︁
𝜏

1
2 + 𝜏

1
3
)︁
.
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In this way

‖ℎ𝑦‖𝐿2(0,𝜏) = ‖Ψ𝜀
(︁
𝑦0, 𝑑− Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)(·, 𝜏)

)︁
‖𝐿2(0,𝜏)

≤ ‖Ψ𝜀‖
(︁
‖𝑦0‖𝐿2(0,𝐿) + ‖𝑑‖𝐿2(0,𝐿) + ‖Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)(·, 𝜏)‖𝐿2(0,𝐿)

)︁
≤ ‖Ψ𝜀‖𝛿1 + ‖Ψ𝜀‖𝑑

√
𝐿+ ‖Ψ𝜀‖‖Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)‖𝒵𝜏

≤ ‖Ψ𝜀‖𝛿1 + ‖Ψ𝜀‖𝛿1
√
𝐿+ ‖Ψ𝜀‖𝐶2‖ − 𝑦𝑦𝑥 + 𝜀𝑦𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

≤ ‖Ψ𝜀‖𝛿1 + ‖Ψ𝜀‖𝛿1
√
𝐿+ ‖Ψ𝜀‖𝐶2𝐶‖𝑦‖2

𝒵𝜏
+ ‖Ψ𝜀‖𝐶2𝛿1

=
(︁
1 +

√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖𝛿1 + 𝐶2𝐶‖Ψ𝜀‖𝑟2.

Therefore,

‖Γ𝑦‖𝒵𝜏 ≤ 𝐶2𝛿1 + 𝐶2
[︁(︁

1 +
√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖𝛿1 + 𝐶2𝐶‖Ψ𝜀‖𝑟2

]︁
+ 𝐶2

(︁
𝐶𝑟2 + 𝛿1

)︁
=
[︁
2𝐶2 + 𝐶2

(︁
1 +

√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖

]︁
𝛿1 +

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝐶𝑟2.

Choosing

𝑟 = 2
[︁
2𝐶2 + 𝐶2

(︁
1 +

√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖

]︁
𝛿1

and 𝛿1 small enough such that

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝐶𝑟 <

1
2 , 2

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝑟 <

1
2 ,

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝛿1 <

1
2 , (2.22)

yields that

‖Γ‖𝒵𝜏 ≤ 𝑟

2 + 𝑟

2 = 𝑟 =⇒ Γ(𝐵) ⊂ 𝐵.

Additionally, observe that for 𝑦, 𝑤 ∈ 𝐵, Proposition 2.2 give us

‖Γ𝑦 − Γ𝑤‖𝒵𝜏 =‖Λ𝜀(0, ℎ𝑦 − ℎ𝑤, 0) + Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝑤𝑤𝑥 + 𝜀𝑦𝑥 − 𝜀𝑤𝑥)‖𝒵𝜏

≤𝐶2‖ℎ𝑦 − ℎ𝑤‖𝐿2(0,𝜏) + 𝐶2‖𝑦𝑦𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

+ 𝐶2‖𝜀(𝑦𝑥 − 𝑤𝑥)‖𝐿1(0,𝜏 ;𝐿2(0,𝐿)).

Since

ℎ𝑦 − ℎ𝑤 = Ψ𝜀 (0,−Λ𝜀(0, 0,−𝑦𝑦𝑥 + 𝜀𝑦𝑥)(·, 𝜏) + Λ𝜀(0, 0,−𝑤𝑤𝑥 + 𝜀𝑤𝑥)(·, 𝜏))

= Ψ𝜀 (0,Λ𝜀(𝑦𝑦𝑥 − 𝜀𝑦𝑥 − 𝑤𝑤𝑥 + 𝜀𝑤𝑥)(·, 𝜏)) ,
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we have again from Proposition 2.2 that

𝐶2‖ℎ𝑦 − ℎ𝑤‖𝐿2(0,𝜏) ≤𝐶2
2‖Ψ𝜀‖‖𝑦𝑦𝑥 − 𝜀𝑦𝑥 − 𝑤𝑤𝑥 + 𝜀𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

≤𝐶2
2‖Ψ𝜀‖‖𝑦𝑦𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

+ 𝐶2
2‖Ψ𝜀‖‖𝜀𝑦𝑥 − 𝜀𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿)).

Putting these two previous inequalities together, we find that

‖Γ𝑦 − Γ𝑤‖𝒵𝜏 ≤
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁

‖𝑦𝑦𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

+
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁

‖𝜀(𝑦𝑥 − 𝑤𝑥)‖𝐿1(0,𝜏 ;𝐿2(0,𝐿)).

From Lemmas 2.1 and 2.2, together with the choices (2.20) and (2.22), it follows that

‖Γ𝑦 − Γ𝑤‖𝒵𝜏 ≤2
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝑟‖𝑦 − 𝑤‖𝒵𝜏

+
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝜀‖𝒵𝜏 ‖𝑦 − 𝑤‖𝒵𝜏

≤
[︁
2
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝑟 +

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝛿1
]︁

‖𝑦 − 𝑤‖𝒵𝜏

≤‖𝑦 − 𝑤‖𝒵𝜏

Therefore, Γ : 𝐵 → 𝐵 is a contraction so that, by Banach’s fixed point theorem, Γ has a fixed
point 𝑦 ∈ 𝐵, concluding the proof. □

The second result of this subsection ensures the construction of solutions for the system
(2.16) on [2𝑇/3, 𝑇 ] starting in one non-null equilibrium and ending near 0.

Proposition 2.5 There exists 𝛿2 > 0 such that, for every 𝑑 ∈ (0, 𝛿2) and 𝑦𝑇 ∈ 𝐿2(0, 𝐿)

satisfying ‖𝑦𝑇 ‖𝐿2(0,𝐿) < 𝛿2, there exists ℎ2 ∈ 𝐿2(2𝑇/3, 𝑇 ) such that, the solution of (2.1) for
𝑡 ∈ [2𝑇/3, 𝑇 ] satisfies

𝑦(·, 2𝑇/3) = 𝑑 and 𝑦(·, 𝑇 ) = 𝑦𝑇 .

Proof: Let 𝛿2 ∈ (0, 𝜖0) be a number to be chosen later. Consider 𝑑 ∈ (0, 𝛿2) and 𝑦𝑇 ∈ 𝐿2(0, 𝐿)

satisfying
‖𝑦𝑇 ‖𝐿2(0,𝐿) < 𝛿2.

Let 𝜀 ∈ (0, 𝜖0) be such that

𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝜀‖𝒵𝑇
< 𝛿2 and 𝐶

(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝜀‖2
𝒵𝑇

< 𝛿2, (2.23)
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where 𝐶 > 0 is the positive constant given in Lemma 2.1. If 𝑧 is a solution to the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑧𝑡 + 𝑧𝑥 + 𝑧𝑥𝑥𝑥 + 𝑧𝑧𝑥 = 0, in (0, 𝐿) × (0, 𝜏),

𝑧𝑥𝑥(0, 𝑡) = 0, 𝑧𝑥(𝐿, 𝑡) = ℎ(𝑡), 𝑧𝑥𝑥(𝐿, 𝑡) = 0 in (0, 𝜏),

𝑧(𝑥, 0) = 𝑑, in (0, 𝐿),

(2.24)

then 𝑧 is a solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑧𝑡 + (1 + 𝜀)𝑧𝑥 + 𝑧𝑥𝑥𝑥 = −𝑧𝑧𝑥 + 𝜀𝑧𝑥, in (0, 𝐿) × (0, 𝜏),

𝑧𝑥𝑥(0, 𝑡) = 0, 𝑧𝑥(𝐿, 𝑡) = ℎ(𝑡), 𝑧𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝜏),

𝑧(𝑥, 0) = 𝑑, in (0, 𝐿),

that is,

𝑧 = Λ𝜀(𝑑, ℎ,−𝑧𝑧𝑥 + 𝜀𝑧𝑥) = Λ𝜀(𝑑, ℎ, 0) + Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥). (2.25)

Given 𝑧 ∈ 𝒵𝜏 , let ℎ𝑧 ∈ 𝐿2(0, 𝜏) defined by

ℎ𝑧 = Ψ𝜀
(︁
𝑑, 𝑦𝑇 − Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 𝜏)

)︁
.

Now, consider the map Γ : 𝒵𝜏 → 𝒵𝜏 given by

Γ𝑧 = Λ𝜀(𝑑, ℎ𝑧, 0) + Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥).

Once again, if Γ has a fixed point 𝑧, from the above construction, it follows that 𝑧 is a solution
of (2.24) with the control ℎ𝑧. Moreover, from (2.25) we have

𝑧 = Λ𝜀(𝑑, ℎ𝑧, 0) + Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)

so, by definitions of Λ𝜀, ℎ𝑧 and Ψ𝜀, it follows that

𝑧(·, 0) = Λ𝜀(𝑑, ℎ𝑧, 0)(·, 0) + Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 0) = 𝑑+ 0 = 𝑑

and

𝑧(·, 𝜏) = Λ𝜀(𝑑, ℎ𝑧, 0)(·, 𝜏) + Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 𝜏)

= 𝑦𝑇 − Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 𝜏) + Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 𝜏)

= 𝑦𝑇 .

Hence our issue would be solved defining 𝑦 : [0, 𝐿] × [2𝑇/3, 𝑇 ] → R by

𝑦(𝑥, 𝑡) = 𝑧(𝑥, 𝑡− 2𝑇/3).
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Now, our focus is to show that Γ has a fixed point in a suitable metric space. To do that,
consider the set 𝐵 given by

𝐵 = {𝑧 ∈ 𝒵𝜏 ; ‖𝑧‖𝒵𝜏 ≤ 𝑟} ,

with 𝑟 > 0 to be chosen later. By (2.25) and Proposition 2.2 (together with Remark 2.2) we
have, for 𝑧 ∈ 𝐵, that

‖Γ𝑧‖𝒵𝜏 ≤ ‖Λ𝜀(𝑑, ℎ𝑧, 0)‖𝒵𝜏 + ‖Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)‖𝒵𝜏

≤ 𝐶2
(︁
‖𝑑‖𝐿2(0,𝐿) + ‖ℎ𝑧‖𝐿2(0,𝜏) + ‖ − 𝑧𝑧𝑥 + 𝜀𝑧𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

)︁
.

As in the proof of the Proposition 2.4,

‖𝑧𝑧𝑥 − 𝜀𝑧𝑥‖𝐿1(0,𝜏,𝐿2(0,𝐿)) ≤ 𝐶‖𝑧‖2
𝒵𝜏

+ 𝛿2.

Moreover,

‖ℎ𝑧‖𝐿2(0,𝜏) = ‖Ψ𝜀
(︁
𝑑, 𝑦𝑇 − Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 𝜏)

)︁
‖𝐿2(0,𝜏)

≤ ‖Ψ𝜀‖
(︁
‖𝑑‖𝐿2(0,𝐿) + ‖𝑦𝑇 ‖𝐿2(0,𝐿) + ‖Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 𝜏)‖𝐿2(0,𝐿)

)︁
≤ ‖Ψ𝜀‖𝑑

√
𝐿+ ‖Ψ𝜀‖𝛿2 + ‖Ψ𝜀‖‖Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)‖𝒵𝜏

≤ ‖Ψ𝜀‖𝛿2 + ‖Ψ𝜀‖𝛿2
√
𝐿+ ‖Ψ𝜀‖𝐶2‖ − 𝑧𝑧𝑥 + 𝜀𝑧𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

≤ ‖Ψ𝜀‖𝛿2 + ‖Ψ𝜀‖𝛿2
√
𝐿+ ‖Ψ𝜀‖𝐶2𝐶‖𝑧‖2

𝒵𝜏
+ ‖Ψ𝜀‖𝐶2𝛿2

=
(︁
1 +

√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖𝛿2 + 𝐶2𝐶‖Ψ𝜀‖𝑟2.

Therefore,

‖Γ𝑧‖𝒵𝜏 ≤ 𝐶2𝛿2
√
𝐿+ 𝐶2

[︁(︁
1 +

√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖𝛿2 + 𝐶2𝐶‖Ψ𝜀‖𝑟2

]︁
+ 𝐶2

(︁
𝐶𝑟2 + 𝛿2

)︁
=
[︁
𝐶2

√
𝐿+ 𝐶2

(︁
1 +

√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖ + 𝐶2

]︁
𝛿2 +

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝐶𝑟2.

Choosing

𝑟 = 2
[︁
𝐶2

√
𝐿+ 𝐶2

(︁
1 +

√
𝐿+ 𝐶2

)︁
‖Ψ𝜀‖ + 𝐶2

]︁
𝛿2

and 𝛿2 small enough such that
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝐶𝑟 <

1
2 , 2

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝑟 <

1
2 ,

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝛿1 <

1
2 , (2.26)

we get that

‖Γ𝑧‖𝒵𝜏 ≤ 𝑟

2 + 𝑟

2 = 𝑟 =⇒ Γ(𝐵) ⊂ 𝐵.
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Furthermore, observe that for 𝑧, 𝑤 ∈ 𝐵, Proposition 2.2 give us

‖Γ𝑧 − Γ𝑤‖𝒵𝜏 =‖Λ𝜀(0, ℎ𝑧 − ℎ𝑤, 0) + Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝑤𝑤𝑥 + 𝜀𝑧𝑥 − 𝜀𝑤𝑥)‖𝒵𝜏

≤𝐶2‖ℎ𝑧 − ℎ𝑤‖𝐿2(0,𝜏) + 𝐶2‖𝑧𝑧𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

+ 𝐶2‖𝜀(𝑧𝑥 − 𝑤𝑥)‖𝐿1(0,𝜏 ;𝐿2(0,𝐿)).

Since

ℎ𝑧 − ℎ𝑤 = Ψ𝜀 (0,−Λ𝜀(0, 0,−𝑧𝑧𝑥 + 𝜀𝑧𝑥)(·, 𝜏) + Λ𝜀(0, 0,−𝑤𝑤𝑥 + 𝜀𝑤𝑥)(·, 𝜏))

= Ψ𝜀 (0,Λ𝜀(𝑧𝑧𝑥 − 𝜀𝑧𝑥 − 𝑤𝑤𝑥 + 𝜀𝑤𝑥)(·, 𝜏)) ,

we have, again from Proposition 2.2, that

𝐶2‖ℎ𝑧 − ℎ𝑤‖𝐿2(0,𝜏) ≤𝐶2
2‖Ψ𝜀‖‖𝑧𝑧𝑥 − 𝜀𝑧𝑥 − 𝑤𝑤𝑥 + 𝜀𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

≤𝐶2
2‖Ψ𝜀‖‖𝑧𝑧𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

+ 𝐶2
2‖Ψ𝜀‖‖𝜀𝑧𝑥 − 𝜀𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿)).

Then,

‖Γ𝑧 − Γ𝑤‖𝒵𝜏 ≤
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁

‖𝑧𝑧𝑥 − 𝑤𝑤𝑥‖𝐿1(0,𝜏 ;𝐿2(0,𝐿))

+
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁

‖𝜀(𝑧𝑥 − 𝑤𝑥)‖𝐿1(0,𝜏 ;𝐿2(0,𝐿)).

From Lemmas 2.1 and 2.2, together with (2.23) and (2.26), it follows that

‖Γ𝑧 − Γ𝑤‖𝒵𝜏 ≤2
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝑟‖𝑧 − 𝑤‖𝒵𝜏

+
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝐶
(︁
𝜏

1
2 + 𝜏

1
3
)︁

‖𝜀‖𝒵𝜏 ‖𝑧 − 𝑤‖𝒵𝜏

≤
[︁
2
(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝑟 +

(︁
𝐶2

2‖Ψ𝜀‖ + 𝐶2
)︁
𝛿2
]︁

‖𝑧 − 𝑤‖𝒵𝜏

≤‖𝑧 − 𝑤‖𝒵𝜏 .

Therefore, Γ : 𝐵 → 𝐵 is a contraction so that, by Banach’s fixed point theorem, Γ has a fixed
point 𝑧 ∈ 𝐵, which concludes our proof. □

2.4.3 Controllability on ℛ𝑐

We are in a position to prove Theorems 2.5 and 1.1. For the sake of simplicity, we will give
the proof of the case 𝐿 ∈ ℛ0 (Theorem 2.5), and the case 𝐿 ∈ ℛ𝑐 (Theorem 1.1) follows
similarly.
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Proof of Theorem 2.5: Let 𝛿1 and 𝛿2 be positive real numbers given in Propositions 2.4 and
2.5, respectively. Define 𝛿 := min{𝛿1, 𝛿2} and consider 𝑑 ∈ (0, 𝛿) and 𝑦0, 𝑦𝑇 ∈ 𝐿2(0, 𝐿) such
that

‖𝑦0‖𝐿2(0,𝐿), ‖𝑦𝑇 ‖𝐿2(0,𝐿) < 𝛿.

From Proposition 2.4 there exists ℎ1 ∈ 𝐿2(0, 𝑇/3) such that, the solution 𝑦1 ∈ 𝒵𝑇/3 of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝑦𝑥 + 𝑦𝑥𝑥𝑥 + 𝑦𝑦𝑥 = 0, in (0, 𝐿) × (0, 𝑇/3),

𝑦𝑥𝑥(0, 𝑡) = 0, 𝑦𝑥(𝐿, 𝑡) = ℎ1(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝑇/3),

𝑦(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿),

satisfies satisfies

𝑦1(𝑥, 𝑇/3) = 𝑑.

On the other hand, thanks to the Proposition 2.5, there exists ℎ2 ∈ 𝐿2(2𝑇/3, 𝑇 ) such that,
the solution 𝑦2 ∈ 𝒵2𝑇/3,𝑇 of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝑦𝑥 + 𝑦𝑥𝑥𝑥 + 𝑦𝑦𝑥 = 0, in (0, 𝐿) × (2𝑇/3, 𝑇 ),

𝑦𝑥𝑥(0, 𝑡) = 0, 𝑦𝑥(𝐿, 𝑡) = ℎ2(𝑡), 𝑦𝑥𝑥(𝐿, 𝑡) = 0, in (2𝑇/3, 𝑇 ),

𝑦(𝑥, 2𝑇/3) = 𝑑, in (0, 𝐿),

satisfies

𝑦2(𝑥, 𝑇 ) = 𝑦𝑇 .

Defining 𝑦 : [0, 𝐿] × [0, 𝑇 ] → R by

𝑦 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦1, in [0, 𝑇/3],

𝑑, in [𝑇/3, 2𝑇/3],

𝑦2, in [2𝑇/3, 𝑇 ],

(2.27)

we have that 𝑦 ∈ 𝒵𝑇 and 𝑦 is solution of (2.16) driving 𝑦0 to 𝑦𝑇 at time 𝑇 , by using the
control

ℎ = (𝑡)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℎ1(𝑡), 𝑡 ∈ [0, 𝑇/3],

0, 𝑡 ∈ [𝑇/3, 2𝑇/3],

ℎ2(𝑡), 𝑡 ∈ [2𝑇/3, 𝑇 ],

showing that the system (2.16) is exactly controllable, and the proof is completed. □
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2.5 CONCLUSIONS AND PERSPECTIVES

In this chapter, we successfully proved the local controllability of the purely Neumann KdV
system (2.1), in the regime of critical lengths. Note that there is no time or critical length
restriction in our main result, Teorema 1.1, which differs from the results obtained for the
system with Dirichlet conditions, where the small-time controllability is not valid for a class of
critical lengths (see Coron 2024).

An important factor that made it possible to use the return method to address the problem
for any critical length was the fact that, for any 𝐿 > 0, we know a class of stationary solutions
of system (2.1) in terms of elementary functions, namely, the constant functions. In general,
determining such trajectories may not be a simple task, and, in the case of the problem with
Dirichlet conditions (2.2), these trajectories may vary according to the length 𝐿 > 0. One
can see, for example, in Crépeau (2001), all the effort involved in determining a family of
trajectories for (2.2) in the particular case 𝐿 = 2𝑘𝜋.
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3 BOUNDARY OBSERVATION OF THE KDV EQUATION ON GRAPHS

This chapter is devoted to the study of a KdV equation posed on a star graph. Therefore,
before anything else, we will make some considerations about this type of domain. For more
details or a deeper reading regarding quantum graphs, we suggest (BERKOLAIKO; KUCHMENT,
2013; ANGULO; CAVALCANTE, 2013). The results of this chapter were developed in a joint work
with Professor Hugo Parada1.

3.1 METRIC AND QUANTUM GRAPHS

Recall that a graph consists of a set of points (called vertices) and a set of segments
(called edges) connecting these points. It is somewhat intuitive that, to treat this object from
an analytical point of view, the first step is to try to endow it with a topology. To do that,
the basic idea is simple: we will identify the edges with an interval and define the distance
between two points of the graph as the length of the shortest path connecting them. With this
natural metric, we obtain what is called a metric graph. From there, common objects such as
Lebesgue or Sobolev spaces are defined intuitively.

Defining a differential operator on a graph essentially consists of providing each edge with a
differential operator, which is also done intuitively, using differential operators on the intervals
with which we identify each edge. A graph equipped with a differential operator is called a
quantum graph. These objects have been frequently used in the literature to model physical
phenomena, for example, as a model of free electrons in organic molecules, as model systems
in quantum chaos, in the study of waveguides, as a limit to the shrinkage of thin wires, in
photonic crystals and Anderson localization – the absence of wave diffusion in a disordered
medium – or mesoscopic physics, to theoretically understand nanotechnology.

3.2 DISPERSIVE SYSTEMS ON GRAPH STRUCTURE

In recent years, the study of nonlinear dispersive models on metric graphs has gained
significant attention from mathematicians, physicists, chemists, and engineers (see (BERKO-

LAIKO; KUCHMENT, 2013; BLANK; EXNER; HAVLICEK, 2008; BURIONI et al., 2001; KUCHMENT,
1 Université Paul Sabatier, Institut de Mathématiques de Toulouse, 118 Route de Narbonne, 31062 Toulouse,

France. Email address: hugo.parada@math.univ-toulouse.fr.
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2004; MUGNOLO, 2015) for details and further references). A primary framework for modeling
these phenomena is a particular case of star graphs called 𝒴-junction, a metric graph with
𝑁 half-lines of the form (0,+∞) that connect at a common vertex 𝜈 = 0. On each edge,
a nonlinear equation is defined, such as the nonlinear Schrödinger equation in the works of
Adami et al. (ADAMI et al., 2014; ADAMI et al., 2016) and Angulo and Goloshchapova (ANGULO;

GOLOSHCHAPOVA, 2018b; ANGULO; GOLOSHCHAPOVA, 2018a)).
Another example is the Benjamin–Bona–Mahony (BBM) equation. Bona and Cascaval

(BONA; CASCAVAL, 2008) established local well-posedness in the Sobolev space 𝐻1, while
Mugnolo and Rault (MUGNOLO; RAULT, 2014) demonstrated the existence of traveling waves
for the BBM equation on graphs. Using an alternative approach, Ammari and Crépeau (AM-

MARI; CRÉPEAU, 2019) derived results for well-posedness and stabilization of the BBM equation
in a star-shaped network with bounded edges.

In the areas of control theory and inverse problems, notable contributions have been made.
Ignat et al. (IGNAT; PAZOTO; ROSIER, 2011) investigated the inverse problem for the heat
and Schrödinger equations on a tree structure. Later, Baudouin and Yamamoto (BAUDOUIN;

YAMAMOTO, 2015) introduced a unified and simplified approach to the inverse problem of coef-
ficient determination. The introduction of nonlinearities in dispersive models of such networks
creates a rich field for exploring soliton propagation and nonlinear dynamics. A key challenge
in this analysis is the vertex, where the star graph may exhibit bifurcation or multi-bifurcation
behavior, especially in more complex graph structures.

3.2.1 The KdV equation on star graphs

Recently, Crépeau and Sorine (CRÉPEAU; SORINE, 2007)) and Chuico (CHUIKO et al., 2016)
found that the KdV equation serves as a good model for studying arterial pressure waves
in large arteries, which suggests the study of the KdV equation in domains described by star
graphs and has prompted several works over the past few years. For example, regarding the well-
posedness theory, Cavalcante (2018) studied the local well-posedness for the Cauchy problem
of the Korteweg-de Vries equation on a metric star graph with a negative half-line and two
positive half-lines meeting at a common vertex 𝜈 = 0 (the so-called 𝒴-junction). About control
and stability theory, Ammari and Crépeau (2018), Cerpa, Crépeau and Moreno (2020); Cerpa,
Crépeu and Valein (2020); Parada, Crépeau and Prieur (2022a) and (2022b) proved results
on stabilization and boundary controllability for the KdV equation on star-shaped graphs.
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As pointed out in (ANGULO; CAVALCANTE, 2013), the study of the KdV equation in star
graphs is still underdeveloped and presents some difficulties. The main one is associated with
bifurcations, as mentioned above. In other words, determining the boundary conditions to be
considered at the vertex 𝑥 = 0, in the most appropriate way both for the physical context and
for a mathematical study, is still a challenge.

3.3 SETTING OF PROBLEM AND FUNCTIONAL FRAMEWORK

The main objective of this chapter is to investigate the exact controllability of the linear
KdV equation on a star-shaped network. The equation governing the dynamics is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑗(𝑡, 𝑥) + 𝜕𝑥𝑢𝑗(𝑡, 𝑥) + 𝜕3
𝑥𝑢𝑗(𝑡, 𝑥) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, ℓ𝑗), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), ∀𝑗 = 2, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑢𝑗(𝑡, 0) = −𝛼𝑢1(𝑡, 0) + 𝑔0(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢𝑗(𝑡, ℓ𝑗) = 𝑝𝑗(𝑡), 𝜕𝑥𝑢𝑗(𝑡, ℓ𝑗) = 𝑔𝑗(𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(0, 𝑥) = 𝑢0
𝑗(𝑥), 𝑥 ∈ 𝐼𝑗 := (0, 𝑙𝑗),

(3.1)

where 𝑁 ≥ 2 is an integer, 𝛼 > 𝑁
2 , 𝑢(𝑡, ·) is the state at time 𝑡 and 𝑝𝑗, 𝑔0, 𝑔𝑗 are the con-

trol inputs. The conditions at the central node are motivated by previous studies (AMMARI;

CRÉPEAU, 2018; CAVALCANTE, 2018; PARADA; CRÉPEAU; PRIEUR, 2022a; PARADA; CRÉPEAU;

PRIEUR, 2022b). Following (PARADA; CRÉPEAU; PRIEUR, 2022b), 𝑢𝑗 represents the dimension-
less, scaled deflection from the rest position, and 𝑣𝑗 denotes the velocity along a branch 𝑗 of
long water waves. Thus, we have:⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝑢𝑗 + 𝜕𝑥𝑢𝑗 + 𝜕3
𝑥𝑢𝑗 + 𝑢𝑗𝜕𝑥𝑢𝑗 = 0, 𝑥 ∈ (0, ℓ𝑗), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁,

𝑣𝑗 = 𝑢𝑗 − 1
6𝑢

2
𝑗 + 2𝜕2

𝑥𝑢𝑗, 𝑥 ∈ (0, ℓ𝑗), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁.
(3.2)

Assuming the water level at the central node is constant and the net flux is zero, the
following natural conditions arise

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 2, . . . , 𝑁,

and
𝑁∑︁

𝑗=1
𝑢𝑗(𝑡, 0)𝑣𝑗(𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇 ).
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Linearizing (3.2) around zero yields the following boundary conditions

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 2, . . . , 𝑁,

and
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑢𝑗(𝑡, 0) = −𝑁

2 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ).

With this context, we introduce some notations used throughout this chapter. Given𝑁 ≥ 2,
consider a star-shaped network 𝒯 with 𝑁 edges described by intervals 𝐼𝑗 = (0, 𝑙𝑗), 𝑙𝑗 > 0 for

𝑗 = 1, . . . , 𝑁 . Denoting by 𝑒1, ..., 𝑒𝑁 the edges of 𝒯 one have 𝒯 =
𝑁⋃︁

𝑗=1
𝑒𝑗. From now on, we

will consider:

i. The vector 𝑢 is given by

𝑢 = (𝑢1, ..., 𝑢𝑁) ∈ L2(𝒯 ) =
𝑁∏︁

𝑗=1
𝐿2(0, 𝑙𝑗)

and final and initial data is

𝑢0 = (𝑢0
1, ..., 𝑢

0
𝑁) ∈ L2(𝒯 ) and 𝑢𝑇 = (𝑢𝑇

1 , ..., 𝑢
𝑇
𝑁) ∈ L2(𝒯 ).

ii. The inner product in L2(𝒯 ) will be given by

(𝑢, 𝑧)L2(𝒯 ) =
𝑁∑︁

𝑗=1

∫︁ 𝑙𝑗

0
𝑢𝑗𝑧𝑗𝑑𝑥, 𝑢, 𝑧 ∈ L2(𝒯 ).

Moreover,
H𝑠(𝒯 ) =

𝑁∏︁
𝑗=1

𝐻𝑠(0, 𝑙𝑗), 𝑠 ∈ R.

iii. Define also the following spaces:

H𝑘
0(𝒯 ) =

𝑁∏︁
𝑗=1

𝐻𝑘
0 (0, 𝑙𝑗), 𝑘 ∈ N

and
𝐻𝑘

𝑟 (0, 𝑙𝑗) =
{︁
𝑣 ∈ 𝐻𝑘(0, 𝑙𝑗), 𝑣(𝑖−1)(𝑙𝑗) = 0, 1 ≤ 𝑖 ≤ 𝑘

}︁
, 𝑘 ∈ N,

where 𝑣(𝑚) = 𝑑𝑣
𝑑𝑥𝑚 and the index 𝑟 is related to the null right boundary conditions. In

addition,

H𝑘
𝑟(𝒯 ) =

𝑁∏︁
𝑗=1

𝐻𝑘
𝑟 (0, 𝑙𝑗) and ‖𝑢‖2

H𝑘
𝑟 (𝒯 ) =

𝑛∑︁
𝑗=1

‖𝑢𝑗‖𝐻𝑘(0,𝑙𝑗) 𝑘 ∈ N.
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iv. Consider the following characterization:

𝐻−1
𝑟 (0, 𝑙𝑗) =

(︁
𝐻1

𝑟 (0, 𝑙𝑗)
)︁′

as the dual space of 𝐻𝑟(0, 𝑙𝑗) with respect to the pivot space, 𝐿2(0, 𝑙𝑗) and H−1
𝑟 denotes

the cartesian product of 𝐻−1
𝑟 (0, 𝑙𝑗).

v. Let

H𝑘
𝑒(𝒯 ) =

{︁
𝑢 = (𝑢1, ..., 𝑢𝑁) ∈ H𝑘

𝑟(𝒯 ); 𝑢1(0) = 𝑢𝑗(0), 𝑗 = 1, . . . , 𝑁
}︁
, 𝑘 ∈ N,

and
B = 𝐶([0, 𝑇 ],L2(𝒯 )) ∩ 𝐿2(0, 𝑇,H1

𝑒(𝒯 )),

with the norm

‖𝑢‖B := ‖𝑢‖𝐶([0,𝑇 ],L2(𝒯 )) + ‖𝑢‖𝐿2(0,𝑇,H1
𝑒(𝒯 )) = max

𝑡∈[0,𝑇 ]
‖𝑢‖L2(𝒯 ) +

(︃∫︁ 𝑇

0
‖𝑢(𝑡, ·)‖2

H1
𝑒
𝑑𝑡

)︃ 1
2

.

vi. Finally, we need to introduce spaces that are paramount for our main results. For 𝑚 =

0, . . . , 𝑁 , consider

𝑋𝑚 =
𝑚∏︁

𝑗=1
𝐿2(0, 𝑙𝑗) ×

𝑁∏︁
𝑖=𝑚+1

𝐻1
0 (0, 𝑙𝑖), 𝑋0 =

𝑁∏︁
𝑖=1

𝐻1
0 (0, 𝑙𝑖), 𝑋𝑁 =

𝑁∏︁
𝑗=1

𝐿2(0, 𝑙𝑗),

(3.3)

and

𝑌𝑚 =
𝑚∏︁

𝑗=1
𝐻1(0, 𝑙𝑗) ×

𝑁∏︁
𝑖=𝑚+1

𝐻2(0, 𝑙𝑖), 𝑌0 =
𝑁∏︁

𝑖=1
𝐻2(0, 𝑙𝑖), 𝑌𝑁 =

𝑁∏︁
𝑖=1

𝐻1(0, 𝑙𝑗).

(3.4)

endowed with the usual Hilbertian norms.

3.3.1 Background of control theory of a single KdV

As expected, given the behavior of the KdV equation on bounded intervals, the investigation
of controllability issues for system (3.1) gives rise to the phenomenon of critical lengths. Hence,
it is convenient to briefly review the control of the KdV equation posed on intervals, as far as
is convenient for the presentation of our results.
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As seen in section 2.1, Rosier (1997) proved that the linear system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0, 𝑢𝑥(𝐿, 𝑡) = 𝑔(𝑡), in (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥) in (0, 𝐿),

(3.5)

is exactly controllabe if, and only if, 𝐿 /∈ 𝒩 , where 𝒩 is defined by

𝒩 :=
{︃

2𝜋√
3

√
𝑘2 + 𝑘𝑙 + 𝑙2 : 𝑘, 𝑙 ∈ N*

}︃
. (3.6)

and called the critical lengths set for the system (3.5). But it is important to point out that
the existence and the characterization of a critical length set as in (3.6) are directly related
to the number of controls used and their positions in the boundary conditions. For example,
Rosier 1997 clarifies that the use of a second control, in the Dirichlet condition on the right
side of the boundary, returns the exact controllability of (3.5). Precisely, the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = ℎ(𝑡), 𝑢𝑥(𝐿, 𝑡) = 𝑔(𝑡), in (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥) in (0, 𝐿),

(3.7)

is exactly controllable. Hence, does not exist critical length for the system (3.7) and it is
controllable for any 𝐿 > 0.

On the other hand, Glass and Guerrero (2010) proved that the use of only the Dirichlet
boundary control in (3.7) gives rise to a set of critical lengths different from 𝒩 . Precisely, he
proved that the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = ℎ(𝑡), 𝑢𝑥(𝐿, 𝑡) = 0, in (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥) in (0, 𝐿),

(3.8)

is exactly controllable if, and only if, 𝐿 does not belong to the countable set 𝒩 * described by

𝒩 * =

⎧⎪⎪⎨⎪⎪⎩𝐿 ∈ R+∖ {0};
∃(𝑎, 𝑏) ∈ C2 such that 𝑎𝑒𝑎 = 𝑏𝑒𝑏 = −(𝑎+ 𝑏)𝑒−(𝑎+𝑏)

and 𝐿2 = − (𝑎2 + 𝑎𝑏+ 𝑏2)

⎫⎪⎪⎬⎪⎪⎭ . (3.9)

In addition to these last two sets, investigation of the KdV equation on star graphs will
lead us to a new set of critical lengths, namely,

𝒩 † =

⎧⎪⎪⎨⎪⎪⎩𝐿 ∈ R+∖ {0};
∃(𝑎, 𝑏) ∈ C2 such that 𝑎2𝑒𝑎 = 𝑏2𝑒𝑏 = (𝑎+ 𝑏)2𝑒−(𝑎+𝑏)

and 𝐿2 = − (𝑎2 + 𝑎𝑏+ 𝑏2)

⎫⎪⎪⎬⎪⎪⎭ (3.10)
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As we will prove in the Appendix B, the set 𝒩 † is a countable, non-empty new critical set in
the literature of controllability of KdV equations.

3.3.2 Main results

Controllability results for (3.1) were first addressed in (AMMARI; CRÉPEAU, 2018), where
the authors proved that (3.1) is exactly controllable using 𝑁 + 1 controls 𝑔0, 𝑔1, 𝑔2, ..., 𝑔𝑁

or even 𝑁 controls 𝑔0, 𝑔2, ..., 𝑔𝑁 , provided that #{𝑙𝑗 ∈ 𝒩 }.More recently, Parada (2024)
obtained null controllability of system (3.1) by removing the central node control and using
2(𝑁 − 2) Neumann and Dirichlet controls. Based on this, we are interested in finding answers
to the following question:
Question 𝒜3: Is the system (3.1) controllable using a smaller number of controls and without
the use of a control 𝑔0 at the central node? More specifically, considering 𝑔0 = 0, given
𝑢0, 𝑢𝑇 ∈ L2(𝒯 ) under which configurations of the controls (𝑝1, ..., 𝑝𝑁) and (𝑔1, ..., 𝑔𝑁), with
some of the 𝑝𝑗’s and 𝑔𝑗’s possibly equal to zero, the solution 𝑢 of (3.1) with initial data 𝑢0

satisfies

𝑢(𝑇, ·) = 𝑢𝑇 ? (3.11)

Our proposal here is to remove the control at the central node and continue working in
a mixed configuration, but reducing the number of controls used and varying their quantity
between Neumann or Dirichlet, and, as extreme cases of this variation, we analyze the situations
where only Neumann controls or only Dirichlet controls are used. We will present six new
possibilities that ensure boundary controllability properties for the system (3.1), and that
exhibit a relation of the length 𝑙𝑗 with a critical set, that is, in some appropriated set of
boundary conditions the controllability holds if and only if the length 𝑙𝑗 avoids certain values
or for all 𝑙𝑗 > 0. Precisely we consider 𝑔0 = 0 and, given 0 ≤ 𝑚 ≤ 𝑁 , we put Neumann
controls on the first 𝑚 edges and Dirichlet controls on the remaining 𝑁 − 𝑚 edges, that is,
𝑝𝑗 = 0 for 𝑗 = 1, . . . ,𝑚 and 𝑔𝑗 = 0 for 𝑗 = 𝑚 + 1, . . . , 𝑁 , resulting in the following control
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system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑗 + 𝜕𝑥𝑢𝑗 + 𝜕3
𝑥𝑢𝑗 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 2, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑢𝑗(𝑡, 0) = −𝛼𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ),

𝑢𝑗(𝑡, 𝑙𝑗) = 0, 𝜕𝑥𝑢𝑗(𝑡, 𝑙𝑗) = 𝑔𝑗(𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . ,𝑚,

𝑢𝑗(𝑡, 𝑙𝑗) = 𝑝𝑗(𝑡), 𝜕𝑥𝑢𝑗(𝑡, 𝑙𝑗) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑗 = 𝑚+ 1, . . . , 𝑁,

𝑢𝑗(0, 𝑥) = 𝑢0
𝑗(𝑥), 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁.

(3.12)

For 𝑚 = 0, we omit the fourth equation from the system above, whereas for 𝑚 = 𝑁 , we omit
the fifth equation.

With this in mind, we will analyze the problem under the assumption 𝛼 = 𝑁 and 𝑙𝑗 = 𝐿

for 𝑗 = 1, . . . , 𝑁 in six situations (with different results). The first one considers 𝑁 = 2 and
𝑚 = 1, and it is illustrated in Figure 3. We prove that the corresponding system (3.12) is
exactly controllable for any 𝐿 > 0.

0

𝑒1

𝑒2

Ne

Di

uncontrolled node
Ne node with Neumann control
Di node with Dirichlet control

Figure 3 – Network with 2 edges and mixed controls

The second situation considers 𝑁 ≥ 3, 𝑚 = 1, and it is illustrated in Figure 4. In this
case, we can prove the exact controllability to the corresponding system (3.12) when 𝐿 /∈ 𝒩 *,
where 𝒩 * is defined by (3.9).

0

𝑒1
𝑒2

𝑒3

𝑒
𝑁−1

𝑒
𝑁

Ne
Di

Di

Di

Di

uncontrolled node
Ne node with Neumann control
Di node with Dirichlet control

Figure 4 – Network with 𝑁 edges for 𝑚 = 1
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In the third case, we consider 𝑁 ≥ 3 and 𝑚 = 𝑁 − 1, as illustrated in Figure 5. For
this situation, the exact controllability to the corresponding system (3.12) holds if and only if
𝐿 /∈ 𝒩 , where 𝒩 is defined by (3.6).

0

𝑒1
𝑒2

𝑒3

𝑒
𝑁−1

𝑒
𝑁

Ne
Ne

Ne

Ne

Di

uncontrolled node
Ne node with Neumann control
Di node with Dirichlet control

Figure 5 – Network with 𝑁 edges for 𝑚 = 𝑁 − 1

In the fourth case, we study the problem under the configuration 𝑁 > 3 and 1 < 𝑚 <

𝑁 − 1. Figure 6 illustrates this situation for 𝑚 = 2. In this case, we can prove the exact
controllability to the corresponding system (3.12) when 𝐿 /∈ 𝒩 ∪ 𝒩 *.

0

𝑒1
𝑒2

𝑒3

𝑒
𝑁−1

𝑒
𝑁

Ne
Ne

Di

Di

Di

uncontrolled node
Ne node with Neumann control
Di node with Dirichlet control

Figure 6 – Network with 𝑁 edges for 𝑚 = 2

In the full Neumann case, namely, 𝑁 ≥ 2 and 𝑚 = 𝑁 , illustrated in Figure 7, we can
prove the controllability if 𝐿 /∈ 𝒩 ∪ 𝒩 *.

0

𝑒1
𝑒2

𝑒3

𝑒
𝑁−1

𝑒
𝑁

Ne
Ne

Ne

Ne

Ne

uncontrolled node
Ne node with Neumann control

Figure 7 – Network with 𝑁 edges with control on Neumann condition
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Finally, in the full Dirichlet case, that is, 𝑁 ≥ 2 and 𝑚 = 0, illustrated in Figure 8, we can
prove the controllability if 𝐿 /∈ 𝒩 * ∪ 𝒩 †, where 𝒩 † is defined by (3.10).

0

𝑒1
𝑒2

𝑒3

𝑒
𝑁−1

𝑒
𝑁

Di
Di

Di

Di

Di

uncontrolled node
Di node with Dirichlet control

Figure 8 – Network with 𝑁 edges with control on Neumann condition

With this in hand, the main result of this work is given below and mixes the Neumann and
Dirichlet boundary conditions (see Figs. 3, 4, 5, and 6).

Theorem 3.1 Let 𝑇 > 0 and 𝑢0, 𝑢𝑇 ∈ L2(𝒯 ). Consider 𝛼 = 𝑁 , 𝑚 = 0, 1, ..., 𝑁 and 𝑙𝑗 = 𝐿

for 𝑗 = 1, . . . , 𝑁 .

1. If 𝑁 = 2, then for any 𝐿 > 0, there exist controls (𝑔1, 0) ∈ [𝐿2(0, 𝑇 )]2 and (0, 𝑝2) ∈

[𝐿2(0, 𝑇 )]2 such that the unique solution 𝑢 of (3.12) satisfies (3.11).

2. If 𝑁 ≥ 3 and 𝑚 = 1 then, there exist controls (𝑔1, 0, ..., 0) ∈ [𝐿2(0, 𝑇 )]𝑁 and
(0, 𝑝2, ..., 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique solution 𝑢 of (3.12) satisfies (3.11),
if and only if 𝐿 /∈ 𝒩 *.

3. If 𝑁 ≥ 3 and 𝑚 = 𝑁 − 1 then, there exist controls (𝑔1, ..., 𝑔𝑁−1, 0) ∈ [𝐿2(0, 𝑇 )]𝑁 and
(0, ..., 0, 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique solution 𝑢 of (3.12) satisfies (3.11), if
and only if 𝐿 /∈ 𝒩 .

4. If 𝑁 > 3 and 1 < 𝑚 < 𝑁−1 then, there exist controls (𝑔1, ..., 𝑔𝑚, 0, ..., 0) ∈ [𝐿2(0, 𝑇 )]𝑁

and (0, ..., 0, 𝑝𝑚+1, ..., 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the unique solution 𝑢 of (3.12)
satisfies (3.11), if and only if 𝐿 /∈ 𝒩 ∪ 𝒩 *.

5. If 𝑁 ≥ 2 and 𝑚 = 𝑁 , then there exist controls (𝑔1, ..., 𝑔𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the
unique solution 𝑢 of (3.12) satisfies (3.11), if and only if 𝐿 /∈ 𝒩 ∪ 𝒩 *.

6. If 𝑁 ≥ 2 and 𝑚 = 0, then there exist controls (𝑝1, ..., 𝑝𝑁) ∈ [𝐿2(0, 𝑇 )]𝑁 such that the
unique solution 𝑢 of (3.12) satisfies (3.11), if and only if 𝐿 /∈ 𝒩 * ∪ 𝒩 †.
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For a better description, we can summarize our results in the following table.

Neumann Dirichlet Critical lengths
𝑁 = 2 1 1 ∅
𝑁 ≥ 3 1 𝑁 − 1 𝒩 *

𝑁 ≥ 3 𝑁 − 1 1 𝒩
𝑁 > 3 𝑚 𝑁 −𝑚 𝒩 * ∪ 𝒩
𝑁 ≥ 2 𝑁 0 𝒩 * ∪ 𝒩
𝑁 ≥ 2 0 𝑁 𝒩 * ∪ 𝒩 †

Table 1 – Relation between the placement of the controls and the critical lengths.

We will provide a brief overview of our approach. To establish well-posedness, the classical
semigroup theory typically used for the KdV equation in networks, as seen in various stud-
ies (AMMARI; CRÉPEAU, 2018; CERPA; CRÉPEAU; MORENO, 2020; PARADA; CRÉPEAU; PRIEUR,
2022a; PARADA; CRÉPEAU; PRIEUR, 2022b), proves to be less effective for handling Dirichlet
controls. Instead, studies like (CAPISTRANO-FILHO; GALLEGO; PAZOTO, 2019; CARREÑO; LOY-

OLA, 2023; GLASS; GUERRERO, 2010; GUILLERON, 2014) mainly rely on “solutions by transposi-
tion" combined with interpolation methods. However, these techniques are still underdeveloped
for the KdV equation on networks, where the network structure introduces challenging trace
terms in the computations. These terms are addressed in a recent work by the second author
(PARADA, 2024) and in this work.

For the control problem, it is well known in the literature (LIONS, 1988b) that proving
the exact controllability of the system (3.12) is equivalent to establishing an inequality of
observability for the adjoint system associated with (3.12), namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝜙𝑗 − 𝜕𝑥𝜙𝑗 − 𝜕3
𝑥𝜙𝑗 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁,

𝜙𝑗(𝑡, 0) = 𝜙1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 2, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜕2

𝑥𝜙𝑗(𝑡, 0) = (𝛼−𝑁)𝜙1(𝑡, 0), 𝑡 ∈ (0, 𝑇 )

𝜙𝑗(𝑡, 𝑙𝑗) = 𝜕𝑥𝜙𝑗(𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁,

𝜙𝑗(𝑇, 𝑥) = 𝜙𝑇
𝑗 (𝑥), 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁.

(3.13)

In our terms, the desired observability inequality is given by

‖𝜙𝑇 ‖2
𝑋𝑚

≤ 𝐶

⎛⎝ 𝑚∑︁
𝑗=1

‖𝜕𝑥𝜙𝑗(·, 𝑙𝑗)‖2
𝐿2(0,𝑇 ) +

𝑁∑︁
𝑗=𝑚+1

‖𝜕2
𝑥𝜙𝑗(·, 𝑙𝑗)‖2

𝐿2(0,𝑇 )

⎞⎠ , ∀𝜙𝑇 ∈ 𝑋𝑚,
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where 𝜙(𝑡, 𝑥) is the solution of (3.13) associated to 𝜙𝑇 . To achieve this, we generally employ
the multiplier method and compactness arguments, which reduce the task to demonstrating
a unique continuation property for the state operator.

In our context, proving this unique continuation property involves analyzing the spectral
problem associated with the relevant linear operator. Specifically, after applying the Fourier
transform, the question becomes one of determining when a certain quotient of entire functions
remains entire. We introduce a polynomial function 𝑞 : C → C and a family of functions

𝑁𝛼 : C × (0,∞) → C,

where 𝛼 ∈ C ∖ {0} and each restriction 𝑁𝛼(·, 𝐿) is entire for any 𝐿 > 0. We then define a
family of functions 𝑓𝛼(·, 𝐿) by

𝑓𝛼(𝜇, 𝐿) = 𝑁𝛼(𝜇, 𝐿)
𝑞(𝜇) ,

within its maximal domain. The problem then reduces to finding 𝐿 > 0 such that there exists
𝛼 ∈ C ∖ {0} for which 𝑓𝛼(·, 𝐿) is entire. In some works, such as (CAICEDO; CAPISTRANO-

FILHO; ZHANG, 2017; CAPISTRANO–FILHO; PAZOTO; ROSIER, 2019; ROSIER, 1997) and refer-
ences therein, this approach provides an explicit characterization of the set of critical lengths
when it exists. However, in many cases, this set cannot be explicitly determined (ARARUNA;

CAPISTRANO-FILHO; DORONIN, 2012; CAPISTRANO-FILHO et al., 2023; CAPISTRANO-FILHO; GAL-

LEGO; PAZOTO, 2019; CERPA; RIVAS; ZHANG, 2013).
In this context, the contributions of this work are twofold. First, we examine the well-

posedness of the system (3.12) under mixed boundary conditions, specifically, Dirichlet and
Neumann boundary conditions. Second, we provide, for the first time, a detailed analysis of a
star graph structure when the function 𝑓𝛼, relevant to our scenarios, is entire. This analysis
results in a characterization of critical sets 𝒩 defined by (3.6), 𝒩 * defined by (3.9) or 𝒩 ∪𝒩 *,
resembling those established by Rosier (ROSIER, 1997) and by Glass and Guerrero (GLASS;

GUERRERO, 2010). Additionally, we identify a new critical set, denoted as 𝒩 †. Due to the
increased complexity of the functions 𝑁𝛼 in our setting compared to these earlier works, our
approach involves a refined and meticulous adaptation of the analysis of these functions.

The next two sections are organized as follows: In Section 3.4, we conduct a detailed
analysis of the well-posedness of problem (3.12) and (3.13), incorporating relevant results
from the single KdV equation. Building on this, the objective of Section 3.5 is to establish the
observability inequality for system (3.12) with boundary controls acting under mixed boundary
conditions, specifically Dirichlet and Neumann conditions, as well as under full Neumann
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boundary conditions and full Dirichlet boundary conditions. Here, we carefully examine the
function 𝑓𝛼 associated with our setting, leading to Theorem 3.1.

3.4 WELL-POSEDNESS ANALYSIS

In this section, we examine the well-posedness of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑗 + 𝜕𝑥𝑢𝑗 + 𝜕3
𝑥𝑢𝑗 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 2, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑢𝑗(𝑡, 0) = −𝛼𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 )

𝑢𝑗(𝑡, 𝑙𝑗) = 𝑝𝑗(𝑡), 𝜕𝑥𝑢𝑗(𝑡, 𝑙𝑗) = 𝑔𝑗(𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(0, 𝑥) = 𝑢0
𝑗(𝑥), 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁,

(3.14)

as established in (PARADA, 2024), along with its corresponding adjoint problem. To achieve
this, we verify the Kato smoothing property for the solution traces, which is essential for deriv-
ing an observability inequality that characterizes critical lengths. Additionally, we investigate
the regularity of solutions to the adjoint system when the data belong to regular spaces. Note
that the positive constants 𝐶 introduced here may vary from line to line.

3.4.1 Weak solutions

The next proposition was proved in (PARADA, 2024), and it gives the well-posedness to
the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝜕𝑡𝑣𝑗 − 𝜕𝑥𝑣𝑗 − 𝜕3
𝑥𝑣𝑗 = 𝑓𝑗, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁,

𝑣𝑗(𝑡, 0) = 𝑣1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 2, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑣𝑗(𝑡, 0) = (𝛼−𝑁)𝑣1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ),

𝑣𝑗(𝑡, 𝑙𝑗) = 𝜕𝑥𝑣𝑗(𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁,

𝑣𝑗(𝑇, 𝑥) = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁,

(3.15)

for 𝑓 = (𝑓1, ..., 𝑓𝑁) ∈ 𝐿2(0, 𝑇,L2(𝒯 )). This result is useful in establishing the notion of a
solution for (3.14).
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Proposition 3.1 If 𝑓 ∈ 𝐿2(0, 𝑇,L2(𝒯 )) there exists a unique solution

𝑣 ∈ B1 := 𝐶([0, 𝑇 ],H1
𝑟(𝒯 )) ∩ 𝐿2(0, 𝑇,H2(𝒯 ))

of (3.15). Moreover, there exists 𝐶1 > 0 such that

‖𝑣‖B1 +
𝑁∑︁

𝑗=1
‖𝜕2

𝑥𝑣𝑗(·, 𝑙𝑗)‖𝐿2(0,𝑇 ) +
𝑁∑︁

𝑗=1
‖𝜕𝑥𝑣𝑗(·, 𝑙𝑗)‖

𝐻
1
3 (0,𝑇 )

≤ 𝐶1‖𝑓‖𝐿2(0,𝑇,L2(𝒯 ).

Assume 𝑢𝑗, 𝑝𝑗, 𝑔𝑗, 𝑣𝑗, 𝑓𝑗 ∈ 𝐶∞([0, 𝑇 ] × [0, 𝑙𝑗]) and 𝑢0
𝑗 ∈ 𝐶∞[0, 𝑙𝑗]. Suppose that 𝑢 =

(𝑢1, ..., 𝑢𝑁) is a solution of (3.14) subject to the data 𝑝𝑗, 𝑔𝑗, 𝑢
𝑗
0 and 𝑣 = (𝑣1, ..., 𝑣𝑁) is a

solution of (3.15) subject to 𝑓 = (𝑓1, ..., 𝑓𝑁). Multiplying (3.15) by 𝑢𝑗, integrating by parts
and using the boundary conditions in (3.14) and (3.15) we obtain

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
𝑢0

𝑗(𝑥)𝑣𝑗(0, 𝑥) −
𝑁∑︁

𝑗=1

∫︁ 𝑇

0
𝑝𝑗(𝑡)𝜕2

𝑥𝑣𝑗(𝑡, 𝑙𝑗) +
𝑁∑︁

𝑗=1

∫︁ 𝑇

0
𝑔𝑗(𝑡)𝜕𝑥𝑣𝑗(𝑡, 𝑙𝑗) =

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝑓𝑗𝑢𝑗.

Identifying 𝑢0
𝑗 ∈ 𝐶∞([0, 𝑙𝑗]) ⊂ 𝐿2(0, 𝑙𝑗) with the functional (𝑢0

𝑗)* ∈ 𝐻−1
𝑟 (0, 𝑙𝑗) given by

(𝑢0
𝑗)*(𝑤) =

∫︁ 𝑙𝑗

0
𝑢0

𝑗𝑤, ∀𝑤 ∈ 𝐻−1
𝑟 (0, 𝑙𝑗),

we can write
∫︁ 𝑙𝑗

0
𝑢0

𝑗(𝑥)𝑣𝑗(0, 𝑥) = ⟨𝑢0
𝑗 , 𝑣𝑗(0, ·)⟩𝐻−1

𝑟 (0,𝑙𝑗)×𝐻1
𝑟 (0,𝑙𝑗).

Now identifying 𝑔𝑗 ∈ 𝐶∞([0, 𝑇 ]) ⊂ 𝐿2(0, 𝑇 ) with the functional 𝑔*
𝑗 ∈ 𝐻− 1

3 (0, 𝑇 ) given by

𝑔*
𝑗 (ℎ) =

∫︁ 𝑇

0
𝑔𝑗ℎ, ∀ℎ ∈ 𝐻

1
3 (0, 𝑇 )

we can write
∫︁ 𝑇

0
𝑔𝑗(𝑡)𝜕𝑥𝑣𝑗(𝑡, 𝑙𝑗) = ⟨𝑔𝑗, 𝜕𝑥𝑣𝑗(·, 𝑙𝑗)⟩

𝐻− 1
3 (0,𝑇 )×𝐻

1
3 (0,𝑇 )

.

Therefore we have
𝑁∑︁

𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝑓𝑗𝑢𝑗 =

𝑁∑︁
𝑗=1

⟨𝑢0
𝑗 , 𝑣𝑗(0, ·)⟩𝐻−1

𝑟 (0,𝑙𝑗)×𝐻1
𝑟 (0,𝑙𝑗) −

𝑁∑︁
𝑗=1

∫︁ 𝑇

0
𝑝𝑗(𝑡)𝜕2

𝑥𝑣𝑗(𝑡, 𝑙𝑗)

+
𝑁∑︁

𝑗=1
⟨𝑔𝑗, 𝜕𝑥𝑣𝑗(·, 𝑙𝑗)⟩

𝐻− 1
3 (0,𝑇 )×𝐻

1
3 (0,𝑇 )

.

This motivates the next definition, giving us a weak solution for the system (3.14).
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Definition 3.1 Given 𝑇 > 0, 𝑢0 = (𝑢0
1, 𝑢

0
2, · · · , 𝑢0

𝑁) ∈ H−1
𝑟 (𝒯 ), 𝑝 ∈ (𝐿2(0, 𝑇 ))𝑁 and

𝑔 ∈ (𝐻− 1
3 (0, 𝑇 ))𝑁 a solution by transposition of (3.14) is a function 𝑢 ∈ 𝐿2(0, 𝑇,L2(𝒯 ))

satisfying
𝑁∑︁

𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝑓𝑗𝑢𝑗 =

𝑁∑︁
𝑗=1

⟨𝑢0
𝑗 , 𝑣𝑗(0, ·)⟩𝐻−1

𝑟 (0,𝑙𝑗)×𝐻1
𝑟 (0,𝑙𝑗) −

𝑁∑︁
𝑗=1

∫︁ 𝑇

0
𝑝𝑗(𝑡)𝜕2

𝑥𝑣𝑗(𝑡, 𝑙𝑗)

+
𝑁∑︁

𝑗=1
⟨𝑔𝑗, 𝜕𝑥𝑣𝑗(·, 𝑙𝑗)⟩

𝐻− 1
3 (0,𝑇 )×𝐻

1
3 (0,𝑇 )

,

for all 𝑓 ∈ 𝐿2(0, 𝑇,L2(𝒯 )), where 𝑣 is the solution of (3.15) corresponding to 𝑓 .

The next result provides the well-posedness of (3.14), proved in (PARADA, 2024).

Theorem 3.2 Let 𝑇 > 0 be given. For all 𝑢0 ∈ H−1
𝑟 (𝒯 ), 𝑝 ∈ (𝐿2(0, 𝑇 ))𝑁 and 𝑔 ∈

(𝐻− 1
3 (0, 𝑇 ))𝑁 , there exists a unique solution by transposition for (3.14).

3.4.2 The adjoint system

The adjoint system associated with (3.14) is given by (3.13). The next result ensures that
the system (3.13) admits a unique solution.

Proposition 3.2 For any 𝜙𝑇 ∈ L2(𝒯 ) the system (3.13) admits a unique solution 𝜙 ∈ B

which satisfies
‖𝜙‖B ≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 ), (3.16)

for 𝐶 > 0, and
𝑁∑︁

𝑗=1
‖𝜕𝑥𝜙𝑗(·, 𝑙𝑗)‖2

𝐿2(0,𝑇 ) ≤ ‖𝜙𝑇 ‖2
L2(𝒯 ), (3.17)

for all 𝜙𝑇 ∈ L2(𝒯 ).

Proof: Define the operator 𝐴𝑢 = −𝜕𝑥𝑢− 𝜕3
𝑥𝑢 with domain

𝒟(𝐴) =

⎧⎨⎩𝑢 ∈ H3(𝒯 ) ∩ H1
𝑒(𝒯 ),

𝑁∑︁
𝑗=1

𝜕2
𝑥𝑢𝑗(0) = −𝛼𝑢1(0)

⎫⎬⎭
where

𝜕𝑘
𝑥𝑢 =

(︁
𝜕𝑘

𝑥𝑢1, ..., 𝜕
𝑘
𝑥𝑢𝑁

)︁
.

Observe that 𝐴 is the operator associated with (3.14) when 𝑝𝑗 = 𝑔𝑗 = 0. The adjoint operator
of 𝐴 is given by 𝐴*𝑣 = 𝜕𝑥𝑣 + 𝜕3

𝑥𝑣 with domain

𝒟(𝐴*) =

⎧⎨⎩𝑣 ∈ H3(𝒯 ) ∩ H1
𝑒(𝒯 ); 𝜕𝑥𝑣𝑗(0) = 0, 𝑗 = 1, . . . , 𝑁,

𝑁∑︁
𝑗=1

𝜕2
𝑥𝑣𝑗(0) = (𝛼−𝑁)𝑣1(0)

⎫⎬⎭ .
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𝐴* is the operator associated with (3.13). According to (AMMARI; CRÉPEAU, 2018), 𝐴 is closed,
𝐴 and 𝐴* are dissipative, so 𝐴* generates a strongly semigroup of contractions on L2(𝒯 ) which
will be denoted by {𝑆(𝑡)}𝑡≥0. From the semigroup theory it follows that, for any 𝜙𝑇 ∈ L2(𝒯 )

the problem (3.13) has a unique (mild) solution 𝜙 = 𝑆(𝑇 − ·)𝜙𝑇 ∈ 𝐶([0, 𝑇 ],L2(𝒯 )). Note
that

‖𝜙‖𝐶([0,𝑇 ],L2(𝒯 )) = ‖𝑆(𝑇 − ·)𝜙𝑇 ‖𝐶([0,𝑇 ],L2(𝒯 )) ≤ ‖𝜙𝑇 ‖L2(𝒯 ), ∀𝜙𝑇 ∈ L2(𝒯 ).

To see that 𝜙 ∈ 𝐿2(0, 𝑇,H1
𝑒(𝒯 )) and to obtain the estimates (3.16) and (3.17), first

suppose 𝜙𝑇 ∈ 𝒟(𝐴*). In this case, from semigroup theory, we have

𝜙 ∈ 𝐶1([0, 𝑇 ],L2(𝒯 )) ∩ 𝐶([0, 𝑇 ],𝒟(𝐴*)).

Assume 𝑞𝑗 ∈ 𝐶∞([0, 𝑇 ] × [0, 𝑙𝑗]) with 𝑞𝑗(𝑡, 0) = 𝑞1(𝑡, 0). Multiplying the first equation of
(3.13) by 𝑞𝜙𝑗, integrating by parts, and using the boundary conditions, we obtain

1
2

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
(𝑞𝑗𝜙

2
𝑗)(𝑇, 𝑥) + 3

2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝑞𝑗𝜕𝑥𝜙

2
𝑗 =1

2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗(𝜕𝑡𝑞𝑗 + 𝜕𝑥𝑞𝑗 + 𝜕3
𝑥𝑞𝑗)

+
(︂
𝛼− 𝑁

2

)︂ ∫︁ 𝑇

0
𝑞1(𝑡, 0)𝜙2

1(𝑡, 0)

+ 1
2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0
𝑞𝑗(𝑡, 𝑙𝑗)𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗)

+ 1
2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0
𝜕2

𝑥𝑞𝑗(𝑡, 0)𝜙2
1(𝑡, 0)

+ 1
2

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
(𝑞𝑗𝜙

2
𝑗)(0, 𝑥).

Choosing 𝑞𝑗 = 1 we get

1
2

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
𝜙2

𝑗(𝑇, 𝑥) =
(︂
𝛼− 𝑁

2

)︂ ∫︁ 𝑇

0
𝜙2

1(𝑡, 0) + 1
2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) + 1

2

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
𝜙2

𝑗(0, 𝑥).

Thus,
𝑁∑︁

𝑗=1
‖𝜕𝑥𝜙𝑗(·, 𝑙𝑗)‖2

𝐿2(0,𝑇 ) ≤ ‖𝜙𝑇 ‖2
L2(𝒯 ),

that is, the map

𝛿 : 𝒟(𝐴*) : → 𝐿2(0, 𝑇 )

𝜙𝑇 ↦→ 𝜕𝑥𝜙(·, 𝑙𝑗)
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is continuous. Now, choosing 𝑞𝑗 = 𝑥 it follows that∫︁ 𝑇

0
‖𝜙𝑥(𝑡, ·)‖2

L2(𝒯 ) ≤
(︂
𝑇 + 2𝑀

3

)︂
‖𝜙𝑇 ‖2

L2(𝒯 ),

where 𝑀 = max
1≤𝑗≤𝑁

𝑙𝑗. Then, (3.16) holds for every 𝜙𝑇 ∈ 𝒟(𝐴*) and consequently the map

Γ* : (𝒟(𝐴*), ‖ · ‖L2(𝒯 )) → (B, ‖ · ‖B)

𝜙𝑇 ↦→ Γ*𝜙𝑇 = 𝜙 = 𝑆(𝑇 − ·)𝜙𝑇

is continuous. By an argument of density we extend the maps Γ* and 𝛿 to (L2(𝒯 ), ‖ · ‖L2(𝒯 )).
For each 𝜙𝑇 ∈ L2(𝒯 ) we refer to 𝛿(𝜙𝑇 ) when write 𝜕𝑥𝜙(𝑡, 𝑙𝑗) and, in this sense, (3.17) holds
for every 𝜙𝑇 ∈ L2(𝒯 ). Moreover, since

Γ𝜙𝑇 = 𝑆(𝑇 − ·)𝜙𝑇 ∀𝜙𝑇 ∈ 𝒟(𝐴*),

by density and continuity, it follows that

Γ𝜙𝑇 = 𝑆(𝑇 − ·)𝜙𝑇 , ∀𝜙𝑇 ∈ L2(𝒯 )

and thus (3.16) was verified. □

3.4.3 Trace estimates: A review for a single KdV

Now we proceed to prove that the solutions of (3.13) possess the sharp Kato smoothing
property, namely

𝜕𝑘
𝑥𝜙𝑗 ∈ 𝐿∞

𝑥

(︁
0, 𝑙𝑗;𝐻

1−𝑘
3 (0, 𝑇 )

)︁
, 𝑘 = 0, 1, 2, 𝑗 = 1, . . . , 𝑁.

Let us review some results for the single KdV equation to see it. Precisely, the first result is
given by (BONA; SUN; ZHANG, 2003, Propositions 2.7-2.9) and (CAICEDO; CAPISTRANO-FILHO;

ZHANG, 2017, Proposition 2.2).

Proposition 3.3 Let 𝐿, 𝑇 > 0 be given. For any (ℎ1, ℎ2, ℎ3) ∈ 𝐻
1
3 (0, 𝑇 ) × 𝐻

1
3 (0, 𝑇 ) ×

𝐿2(0, 𝑇 ) there exists a unique solution 𝑣 ∈ 𝒵𝑇 := 𝐶([0, 𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0, 𝐿;𝐻1(0, 𝐿)) to
the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣 + 𝜕𝑥𝑣 + 𝜕3
𝑥𝑣 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝑣(𝑡, 0) = ℎ1(𝑡), 𝑣(𝑡, 𝐿) = ℎ2(𝑡), 𝜕𝑥𝑣(𝑡, 𝐿) = ℎ3(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑣(0, 𝑥) = 0, 𝑥 ∈ (0, 𝐿)

(3.18)
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which possesses the sharp Kato smoothing property

𝜕𝑘
𝑥𝑣 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻

1−𝑘
3 (0, 𝑇 )

)︁
, 𝑘 = 0, 1, 2.

Furthermore, there exists 𝐶 > 0 such that

‖𝑣‖𝒵𝑇
+

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝑣(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶

(︂
‖ℎ1‖

𝐻
1
3 (0,𝑇 )

+ ‖ℎ2‖
𝐻

1
3 (0,𝑇 )

+ ‖ℎ3‖𝐿2(0,𝑇 )

)︂
.

Henceforth we denote by 𝑊𝑏(𝑡)⃗ℎ the solution of (3.18) corresponding to ℎ⃗ = (ℎ1, ℎ2, ℎ3).
Considering this, (BONA; SUN; ZHANG, 2003, Proposition 2.1) gives us the following proposition.

Proposition 3.4 Let 𝐿, 𝑇 > 0 be given. For any 𝑣0 ∈ 𝐿2(0, 𝐿) there exists a unique solution
𝑣 ∈ 𝒵𝑇 for the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣 + 𝜕𝑥𝑣 + 𝜕3
𝑥𝑣 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝑣(𝑡, 0) = 0, 𝑣(𝑡, 𝐿) = 0, 𝜕𝑥𝑣(𝑡, 𝐿) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈ (0, 𝐿),

(3.19)

which is given by 𝑣 = 𝑊 (·)𝑣0 where {𝑊 (𝑡)}𝑡≥0 is the 𝐶0-semigroup of contractions generated
in 𝐿2(0, 𝐿) by the operator 𝐴𝐿𝑣 = −𝜕𝑥𝑣 − 𝜕3

𝑥𝑣 with domain

𝐷(𝐴𝐿) = {𝑤 ∈ 𝐻3(0, 𝐿); 𝑣(0) = 𝑣(𝐿) = 𝜕𝑥𝑣(𝐿) = 0}.

Moreover, there exists a constant 𝐶 > 0 such that

‖𝑣‖𝒵𝑇
≤ 𝐶‖𝑣0‖𝐿2(0,𝐿) and ‖𝜕𝑥𝑣(·, 0)‖𝐿2(0,𝑇 ) ≤ 𝐶‖𝑣0‖𝐿2(0,𝐿).

We will show that the solution 𝑣 = 𝑊 (·)𝑣0 of (3.19) possesses the Kato smoothing
property. According to (KRAMER; RIVAS; ZHANG, 2013), the linear KdV equation⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝑧 + 𝜕𝑥𝑧 + 𝜕3
𝑥𝑧 = 0, 𝑡 ∈ R+, 𝑥 ∈ R

𝑧(0, 𝑥) = 𝑧0(𝑥)

has a unique solution, given by

𝑧(𝑡, 𝑥) = (𝑊R𝑧0)(𝑥) := 𝑐
∫︁
R
𝑒𝑖(𝜉3−𝜉)𝑡𝑒𝑖𝑥𝜉𝑧0(𝜉)𝑑𝜉

where 𝑐 ∈ R and 𝑧0 denotes the Fourier transform of 𝑧0. The result can be read below.

Proposition 3.5 (Kramer, Rivas and Zhang (2013), Lemma 2.9) There exists a con-
stant 𝐶 > 0 such that, for every 𝑧0 ∈ 𝐿2(R),

2∑︁
𝑘=0

sup
𝑥∈R

‖𝜕𝑘
𝑥𝑊R(·)𝑣0(𝑥)‖

𝐻
1−𝑘

3
𝑡 (R)

≤ 𝐶‖𝑣0‖𝐿2(R).
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Additionally, (BONA; SUN; ZHANG, 2003) showed the following:

Proposition 3.6 (Bona, Sun and Zhang (2003), Proposition 2.13) Let 𝐿, 𝑇 > 0 be
given. There exists a constant 𝐶 > 0 such that, for every 𝑣0 ∈ 𝐿2(0, 𝐿), the solution
𝑣 = 𝑊 (·)𝑣0 of (3.19) satisfies

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝑣(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶‖𝑣0‖𝐿2(0,𝐿).

Combining the previous propositions, precisely, Propositions 3.3 and 3.6, and (CAICEDO;

CAPISTRANO-FILHO; ZHANG, 2017, Proposition 2.6), the next results are verified.

Proposition 3.7 Consider 𝐿, 𝑇 > 0. For every 𝑣0 ∈ 𝐿2(0, 𝐿) and (ℎ1, ℎ2, ℎ3) ∈ ℋ𝑇 :=

𝐻
1
3 (0, 𝑇 )×𝐻 1

3 (0, 𝑇 )×𝐿2(0, 𝑇 ) there exists a unique solution 𝑣 ∈ 𝒵𝑇 := 𝐶([0, 𝑇 ];𝐿2(0, 𝐿))∩

𝐿2(0, 𝐿;𝐻1(0, 𝐿)) to the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣 + 𝜕𝑥𝑣 + 𝜕3
𝑥𝑣 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝑣(𝑡, 0) = ℎ1(𝑡), 𝑣(𝑡, 𝐿) = ℎ2(𝑡), 𝜕𝑥𝑣(𝑡, 𝐿) = ℎ3(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈ (0, 𝐿),

which possesses the sharp Kato smoothing property

𝜕𝑘
𝑥𝑣 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻

1−𝑘
3 (0, 𝑇 )

)︁
, 𝑘 = 0, 1, 2.

Furthermore, there exists 𝐶 > 0 such that

‖𝑣‖𝒵𝑇
+

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝑣(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶

(︁
‖𝑣0‖𝐿2(0,𝐿) + ‖ℎ‖ℋ𝑇

)︁
.

Corollary 3.1 Let 𝑇, 𝐿 > 0 be given. Given 𝑣𝑇 ∈ 𝐿2(0, 𝐿) and ℎ ∈ 𝐻
1
3 (0, 𝑇 ) there exists a

unique solution 𝑣 ∈ 𝒵𝑇 for the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣 + 𝜕𝑥𝑣 + 𝜕3
𝑥𝑣 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝑣(𝑡, 0) = ℎ(𝑡), 𝑣(𝑡, 𝐿) = 𝜕𝑥𝑣(𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑣(𝑇, 𝑥) = 𝑣𝑇 (𝑥), 𝑥 ∈ (0, 𝐿)

which satisfies

𝜕𝑘
𝑥𝑣 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻

1−𝑘
3 (0, 𝑇 )

)︁
, 𝑘 = 0, 1, 2

and

‖𝑣‖𝒵𝑇
+

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝑣(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶

(︂
‖𝑣𝑇 ‖𝐿2(0,𝐿) + ‖ℎ‖

𝐻
1
3 (0,𝑇 )

)︂
,

for some constant 𝐶 > 0.
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Proposition 3.8 Given 𝑇, 𝐿 > 0, 𝑣𝑇 ∈ 𝐿2(0, 𝐿) and ℎ ∈ 𝐻− 1
3 (0, 𝑇 ) there exists a unique

solution 𝑣 ∈ 𝒵𝑇 of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑣 + 𝜕𝑥𝑣 + 𝜕3
𝑥𝑣 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝑣(𝑡, 𝐿) = 𝜕𝑥𝑣(𝑡, 0) = 0, 𝜕2
𝑥𝑣(𝑡, 0) = ℎ(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑣(𝑇, 𝑥) = 𝑣𝑇 (𝑥), 𝑥 ∈ (0, 𝐿)

which satisfies

𝜕𝑘
𝑥𝑣 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻

1−𝑘
3 (0, 𝑇 )

)︁
, 𝑘 = 0, 1, 2.

and

‖𝑣‖𝒵𝑇
+

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝑣(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶

(︂
‖𝑣𝑇 ‖𝐿2(0,𝐿) + ‖ℎ‖

𝐻− 1
3 (0,𝑇 )

)︂
.

for some positive constant 𝐶.

3.4.4 Trace estimates: For KdV in star-graph

We are now in a position to prove trace estimates to (3.13). The first result ensures the
hidden regularity.

Proposition 3.9 For 𝑇 > 0 and every 𝜙𝑇 ∈ L2(𝒯 ), the solution 𝜙 of (3.13) posses the
hidden regularity

𝜕𝑘
𝑥𝜙𝑗 ∈ 𝐿∞

𝑥

(︁
0, 𝑙𝑗;𝐻

1−𝑘
3 (0, 𝑇 )

)︁
, 𝑘 = 0, 1, 2, 𝑗 = 1, . . . , 𝑁.

Moreover, there exists 𝐶 > 0 such that
2∑︁

𝑘=0
sup

𝑥∈(0,𝐿)
‖𝜕𝑘

𝑥𝜙𝑗(·, 𝑥)‖
𝐻

1−𝑘
3 (0,𝑇 )

≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 ), 𝑗 = 1, . . . , 𝑁.

Proof: Our proof will be split into two cases. We divide it into two cases.

Case 1: 𝑁 ∈ N and 𝑙𝑗 = 𝐿, for every 𝑗 = 1, . . . , 𝑁 .

For each 𝑗 = 1, . . . , 𝑁 define 𝜉𝑗 = 𝜙1 − 𝜙𝑗. Note that

𝜉𝑗 ∈ 𝒵𝑇 = 𝐶([0, 𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0, 𝑇 ;𝐻1(0, 𝐿))
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and its solves ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜉𝑗 + 𝜕𝑥𝜉𝑗 + 𝜕3
𝑥𝜉𝑗 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝜉𝑗(𝑡, 0) = 𝜉𝑗(𝑡, 𝐿) = 𝜕𝑥𝜉𝑗(𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇 ),

𝜉𝑗(𝑇, 𝑥) = 𝜙𝑇
1 (𝑥) − 𝜙𝑇

𝑗 (𝑥), 𝑥 ∈ (0, 𝐿).

Thanks to Corollary 3.1 we get 𝜕𝑘
𝑥𝜉𝑗 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻 1−𝑘

3 (0, 𝑇 )
)︁
, for 𝑘 = 0, 1, 2, and

‖𝜉𝑗‖𝒵𝑇
+

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜉𝑗(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶

(︁
‖𝜙𝑇

1 − 𝜙𝑇
𝑗 ‖𝐿2(0,𝐿)

)︁
≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 ) (3.20)

where 𝐶 > 0 is a constant.
Now, since 𝜙 ∈ 𝐿2(0, 𝑇 ;H1

𝑒(𝒯 )) and 𝐻1(0, 𝐿) →˓ 𝐶([0, 𝐿])
∫︁ 𝑇

0
|𝜙1(𝑡, 0)|2𝑑𝑡 ≤ 𝑐‖𝜙‖2

𝐿2(0,𝑇 ;H1
𝑒(𝒯 ))

for some 𝑐 > 0. From Proposition 3.2 it follows that
∫︁ 𝑇

0
|𝜙1(𝑡, 0)|2𝑑𝑡 ≤ 𝐶‖𝜙𝑇 ‖2

L2(𝒯 ),

for 𝐶 > 0. Then 𝜙1(·, 0) ∈ 𝐿2(0, 𝑇 ) →˓ 𝐻− 1
3 (0, 𝑇 ) and by the last inequality

‖𝜙1(·, 0)‖
𝐻− 1

3 (0,𝑇 )
≤ 𝐶‖𝜙1(·, 0)‖𝐿2(0,𝑇 ) ≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 ), (3.21)

for some constant 𝐶 > 0.
Defining 𝜓 =

𝑁∑︁
𝑗=1

𝜙𝑗 we conclude that

𝜓 ∈ 𝒵𝑇 = 𝐶([0, 𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0, 𝑇 ;𝐻1(0, 𝐿))

and its solves the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜓 + 𝜕𝑥𝜓 + 𝜕3
𝑥𝜓 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝜓(𝑡, 𝐿) = 𝜕𝑥𝜓(𝑡, 0) = 0, 𝜕2
𝑥𝜓(𝑡, 0) = (𝛼−𝑁)𝜙1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ),

𝜓(𝑇, 𝑥) =
𝑁∑︁

𝑗=1
𝜙𝑇

𝑗 (𝑥), 𝑥 ∈ (0, 𝐿).

Then, the Proposition 3.8 gives us 𝜕𝑘
𝑥𝜓 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻 1−𝑘

3 (0, 𝑇 )
)︁

for 𝑘 = 0, 1, 2 and

‖𝜓‖𝒵𝑇
+

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜓(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶

⎛⎝ 𝑁∑︁
𝑗=1

‖𝜙𝑇
𝑗 ‖𝐿2(0,𝐿) + |𝛼−𝑁 |‖𝜙1(·, 0)‖

𝐻− 1
3 (0,𝑇 )

⎞⎠ ,



73

for some positive constant 𝐶. Using (3.21) we get another constant, still denoted by 𝐶 > 0

such that

‖𝜓‖𝒵𝑇
+

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜓(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶(|𝛼−𝑁 |)‖𝜙𝑇 ‖L2(𝒯 ). (3.22)

Observe that
𝑁∑︁

𝑗=1
𝜉𝑗 + 𝜓 =

𝑁∑︁
𝑗=1

(𝜙1 − 𝜙𝑗) +
𝑁∑︁

𝑗=1
𝜙𝑗 = 𝑁𝜙1,

that is,

𝜙1 = 1
𝑁

⎛⎝ 𝑁∑︁
𝑗=1

𝜉𝑗 + 𝜓

⎞⎠ .
But we know that 𝜓, 𝜉𝑗 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻 1−𝑘

3 (0, 𝑇 )
)︁

for 𝑗 = 1, . . . , 𝑁 , so we conclude that

𝜕𝑘
𝑥𝜙1 ∈ 𝐿∞

𝑥

(︁
0, 𝐿;𝐻

1−𝑘
3 (0, 𝑇 )

)︁
,

for 𝑘 = 0, 1, 2. Moreover,

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜙1(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 1
𝑁

⎛⎝ 𝑁∑︁
𝑗=1

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜉𝑗(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )

+
2∑︁

𝑘=0
sup

𝑥∈(0,𝐿)
‖𝜕𝑘

𝑥𝜓(·, 𝑥)‖
𝐻

1−𝑘
3 (0,𝑇 )

)︃
.

Due to the inequalities (3.20) and (3.22) it follows that

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜙1(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 ) (3.23)

where 𝐶 = 𝐶(𝛼,𝑁) > 0. Now, since 𝜙𝑗 is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜙𝑗 + 𝜕𝑥𝜙𝑗 + 𝜕3
𝑥𝜙𝑗 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝐿),

𝜙𝑗(𝑡, 0) = 𝜙1(𝑡, 0), 𝜙𝑗(𝑡, 𝐿) = 𝜕𝑥𝜙𝑗(𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇 ),

𝜙𝑗(𝑇, 𝑥) = 𝜙𝑇
𝑗 (𝑥), 𝑥 ∈ (0, 𝐿),

as 𝜙1(𝑡, 0) ∈ 𝐻
1
3 (0, 𝑇 ), Corollary 3.1 ensures that 𝜕𝑘

𝑥𝜙𝑗 ∈ 𝐿∞
𝑥

(︁
0, 𝐿;𝐻 1−𝑘

3 (0, 𝑇 )
)︁

for 𝑘 =

0, 1, 2 and using (3.23) we get

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜙𝑗(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 ),

for 𝐶 > 0 showing this case.
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Case 2: 𝑁 ∈ N and arbitrary lengths 𝑙𝑗 > 0, 𝑗 = 1, . . . , 𝑁 .

Define 𝐿 = max𝑗=1,...,𝑁 𝑙𝑗 and

𝜙𝑇
𝑗 (𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝜙𝑇

𝑗 (𝑥), 𝑥 ∈ (0, 𝑙𝑗),

0, 𝑥 ∈ (0, 𝐿)∖(0, 𝑙𝑗).

Denote by 𝜙 ∈ 𝐶([0, 𝑇 ],L2(𝒯 )) ∩ 𝐿2(0, 𝑇,H1
𝑒(𝒯 )) the solution of (3.12) associated to data

𝜙𝑇 = (𝜙𝑇
1 , ..., 𝜙

𝑇
𝑁) ∈ L2(𝒯 ) = (𝐿2(0, 𝐿))𝑁 . From the previous case, we have

2∑︁
𝑘=0

sup
𝑥∈(0,𝐿)

‖𝜕𝑘
𝑥𝜙𝑗(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 )

It follows from the definition that ‖𝜙𝑇 ‖L2(𝒯 ) = ‖𝜙𝑇 ‖L2(𝒯 ). Also from the definition we have
𝜙𝑇

𝑗 = 𝜙𝑇
𝑗 in (0, 𝑙𝑗) so 𝜙𝑗 and 𝜙𝑗 solve the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝜙𝑗 + 𝜕𝑥𝜙𝑗 + 𝜕3
𝑥𝜙𝑗 = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, 𝑙𝑗),

𝜙𝑗(𝑡, 0) = 𝜙1(𝑡, 0) = 𝜙𝑗(𝑡, 𝑙𝑗) = 𝜕𝑥𝜙𝑗(𝑡, 0) = 0, 𝑡 ∈ (0, 𝑇 ),

𝜙𝑗(𝑇, 𝑥) = 𝜙𝑇
𝑗 (𝑥), 𝑥 ∈ (0, 𝑙𝑗).

Then by uniqueness of solution we obtain 𝜙𝑗 = 𝜙𝑗 in (0, 𝑇 ) × (0, 𝑙𝑗). Consequently, for
𝑗 = 1, . . . , 𝑁 ,

2∑︁
𝑘=0

sup
𝑥∈(0,𝑙𝑗)

‖𝜕𝑘
𝑥𝜙𝑗(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )
=

2∑︁
𝑘=0

sup
𝑥∈(0,𝑙𝑗)

‖𝜕𝑘
𝑥𝜙𝑗(·, 𝑥)‖

𝐻
1−𝑘

3 (0,𝑇 )

≤
2∑︁

𝑘=0
sup

𝑥∈(0,𝐿)
‖𝜕𝑘

𝑥𝜙𝑗(·, 𝑥)‖
𝐻

1−𝑘
3 (0,𝑇 )

≤ 𝐶‖𝜙𝑇 ‖L2(𝒯 )

= 𝐶‖𝜙𝑇 ‖L2(𝒯 ).

which concludes case 2 and, consequently, the proof of Proposition 3.9. □

To finish this subsection, we establish that the traces 𝜕2
𝑥𝜙𝑗(·, 0), 𝜕2

𝑥𝜙𝑗(·, 𝑙𝑗) belong to
𝐿2(0, 𝑇 ) and depend continuously on the initial data.

Proposition 3.10 Given 𝜙𝑇 ∈ L2(𝒯 ), we have that 𝜕2
𝑥𝜙𝑗(·, 𝑥) ∈ 𝐿2(0, 𝑇 ), for any 𝑥 ∈ [0, 𝑙𝑗].

Moreover, the following inequality holds
∫︁ 𝑇

0
(𝜕2

𝑥𝜙𝑗(𝑡, 𝑥))2𝑑𝑡 ≤ 𝐶‖𝜙𝑇 ‖2
L2(𝒯 ), ∀ 𝜙𝑇 ∈ L2(𝒯 ),

for some positive constant 𝐶.
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Proof: Consider the operator
𝑃𝑗 : 𝐻3(0, 𝑙𝑗) → 𝐿2(0, 𝑙𝑗)

defined by 𝑃𝑗𝑤 = 𝜕𝑥𝑤 + 𝜕3
𝑥𝑤. The graph norm in 𝐻3(0, 𝑙𝑗) associated to 𝑃𝑗 is

‖𝑤‖𝑃𝑗
= ‖𝑤‖𝐿2(0,𝑙𝑗) + ‖𝑃𝑗𝑤‖𝐿2(0,𝑙𝑗).

From (MARTIN et al., 2019, Lemma A.2) there exists a constant 𝑑1 > 0 such that

‖𝑤‖𝐻3(0,𝑙𝑗) ≤ 𝑑1‖𝑤‖𝑃𝑗
, ∀𝑤 ∈ 𝐻3(0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁. (3.24)

On the other hand, given 𝑣 = (𝑣1, ..., 𝑣𝑁) ∈ 𝒟(𝐴*) we have

‖𝑣‖𝒟(𝐴*) = ‖𝑣‖L2(𝒯 ) + ‖𝜕𝑥𝑣 + 𝜕3
𝑥𝑣‖L2(𝒯 ) ≥ ‖𝑣‖L2(𝒯 ) =

⎛⎝ 𝑁∑︁
𝑗=1

‖𝑣𝑗‖2
𝐿2(0,𝑙𝑗)

⎞⎠ 1
2

≥ ‖𝑣𝑗‖𝐿2(0,𝑙𝑗)

as well as

‖𝑣‖𝒟(𝐴*) ≥ ‖𝜕𝑥𝑣 + 𝜕3
𝑥𝑣‖L2(𝒯 ) =

⎛⎝ 𝑁∑︁
𝑗=1

‖𝜕𝑥𝑣𝑗 + 𝜕3
𝑥𝑣𝑗‖2

𝐿2(0,𝑙𝑗)

⎞⎠ 1
2

≥ ‖𝜕𝑥𝑣𝑗 + 𝜕3
𝑥𝑣𝑗‖𝐿2(0,𝑙𝑗).

Therefore, this yields

‖𝑣𝑗‖𝑃𝑗
≤ 2‖𝑣‖𝒟(𝐴*), 𝑗 = 1, . . . , 𝑁. (3.25)

Let us first assume that 𝜙𝑇
𝑗 ∈ 𝒟((𝐴*)2).

Claim: We claim that 𝜕2
𝑥𝜙𝑗(𝑡, ·) ∈ 𝐶([0, 𝑙𝑗]) for every 𝑡 ∈ [0, 𝑇 ] and 𝜕2

𝑥𝜙𝑗(·, 𝑥) ∈ 𝐶1([0, 𝑇 ])

for every 𝑥 ∈ [0, 𝑙𝑗].

Indeed, since 𝜙 ∈ 𝐶([0, 𝑇 ],𝒟(𝐴*)) we have 𝜕2
𝑥𝜙𝑗(𝑡, ·) ∈ 𝐻1(0, 𝑙𝑗) →˓ 𝐶([0, 𝑙𝑗]). Hence,

fixed 𝑥 ∈ [0, 𝑙𝑗], for some constant 𝑑2 > 0 we get

|𝜕2
𝑥𝜙𝑗(𝑡, 𝑥) − 𝜕2

𝑥𝜙𝑗(𝑡0, 𝑥)| ≤ ‖𝜕2
𝑥𝜙𝑗(𝑡, ·) − 𝜕2

𝑥𝜙𝑗(𝑡0, ·)‖𝐶([0,𝑙𝑗 ])

≤ 𝑑2‖𝜕2
𝑥𝜙𝑗(𝑡, ·) − 𝜕2

𝑥𝜙𝑗(𝑡0, ·)‖𝐻1(0,𝑙𝑗)

≤ 𝑑2‖𝜙𝑗(𝑡, ·) − 𝜙𝑗(𝑡0, ·)‖𝐻3(0,𝑙𝑗)

for any 𝑡, 𝑡0 ∈ [0, 𝑇 ]. Using (3.24) and (3.25) we obtain

|𝜕2
𝑥𝜙𝑗(𝑡, 𝑥) − 𝜕2

𝑥𝜙𝑗(𝑡0, 𝑥)| ≤ 2𝑑1𝑑2‖𝜙𝑗(𝑡, ·) − 𝜙𝑗(𝑡0, ·)‖𝒟(𝐴*),
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from where we conclude that 𝜕2
𝑥𝜙𝑗(·, 𝑥) ∈ 𝐶([0, 𝑇 ]). Analogously, 𝜕𝑡𝜙 ∈ 𝐶([0, 𝑇 ],𝒟(𝐴*)) so

|𝜕2
𝑥𝜕𝑡𝜙𝑗(𝑡, 𝑥) − 𝜕2

𝑥𝜕𝑡𝜙𝑗(𝑡0, 𝑥)| ≤ ‖𝜕2
𝑥𝜕𝑡𝜙𝑗(𝑡, ·) − 𝜕2

𝑥𝜕𝑡𝜙𝑗(𝑡0, ·)‖𝐶([0,𝑙𝑗 ])

≤ 𝑑2‖𝜕2
𝑥𝜕𝑡𝜙𝑗(𝑡, ·) − 𝜕2

𝑥𝜕𝑡𝜙𝑗(𝑡0, ·)‖𝐻1(0,𝑙𝑗)

≤ 𝑑2‖𝜕𝑡𝜙𝑗(𝑡, ·) − 𝜕𝑡𝜙𝑗(𝑡0, ·)‖𝐻3(0,𝑙𝑗)

≤ 2𝑑1𝑑2‖𝜕𝑡𝜙𝑗(𝑡, ·) − 𝜕𝑡𝜙𝑗(𝑡0, ·)‖𝒟(𝐴*)

and, consequently, 𝜕𝑡𝜕
2
𝑥𝜙𝑗(·, 𝑥) ∈ 𝐶([0, 𝑇 ]), showing the claim.

Due to embeddings

𝐻1(0, 𝑇 ) →˓ 𝐻
1
3 (0, 𝑇 ) →˓ 𝐿2(0, 𝑇 ) →˓ 𝐻− 1

3 (0, 𝑇 )

we obtain, for each 𝑥 ∈ [0, 𝑙𝑗],∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑥)𝑑𝑡 = ‖𝜕2

𝑥𝜙𝑗(·, 𝑥)‖2
𝐿2(0,𝑇 ) ≤ 𝐶‖𝜕2

𝑥𝜙𝑗(·, 𝑥)‖2
𝐻

1
3 (0,𝑇 )

= 𝐶‖𝜕2
𝑥𝜙𝑗(·, 𝑥)‖2

𝐻− 1
3 (0,𝑇 )

.

Using Proposition 3.9 it follows that∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑥)𝑑𝑡 ≤ 𝐶‖𝜙𝑇

𝑗 ‖2
L2(𝒯 ).

Finally, with an argument of density and continuity, we extend the result for every 𝜙𝑇
𝑗 ∈

L2(𝒯 ). The result is thus achieved. □

3.4.5 Regularity for data in regular space

For this subsection it is convenient to remember the spaces defined in (3.3) and (3.4),
namely, for 𝑚 = 0, ..., 𝑁 ,

𝑋𝑚 =
𝑚∏︁

𝑗=1
𝐿2(0, 𝑙𝑗) ×

𝑁∏︁
𝑖=𝑚+1

𝐻1
0 (0, 𝑙𝑖) and 𝑌𝑚 =

𝑚∏︁
𝑗=1

𝐻1(0, 𝑙𝑗) ×
𝑁∏︁

𝑖=𝑚+1
𝐻2(0, 𝑙𝑖).

With this spaces in hand, we have the following proposition.

Proposition 3.11 If the final data, 𝜙𝑇 ∈ 𝑋𝑚 then the corresponding solution 𝜙 of the system
(3.13) has the additional regularity 𝜙 ∈ 𝐿2(0, 𝑇 ;𝑌𝑚) with

‖𝜙‖𝐿2(0,𝑇 ;𝑌𝑚) ≤ 𝐶‖𝜙𝑇 ‖𝑋𝑚 .

for some positive constant 𝐶. Furthermore, the estimate

‖𝜙𝑇 ‖2
𝑋𝑚

≤ 1
𝑇

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗 +
(︂ 1
𝑇

+ 6
𝜎

)︂ 𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗 + 2

(︂
𝛼− 𝑁

2

)︂ ∫︁ 𝑇

0
𝜙2

1(𝑡, 0)

+ 2
𝑁∑︁

𝑗=𝑚+1
‖𝜙𝑇

𝑗 ‖2
𝐿2(0,𝑙𝑗) +

𝑚∑︁
𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) +

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑙𝑗),
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is verified for every 𝜙𝑇 ∈ 𝑋𝑚, where 𝜎 := min
1≤𝑗≤𝑁

𝑙𝑗.

Proof: Once we have that

‖𝜙‖2
𝐿2(0,𝑇 ;𝑌𝑚) =

∫︁ 𝑇

0
‖𝜙(𝑡, ·)‖2

𝑌𝑚
𝑑𝑡 =

∫︁ 𝑇

0

𝑚∑︁
𝑗=1

‖𝜙𝑗(𝑡, ·)‖2
𝐻1(0,𝑙𝑗)𝑑𝑡+

∫︁ 𝑇

0

𝑁∑︁
𝑗=𝑚+1

‖𝜙𝑗(𝑡, ·)‖2
𝐻2(0,𝑙𝑗)𝑑𝑡

≤ ‖𝜙‖2
𝐿2(0,𝑇 ;H1

𝑒(𝒯 )) +
𝑁∑︁

𝑗=𝑚+1

∫︁ 𝑇

0
‖𝜙𝑗(𝑡, ·)‖2

𝐻2(0,𝑙𝑗)𝑑𝑡,

from the first part of Proposition 3.2, it is sufficient to show that 𝜙𝑗 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝑙𝑗)) for
𝑗 = 𝑚+ 1, . . . , 𝑁 with

𝑁∑︁
𝑗=𝑚+1

‖𝜙𝑗‖2
𝐿2(0,𝑇 ;𝐻2(0,𝑙𝑗)) ≤ 𝐶‖𝜙𝑇 ‖2

𝑋𝑚
(3.26)

for some constant 𝐶 > 0.
To do this, first assume 𝜙𝑇 ∈ 𝒟(𝐴*) ∩ 𝑋𝑚, the result for all 𝜙𝑇 ∈ 𝑋𝑚 follows by an

argument of density. In this case, it is clear that 𝜙𝑗(𝑡, ·) ∈ 𝐻2(0, 𝑙𝑗). Let 𝑞𝑗 ∈ 𝐶∞([0, 𝑇 ]×[0, 𝑙𝑗])

be given. Multiplying the adjoint system (3.13) by 𝑞𝑗𝜕
2
𝑥𝜙𝑗, integrating by parts, and using the

boundary conditions, we get
1
2

∫︁ 𝑇

0
(𝑞𝑗𝜕

2
𝑥𝜙

2
𝑗)(𝑡, 𝑙𝑗) + 1

2

∫︁ 𝑇

0
(𝑞𝑗𝜕𝑥𝜙

2
𝑗)(𝑡, 𝑙𝑗) = −1

2

∫︁ 𝑙𝑗

0
(𝑞𝑗𝜕𝑥𝜙

2
𝑗)(0, 𝑥) −

∫︁ 𝑇

0
(𝜕𝑥𝑞𝑗𝜕𝑥𝜙𝑗𝜕

2
𝑥𝜙𝑗)(𝑡, 𝑙𝑗)

− 1
2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗(𝜕𝑡𝑞𝑗 + 𝜕𝑥𝑞𝑗 + 𝜕3

𝑥𝑞𝑗) + 3
2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝑞𝑗𝜕

2
𝑥𝜙

2
𝑗

+ 1
2

∫︁ 𝑇

0
𝑞𝑗(𝑡, 0)𝜕2

𝑥𝜙
2
𝑗(𝑡, 0) + 1

2

∫︁ 𝑙𝑗

0
𝑞𝑗(𝑇, 𝑥)𝜕𝑥𝜙

2
𝑗(𝑇, 𝑥)

+ 1
2

∫︁ 𝑇

0
(𝜕2

𝑥𝑞𝑗𝜕𝑥𝜙
2
𝑗)(𝑡, 𝑙𝑗).

(3.27)

Choosing 𝑞𝑗 = 𝑙𝑗 − 𝑥, it follows that
1
2

∫︁ 𝑙𝑗

0
(𝑙𝑗 − 𝑥)𝜕𝑥𝜙

2
𝑗(0, 𝑥) + 3

2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕2

𝑥𝜙
2
𝑗 =

∫︁ 𝑇

0
(𝜕𝑥𝜙𝑗𝜕

2
𝑥𝜙𝑗)(𝑡, 𝑙𝑗) + 1

2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗

+ 𝑙𝑗
2

∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 0) + 1

2

∫︁ 𝑙𝑗

0
(𝑙𝑗 − 𝑥)𝜕𝑥𝜙

2
𝑗(𝑇, 𝑥).

By Young’s inequality and Propositions 3.2 and 3.10, we conclude that there exists 𝐶 > 0

such that∫︁ 𝑇

0
(𝜕𝑥𝜙𝑗𝜕

2
𝑥𝜙𝑗)(𝑡, 𝑙𝑗) ≤ 1

2

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) + 1

2

∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑙𝑗) ≤ 𝐶‖𝜙𝑇 ‖2

L2(𝒯 ).

Defining 𝑀 = max
1≤𝑗≤𝑁

𝑙𝑗, for 𝑗 = 𝑚+ 1, . . . , 𝑁 , and, again, using Propositions 3.2 and 3.10, it
follows that exists another constant, still denote by 𝐶 > 0, such that∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕2

𝑥𝜙
2
𝑗 ≤ 𝐶‖𝜙𝑇 ‖2

𝑋𝑚
.
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Combining this with the Proposition 3.2 we obtain, 𝜙𝑗 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝑙𝑗) and

‖𝜙𝑗‖𝐿2(0,𝑇 ;𝐻2(0,𝑙𝑗)) ≤ 𝐶*‖𝜙𝑇 ‖𝑋𝑚 , ∀ 𝜙𝑇 ∈ 𝒟(𝐴*) ∩𝑋𝑚,

where 𝐶* > 0 is a constant and 𝑗 = 𝑚 + 1, . . . , 𝑁 . Since 𝒟(𝐴*) ∩ 𝑋𝑚 is dense in 𝑋𝑚, the
map

𝒟(𝐴*) ∩𝑋𝑚 → 𝐿2(0, 𝑇 ;𝐻2(0, 𝑙𝑗))

𝜙𝑇 ↦→ 𝜙𝑗

extends continuously to the entire 𝑋𝑚 with

‖𝜙𝑗‖𝐿2(0,𝑇 ;𝐻2(0,𝑙𝑗)) ≤ 𝐶*‖𝜙𝑇 ‖𝑋𝑚 , ∀𝜙𝑇 ∈ 𝑋𝑚

and therefore (3.26) holds with 𝐶 = (𝑁 −𝑚)(𝐶*)2.

For the second part, in (3.27) choosing 𝑞𝑗 = 𝑡 we get

1
2

∫︁ 𝑇

0
𝑡𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑙𝑗) + 1

2

∫︁ 𝑇

0
𝑡𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) + 1

2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗 =1

2

∫︁ 𝑇

0
𝑡𝜕2

𝑥𝜙
2
𝑗(𝑡, 0) + 𝑇

2

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗(𝑇, 𝑥),

where it follows that

‖𝜕𝑥𝜙
𝑇
𝑗 ‖2

𝐿2(0,𝑙𝑗) ≤ 1
𝑇

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗 +

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) +

∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁. (3.28)

On the other hand, by multiplying the adjoint system (3.13) by 𝑞𝑗𝜙𝑗, integrating by parts, and
using the boundary conditions, we get

1
2

∫︁ 𝑙𝑗

0
𝑞𝑗(𝑇, 𝑥)𝜙2

𝑗(𝑇, 𝑥) + 3
2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝑞𝑗𝜕𝑥𝜙

2
𝑗 =1

2

∫︁ 𝑇

0

(︁
𝑞𝑗(𝑡, 0) + 𝜕2

𝑥𝑞𝑗(𝑡, 0)
)︁
𝜙2

1(𝑡, 0)

+
∫︁ 𝑇

0
𝑞𝑗(𝑡, 0)𝜙1(𝑡, 0)𝜕2

𝑥𝜙𝑗(𝑡, 0)

+ 1
2

∫︁ 𝑇

0
𝑞𝑗(𝑡, 𝑙𝑗)𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗)

+ 1
2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗(𝜕𝑡𝑞𝑗 + 𝜕𝑥𝑞𝑗 + 𝜕3
𝑥𝑞𝑗)

+ 1
2

∫︁ 𝑙𝑗

0
𝑞𝑗(0, 𝑥)𝜙2

𝑗(0, 𝑥),

(3.29)

for 𝑗 = 1, . . . , 𝑁 . Choosing 𝑞𝑗 = 𝑥 in (3.29), it follows that

𝑙𝑗
2

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) + 1

2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗 + 1
2

∫︁ 𝑙𝑗

0
𝑥𝜙2

𝑗(0, 𝑥) = 1
2

∫︁ 𝑙𝑗

0
𝑥𝜙2

𝑗(𝑇, 𝑥) + 3
2

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗

which implies, in particular, that∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) ≤

∫︁ 𝑙𝑗

0
𝜙2

𝑗(𝑇, 𝑥) + 3
𝑙𝑗

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗 , 𝑗 = 1, . . . , 𝑁. (3.30)
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Now, assuming 𝑞𝑗(𝑡, 0) = 𝑞1(𝑡, 0) and summing on 𝑗 in (3.29) we obtain

1
2

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
𝑞𝑗(𝑇, 𝑥)𝜙2

𝑗(𝑇, 𝑥) + 3
2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝑞𝑗𝜕𝑥𝜙

2
𝑗 =1

2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗(𝜕𝑡𝑞𝑗 + 𝜕𝑥𝑞𝑗 + 𝜕3
𝑥𝑞𝑗)

+
(︂
𝛼− 𝑁

2

)︂ ∫︁ 𝑇

0
𝑞1(𝑡, 0)𝜙2

1(𝑡, 0)

+ 1
2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0
𝑞𝑗(𝑡, 𝑙𝑗)𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗)

+ 1
2

𝑁∑︁
𝑗=1

∫︁ 𝑇

0
𝜕2

𝑥𝑞𝑗(𝑡, 0)𝜙2
1(𝑡, 0)

+ 1
2

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
𝑞𝑗(0, 𝑥)𝜙2

𝑗(0, 𝑥).

Now, choosing 𝑞𝑗 = 𝑡 in (3.29), we also have that

𝑁∑︁
𝑗=1

‖𝜙𝑇
𝑗 ‖2

𝐿2(0,𝑙𝑗) ≤ 1
𝑇

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗 + 2
(︂
𝛼− 𝑁

2

)︂ ∫︁ 𝑇

0
𝜙2

1(𝑡, 0) +
𝑁∑︁

𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗), (3.31)

for 𝑗 = 1, . . . , 𝑁 . Using (3.28) and (3.31) we get that

‖𝜙𝑇 ‖2
𝑋𝑚

=
𝑚∑︁

𝑗=1
‖𝜙𝑇

𝑗 ‖2
𝐿2(0,𝑙𝑗) +

𝑁∑︁
𝑗=𝑚+1

‖𝜙𝑇
𝑗 ‖2

𝐻1
0 (0,𝑙𝑗)

=
𝑚∑︁

𝑗=1
‖𝜙𝑇

𝑗 ‖2
𝐿2(0,𝑙𝑗) +

𝑁∑︁
𝑗=𝑚+1

‖𝜕𝑥𝜙
𝑇
𝑗 ‖2

𝐿2(0,𝑙𝑗)

≤ 1
𝑇

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗 + 2
(︂
𝛼− 𝑁

2

)︂ ∫︁ 𝑇

0
𝜙2

1(𝑡, 0) +
𝑁∑︁

𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗)

+ 1
𝑇

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗 +

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) +

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑙𝑗).

Observe that from (3.30), the following holds

2
𝑁∑︁

𝑗=𝑚+1

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) ≤ 2

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑙𝑗

0
𝜙2

𝑗(𝑇, 𝑥) +
𝑁∑︁

𝑗=𝑚+1

6
𝑙𝑗

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗 ,

and consequently

‖𝜙𝑇 ‖2
𝑋𝑚

≤ 1
𝑇

𝑁∑︁
𝑗=1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜙2

𝑗 +
(︂ 1
𝑇

+ 6
𝜎

)︂ 𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0

∫︁ 𝑙𝑗

0
𝜕𝑥𝜙

2
𝑗 + 2

(︂
𝛼− 𝑁

2

)︂ ∫︁ 𝑇

0
𝜙2

1(𝑡, 0)

+ 2
𝑁∑︁

𝑗=𝑚+1
‖𝜙𝑇

𝑗 ‖2
𝐿2(0,𝑙𝑗) +

𝑚∑︁
𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙

2
𝑗(𝑡, 𝑙𝑗) +

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕2

𝑥𝜙
2
𝑗(𝑡, 𝑙𝑗),

giving the result. □
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3.5 BOUNDARY OBSERVATION: NEUMANN AND DIRICHLET CONDITIONS

From now on, 𝛼 = 𝑁 . Fixed 𝑚 = 0, . . . , 𝑁 , we will consider Neumann boundary controls
on the first 𝑚 edges and Dirichlet boundary controls on the remaining ones. We only analyze
the reachable states from the origin, that is, we will consider 𝑢0

𝑗 = 0 (the case where 𝑢0 ∈

L2(𝒯 ) is arbitrary and 𝑢𝑇 = 0 is done similarly and leads to the same observability inequality).
In these terms, we have the following characterization of the controllability.

Lemma 3.1 For 𝑇 > 0, the controls 𝑔𝑗 ∈ 𝐿2(0, 𝑇 ), 𝑗 = 1, . . . ,𝑚 and 𝑝𝑗 ∈ 𝐿2(0, 𝑇 ),
𝑗 = 𝑚+ 1, . . . , 𝑁 , drive 𝑢0

𝑗 = 0 to 𝑢𝑇 ∈ L2(𝒯 ) if and only if
𝑁∑︁

𝑗=1

∫︁ 𝑙𝑗

0
𝑢𝑇

𝑗 𝜙
𝑇
𝑗 =

𝑚∑︁
𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝑔𝑗(𝑡) −

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕2

𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝑝𝑗(𝑡), (3.32)

for any 𝜙𝑇 = (𝜙𝑇
1 , ..., 𝜙

𝑇
𝑁) ∈ L2(𝒯 ) and 𝜙 solution of the system (3.13) associated to 𝜙𝑇 .

Proof: Let 𝑢 be the solution of (3.12) corresponding to 𝑢0
𝑗 . Given 𝜙𝑇 ∈ L2(𝒯 ), multiplying

the first equation in (3.12) by the solution 𝜙 of (3.13), integrating by parts and using the
boundary conditions, we obtain
𝑁∑︁

𝑗=1

∫︁ 𝑙𝑗

0
𝑢𝑗(𝑇, 𝑥)𝜙𝑇

𝑗 −
𝑁∑︁

𝑗=1

∫︁ 𝑙𝑗

0
𝑢0

𝑗(𝑥)𝜙𝑗(0, 𝑥) =
𝑚∑︁

𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝑔𝑗(𝑡) −

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕2

𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝑝𝑗(𝑡)

so, for 𝑢0
𝑗 = 0 we have that

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
𝑢𝑗(𝑇, 𝑥)𝜙𝑇

𝑗 (𝑥) =
𝑚∑︁

𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝑔𝑗(𝑡) −

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕2

𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝑝𝑗(𝑡), ∀𝜙𝑇 ∈ L2(𝒯 ).

(3.33)

If 𝑢(𝑇, ·) = 𝑢𝑇 then (3.32) immediately follows from (3.33). Conversely, if (3.32) holds, thanks
to (3.33) holds that

(𝑢(𝑇, ·), 𝜙𝑇 )L2(𝒯 ) = (𝑢𝑇 , 𝜙𝑇 )L2(𝒯 ), ∀𝜙𝑇 ∈ L2(𝒯 ),

and consequently 𝑢(𝑇, ·) = 𝑢𝑇 , showing the lemma. □

Consider the bilinear map 𝐵 : L2(𝒯 ) × L2(𝒯 ) → R given by

𝐵(𝜙𝑇 , 𝜓𝑇 ) =
𝑁∑︁

𝑗=1

∫︁ 𝑇

0
𝑢𝑗(𝑇, 𝑥)𝜓𝑇

𝑗 (𝑥),

with 𝑢 = (𝑢1, ..., 𝑢𝑁) being the solution of the system (3.12) with boundary controls 𝑝𝑗 =

−𝜕2
𝑥𝜙𝑗(·, 𝑙𝑗) and 𝑔𝑗 = 𝜕𝑥𝜙𝑗(·, 𝑙𝑗), where 𝜙(𝑡, ·) = 𝑆(𝑇 − 𝑡)𝜙𝑇 . Let us prove some properties

of the bilinear map 𝐵.
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(i) B is continuous.

Using the multiplier method, we obtain

𝐵(𝜙𝑇 , 𝜓𝑇 ) =
𝑁∑︁

𝑗=1

∫︁ 𝑇

0
𝑢𝑗(𝑇, 𝑥)𝜓𝑇

𝑗 (𝑥) =
𝑚∑︁

𝑗=1

∫︁ 𝑇

0
𝑔𝑗(𝑡)𝜓𝑗𝑥(𝑡, 𝑙𝑗) −

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝑝𝑗(𝑡)𝜓𝑗𝑥𝑥(𝑡, 𝑙𝑗)

=
𝑚∑︁

𝑗=1

∫︁ 𝑇

0
𝜕𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝜓𝑗𝑥(𝑡, 𝑙𝑗) +

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝜕2

𝑥𝜙𝑗(𝑡, 𝑙𝑗)𝜓𝑗𝑥𝑥(𝑡, 𝑙𝑗).

From the Propositions 3.2 and 3.10, we have that 𝐵 is continuous, giving (i).

(ii) If B is coercive, then exact controllability holds, that is, 𝑢(𝑇, ·) = 𝑢𝑇 .

Indeed, assume for a moment that 𝐵 is coercive. Then given 𝑢𝑇 ∈ L2(𝒯 ), from the
Lax-Milgram theorem, there exists 𝜙𝑇 ∈ L2(𝒯 ) such that

𝑁∑︁
𝑗=1

∫︁ 𝑙𝑗

0
𝑢𝑇

𝑗 𝜓
𝑇
𝑗 = 𝐵(𝜙𝑇 , 𝜓𝑇 ), ∀𝜓𝑇 ∈ L2(𝒯 ).

Thus, for 𝜙(𝑡, ·) = 𝑆(𝑇−𝑡)𝜙𝑇 , 𝑝𝑗 = −𝜕2
𝑥𝜙𝑗(·, 𝑙𝑗) and 𝑔𝑗 = 𝜕𝑥𝜙𝑗(·, 𝑙𝑗) the solution 𝑢 of (3.12)

satisfies
𝑁∑︁

𝑗=1

∫︁ 𝑙𝑗

0
𝑢𝑇

𝑗 𝜓
𝑇
𝑗 = 𝐵(𝜙𝑇 , 𝜓𝑇 ) =

𝑚∑︁
𝑗=1

∫︁ 𝑇

0
𝑔𝑗(𝑡)𝜓𝑗𝑥(𝑡, 𝑙𝑗) −

𝑁∑︁
𝑗=𝑚+1

∫︁ 𝑇

0
𝑝𝑗(𝑡)𝜓𝑗𝑥𝑥(𝑡, 𝑙𝑗),

for every 𝜓𝑇 ∈ L2(𝒯 ), which implies, by Lemma 3.1, that 𝑢(𝑇, ·) = 𝑢𝑇 , ensuring (ii).

3.5.1 Observability inequality

Note that the coercivity of 𝐵 is equivalent to proving the following observability inequality,
that is, the existence of a constant 𝐶 > 0 such that

‖𝜙𝑇 ‖2
L2(𝒯 ) ≤ 𝐶

⎛⎝ 𝑚∑︁
𝑗=1

‖𝜕𝑥𝜙𝑗(·, 𝑙𝑗)‖2
𝐿2(0,𝑇 ) +

𝑁∑︁
𝑗=𝑚+1

‖𝜕2
𝑥𝜙𝑗(·, 𝑙𝑗)‖2

𝐿2(0,𝑇 )

⎞⎠ , ∀𝜙𝑇 ∈ L2(𝒯 ).

(3.34)

But to check (3.34) it is sufficient to check

‖𝜙𝑇 ‖2
𝑋𝑚

≤ 𝐶

⎛⎝ 𝑚∑︁
𝑗=1

‖𝜕𝑥𝜙𝑗(·, 𝑙𝑗)‖2
𝐿2(0,𝑇 ) +

𝑁∑︁
𝑗=𝑚+1

‖𝜕2
𝑥𝜙𝑗(·, 𝑙𝑗)‖2

𝐿2(0,𝑇 )

⎞⎠ , ∀𝜙𝑇 ∈ 𝑋𝑚, (3.35)

for some positive constant 𝐶.
Indeed, given 𝜙𝑇 ∈ L2(𝒯 ), since 𝑋𝑚 is dense in L2(𝒯 ) there exists a sequence (𝜙𝑇,𝑛)𝑛∈N ⊂

𝑋𝑚 such that 𝜙𝑇,𝑛 → 𝜙𝑇 in L2(𝒯 ). From Propositions 3.2 and 3.10 it follows that 𝜕𝑥𝜙
𝑛
𝑗 (·, 𝑙𝑗) →
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𝜕𝑥𝜙𝑗(·, 𝑙𝑗) and 𝜕2
𝑥𝜙

𝑛
𝑗 (·, 𝑙𝑗) → 𝜕2

𝑥𝜙𝑗(·, 𝑙𝑗) in 𝐿2(0, 𝑇 ). Furthermore, using the Poincaré inequal-
ity, we get, for some 𝑐 > 0,

‖𝜙𝑇,𝑛‖L2(𝒯 ) ≤ 𝑐‖𝜙𝑇,𝑛‖𝑋𝑚 .

If (3.35) holds, then

‖𝜙𝑇,𝑛‖2
L2(𝒯 ) ≤ 𝑐2𝐶

⎛⎝ 𝑚∑︁
𝑗=1

‖𝜕𝑥𝜙
𝑛
𝑗 (·, 𝑙𝑗)‖2

𝐿2(0,𝑇 ) +
𝑁∑︁

𝑗=𝑚+1
‖𝜕2

𝑥𝜙
𝑛
𝑗 (·, 𝑙𝑗)‖2

𝐿2(0,𝑇 )

⎞⎠
and passing to the limit, it follows that

‖𝜙𝑇 ‖2
L2(𝒯 ) ≤ 𝑐2𝐶

⎛⎝ 𝑚∑︁
𝑗=1

‖𝜕𝑥𝜙𝑗(·, 𝑙𝑗)‖2
𝐿2(0,𝑇 ) +

𝑁∑︁
𝑗=𝑚+1

‖𝜕2
𝑥𝜙𝑗(·, 𝑙𝑗)‖2

𝐿2(0,𝑇 )

⎞⎠
so (3.34) holds with 𝐶 = 𝑐2𝐶 > 0.

Remark 3.1 The advantage of working with data in 𝑋𝑚 for the adjoint system is that, in
addition to the additional regularity for the solution, the estimate given in the Proposition 3.11
carries information related to the two types of controls used, while the corresponding estimate
for data in L2(𝒯 ) carries only information related to the Neumann controls types.

The following two results will be useful to investigate the inequality (3.35).

Lemma 3.2 For any 𝐿 > 0, if 𝑦 ∈ 𝐻1(0, 𝐿) then −𝜕𝑥𝑦 − 𝜕3
𝑥𝑦 ∈ 𝐻−2(0, 𝐿) with

‖ − 𝜕𝑥𝑦 − 𝜕3
𝑥𝑦‖𝐻−2(0,𝐿) ≤ ‖𝑦‖𝐻1(0,𝐿).

Proof: We know that 𝐻−2(0, 𝐿) has the following characterization:

𝐻−2(0, 𝐿) =
{︁
𝑇 ∈ 𝒟′(0, 𝐿); 𝑇 = 𝑔0 + 𝜕𝑥𝑔1 + 𝜕2

𝑥𝑔2, 𝑔0, 𝑔1, 𝑔2 ∈ 𝐿2(0, 𝐿)
}︁

where the derivatives are taken in the distributional sense. Moreover,

‖𝑇‖𝐻−2(0,𝐿) = inf

⎧⎪⎨⎪⎩
⎛⎝ 2∑︁

𝑗=1
‖𝑔𝑖‖2

𝐿2(0,𝐿)

⎞⎠ 1
2

; 𝑔0, 𝑔1, 𝑔2 ∈ 𝐿2(0, 𝐿) and 𝑇 = 𝑔0 + 𝜕𝑥𝑔1 + 𝜕2
𝑥𝑔2

⎫⎪⎬⎪⎭ .
Suppose that 𝑦 ∈ 𝐻1(0, 𝐿). Defining 𝑔0 = 0, 𝑔1 = −𝑦 and 𝑔2 = −𝜕𝑥𝑦 we have 𝑔0, 𝑔1, 𝑔2 ∈

𝐿2(0, 𝐿) and

−𝜕𝑥𝑦 − 𝜕3
𝑥𝑦 = 𝑔0 + 𝜕𝑥𝑔1 + 𝜕2

𝑥𝑔2
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so −𝜕𝑥𝑦 − 𝜕3
𝑥𝑦 ∈ 𝐻−2(0, 𝐿). Furthermore,

‖ − 𝜕𝑥𝑦 − 𝜕3
𝑥𝑦‖𝐻−2(0,𝐿) ≤

⎛⎝ 2∑︁
𝑗=1

‖𝑔𝑖‖2
𝐿2(0,𝐿)

⎞⎠ 1
2

=
(︁
‖𝑦‖2

𝐿2(0,𝐿) + ‖𝜕𝑥𝑦‖2
𝐿2(0,𝐿)

)︁ 1
2 = ‖𝑦‖𝐻1(0,𝐿),

giving the result. □

From now on, we will focus our efforts on describing the lengths 𝑙𝑗 = 𝐿 > 0 for which the
observability (3.35) holds. We strictly follow the argument used in (ROSIER, 1997).

Lemma 3.3 Let 𝑇 > 0 be given. If the observability inequality (3.35) does not occur, then
there exists 𝜙𝑇 ∈ 𝑋𝑚 with ‖𝜙𝑇 ‖𝑋𝑚 = 1 for which the corresponding solution 𝜙 of (3.13)
satisfies

𝜕𝑥𝜙𝑗(·, 𝑙𝑗) = 0, 𝑗 = 1, . . . ,𝑚 and 𝜕2
𝑥𝜙𝑗(·, 𝑙𝑗) = 0, 𝑗 = 𝑚+ 1, . . . , 𝑁. (3.36)

Proof: Suppose that (3.35) is false. Then given 𝑛 ∈ N there exists 𝜙𝑇,𝑛 ∈ 𝑋𝑚∖{0} such that
𝑚∑︁

𝑗=1
‖𝜕𝑥𝜙

𝑛
𝑗 (·, 𝑙𝑗)‖2

𝐿2(0,𝑇 ) +
𝑛∑︁

𝑗=𝑚+1
‖𝜕2

𝑥𝜙
𝑛
𝑗 (·, 𝑙𝑗)‖2

𝐿2(0,𝑇 ) <
1
𝑛
, ∀𝑛 ∈ N. (3.37)

First note that thanks to Proposition 3.11 we have for 𝑗 = 1, . . . , 𝑁

‖𝜙𝑛
𝑗 ‖𝐿2(0,𝑇,𝐻1(0,𝑙𝑗)) ≤ ‖𝜙𝑛‖𝐿2(0,𝑇 ;H1

𝑒(𝒯 )) ≤ ‖𝜙𝑛‖𝐿2(0,𝑇 ;𝑌𝑚) ≤ 𝐶9‖𝜙𝑇,𝑛‖𝑋𝑚 = 𝐶9,

that is, (𝜙𝑛
𝑗 )𝑛∈N is bounded in 𝐿2(0, 𝑇 ;𝐻1(0, 𝑙𝑗)). On the other hand, using Lemma 3.2

‖𝜕𝑡𝜙𝑗(𝑡, ·)‖𝐻−2(0,𝑙𝑗) = ‖ − 𝜕𝑥𝜙
𝑛
𝑗 (𝑡, ·) − 𝜕3

𝑥𝜙
𝑛
𝑗 (𝑡, ·)‖𝐻−2(0,𝑙𝑗) ≤ ‖𝜙𝑛

𝑗 (𝑡, ·)‖𝐻1(0,𝑙𝑗)

from where do we obtain

‖𝜕𝑡𝜙
𝑛
𝑗 ‖𝐿2(0,𝑇 ;𝐻−2(0,𝑙𝑗)) ≤ ‖𝜙𝑛

𝑗 ‖𝐿2(0,𝑇 ;𝐻1(0,𝑙𝑗)) ≤ 𝐶9.

Thus (𝜕𝑡𝜙
𝑛
𝑗 )𝑛∈N is bounded in 𝐿2(0, 𝑇 ;𝐻−2(0, 𝑙𝑗)). Since the first embedding in

𝐻1(0, 𝑙𝑗) →˓ 𝐿2(0, 𝑙𝑗) →˓ 𝐻−2(0, 𝑙𝑗)

is compact, from Aubin-Lions Lemma (see (AUBIN, 1963; SIMON, 1986)) it follows that (𝜙𝑛
𝑗 )𝑛∈N

is relatively compact in 𝐿2(0, 𝑇 ;𝐿2(0, 𝑙𝑗)) and therefore it admits a convergent subsequence
in 𝐿2(0, 𝑇 ;𝐿2(0, 𝑙𝑗)).

Analogously, the Proposition 3.11 gives us for 𝑗 = 𝑚+ 1, . . . , 𝑁

‖𝜙𝑛
𝑗 ‖𝐿2(0,𝑇 ;𝐻2(0,𝑙𝑗)) ≤ ‖𝜙𝑛‖𝐿2(0,𝑇 ;𝑌𝑚) ≤ 𝐶9‖𝜙𝑇,𝑛‖𝑋𝑚 = 𝐶9,
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that is, (𝜙𝑛
𝑗 )𝑛∈N is bounded in 𝐿2(0, 𝑇 ;𝐻2(0, 𝑙𝑗)). As (𝜕𝑡𝜙

𝑛
𝑗 )𝑛∈N is bounded in 𝐿2(0, 𝑇 ;𝐻−2(0, 𝑙𝑗))

and the first embedding in

𝐻2(0, 𝑙𝑗) →˓ 𝐻1(0, 𝑙𝑗) →˓ 𝐻−2(0, 𝑙𝑗)

is compact, from Aubin-Lions Lemma (see (AUBIN, 1963; SIMON, 1986)) we have (𝜙𝑛
𝑗 )𝑛∈N rela-

tively compact in 𝐿2(0, 𝑇 ;𝐻1(0, 𝑙𝑗)), that is, it has a convergent subsequence in 𝐿2(0, 𝑇 ;𝐻1(0, 𝑙𝑗)).
Now, due to Proposition 3.9, the sequence (𝜙𝑛

1 (·, 0))𝑛∈N is bounded in 𝐻
1
3 (0, 𝑇 ) and

thanks to compact embedding 𝐻
1
3 (0, 𝑇 ) →˓ 𝐿2(0, 𝑇 ) we can extract from it a convergent

subsequence in 𝐿2(0, 𝑇 ). In the same way, (𝜙𝑇,𝑛
𝑗 )𝑛∈N has a convergent subsequence in 𝐿2(0, 𝑙𝑗)

due to compact embedding 𝐻1
0 (0, 𝑙𝑗) →˓ 𝐿2(0, 𝑙𝑗). In summary, there exists a subsequence

(𝜙𝑇,𝑛𝑘)𝑘∈N of (𝜙𝑇,𝑛)𝑛∈N satisfying the following items:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝜙𝑛𝑘
𝑗 )𝑘∈N converges in 𝐿2(0, 𝑇 ;𝐿2(0, 𝑙𝑗)), 𝑗 = 1, . . . , 𝑁,

(𝜙𝑛𝑘
𝑗 )𝑘∈N converges in 𝐿2(0, 𝑇 ;𝐻1(0, 𝑙𝑗)), 𝑗 = 𝑚+ 1, . . . , 𝑁,

(𝜙𝑛𝑘
1 (·, 0))𝑘∈N converges in 𝐿2(0, 𝑇 ),

(𝜙𝑇,𝑛𝑘
𝑗 )𝑘∈N converges in 𝐿2(0, 𝑙𝑗), 𝑗 = 𝑚+ 1, . . . , 𝑁.

(3.38)

Now, let (𝜙𝑇,𝑛𝑘)𝑘∈N the subsequence of (𝜙𝑇,𝑛)𝑛∈N satisfying (3.38). From Proposition 3.11
we have

‖𝜙𝑇,𝑛𝑘 − 𝜙𝑇,𝑛𝑟‖2
𝑋𝑚

≤ 1
𝑇

𝑁∑︁
𝑗=1

‖𝜙𝑛𝑘
𝑗 − 𝜙𝑛𝑟

𝑗 ‖2
𝐿2(0,𝑇 ;𝐿2(0,𝑙𝑗) +

(︂ 1
𝑇

+ 6
𝜎

)︂ 𝑁∑︁
𝑗=𝑚+1

‖𝜙𝑛𝑘
𝑗 − 𝜙𝑛𝑟

𝑗 ‖2
𝐿2(0,𝑇 ;𝐻1(0,𝑙𝑗)

+ 2
(︂
𝛼− 𝑁

2

)︂
‖𝜙𝑛𝑘

1 (·, 0) − 𝜙𝑛𝑟
1 (·, 0)‖2

𝐿2(0,𝑇 + 2
𝑁∑︁

𝑗=𝑚+1
‖𝜙𝑇,𝑛𝑘

𝑗 − 𝜙𝑇,𝑛𝑟
𝑗 ‖2

𝐿2(0,𝑙𝑗)

+
𝑚∑︁

𝑗=1
‖𝜕𝑥𝜙

𝑛𝑘
𝑗 (·, 𝑙𝑗) − 𝜕𝑥𝜙

𝑛𝑟
𝑗 (·, 𝑙𝑗)‖2

𝐿2(0,𝑇 )

+
𝑁∑︁

𝑗=𝑚+1
‖𝜕2

𝑥𝜙
𝑛𝑘
𝑗 (·, 𝑙𝑗) − 𝜕2

𝑥𝜙
𝑛𝑟
𝑗 (·, 𝑙𝑗)‖2

𝐿2(0,𝑇 ),

which gives (𝜙𝑇,𝑛𝑘)𝑘∈N is a Cauchy sequence in 𝑋𝑚 so, there exists 𝜙𝑇 ∈ 𝑋𝑚 such that
𝜙𝑇,𝑛𝑘 → 𝜙𝑇 in 𝑋𝑚. Consider 𝜙 = 𝑆(𝑇 − ·)𝜙𝑇 . Since 𝑋𝑚 →˓ L2(𝒯 ) continuously, from
Propositions 3.2 and 3.10 ensures that⎧⎪⎪⎨⎪⎪⎩

𝜕𝑥𝜙
𝑛𝑘
𝑗 (·, 𝑙𝑗) → 𝜕𝑥𝜙𝑗(·, 𝑙𝑗) in 𝐿2(0, 𝑇 ), 𝑗 = 1, . . . ,𝑚,

𝜕2
𝑥𝜙

𝑛𝑘
𝑗 (·, 𝑙𝑗) → 𝜕2

𝑥𝜙𝑗(·, 𝑙𝑗) in 𝐿2(0, 𝑇 ), 𝑗 = 𝑚+ 1, . . . , 𝑁.

From (3.37) we get

𝜕𝑥𝜙𝑗(·, 𝑙𝑗) = 0, 𝑗 = 1, . . . ,𝑚 and 𝜕2
𝑥𝜙𝑗(·, 𝑙2) = 0, 𝑗 = 𝑚+ 1, . . . , 𝑁.



85

Since ‖𝜙𝑇,𝑛‖𝑋𝑚 = 1 for every 𝑛 ∈ N, we also have, in the limit, that ‖𝜙𝑇 ‖𝑋𝑚 = 1. So, Lemma
3.3 holds. □

Lemma 3.4 Let 𝑇 > 0 and denote by 𝑁𝑇 the space of data 𝜙𝑇 ∈ 𝑋𝑚 whose respective
solutions 𝜙 = 𝑆(𝑇 − ·)𝜙𝑇 of (3.13) satisfy (3.36). If 𝑁𝑇 ̸= {0} then there exists 𝜆 ∈ C and
𝜙 ∈ H3(𝒯 )∖{0} such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, . . . , 𝑁,

𝜙𝑗(0) = 𝜙1(0), 𝑗 = 1, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜙′′

𝑗 (0) = 0,

𝜙𝑗(𝑙𝑗) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, . . . , 𝑁,

𝜙′
𝑗(𝑙𝑗) = 0, 𝑗 = 1, . . . ,𝑚,

𝜙′′
𝑗 (𝑙𝑗) = 0, 𝑗 = 𝑚+ 1, . . . , 𝑁.

(3.39)

Proof: Using the arguments as those given in (ROSIER, 1997, Lemma 3.4), follows that if
𝑁𝑇 ̸= ∅, the map 𝜙𝑇 ∈ 𝑁𝑇 ↦→ 𝐴 (𝑁𝑇 ) ⊂ C𝑁𝑇 (where C𝑁𝑇 denote the complexification of
𝑁𝑇 ) has (at least) one eigenvalue; hence, there exists 𝜆 ∈ C and 𝜙𝑇 ∈ 𝑁𝑇 ∖{0} ⊂ 𝒟(𝐴*) ⊂

H3(𝒯 ) such that (3.39) holds, which give us the lemma. □

From this point forward, we will organize our observability analysis into the following six
cases:

∙ 𝑁 = 2;

∙ 𝑁 ≥ 3 and 𝑚 = 1;

∙ 𝑁 ≥ 3 and 𝑚 = 𝑁 − 1;

∙ 𝑁 > 3 and 1 < 𝑚 < 𝑁 − 1;

∙𝑁 ≥ 2 and 𝑚 = 𝑁 ;

∙𝑁 ≥ 2 and 𝑚 = 0,

(3.40)

remembering that 𝑙𝑗 = 𝐿, for all 𝑗.
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3.5.2 Case 𝑁 = 2

In this case, we consider a slightly more general problem, namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, 2,

𝜙2(0) = 𝜙1(0),

𝜍𝑁𝑒𝜙
′′
1(0) + 𝜍𝐷𝑖𝜙

′′
2(0) = 0,

𝜙𝑗(𝑙𝑗) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, 2,

𝜙′
1(𝑙1) = 𝜙′′

2(𝑙2) = 0,

(3.41)

where 𝜍𝑁𝑒, 𝜍𝐷𝑖 > 0. Problem (3.39) corresponds to the case 𝜍𝑁𝑒 = 𝜍𝐷𝑖 = 1. We can prove that
the observability inequality (3.35) holds for any 𝐿 > 0. This is a consequence of the following
lemma.

Lemma 3.5 Let 𝐿 > 0 and suppose 𝑙1 = 𝑙2 = 𝐿. For any 𝜆 ∈ C, does not exist 𝜙 ∈

H3(𝒯 )∖{0} satisfying (3.41).

Proof: For 𝜓 ∈ L2(𝒯 ), we introduce the notation

𝜓𝑗(𝜉) =
∫︁ 𝑙𝑗

0
𝜓𝑗(𝑥)𝑒−𝑖𝑥𝜉𝑑𝑥.

Consider 𝜆 ∈ C and suppose that 𝜙 ∈ H3(𝒯 ) satisfies (3.41). We will show that the unique
solution for (3.41) is the trivial one, that is, 𝜙 = 0.

Multiplying the system (3.41) by 𝑒−𝑖𝑥𝜉, integrating by parts in (0, 𝑙𝑗) and using the boundary
conditions we get, for every 𝜉 ∈ C,

[︁
(𝑖𝜉)3 + 𝑖𝜉 + 𝜆

]︁
=
[︁
(1 − 𝜉2)𝜙𝑗(0) − 𝑖𝜉𝑒−𝑖𝑙𝑗𝜉𝜙′

𝑗(𝑙𝑗) − 𝑒−𝑖𝑙𝑗𝜉𝜙′′
𝑗 (𝑙𝑗) + 𝜙′′

𝑗 (0)
]︁
, 𝑗 = 1, 2.

Writing 𝜆 = 𝑖𝑝 with 𝑝 ∈ C and multiplying this equation by 𝑖 yields
(︁
𝜉3 − 𝜉 − 𝑝

)︁
𝜙𝑗(𝜉) = 𝑖

[︁
(1 − 𝜉2)𝜙𝑗(0) − 𝑖𝜉𝑒−𝑖𝑙𝑗𝜉𝜙′

𝑗(𝑙𝑗) − 𝑒−𝑖𝑙𝑗𝜉𝜙′′
𝑗 (𝑙𝑗) + 𝜙′′

𝑗 (0)
]︁
, 𝑗 = 1, 2.

Setting

𝜅 = 𝜙1(0) = 𝜙𝑗(0), 𝛿𝑗 = −𝜙′
𝑗(𝑙𝑗), 𝛾𝑗 = −𝜙′′

𝑗 (𝑙𝑗), 𝛽𝑗 = 𝜙′′
𝑗 (0)

one can write
(︁
𝜉3 − 𝜉 − 𝑝

)︁
𝜙𝑗(𝜉) = 𝑖

[︁
(1 − 𝜉2)𝜅+ 𝑖𝛿𝑗𝜉𝑒

−𝑖𝑙𝑗𝜉 + 𝛾𝑗𝑒
−𝑖𝑙𝑗𝜉 + 𝛽𝑗

]︁
, 𝑗 = 1, 2.
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Since 𝛿1 = 𝛾2 = 0 and 𝑙1 = 𝑙2 = 𝐿 we have
(︁
𝜉3 − 𝜉 − 𝑝

)︁
𝜙1(𝜉) = 𝑖

[︁
(1 − 𝜉2)𝜅+ 𝛾1𝑒

−𝑖𝐿𝜉 + 𝛽1
]︁
, ∀ 𝜉 ∈ C, (3.42)(︁

𝜉3 − 𝜉 − 𝑝
)︁
𝜙2(𝜉) = 𝑖

[︁
(1 − 𝜉2)𝜅+ 𝑖𝛿2𝜉𝑒

−𝑖𝐿𝜉 + 𝛽2
]︁
, ∀ 𝜉 ∈ C. (3.43)

Now, defining 𝑓 = 𝜙1 − 𝜙2 and 𝛽 = 𝛽1 − 𝛽2, from the above identities, we obtain
(︁
𝜉3 − 𝜉 − 𝑝

)︁
𝑓(𝜉) = 𝑖

[︁
(𝛾1 − 𝑖𝛿2𝜉)𝑒−𝑖𝐿𝜉 + 𝛽

]︁
, ∀ 𝜉 ∈ C. (3.44)

Claim 3.1 If 𝛾1 = 0 or 𝛽 = 0 then 𝜙 = 0.

Proof: If 𝛾1 = 0 then 𝜙1 solves the problem⎧⎪⎪⎨⎪⎪⎩
𝜆𝜙1 + 𝜙′

1 + 𝜙′′′
1 = 0,

𝜙1(𝐿) = 𝜙′
1(𝐿) = 𝜙′′

1(𝐿) = 0,

so 𝜙1 = 0. Consequently, 𝜙2 satisfies⎧⎪⎪⎨⎪⎪⎩
𝜆𝜙2 + 𝜙′

2 + 𝜙′′′
2 = 0,

𝜙2(0) = 𝜙′
2(0) = 𝜙′′

2(0) = 0,

then 𝜙2 = 0 and therefore 𝜙 = 0.
Now, if 𝛽 = 0 then 𝛽1 = 𝛽2 so 𝜙1 and 𝜙2 are solutions to the problem⎧⎪⎪⎨⎪⎪⎩

𝜆𝜙𝑖 + 𝜙′
𝑖 + 𝜙′′′

𝑖 = 0, 𝑖 = 1, 2

𝜙𝑖(0) = 𝜅, 𝜙′
𝑖(0) = 0, 𝜙′′

𝑖 (0) = 𝛽1.

By uniqueness of solution, it follows that 𝜙1 = 𝜙2, which implies 𝑓 = 0. Hence 𝑓 = 0 and
since 𝛽 = 0, (3.44) becomes

(𝛾1 − 𝑖𝛿2𝜉)𝑒−𝑖𝐿𝜉 = 0, ∀𝜉 ∈ C.

Evaluating this equality at 𝜉 = 0, we obtain 𝛾1 = 0, and, as seen before, this leads us to
𝜙 = 0, showing Claim 3.1. □

Assuming

𝛾1 ̸= 0 and 𝛽 ̸= 0, (3.45)

with the following claim in hand, the Lemma 3.5 holds for the case 𝜆 = 0.

Claim 3.2 If 𝜆 = 0 then does not exist 𝜙 = (𝜙1, 𝜙2) ∈ H3(𝒯 )∖{0} satisfying (3.41).
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Proof: We will show that for 𝜆 = 0, then we necessarily have 𝜙 = 0. To do this, let us multiply
(3.42) and (3.43) by −𝑖 to get

− 𝑖
(︁
𝜉3 − 𝜉

)︁
𝜙1(𝜉) = (1 − 𝜉2)𝜅+ 𝛾1𝑒

−𝑖𝐿𝜉 + 𝛽1, ∀ 𝜉 ∈ C, (3.46)

− 𝑖
(︁
𝜉3 − 𝜉

)︁
𝜙2(𝜉) = (1 − 𝜉2)𝜅+ 𝑖𝛿2𝜉𝑒

−𝑖𝐿𝜉 + 𝛽2, ∀ 𝜉 ∈ C. (3.47)

Evaluating (3.46) at 𝜉 = 1 and 𝜉 = −1 we obtain, respectively,

𝛾1𝑒
−𝑖𝐿 = −𝛽1 and 𝛾1𝑒

𝑖𝐿 = −𝛽1

from where we have 𝛾1𝑒
−𝑖𝐿 = 𝛾1𝑒

𝑖𝐿 and, since 𝛾1 ̸= 0, it follows that

𝑒−𝑖𝐿 = 𝑒𝑖𝐿. (3.48)

On the other hand, evaluating (3.47) at 𝜉 = 1 and 𝜉 = −1 we obtain, respectively,

𝑖𝛿2𝑒
−𝑖𝐿 = −𝛽2 and − 𝑖𝛿2𝑒

𝑖𝐿 = −𝛽2

which gives us
𝑖𝛿2𝑒

−𝑖𝐿 = −𝑖𝛿2𝑒
𝑖𝐿.

If 𝛿2 ̸= 0, then the above equality provides

𝑒−𝑖𝐿 = −𝑒𝑖𝐿. (3.49)

Adding (3.48) and (3.49) we get 2𝑒−𝑖𝐿 = 0, which is not possible. Therefore, 𝛿2 = 0 so 𝜙2

solves the problem ⎧⎪⎪⎨⎪⎪⎩
𝜆𝜙2 + 𝜙′

2 + 𝜙′′′
2 = 0,

𝜙2(𝐿) = 𝜙′
2(𝐿) = 𝜙′′

2(𝐿) = 0,

and consequently 𝜙2 = 0. Thanks to this fact and using the boundary conditions of (3.41),
𝜙1 is the solution of the following system⎧⎪⎪⎨⎪⎪⎩

𝜆𝜙1 + 𝜙′
1 + 𝜙′′′

1 = 0,

𝜙1(0) = 𝜙′
1(0) = 𝜙′′

1(0) = 0,

which tells us that 𝜙1 = 0 and, consequently 𝜙 = 0, which give the Claim 3.2. □

Define 𝑃𝜆(𝜇) = 𝜇3 + 𝜇 + 𝜆. Before studying the case 𝜆 ̸= 0, we need to establish an
important relationship between the multiplicity of the roots of 𝑃𝜆 and the solutions of (3.41).
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Claim 3.3 If 𝑃𝜆 admits multiples roots, then 𝜙 = 0.

Proof: Let 𝜇0, 𝜇1 and 𝜇2 the roots of 𝑃𝜆. By Girard’s relations, we have

𝜇0 + 𝜇1 + 𝜇2 = 0, (3.50)

𝜇0𝜇1 + 𝜇1𝜇2 + 𝜇0𝜇2 = 0, (3.51)

𝜇0𝜇1𝜇2 = −𝜆. (3.52)

If 𝑃𝜆 has a triple root thus, by (3.50), we have

𝜇0 = 𝜇1 = 𝜇2 = 0.

So, from (3.52) it follows that 𝜆 = 0. With this, the Claim 3.2 ensures that 𝜙 = 0.
Now, suppose that 𝑃𝜆 has a double root, let us say 𝜇1 = 𝜇2 = 𝜎. Relation (3.50) gives

𝜇0 = −2𝜎 and substituting it in (3.51) we have

−2𝜎 · 𝜎 + 𝜎 · 𝜎 − 2𝜎 · 𝜎 = 1

which leads us to

𝜎 = ± 𝑖√
3
. (3.53)

By the theory of ordinary differential equations, the set
{︁
𝑒−2𝜎𝑥, 𝑒𝜎𝑥, 𝑥𝑒𝜎𝑥

}︁
is a generator of the solutions of the following ordinary differential equation

𝜆𝑦 + 𝑦′ + 𝑦′′′ = 0.

Note that 𝜙2 solution of ⎧⎪⎪⎨⎪⎪⎩
𝜆𝜙2 + 𝜙′

2 + 𝜙′′′
2 = 0,

𝜙2(𝐿) = 𝜙′
2(0) = 𝜙′′

2(𝐿) = 0,

ensures the existence of 𝑑0, 𝑑1, 𝑑2 ∈ C such that

𝜙2(𝑥) = 𝑑0𝑒
−2𝜎𝑥 + 𝑑1𝑒

𝜎𝑥 + 𝑑2𝑥𝑒
𝜎𝑥.

Consequently
𝜙′

2(𝑥) = 𝑑0(−2𝜎)𝑒−2𝜎𝑥 + 𝑑1𝜎𝑒
𝜎𝑥 + 𝑑2(𝑒𝜎𝑥 + 𝑥𝜎𝑒𝜎𝑥), (3.54)
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and
𝜙′′

2(𝑥) = 𝑑0(−2𝜎)2𝑒−2𝜎𝑥 + 𝑑1𝜎
2𝑒𝜎𝑥 + 𝑑2(𝜎𝑒𝜎𝑥 + 𝜎𝑒𝜎𝑥 + 𝑥𝜎2𝑒𝜎𝑥). (3.55)

Observe that the boundary condition 𝜙2(𝐿) = 0 gives us

𝑑0𝑒
−2𝜎𝐿 + 𝑑1𝑒

𝜎𝐿 + 𝑑2𝐿𝑒
𝜎𝐿 = 0

which implies

𝑑1 + 𝐿𝑑2 = −𝑑0𝑒
−3𝜎𝐿.

On the other hand, the condition 𝜙′′
2(𝐿) = 0 provides, due the relation given by (3.55), that

4𝑑0𝜎
2𝑒−2𝜎𝐿 + 𝑑1𝜎

2𝑒𝜎𝐿 + 2𝑑2𝜎𝑒
𝜎𝐿 + 𝑑2𝐿𝜎

2𝑒𝜎𝐿 = 0,

or equivalently,

𝑑1𝜎 + 𝑑2(2 + 𝐿𝜎) = −4𝑑0𝜎𝑒
−3𝜎𝐿.

Thus, we have the system ⎧⎪⎪⎨⎪⎪⎩
𝑑1 + 𝐿𝑑2 = −𝑑0𝑒

−3𝜎𝐿

𝑑1𝜎 + 𝑑2(2 + 𝐿𝜎) = −4𝑑0𝜎𝑒
−3𝜎𝐿

Below, we solve this system for 𝑑1 and 𝑑2 using Gauss-Jordan elimination (we denote by 𝑟𝑘

the 𝑘-th row of a matrix):⎡⎢⎢⎣ 1 𝐿 −𝑑0𝑒
−3𝜎𝐿

𝜎 2 + 𝐿𝜎 −4𝑑0𝜎𝑒
−3𝜎𝐿

⎤⎥⎥⎦ 𝑟2↔𝑟2−𝜎𝑟1

⎡⎢⎢⎣ 1 𝐿 −𝑑0𝑒
−3𝜎𝐿

0 2 −3𝑑0𝜎𝑒
−3𝜎𝐿

⎤⎥⎥⎦ 𝑟2↔ 1
2 𝑟2

⎡⎢⎢⎣ 1 𝐿 −𝑑0𝑒
−3𝜎𝐿

0 1 −3𝑑0𝜎𝑒−3𝜎𝐿

2

⎤⎥⎥⎦ 𝑟1↔𝑟1−𝐿𝑟2

⎡⎢⎢⎣ 1 0 −𝑑0𝑒
−3𝜎𝐿 + 3𝑑0𝜎𝐿𝑒−3𝜎𝐿

2

0 1 −3𝑑0𝜎𝑒−3𝜎𝐿

2

⎤⎥⎥⎦ .
Therefore

𝑑1 = −𝑑0𝑒
−3𝜎𝐿 + 3𝑑0𝜎𝐿𝑒

−3𝜎𝐿

2 and 𝑑2 = −3𝑑0𝜎𝑒
−3𝜎𝐿

2 . (3.56)

Using this values in (3.54) yields,

𝜙′
2(𝑥) = 𝑑0(−2𝜎)𝑒−2𝜎𝑥 +

(︃
−𝑑0𝑒

−3𝜎𝐿 + 3𝑑0𝜎𝐿𝑒
−3𝜎𝐿

2

)︃
𝜎𝑒𝜎𝑥 +

(︃
−3𝑑0𝜎𝑒

−3𝜎𝐿

2

)︃
(𝑒𝜎𝑥 + 𝑥𝜎𝑒𝜎𝑥).
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Since 𝜙′
2(0) = 0 we get that

−2𝑑0𝜎 − 𝑑0𝜎𝑒
−3𝜎𝐿 + 3𝑑0𝜎

2𝐿𝑒−3𝜎𝐿

2 − 3𝑑0𝜎𝑒
−3𝜎𝐿

2 = 0.

Multiplying the previous equality by 2/𝜎, we have

𝑑0
(︁
−4 − 2𝑒−3𝜎𝐿 + 3𝜎𝐿𝑒−3𝜎𝐿 − 3𝑒−3𝜎𝐿

)︁
= 0.

If 𝑑0 ̸= 0, then it follows that

−4 − 2𝑒−3𝜎𝐿 + 3𝜎𝐿𝑒−3𝜎𝐿 − 3𝑒−3𝜎𝐿 = 0 ⇐⇒ (−5 + 3𝜎𝐿) 𝑒−3𝜎𝐿 = 4.

Due to (3.53) this equality becomes(︃
−5 ± 3𝑖𝐿√

3

)︃
𝑒

± 3𝑖𝐿√
3 = 4.

Taking the absolute value in the previous equality, we see that⃒⃒⃒⃒
⃒−5 ± 3𝑖𝐿√

3

⃒⃒⃒⃒
⃒ = 4 =⇒ 25 + 3𝐿2 = 16 =⇒ 3𝐿2 < 0,

a contradiction. Therefore 𝑑0 = 0 and from (3.56) it follows that 𝑑1 = 𝑑2 = 0, which results
in 𝜙2 = 0. Hence, using the boundary conditions of (3.41), 𝜙1 solves the problem⎧⎪⎪⎨⎪⎪⎩

𝜆𝜙1 + 𝜙′
1 + 𝜙′′′

1 = 0,

𝜙1(0) = 𝜙′
1(0) = 𝜙′′

1(0) = 0,

that is, 𝜙1 = 0 and therefore 𝜙 = 0, giving the Claim 3.3. □

According to claims 3.2 and 3.3, it remains to study the case where 𝜆 ∈ C∖{0} and the
roots of 𝑃𝜆 are all simple. In this case, defining 𝑃 (𝜉) = 𝜉3 − 𝜉 − 𝑝, due to identity

𝑃𝜆(𝑖𝜉) = −𝑖𝑃 (𝜉), ∀𝜉 ∈ C,

we have that the roots of 𝑃 are all simple, too. Moreover, as 𝜆 = 𝑖𝑝 we must have

𝑝 ∈ C∖{0}.

With this in mind, the next claim completes the proof of Lemma 3.5.

Claim 3.4 If 𝜆 ∈ C∖{0} and the roots of 𝑃𝜆 are all simple then 𝛿2 = 0.
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Proof: Suppose, by contradiction, that 𝛿2 ̸= 0. Let 𝜉0, 𝜉1, 𝜉2 the roots of 𝑃 . As 𝑝 ̸= 0 we have
𝜉𝑠 ̸= 0 for 𝑠 = 0, 1, 2. The relation (3.42) ensures that

(1 − 𝜉2
𝑠 )𝜅+ 𝛾1𝑒

−𝑖𝐿𝜉𝑠 + 𝛽1 = 0.

Multiplying this equation by 1/𝛾1 yields

(1 − 𝜉2
𝑠 )𝜅 1

𝛾1
+ 𝑒−𝑖𝐿𝜉𝑠 + 𝛽1

𝛾1
= 0, 𝑠 = 0, 1, 2. (3.57)

Now, from (3.43), note that

(1 − 𝜉2
𝑠 )𝜅+ 𝑖𝛿2𝜉𝑠𝑒

−𝑖𝐿𝜉𝑠 + 𝛽2 = 0.

Multiplying this equation by 1/𝑖𝛿2𝜉𝑠, we obtain

(1 − 𝜉2
𝑠 )𝜅 1

𝑖𝛿2𝜉𝑠

+ 𝑒−𝑖𝐿𝜉𝑠 + 𝛽2

𝑖𝛿2𝜉𝑠

= 0, 𝑠 = 0, 1, 2. (3.58)

Taking the difference between (3.58) and (3.57) yields that

(1 − 𝜉2
𝑠 )𝜅

(︃
1
𝛾1

− 1
𝑖𝛿2𝜉𝑠

)︃
+ 𝛽1

𝛾1
− 𝛽2

𝑖𝛿2𝜉𝑠

= 0.

Now, we multiply this equation by 𝛾1𝑖𝛿2𝜉𝑠 to get

(1 − 𝜉2
𝑠 )𝜅 (𝑖𝛿2𝜉𝑠 − 𝛾1) + 𝛽1𝑖𝛿2𝜉𝑠 − 𝛽2𝛾1 = 0,

that is,

𝜅𝑖𝛿2𝜉𝑠 − 𝜅𝑖𝛿2𝜉
3
𝑠 − 𝜅𝛾1 + 𝜅𝛾1𝜉

2
𝑠 + 𝛽1𝑖𝛿2𝜉𝑠 − 𝛽2𝛾1 = 0.

Reorganizing the terms, we can write

−𝜅𝑖𝛿2𝜉
3
𝑠 + 𝜅𝛾1𝜉

2
𝑠 + (𝜅𝑖𝛿2 + 𝛽1𝑖𝛿2)𝜉𝑠 − (𝜅𝛾1 + 𝛽2𝛾1) = 0, 𝑠 = 0, 1, 2.

Since 𝜉0, 𝜉1, 𝜉2 are all distinct, we conclude that 𝜉𝑠 is a simple root of the polynomial 𝑃 defined
by

𝑃 (𝜉) = −𝜅𝑖𝛿2𝜉
3 + 𝜅𝛾1𝜉

2 + (𝜅𝑖𝛿2 + 𝛽1𝑖𝛿2)𝜉 − (𝜅𝛾1 + 𝛽2𝛾1),

for 𝑠 = 0, 1, 2. Thus, there exist 𝑐 ∈ C∖{0} such that

𝑃 (𝜉) = 𝑐𝑃 (𝜉), ∀𝜉 ∈ C.
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Hence, the corresponding coefficients of 𝑃 and 𝑐𝑃 must be equal. In particular,

−𝑐𝜅𝑖𝛿2 = 1 and 𝑐𝜅𝛾1 = 0.

The first equality tells us that 𝜅 ̸= 0, since in our hypothesis 𝛿2 ̸= 0. Thus, using this fact
in the second equality, we obtain 𝛾1 = 0, which is a contradiction with (3.45); consequently,
Claim 3.4 is complete. □

So, the previous claims ensure the Lemma 3.5. □

3.5.3 Case 𝑁 ≥ 3 and 𝑚 = 1

Now we will consider a network with 3 or more edges, placing a Neumman control on the
first edge and Dirichlet controls on the others. In this case the problem (3.39) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, ..., 𝑁,

𝜙𝑗(0) = 𝜙1(0), 𝑗 = 1, ..., 𝑁,
𝑁∑︁

𝑗=1
𝜙′′

𝑗 (0) = 0,

𝜙𝑗(𝑙𝑗) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, ..., 𝑁,

𝜙′
1(𝑙1) = 0,

𝜙′′
𝑗 (𝑙𝑗) = 0, 𝑗 = 2, ..., 𝑁,

(3.59)

and we have the following result.

Lemma 3.6 Let 𝐿 > 0 and assume 𝑙𝑗 = 𝐿, for any 𝑗 = 1, ..., 𝑁 . There exist 𝜆 ∈ C and
𝜙 ∈ H3(𝒯 )∖{0} satisfying (3.59) if and only if 𝐿 ∈ 𝒩 *.

Proof: If 𝐿 ∈ 𝒩 * then, from (GLASS; GUERRERO, 2010, Propositions 1 and 2), there exist
𝜆 ∈ C and 𝑧 ∈ 𝐻3(0, 𝐿)∖{0} such that⎧⎪⎪⎨⎪⎪⎩

𝜆𝑧 + 𝑧′ + 𝑧′′′ = 0,

𝑧(0) = 𝑧(𝐿) = 𝑧′(0) = 𝑧′′(𝐿) = 0.

Defining 𝜙1 = 0, 𝜙2 = 𝑧, 𝜙3 = −𝑧, 𝜙𝑗 = 0 for 𝑗 = 4, ..., 𝑁 and 𝜙 = (𝜙1, 𝜙2, ..., 𝜙𝑁) then
𝜙 ∈ H3(𝒯 )∖{0} and (𝜆, 𝜙) satisfies (3.59).
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Now, assuming that there exist 𝜆 ∈ C and 𝜙 ∈ H3(𝒯 )∖{0} satisfying (3.59), we will show
by contradiction that this leads to 𝐿 ∈ 𝒩 *. Suppose that this does not occur, that is, 𝐿 /∈ 𝒩 *.
Define the following functions

𝜓 =
𝑁∑︁

𝑗=2
𝜙𝑗 and 𝜓𝑗 = 𝜓 − (𝑁 − 1)𝜙𝑗, 𝑗 = 2, ..., 𝑁.

Note that, for each 𝑗 ∈ {2, ..., 𝑁}, 𝜓𝑗 solves the problem⎧⎪⎪⎨⎪⎪⎩
𝜆𝜓𝑗 + 𝜓′

𝑗 + 𝜓′′
𝑗 = 0,

𝜓𝑗(0) = 𝜓𝑗(𝐿) = 𝜓′
𝑗(0) = 𝜓′′

𝑗 (𝐿) = 0.
(3.60)

Since 𝐿 /∈ 𝒩 *, from (GLASS; GUERRERO, 2010, Propositions 1 and 2) it follows that

𝜓𝑗 = 0, for 𝑗 = 2, ..., 𝑁,

so that

𝜙𝑗 = 1
𝑁 − 1𝜓, for 𝑗 = 2, ..., 𝑁.

Consequently,

𝜙𝑗 = 𝜙2, for 𝑗 = 2, ..., 𝑁. (3.61)

This implies that, 𝜙1 and 𝜙𝑁 satisfy the spectral problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, 𝑁,

𝜙𝑁(0) = 𝜙1(0),

𝜙′′
1(0) + (𝑁 − 1)𝜙′′

𝑁(0) = 0,

𝜙𝑗(𝐿) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, 𝑁,

𝜙′
1(𝐿) = 𝜙′′

𝑁(𝐿) = 0,

which corresponds to (3.41) in the case 𝜍𝑁𝑒 = 1 and 𝜍𝐷𝑖 = 𝑁 − 1. Therefore, the unique
solution is 𝜙1 = 𝜙𝑁 = 0. Finally, as 0 = 𝜙𝑁 = 𝜙𝑗 for 𝑗 = 2, . . . , 𝑁 , we obtain 𝜙 = 0. □

3.5.4 Case 𝑁 ≥ 3 and 𝑚 = 𝑁 − 1

Here, we will consider a star graph with 3 or more edges, placing Neumann controls on
the first 𝑁 − 1 of them and a Dirichlet control on the last one. Hence, the problem (3.39)
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becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, ..., 𝑁,

𝜙𝑗(0) = 𝜙1(0), 𝑗 = 1, ..., 𝑁,
𝑁∑︁

𝑗=1
𝜙′′

𝑗 (0) = 0,

𝜙𝑗(𝑙𝑗) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, ..., 𝑁,

𝜙′
𝑗(𝑙𝑗) = 0, 𝑗 = 1, ..., 𝑁 − 1

𝜙′′
𝑁(𝑙𝑁) = 0,

(3.62)

and we have the following result.

Lemma 3.7 Let 𝐿 > 0 and assume 𝑙𝑗 = 𝐿, for 𝑗 = 1, ..., 𝑁 . There exist 𝜆 ∈ C and
𝜙 ∈ H3(𝒯 )∖{0} satisfying (3.62) if and only if 𝐿 ∈ 𝒩 .

Proof: If 𝐿 ∈ 𝒩 it follows direct by (ROSIER, 1997, Lemma 3.5) that there exist 𝜆 ∈ C and
𝑧 ∈ 𝐻3(0, 𝐿)∖{0} such that⎧⎪⎪⎨⎪⎪⎩

𝜆𝑧 + 𝑧′ + 𝑧′′′ = 0,

𝑧(0) = 𝑧(𝐿) = 𝑧′(0) = 𝑧′(𝐿) = 0.

Defining 𝜙1 = 𝑧, 𝜙2 = −𝑧, 𝜙𝑗 = 0 for 𝑗 = 3, ..., 𝑁 and 𝜙 = (𝜙1, 𝜙2, ..., 𝜙𝑁) then 𝜙 ∈

H3(𝒯 )∖{0} with (𝜆, 𝜙) satisfying (3.62).
Conversely, assume that there exist 𝜆 ∈ C and 𝜙 ∈ H3(𝒯 )∖{0} satisfying (3.62). We will

show that 𝐿 ∈ 𝒩 . Suppose, by contradiction, that 𝐿 /∈ 𝒩 and define

𝜓 =
𝑁−1∑︁
𝑗=1

𝜙𝑗 and 𝜓𝑗 = 𝜓 − (𝑁 − 1)𝜙𝑗, 𝑗 = 1, ..., 𝑁 − 1.

For each 𝑗 ∈ {1, ..., 𝑁 − 1}, 𝜓𝑗 solves the problem⎧⎪⎪⎨⎪⎪⎩
𝜆𝜓𝑗 + 𝜓′

𝑗 + 𝜓′′′
𝑗 = 0,

𝜓𝑗(0) = 𝜓𝑗(𝐿) = 𝜓′
𝑗(0) = 𝜓′

𝑗(𝐿) = 0.

Since 𝐿 /∈ 𝒩 , from (ROSIER, 1997, Lemma 3.5) it follows that

𝜓𝑗 = 0, 𝑗 = 1, ..., 𝑁 − 1

so that

𝜙𝑗 = 1
𝑁 − 1𝜓, 𝑗 = 1, ..., 𝑁 − 1.
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Consequently,

𝜙𝑗 = 𝜙1, 𝑗 = 1, ..., 𝑁 − 1. (3.63)

This implies that, 𝜙1 and 𝜙𝑁 satisfy the spectral problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, 𝑁,

𝜙𝑁(0) = 𝜙1(0),

(𝑁 − 1)𝜙′′
1(0) + 1𝜙′′

𝑁(0) = 0,

𝜙𝑗(𝐿) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, 𝑁,

𝜙′
1(𝐿) = 𝜙′′

𝑁(𝐿) = 0,

which corresponds to (3.41) in the case 𝜍𝑁𝑒 = 𝑁 − 1 and 𝜍𝐷𝑖 = 1. Therefore, the unique
solution is 𝜙1 = 𝜙𝑁 = 0. Finally, as 0 = 𝜙1 = 𝜙𝑗 for 𝑗 = 1, . . . , 𝑁 − 1, we obtain 𝜙 = 0. □

3.5.5 Case 𝑁 > 3 and 1 < 𝑚 < 𝑁 − 1

First, note that the case 𝑁 = 3 is fully encompassed in the situations already analyzed.
Therefore, here we consider 𝑁 > 3 and place both types of control, Neumann and Dirichlet,
on more than one edge. We recall the problem (3.39) given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, ..., 𝑁,

𝜙𝑗(0) = 𝜙1(0), 𝑗 = 1, ..., 𝑁,
𝑁∑︁

𝑗=1
𝜙′′

𝑗 (0) = 0,

𝜙𝑗(𝑙𝑗) = 𝜙′′
𝑗 (0) = 0, 𝑗 = 1, ..., 𝑁,

𝜙′
𝑗(𝑙𝑗) = 0, 𝑗 = 1, ...,𝑚,

𝜙′′
𝑗 (𝑙𝑗) = 0, 𝑗 = 𝑚+ 1, ..., 𝑁.

(3.64)

For this case, we have the following result.

Lemma 3.8 Let 𝐿 > 0 and assume 𝑙𝑗 = 𝐿 for 𝑗 = 1, ..., 𝑁 . There exist 𝜆 ∈ C and
𝜙 ∈ H3(𝒯 )∖{0} satisfying (3.64) if and only if 𝐿 ∈ 𝒩 ∪ 𝒩 *.

Proof: If 𝐿 ∈ 𝒩 ∪ 𝒩 * the result is a direct consequence of (ROSIER, 1997, Lemma 3.5)
and (GLASS; GUERRERO, 2010, Propositions 1 and 2) (see Lemmas 3.7 and 3.5). Conversely,
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suppose there exist 𝜆 ∈ C and 𝜙 ∈ H3(𝒯 ) ∖ {0} satisfying (3.64). We will demonstrate, by
contradiction, that this implies 𝐿 ∈ 𝒩 ∪ 𝒩 *. Assume, for the sake of contradiction, that
𝐿 /∈ 𝒩 ∪ 𝒩 *, and define

𝜓 =
𝑚∑︁

𝑗=1
𝜙𝑗 and 𝜓𝑗 = 𝜓 −𝑚𝜙𝑗, 𝑗 = 1, ...,𝑚.

For each 𝑗 ∈ {1, ...,𝑚}, 𝜓𝑗 solves the problem⎧⎪⎪⎨⎪⎪⎩
𝜆𝜓𝑗 + 𝜓′

𝑗 + 𝜓′′′
𝑗 = 0,

𝜓𝑗(0) = 𝜓𝑗(𝐿) = 𝜓′
𝑗(0) = 𝜓′

𝑗(𝐿) = 0.

Since 𝐿 /∈ 𝒩 , from (ROSIER, 1997, Lemma 3.5) it follows that

𝜓𝑗 = 0, 𝑗 = 1, ...,𝑚

so

𝜙𝑗 = 1
𝑚
𝜓, 𝑗 = 1, ...,𝑚.

Consequently,

𝜙𝑗 = 𝜙1, 𝑗 = 1, ...,𝑚. (3.65)

Now define

𝜃 =
𝑁∑︁

𝑗=𝑚+1
𝜙𝑗 and 𝜃𝑗 = 𝜃 − (𝑁 −𝑚)𝜙𝑗, 𝑗 = 𝑚+ 1, ..., 𝑁.

Note that, for each 𝑗 ∈ {𝑚+ 1, ..., 𝑁}, 𝜃𝑗 solves the problem⎧⎪⎪⎨⎪⎪⎩
𝜆𝜃𝑗 + 𝜃′

𝑗 + 𝜃′′′
𝑗 = 0,

𝜃𝑗(0) = 𝜃𝑗(𝐿) = 𝜃′
𝑗(0) = 𝜃′′

𝑗 (𝐿) = 0.

Additionally, 𝐿 /∈ 𝒩 *, from (GLASS; GUERRERO, 2010, Propositions 1 and 2) it follows that

𝜃𝑗 = 0, 𝑗 = 𝑚+ 1, ..., 𝑁

so that

𝜙𝑗 = 1
𝑁 −𝑚

𝜃, 𝑗 = 𝑚+ 1, ..., 𝑁.

Consequently,

𝜙𝑗 = 𝜙𝑁 , 𝑗 = 𝑚+ 1, ..., 𝑁. (3.66)
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This implies that, 𝜙1 and 𝜙𝑁 satisfy the spectral problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, 𝑁,

𝜙𝑁(0) = 𝜙1(0),

𝑚𝜙′′
1(0) + (𝑁 −𝑚)𝜙′′

𝑁(0) = 0,

𝜙𝑗(𝐿) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, 𝑁,

𝜙′
1(𝐿) = 𝜙′′

𝑁(𝐿) = 0,

which corresponds to (3.41) in the case 𝜍𝑁𝑒 = 𝑚 and 𝜍𝐷𝑖 = 𝑁 − 𝑚. Therefore, the unique
solution is 𝜙1 = 𝜙𝑁 = 0. Finally, as 0 = 𝜙1 = 𝜙𝑗 for 𝑗 = 1, . . . ,𝑚 and 0 = 𝜙𝑁 = 𝜙𝑗 for
𝑗 = 𝑚+ 1, . . . , 𝑁 , we obtain 𝜙 = 0. □

3.5.6 Case Full Neumann (𝑁 ≥ 2 and 𝑚 = 𝑁)

This case consists by of considering Neumann controls on all edges.The associate spectral
problem arising for 𝑁 Neumann controls is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, ..., 𝑁,

𝜙𝑗(0) = 𝜙1(0), 𝑗 = 1, ..., 𝑁,
𝑁∑︁

𝑗=1
𝜙′′

𝑗 (0) = 0,

𝜙𝑗(𝑙𝑗) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, ..., 𝑁,

𝜙′
𝑗(𝑙𝑗) = 0, 𝑗 = 1, ..., 𝑁.

(3.67)

For this case, we have the following result.

Lemma 3.9 Let 𝐿 > 0 and assume 𝑙𝑗 = 𝐿 for 𝑗 = 1, ..., 𝑁 . There exist 𝜆 ∈ C and
𝜙 ∈ H3(𝒯 )∖{0} satisfying (3.67) if and only if 𝐿 ∈ 𝒩 ∪ 𝒩 *.

Proof: Consider the function 𝜓 =
𝑁∑︁

𝑗=1
𝜙𝑗. We will see that if the length is not critical, it is

enough to analyze the spectral problem satisfied by the sum function.

Claim 3.5 If 𝐿 /∈ 𝒩 , then 𝜓 ≡ 0 if and only if 𝜙𝑗 ≡ 0 for all 𝑗 = 1, . . . , 𝑁 .
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Proof: One direction is direct. In the other hand, if 𝜓 ≡ 0, we have 0 = 𝜓(0) = 𝑁𝜙𝑗(0), thus
𝜙𝑗 solves ⎧⎪⎪⎨⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′

𝑗 = 0,

𝜙𝑗(0) = 𝜙𝑗(𝐿) = 𝜙′
𝑗(0) = 𝜙′

𝑗(𝐿) = 0.

Since 𝐿 /∈ 𝒩 , from (ROSIER, 1997, Lemma 3.5) it follows that 𝜙𝑗 ≡ 0. □

The condition 𝐿 /∈ 𝒩 is necessary. In fact, if not, we can not control 𝜓𝑗 = 𝜙𝑗 − 1
𝑁
𝜓.

By the previous claim, it is enough to study when we have a non-trivial function 𝜓. We can
immediately see that 𝜓 solves

⎧⎪⎪⎨⎪⎪⎩
𝜆𝜓 + 𝜓′ + 𝜓′′′ = 0,

𝜓(𝐿) = 𝜓′(0) = 𝜓′(𝐿) = 𝜓′′(0) = 0.

Considering 𝜃(𝑥) = 𝜓(𝐿− 𝑥) and 𝜆̃ = −𝜆, we get

⎧⎪⎪⎨⎪⎪⎩
𝜆̃𝜃 + 𝜃′ + 𝜃′′′ = 0,

𝜃(0) = 𝜃′(𝐿) = 𝜃′(0) = 𝜃′′(𝐿) = 0.
(3.68)

Define 𝑃𝜆̃(𝜇) = 𝜇3 + 𝜇+ 𝜆̃.

Claim 3.6 If 𝑃𝜆̃ admits multiples roots, then 𝜃 = 0.

Proof: We follow the proof of Claim 3.3. Multiplying the system (3.68) by 𝑒−𝑖𝑥𝜉, integrating
by parts in (0, 𝐿) and using the boundary conditions we get, for every 𝜉 ∈ C

(𝜉3 − 𝜉 − 𝑝)𝜃(𝜉) = 𝑖𝜅(1 − 𝜉2)𝑒−𝑖𝐿𝜉 + 𝛽,

where 𝑝 = 𝑖𝜆̃, 𝜅 = −𝜃(𝐿) and 𝛽 = 𝜃′′(0). If 𝑃𝜆̃ has a triple root, then by Girard’s relations
𝜆̃ = 0, thus 𝑝 = 0 and 𝜃 satisfies

(𝜉3 − 𝜉)𝜃(𝜉) = 𝑖𝜅(1 − 𝜉2)𝑒−𝑖𝐿𝜉 + 𝛽, ∀𝜉 ∈ C.

Evaluating in 𝜉 = 1, we get 𝜃′′(0) = 𝛽 = 0. Therefore, 𝜃 satisfies 𝜃(0) = 𝜃′(0) = 𝜃′′(0) = 0,
which implies 𝜃 = 0.

If 𝑃𝜆̃ has a double root 𝜇1 = 𝜇2 = 𝜎, by Girard’s relations 𝜎 = ± 𝑖√
3

and the solution 𝜃 of
(3.68) can be written as

𝜃(𝑥) = 𝑑0𝑒
−2𝜎𝑥 + 𝑑1𝑒

𝜎𝑥 + 𝑑2𝑥𝑒
𝜎𝑥.
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The boundary condition 𝜃(0) = 0 gives us 𝑑0+𝑑1 = 0. While, 𝜃′(0) = 𝜃′(𝐿) give us respectively

−2𝜎𝑑0 + 𝑑1𝜎 + 𝑑2 = 0

and
−2𝜎𝑑0𝑒

−2𝜎𝐿 + 𝑑1𝜎𝑒
𝜎𝐿 + 𝑑2(𝑒𝜎𝐿 + 𝐿𝜎𝑒𝜎𝐿) = 0.

Using 𝑑0 = −𝑑1, we get ⎧⎪⎪⎨⎪⎪⎩
3𝜎𝑑1 + 𝑑2 = 0

𝜎𝑑1(2𝑒−3𝜎𝐿 + 1) + 𝑑2(1 + 𝜎𝐿) = 0.

The previous system has a non-trivial solution if and only if 𝜎𝐿 = 2𝜎𝑒−3𝜎𝐿. In that case
𝑑2 = −3𝜎𝑑1 On the other hand, the condition 𝜃′′(𝐿) = 0 provides that

4𝑑0𝜎
2𝑒−2𝜎𝐿 + 𝑑1𝜎

2𝑒𝜎𝐿 + 2𝑑2𝜎𝑒
𝜎𝐿 + 𝑑2𝐿𝜎

2𝑒𝜎𝐿 = 0,

or equivalently,

𝑑1𝜎 + 𝑑2(2 + 𝐿𝜎) = −4𝑑0𝜎𝑒
−3𝜎𝐿.

Using 𝑑0 = −𝑑1, 𝜎𝐿 = 2𝜎𝑒−3𝜎𝐿 and 𝑑2 = −3𝜎𝑑1 we obtain −4 = 5𝜎𝐿, which is not possible
since 𝐿 > 0 and 𝜎 ∈ 𝑖R. □

By the previous claim, 𝜃(𝑥) = 𝑑0𝑒
𝜇0𝑥 +𝑑1𝑒

𝜇1𝑥 +𝑑2𝑒
𝜇2𝑥, where 𝜇0, 𝜇1 and 𝜇2 are the simple

roots of the characteristic polynomial 𝜇3 + 𝜇+ 𝜆̃ = 0. By imposing the boundary conditions,
we deduce the following overdetermined system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑0 + 𝑑1 + 𝑑2 = 0

𝜇0𝑑0 + 𝜇1𝑑1 + 𝜇2𝑑2 = 0

𝜇0𝑑0𝑒
𝜇0𝐿 + 𝜇1𝑑1𝑒

𝜇1𝐿 + 𝜇2𝑑2𝑒
𝜇2𝐿 = 0

𝜇2
0𝑑0𝑒

𝜇0𝐿 + 𝜇2
1𝑑1𝑒

𝜇1𝐿 + 𝜇2
2𝑑2𝑒

𝜇2𝐿 = 0.

By calling 𝑎 = 𝜇0𝐿, 𝑏 = 𝜇1𝐿 and 𝑐 = 𝜇2𝐿, we obtain the following matrix system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

𝑎 𝑏 𝑐

𝑎2𝑒𝑎 𝑏2𝑒𝑏 𝑐2𝑒𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝐶1

𝐶2

𝐶3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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By Gauss-Jordan elimination⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

𝑎 𝑏 𝑐

𝑎2𝑒𝑎 𝑏2𝑒𝑏 𝑐2𝑒𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑟4↔𝑟4−𝑎𝑟2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

𝑎 𝑏 𝑐

0 𝑏(𝑏− 𝑎)𝑒𝑏 𝑐(𝑐− 𝑎)𝑒𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑟3↔𝑟3−𝑎𝑟1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

0 𝑏− 𝑎 𝑐− 𝑎

0 𝑏(𝑏− 𝑎)𝑒𝑏 𝑐(𝑐− 𝑎)𝑒𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑟3↔𝑟4−𝑏𝑒𝑏𝑟3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

0 𝑏− 𝑎 𝑐− 𝑎

0 0 (𝑐− 𝑎)(𝑐𝑒𝑐 − 𝑏𝑒𝑏)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣ 𝐴𝑎,𝑏,𝑐

0 0 𝐵𝑎,𝑏,𝑐

⎤⎥⎥⎦ .

We have a non-trivial function 𝜃 if and only if

• The rank of 𝐴𝑎,𝑏,𝑐 is one.

• The rank of 𝐴𝑎,𝑏,𝑐 is two and 𝐵𝑎,𝑏,𝑐 = 0.

Easy computations give us

• 𝑟𝑎𝑛𝑘(𝐴𝑎,𝑏,𝑐) = 1, if and only if 𝑎 = 𝑏 = 𝑐. This case is not possible because the roots
are simple.

• 𝑟𝑎𝑛𝑘(𝐴𝑎,𝑏,𝑐) = 2

1. 𝑎 = 𝑏 ̸= 𝑐, 𝑏𝑒𝑏 = 𝑐𝑒𝑐. Not possible.

2. 𝑎 = 𝑏, 𝑏𝑒𝑏 ̸= 𝑐𝑒𝑎. Not possible.

3. 𝑎𝑒𝑎 ̸= 𝑏𝑒𝑏, 𝑐𝑒𝑐(𝑎− 𝑏) + 𝑏𝑒𝑏(𝑐− 𝑎) + 𝑎𝑒𝑎(𝑏− 𝑐) = 0.

4. 𝑎 ̸= 𝑏, 𝑎𝑒𝑎 = 𝑏𝑒𝑏 = 𝑐𝑒𝑐.
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On the other hand, again as the roots are simple, 𝐵𝑎,𝑏,𝑐 = 0 if and only if 𝑏𝑒𝑏 = 𝑐𝑒𝑐. Using
this in the third case, we get

0 = 𝑐𝑒𝑐(𝑎− 𝑏) + 𝑏𝑒𝑏(𝑐− 𝑎) + 𝑎𝑒𝑎(𝑏− 𝑐) = (𝑏− 𝑐)(𝑎𝑒𝑎 − 𝑐𝑒𝑐),

which implies 𝑎𝑒𝑎 = 𝑐𝑒𝑐 = 𝑏𝑒𝑏, that contradicts the third case. Finally, in the fourth case, we
have a non-trivial solution if 𝑎𝑒𝑎 = 𝑏𝑒𝑏 = 𝑐𝑒𝑐. Recall that Girard’s relations 𝑎+ 𝑏+ 𝑐 = 0 and
𝐿2 = −(𝑎2 + 𝑎𝑏+ 𝑏2), which correspond to the expression (3.9) of the critical lengths 𝒩 *. □

Remark 3.2 In the previous analysis, we have shown that different spectral problems could
have the same set of critical lengths. 𝒩 * is the set of critical lengths of the spectral problem
(3.68) which is a different one than (3.60) studied in (GLASS; GUERRERO, 2010).

3.5.7 Case Full Dirichlet (𝑁 ≥ 2 and 𝑚 = 0)

Finally we take a configuration with Dirichlet controls on all edges. By Lemma 3.4, it is
enough to focus on the spectral problem (3.39).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′′

𝑗 = 0, 𝑥 ∈ (0, 𝑙𝑗), 𝑗 = 1, ..., 𝑁,

𝜙𝑗(0) = 𝜙1(0), 𝑗 = 1, ..., 𝑁,
𝑁∑︁

𝑗=1
𝜙′′

𝑗 (0) = 0,

𝜙𝑗(𝑙𝑗) = 𝜙′
𝑗(0) = 0, 𝑗 = 1, ..., 𝑁,

𝜙′′
𝑗 (𝑙𝑗) = 0, 𝑗 = 1, ..., 𝑁.

(3.69)

For this case, we have the following result.

Lemma 3.10 Let 𝐿 > 0 and assume 𝑙𝑗 = 𝐿 for 𝑗 = 1, ..., 𝑁 . There exist 𝜆 ∈ C and
𝜙 ∈ H3(𝒯 )∖{0} satisfying (3.69) if and only if 𝐿 ∈ 𝒩 * ∪ 𝒩 †.

As in the full Neumann case, it is enough to analyze the spectral problem associated with the

sum function 𝜓 =
𝑁∑︁

𝑗=1
𝜙𝑗.

Claim 3.7 If 𝐿 /∈ 𝒩 *, then 𝜓 ≡ 0 if and only if 𝜙𝑗 ≡ 0 for all 𝑗 = 1, . . . , 𝑁 .

Proof: One direction is direct. In the other hand, if 𝜓 ≡ 0, we have 0 = 𝜓(0) = 𝑁𝜙𝑗(0), thus
𝜙𝑗 solves ⎧⎪⎪⎨⎪⎪⎩

𝜆𝜙𝑗 + 𝜙′
𝑗 + 𝜙′′

𝑗 = 0,

𝜙𝑗(0) = 𝜙𝑗(𝐿) = 𝜙′
𝑗(0) = 𝜙′

𝑗(𝐿) = 0.
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Since 𝐿 /∈ 𝒩 *, from (GLASS; GUERRERO, 2010, Proposition 1 and 2) it follows that 𝜙𝑗 ≡ 0. □
We can immediately see that 𝜓 solves⎧⎪⎪⎨⎪⎪⎩

𝜆𝜓 + 𝜓′ + 𝜓′′′ = 0,

𝜓(𝐿) = 𝜓′(0) = 𝜓′′(𝐿) = 𝜓′′(0) = 0.

Considering 𝜃(𝑥) = 𝜓(𝐿− 𝑥) and 𝜆̃ = −𝜆, we get

⎧⎪⎪⎨⎪⎪⎩
𝜆̃𝜃 + 𝜃′ + 𝜃′′ = 0,

𝜃(0) = 𝜃′(𝐿) = 𝜃′′(0) = 𝜃′′(𝐿) = 0.
(3.70)

Define 𝑃𝜆̃(𝜇) = 𝜇3 + 𝜇+ 𝜆̃.

Claim 3.8 If 𝑃𝜆̃ admits multiples roots, then 𝜃 = 0.

Proof: We follow the proof of Claim 3.3. Multiplying the system (3.70) by 𝑒−𝑖𝑥𝜉, integrating
by parts in (0, 𝐿) and using the boundary conditions we get, for every 𝜉 ∈ C

(𝜉3 − 𝜉 − 𝑝)𝜃(𝜉) = 𝑖𝜅(1 − 𝜉2)𝑒−𝑖𝐿𝜉 + 𝜄𝜉,

where 𝑝 = 𝑖𝜆̃, 𝜅 = −𝜃(𝐿) and 𝜄 = 𝑖𝜃′(0). If 𝑃𝜆̃ has a triple root, then by Girard’s relations
𝜆̃ = 0, thus 𝑝 = 0 and 𝜃 satisfies

(𝜉3 − 𝜉)𝜃(𝜉) = 𝑖𝜅(1 − 𝜉2)𝑒−𝑖𝐿𝜉 + 𝜄𝜉, ∀𝜉 ∈ C.

Evaluating in 𝜉 = 1, we get 𝜃′(0) = 𝜄 = 0. Therefore, 𝜃 satisfies 𝜃(0) = 𝜃′(0) = 𝜃′′(0) = 0,
which implies 𝜃 = 0.

If 𝑃𝜆̃ has a double root 𝜇1 = 𝜇2 = 𝜎, by Girard’s relations 𝜎 = ± 𝑖√
3

and the solution 𝜃 of
(3.70) can be written as

𝜃(𝑥) = 𝑑0𝑒
−2𝜎𝑥 + 𝑑1𝑒

𝜎𝑥 + 𝑑2𝑥𝑒
𝜎𝑥.

The boundary conditions 𝜃(0) = 𝜃′(𝐿) = 0 gives us respectively

𝑑0 + 𝑑1 = 0,

and
−2𝜎𝑑0 + 𝑑1𝜎 + 𝑑2 = 0,
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from where we get 𝑑0 = −𝑑1 and 𝑑2 = −3𝜎𝑑1. On the other hand, the boundary condition
𝜃′′(0) provides

4𝑑0𝜎
2 + 𝑑1𝜎

2 + 2𝑑2𝜎 = 0.

Replacing 𝑑0 = −𝑑1 and 𝑑2 = −3𝜎𝑑1 in the above expression we get 𝑑1 = 0, and finally
𝜃 = 0. □

By the previous claim, 𝜃(𝑥) = 𝑑0𝑒
𝜇0𝑥 +𝑑1𝑒

𝜇1𝑥 +𝑑2𝑒
𝜇2𝑥, where 𝜇0, 𝜇1 and 𝜇2 are the simple

roots of the characteristic polynomial 𝜇3 + 𝜇 + 𝜆̃ = 0. By imposing the boundary conditions
and calling 𝑎 = 𝜇0𝐿, 𝑏 = 𝜇1𝐿 and 𝑐 = 𝜇2𝐿, we obtain the following matrix system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

𝑎2 𝑏2 𝑐2

𝑎2𝑒𝑎 𝑏2𝑒𝑏 𝑐2𝑒𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝐶1

𝐶2

𝐶3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By Gauss-Jordan elimination, 𝑐 ̸= 0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

𝑎 𝑏 𝑐

𝑎2𝑒𝑎 𝑏2𝑒𝑏 𝑐2𝑒𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

𝑎𝑒𝑎 𝑏𝑒𝑏 𝑐𝑒𝑐

0 𝑏2 − 𝑎2 𝑐2 − 𝑎2

0 0 (𝑐− 𝑎)
𝑐

(𝑐2𝑒𝑐 − 𝑏2𝑒𝑏)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣ 𝐴𝑎,𝑏,𝑐

0 0 𝐵̃𝑎,𝑏,𝑐

⎤⎥⎥⎦ .

Easy computations give us

• 𝑟𝑎𝑛𝑘(𝐴𝑎,𝑏,𝑐) = 1, if and only if

𝑐𝑒𝑐 − 𝑎𝑒𝑎 = 0, 𝑎2 − 𝑐2 = 0, 𝑐𝑒𝑐 − 𝑏𝑒𝑏 = 0, 𝑏2 − 𝑐2 = 0.

Not possible.

• 𝑟𝑎𝑛𝑘(𝐴𝑎,𝑏,𝑐) = 2

1. 𝑐𝑒𝑐 − 𝑎𝑒𝑎 = 0, 𝑎2 − 𝑏2 = 0, 𝑐𝑒𝑐 − 𝑏𝑒𝑏 = 0, 𝑏2 − 𝑐2 ̸= 0. Not possible.

2. 𝑏𝑒𝑏 − 𝑎𝑒𝑎 = 0, 𝑎2 − 𝑏2 = 0, 𝑐𝑒𝑐 − 𝑏𝑒𝑏 ̸= 0.

3. 𝑐𝑒𝑐 − 𝑎𝑒𝑎 = 0, 𝑎2 − 𝑏2 ̸= 0, 𝑐𝑒𝑐 − 𝑏𝑒𝑏 = 0. Not possible, because 𝐿 /∈ 𝒩 *.

4. 𝑎2𝑒𝑎(𝑏− 𝑐) + 𝑏2𝑒𝑏(𝑐− 𝑎) + 𝑐2𝑒𝑐(𝑎− 𝑏) = 0.
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On the other hand, by symmetry

𝐵̃𝑎,𝑏,𝑐 = (𝑐− 𝑎)(𝑐2𝑒𝑐 − 𝑏2𝑒𝑏)
𝑐

= 0, =⇒ 𝑐2𝑒𝑐 = 𝑏2𝑒𝑏 = 𝑎2𝑒𝑎.

Then we have a non-trivial solution if 𝑐2𝑒𝑐 = 𝑏2𝑒𝑏 = 𝑎2𝑒𝑎. Recall that Girard’s relations
𝑎 + 𝑏 + 𝑐 = 0 and 𝐿2 = −(𝑎2 + 𝑎𝑏 + 𝑏2), which corresponds to the expression (3.10) of the
critical lengths 𝒩 †.

3.5.8 Proof of Theorem 3.1

The main result in this chapter, Theorem 3.1, is a consequence of Lemmas 3.3 and 3.4,
combined with the results obtained in the study of each case in (3.40), through Lemmas 3.5,
3.6, 3.7, 3.8, 3.9 and 3.10.

3.6 CONCLUSION

In this chapter, we present a detailed study of the controllability of the Kdv equation in
star graphs, under appropriate boundary conditions. From a detailed analysis of the spectral
problems associated with some control configurations, we were able to give a quite satisfactory
framework on the phenomenon of critical lengths for the linear problem associated with KdV
in this type of domain, which can be summarized in Table 1. Consequently, the controllability
of system (3.1) could be achieved by using 𝑁 controls in different situations of controlled
boundary conditions, and without using control at the central node of the network. In chapter
5 we will present some open problems regarding the systems studied in this chapter.
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4 CONTROL OF KAWAHARA EQUATION USING FLAT OUTPUTS

In this chapter, we focused on the linear Kawahara equation in a bounded domain. Using
two boundary controls, we show the null controllability for this equation in the space 𝐿2(0, 𝐿).
Moreover, employing the flatness approach, which is a new approach for higher-order dispersive
systems, we achieve the exact controllability within a space of analytic functions.

4.1 BACKGROUND AND LITERATURE REVIEW

It is known that, in an appropriate non-dimensional form, water waves can be modeled
as a free boundary problem of the incompressible, irrotational Euler equation. This involves
two non-dimensional parameters: 𝛿 := ℎ

𝜆
and 𝜀 := 𝑎

ℎ
, where the water depth, the wavelength,

and the amplitude of the free surface are respectively denoted by ℎ, 𝜆 and 𝑎. Additionally, the
parameter 𝜇, known as the Bond number, measures the relative importance of gravitational
forces compared to surface tension forces. Long waves, also known as shallow water waves, are
characterized by the condition 𝛿 ≪ 1. There are various long-wave approximations depending
on the relationship between 𝜀 and 𝛿.

The discussion above suggests that, instead of relying on models with poor asymptotic
properties, one can rescale the mentioned parameters to find systems that reveal asymptotic
models for surface and internal waves, such as the Kawahara model. Specifically, by setting
𝜀 = 𝛿4 ≪ 1, 𝜇 = 1

3 + 𝜈𝜀
1
2 , considering the critical Bond numbe 𝜇 = 1

3 , the Kawahara
equation is derived. This equation, first introduced by Hasimoto and Kawahara (HASIMOTO,
1970; KAWAHARA, 1972), takes the form

±2𝑣𝑡 + 3𝑣𝑣𝑥 − 𝜈𝑣𝑥𝑥𝑥 + 1
45𝑣𝑥𝑥𝑥𝑥𝑥 = 0,

or, after re-scaling,
𝑣𝑡 + 𝛼𝑣𝑥 + 𝛽𝑣𝑥𝑥𝑥 − 𝑣𝑥𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑥 = 0.

This equation is also known as the fifth-order Korteweg-de Vries (KdV) equation (BOYD,
1991) or the singularly perturbed KdV equation (POMEAU; RAMANI; GRAMMATICOS, 1988). It
describes a dispersive partial differential equation that encompasses various wave phenomena,
such as magneto-acoustic waves in a cold plasma (KAKUTANI, 1960), the propagation of long
waves in a shallow liquid beneath an ice sheet (IGUCHI, 2007), and gravity waves on the surface
of a heavy liquid (CUI; DENG; TAO, 2006), among others.
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Significant efforts in recent decades have aimed to understand this model within various
research frameworks. For instance, numerous studies have focused on analytical and numerical
methods for solving the equation. These methods include the tanh-function method (BERLOFF;

HOWARD, 1997), extended tanh-function method (BISWAS, 2009), sine-cosine method (YUSU-

FOğLU; BEKIR; ALP, 2008), Jacobi elliptic functions method (HUNTER; SCHEURLE, 1988), direct
algebraic method and numerical simulations (POLAT; KAYA; TUTALAR, 2006), decomposition
methods (KAYA; AL-KHALED, 2007), as well as variational iteration and homotopy perturbation
methods (JIN, 2009). Another important research direction is the study of the Kawahara equa-
tion from the perspective of control theory, specifically addressing the boundary controllability
problem (GLASS; GUERRERO, 2009), which is our motivation.

So, in this context, we are interested in the boundary controllability issue of the Kawahara
equation in a bounded domain. Precisely, we investigate the linear control problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (𝑥, 𝑡) ∈ (−1, 0) × (0, 𝑇 ),

𝑢(0, 𝑡) = 𝑢𝑥(0, 𝑡) = 𝑢𝑥𝑥(0, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(−1, 𝑡) = ℎ1(𝑡), 𝑢𝑥(−1, 𝑡) = ℎ2(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (−1, 0),

(4.1)

where ℎ1, ℎ2 are the controls input and 𝑢 is the state function. The adoption of the interval
(−1, 0) as the spatial domain is just a convention to simplify calculations. Performing a scale
in the time and space together with a translation in the space, we can see that the results are
valid for arbitrary domains (0, 𝐿), with 𝐿 > 0.

This chapter addresses two main issues:

Question 𝒜4: Null controllability. Given an initial data 𝑢0 in a suitable space, is it possible
to find control functions ℎ1, ℎ2 such that the state solution 𝑢 of the system (4.1) 𝑢(𝑥, 𝑇 ) = 0?

Question ℬ4: Reachable functions. Can we find a space ℛ with the property that, if the
final data 𝑢1 ∈ ℛ then one can get control functions ℎ1, ℎ2 such that the solution 𝑢 of the
system (4.1) with 𝑢0 = 0 satisfies 𝑢(·, 𝑇 ) = 𝑢1?

It is important to highlight several results related to control problems associated with the
system (4.1). Here are some of them. Regarding the analysis of the Kawahara equation in
a bounded interval, pioneering work was done by Silva and Vasconcellos (VASCONCELLOS;

SILVA, 2008), (VASCONCELLOS; SILVA, 2011). They studied the stabilization of global solutions
of the linear Kawahara equation in a bounded interval under the influence of a localized
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damping mechanism. The second contribution in this area was made by Capistrano-Filho et
al. (ARARUNA; CAPISTRANO-FILHO; DORONIN, 2012), who considered a generalized Kawahara
equation in a bounded domain.

Glass and Guerrero (GLASS; GUERRERO, 2009) considered the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝛼𝑦5𝑥 = ∑︀3
𝑘=0 𝑎𝑘(𝑥, 𝑡)𝜕𝑘

𝑥𝑦 + ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇 ),

𝑦(0, 𝑡) = 𝑣1(𝑡), 𝑦(1, 𝑡) = 𝑣2(𝑡), 𝑦𝑥(0, 𝑡) = 𝑣3(𝑡), 𝑡 ∈ ×(0, 𝑇 )

𝑦𝑥(1, 𝑡) = 𝑣4(𝑡), 𝑦𝑥𝑥(0, 𝑡) = 𝑣5(𝑡), 𝑡 ∈ ×(0, 𝑇 ),

𝑦(𝑥, 0) = 𝑦0, 𝑥 ∈ (0, 1),

(4.2)

where 𝛼 > 0 and 𝑦0, ℎ, 𝑣1, ..., 𝑣5 are given functions. Using a Carleman estimate, they demon-
strated that the system (4.2) is null controllable in the energy space 𝐿2(0, 1) using only the
controls on the right side of the boundary, 𝑣2 and 𝑣4, meaning 𝑣1 = 𝑣3 = 𝑣5 = 0. However,
the authors noted that the controllability properties might fail if the set of controls is altered.
For example, if 𝑣1 = 𝑣2 = 𝑣3 = 𝑣4 = 0, meaning only 𝑣5 is used as a control input, controlla-
bility does not occur because the adjoint system associated with (4.2) may have unobservable
solutions.

The internal controllability problem for the Kawahara equation with homogeneous bound-
ary conditions has been addressed by Chen (CHEN, 2019). Using Carleman estimates associated
with the linear operator of the Kawahara equation with internal observation, a null controllabil-
ity result was demonstrated when the internal control is effective in a subdomain 𝜔 ⊂ (0, 𝐿).
In (CAPISTRANO-FILHO; GOMES, 2021), the authors consider the Kawahara equation with an
internal control 𝑓(𝑡, 𝑥) and homogeneous boundary conditions, the equation is shown to be
exactly controllable in 𝐿2-weighted Sobolev spaces. Additionally, it is shown to be controllable
by regions in the 𝐿2-Sobolev space.

4.2 FLATNESS APPROACH AND MAIN RESULTS

The flatness approach (FLIESS et al., 1995), (ARMENTANO; CORON; GONZÁLEZ-BURGOS,
2011), (FLIESS; JOIN, 2013), also known as differential flatness, represents a powerful concept
in control theory and nonlinear system analysis. It characterizes certain dynamical systems
where all states and inputs can be described as algebraic functions of a finite set of inde-
pendent variables, referred to as flat outputs, and their derivatives. This approach simplifies
the control and trajectory planning of complex systems. It has found extensive application
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across various partial differential equations, including the heat equation (MARTIN; ROSIER;

ROUCHON, 2014), (MARTIN; ROSIER; ROUCHON, 2016b), (CHEN; ROSIER, 2022), 1-dimensional
parabolic equations (MARTIN; ROSIER; ROUCHON, 2016a), the 1-dimensional Schrödinger equa-
tion (MARTIN; ROSIER; ROUCHON, 2018), the linear KdV equation (MARTIN et al., 2019), and
more recently, the linear Zakharov-Kuznetsov equation (CHEN; ROSIER, 2020). Here are the
key aspects of the flatness approach:

1. Flat outputs: In a flat system, outputs (flat outputs) describe the system’s entire state
and input trajectories using algebraic relationships involving a finite number of their
derivatives.

2. Simplified control design: By utilizing flat outputs, complex nonlinear control problems
can be transformed into simpler linear problems. This transformation simplifies the design
of control laws and facilitates the generation of desired trajectories.

3. Trajectory planning: The flatness approach enables systematic trajectory planning.
Desired trajectories for flat outputs can be planned first, and then corresponding state
and input trajectories can be computed using the flatness property.

4. Real-world applications: The flatness approach has been successfully applied across
various fields, including robotics, aerospace, process control, and automotive systems.
For instance, in robotics, it aids in trajectory design for manipulators and mobile robots.

It is crucial to recognize the advantages of the flatness approach. Typically, designing
controls for nonlinear systems is complex; however, this approach mitigates this complexity.
Furthermore, flatness offers a systematic approach to generating trajectories and control inputs
and, as previously noted, is applicable across a broad spectrum of dynamical systems.

Nevertheless, it is important to acknowledge the limitations and challenges associated with
this method. Identifying flat outputs for a specific system can be demanding and necessitates a
profound understanding of the system’s dynamics. Additionally, not all systems exhibit flatness,
which restricts the universal applicability of this approach. In summary, the flatness approach
provides a robust framework for controlling and analyzing nonlinear dynamical systems through
the concept of flat outputs. It simplifies the design of control laws and trajectory planning,
making it a valuable tool across various engineering applications.

Regarding the primary contribution of this chapter, we advance the study of the control
problem for the fifth-order dispersive system (4.1). Unlike recent works that utilize boundary
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controls and use the Hilbert uniqueness method, introduced by Lions (LIONS, 1988b), to show
control properties, this work achieves the problems 𝒜4 and ℬ4 using two control inputs via the
flatness approach. Let us now present the main results of this work.

Motivated by the smoothing effect exhibited by the equation (4.1) with free evolution
(ℎ1 = ℎ2 = 0), we explore the reachable sets within smooth function spaces, specifically,
Gevrey spaces. First, let us introduce the definition of these spaces.

Definition 4.1 (Gevrey spaces) Given 𝑠1, 𝑠2 ≥ 0, a function 𝑢 : [𝑎, 𝑏] × [𝑡1, 𝑡2] → R is said
to be Gevrey of order 𝑠1 on [𝑎, 𝑏] and 𝑠2 on [𝑡1, 𝑡2] if 𝑢 ∈ 𝐶∞([𝑎, 𝑏] × [𝑡1, 𝑡2]) and there exist
positive constants 𝐶,𝑅1 and 𝑅2 such that

|𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑦(𝑥, 𝑡)| ≤ 𝐶

𝑛!𝑠1

𝑅𝑛
1

𝑚!𝑠2

𝑅𝑚
2
, ∀𝑛,𝑚 ≥ 0, ∀(𝑥, 𝑡) ∈ [𝑎, 𝑏] × [𝑡1, 𝑡2].

The vectorial space of all functions on [𝑎, 𝑏] × [𝑡1, 𝑡2] which are Gevrey of order 𝑠1 in 𝑥 and 𝑠2

in 𝑡 is denoted by 𝐺𝑠1,𝑠2([𝑎, 𝑏] × [𝑡1, 𝑡2]).

In this context, we investigate the null controllability problem associated with (4.1) using
the flatness approach to establish controllability properties. The goal is to identify a set of
functions in a Gevrey space that are null controllable and to demonstrate that, at some
intermediate time 𝜏 ∈ (0, 𝑇 ), the solutions to the free evolution problem fall into this set.
Specifically, the first main result of this work can be stated as follows.

Theorem 4.1 (Null controllability) Let 𝑠 ∈ [5
2 , 5) and 𝑇 > 0 be given. For any 𝑢0 ∈

𝐿2(−1, 0) there exist control inputs ℎ1, ℎ2 ∈ 𝐺𝑠([0, 𝑇 ]) such that the solution of (4.1) belongs
to the class 𝑢 ∈ 𝐶 ([0, 𝑇 ], 𝐿2(−1, 0)) ∩ 𝐺

𝑠
5 ,𝑠([−1, 0] × [𝜀, 𝑇 ]), ∀𝜀 ∈ (0, 𝑇 ), and satisfies

𝑢(·, 𝑇 ) = 0.

The previous result confirms that two flat outputs can be used to achieve null controllability,
thereby addressing Question 𝒜4 presented at the beginning of this work. Now, to present our
second main result, we need to introduce some notations. Given 𝑧0 ∈ C and 𝑅 > 0, we denote
by 𝐷(𝑧0, 𝑅) the open disk given by

𝐷(𝑧0, 𝑅) = {𝑧 ∈ C; |𝑧 − 𝑧0| < 𝑅}

and 𝐻(𝐷(𝑧0, 𝑅)) denote the set of holomorphic functions on 𝐷(𝑧0, 𝑅). Henceforth, we con-
sider the operators

𝑃𝑢 = 𝜕𝑥𝑢+ 𝜕3
𝑥𝑢− 𝜕5

𝑥𝑢,
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where 𝑃 0 = 𝐼𝑑 and 𝑃 𝑛 = 𝑃 ∘ 𝑃 𝑛−1, when 𝑛 ≥ 1. In this way, the Kawahara equation can be
expressed as

𝜕𝑡𝑢+ 𝑃𝑢 = 0. (4.3)

Using induction and the fact that 𝜕𝑡 and 𝑃 commute we see that, if 𝑢 = 𝑢(𝑥, 𝑡) satisfies (4.3)
then

𝜕𝑛
𝑡 𝑢+ (−1)𝑛−1𝑃 𝑛𝑢 = 0. (4.4)

For every 𝑅 > 1, we define the set

ℛ𝑅 :=
{︂
𝑢 ∈ 𝐶([−1, 0]); ∃𝑧 ∈ 𝐻(𝐷(0, 𝑅)); 𝑢 = 𝑧|[−1,0] and (𝜕𝑗

𝑥𝑃
𝑛𝑢)(0) = 0, 𝑗 = 0, 1, 2

}︂
,

(4.5)

now on called a set of reachable states. The following result is the second main result in this
chapter, answering the Question ℬ4.

Theorem 4.2 Let 𝑇 > 0, 𝑅0 := 2 · 125−1 · 𝑒(5𝑒)−1
> 1 and 𝑅 > 2𝑅0 be given. For every

𝑢1 ∈ ℛ𝑅 there exist control inputs ℎ1, ℎ2 ∈ 𝐺5([0, 𝑇 ]) for which the solution 𝑢 of (4.1) with
𝑢0 = 0 satisfies 𝑢(·, 𝑇 ) = 𝑢1 and 𝑢 ∈ 𝐺1,5([−1, 0] × [0, 𝑇 ]).

4.2.1 Chapter outline

Let us conclude this introduction with an outline of our chapter. Section 4.3 addresses
Question 𝒜4 by presenting the control result, which is a consequence of the flatness property
and the smoothing effect of the Kawahara equation. In Section 4.4, we provide an example of
a set that can be reached from 0 by the system (4.1). This result, stemming from the flatness
property extended to the limit case 𝑠 = 5, partially answers Question ℬ4. Finally, in Section
4.5 we conclude the chapter with some additional considerations about our studies and their
possible future developments.

4.3 CONTROLLABILITY RESULT

We want to prove the null controllability property for the system (4.1). Our initial objective
is to show the flatness property. This property ensures that we can parameterize the solution of
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the system (4.1) using the “flat outputs" 𝜕3
𝑥𝑢(0, 𝑡) and 𝜕4

𝑥𝑢(0, 𝑡). To prove it, we will examine
the ill-posed system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝜕𝑥𝑢+ 𝜕3
𝑥𝑢− 𝜕5

𝑥𝑢 = 0, (𝑥, 𝑡) in (−1, 0) × (0, 𝑇 ),

𝑢(0, 𝑡) = 𝜕𝑥𝑢(0, 𝑡) = 𝜕2
𝑥𝑢(0, 𝑡) = 0, 𝑡 in (0, 𝑇 ),

𝜕3
𝑥𝑢(0, 𝑡) = 𝑦(𝑡), 𝜕4

𝑥𝑢(0, 𝑡) = 𝑧(𝑡), 𝑡 in (0, 𝑇 ).

(4.6)

Remark 4.1 In the control literature, the term ill-posed has been used to refer to systems
whose control provided by the HUM presents difficulties in numerical simulations. In cases of
systems for which the solution has a smoothing effect, the energy space for the adjoint system
has very low regularity and, consequently, the control written in terms of the solution of the
adjoint problem has irregularities that are difficult to capture numerically. In other words, the
term ill-posed refers to the difficulty of numerically determining the minimum norm control
on 𝐿2(0, 𝑇 ) provided by the HUM, that is, this is a “ numerical ill-posedness" of the control
problem. For a better explanation we suggest references (MUNCH; ZUAZUA, 2010), (MICU;

ZUAZUA, 2011) and (BELGACEM; KABER, 2011).

Precisely, we will show that the solution of (4.6) belongs to 𝐺 𝑠
5 ,𝑠([−1, 0] × [𝜀, 𝑇 ]) for all

𝜀 ∈ (0, 𝑇 ) and can be written in the form

𝑢(𝑥, 𝑡) =
∞∑︁

𝑗=0
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡) +

∞∑︁
𝑗=0

𝑔𝑗(𝑥)𝑧(𝑗)(𝑡), (𝑥, 𝑡) ∈ [−1, 0] × [𝜀, 𝑇 ] (4.7)

where 𝑦, 𝑧 ∈ 𝐺𝑠([0, 𝑇 ]) for some 𝑠 ≥ 0, with 𝑦(𝑗)(𝑇 ) = 𝑧(𝑗)(𝑇 ) = 0 for every 𝑗 ≥ 0. Here, 𝑓𝑗

and 𝑔𝑗 are called the generating functions and are constructed following the ideas introduced
in (MARTIN; ROSIER; ROUCHON, 2016a). The smoothing effect is responsible for ensuring that,
from time 𝜀 onward, the solution of the free evolution problem associated to (4.1) is Gevrey
of order 1

2 in 𝑥 and 5
2 in 𝑡. Finally, a result of unique continuation is used to ensure that this

solution coincides with the one associated with (4.6), described in (4.7).

4.3.1 Flatness property

We need to prove that there exists a one-to-one correspondence between solutions of (4.6)
and a certain space of smooth functions, which we will call the flatness property. We will often
use Stirling’s formula:

𝑛! ∼
(︂
𝑛

𝑒

)︂𝑛 √
2𝜋𝑛, ∀𝑛,
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and the inequality

(𝑛+𝑚)! ≤ 2𝑛+𝑚𝑛!𝑚!. (4.8)

For 𝑛 ∈ N, 𝑝 ∈ [1,∞] and 𝑓 ∈ 𝑊 𝑛,𝑝(−1, 0) we denote

‖𝑓‖𝑝 = ‖𝑓‖𝐿𝑝(−1,0) and ‖𝑓‖𝑛,𝑝 =
𝑛∑︁

𝑖=0
‖𝜕𝑖

𝑥𝑓‖𝑝.

Let us, in this part, find a solution 𝑢 for (4.6) in the form

𝑢(𝑥, 𝑡) =
∑︁
𝑗≥0

𝑓𝑗(𝑥)𝑦(𝑗)(𝑡) +
∑︁
𝑗≥0

𝑔𝑗(𝑥)𝑧(𝑗)(𝑡). (4.9)

Here, 𝑦, 𝑧, 𝑓𝑗, 𝑔𝑗 satisfies the following conditions:

1) 𝑦, 𝑧 ∈ 𝐺𝑠([0, 𝑇 ]) with 𝑠 ∈ (1, 5);

2) 𝑓𝑗, 𝑔𝑗 ∈ 𝐿∞([−1, 0]) with polynomial growths in the form

|𝑓𝑗(𝑥)| ≤ 2𝑗 |𝑥|5𝑗+𝑟

(5𝑗 + 𝑟)! and |𝑔𝑗(𝑥)| ≤ 2𝑗 |𝑥|5𝑗+𝑟

(5𝑗 + 𝑟)! , ∀𝑗 ≥ 0, ∀𝑥 ∈ [−1, 0],

for some 𝑟 ∈ {0, 1, 2, 3, 4};

3) 𝜕3
𝑥𝑢(0, 𝑡) = 𝑦(𝑡) and 𝜕4

𝑥𝑢(0, 𝑡) = 𝑧(𝑡).

Considering 𝑢 as in (4.9) and assuming that we can derive term by term, we get that

𝑢𝑡 + 𝜕𝑥𝑢+ 𝜕3
𝑥𝑢− 𝜕5

𝑥𝑢 =
∑︁
𝑗≥0

𝑓𝑗(𝑥)𝑦(𝑗+1)(𝑡) +
∑︁
𝑗≥0

(𝑓𝑗𝑥 + 𝑓𝑗3𝑥 − 𝑓𝑗5𝑥) (𝑥)𝑦(𝑗)(𝑡)

+
∑︁
𝑗≥0

𝑔𝑗(𝑥)𝑧(𝑗+1)(𝑡) +
∑︁
𝑗≥0

(𝑔𝑗𝑥 + 𝑔𝑗3𝑥 − 𝑔𝑗5𝑥) (𝑥)𝑧(𝑗)(𝑡).

Considering a new index 𝑙 = 𝑗 + 1 gives us

∑︁
𝑗≥0

𝑓𝑗(𝑥)𝑦(𝑗+1)(𝑡) =
∑︁
𝑙≥1

𝑓𝑙−1(𝑥)𝑦(𝑙)(𝑡) and
∑︁
𝑗≥0

𝑔𝑗(𝑥)𝑧(𝑗+1)(𝑡) =
∑︁
𝑙≥1

𝑔𝑙−1(𝑥)𝑧(𝑙)(𝑡).

Thus

𝑢𝑡 + 𝜕𝑥𝑢+ 𝜕3
𝑥𝑢− 𝜕5

𝑥𝑢 =
∑︁
𝑗≥1

𝑓𝑗−1(𝑥)𝑦(𝑗)(𝑡) +
∑︁
𝑗≥1

(𝑓𝑗𝑥 + 𝑓𝑗3𝑥 − 𝑓𝑗5𝑥) (𝑥)𝑦(𝑗)(𝑡)

+ (𝑓0𝑥 + 𝑓03𝑥 − 𝑓05𝑥) (𝑥)𝑦(𝑡) + (𝑔0𝑥 + 𝑔03𝑥 − 𝑔05𝑥) (𝑥)𝑧(𝑡)

+
∑︁
𝑗≥1

𝑔𝑗−1(𝑥)𝑧(𝑗)(𝑡) +
∑︁
𝑗≥1

(𝑔𝑗𝑥 + 𝑔𝑗3𝑥 − 𝑔𝑗5𝑥) (𝑥)𝑧(𝑗)(𝑡).



114

Hence, if we have ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑓0𝑥 + 𝑓03𝑥 − 𝑓05𝑥 = 𝑔0𝑥 + 𝑔03𝑥 − 𝑔05𝑥 = 0,

𝑓𝑗𝑥 + 𝑓𝑗3𝑥 − 𝑓𝑗5𝑥 = −𝑓𝑗−1, ∀𝑗 ≥ 1,

𝑔𝑗𝑥 + 𝑔𝑗3𝑥 − 𝑔𝑗5𝑥 = −𝑔𝑗−1, ∀ 𝑗 ≥ 1,

then
𝑢𝑡 + 𝜕𝑥𝑢+ 𝜕3

𝑥𝑢− 𝜕5
𝑥𝑢 = 0.

Furthermore, imposing the conditions⎧⎪⎪⎨⎪⎪⎩
𝑓0(0) = 𝑓0𝑥(0) = 𝑓02𝑥(0) = 𝑓04𝑥(0) = 0, 𝑓03𝑥(0) = 1,

𝑓𝑗(0) = 𝑓𝑗𝑥(0) = 𝑓𝑗2𝑥(0) = 𝑓𝑗3𝑥(0) = 𝑓𝑗4𝑥(0) = 0, ∀𝑗 ≥ 1

and ⎧⎪⎪⎨⎪⎪⎩
𝑔0(0) = 𝑔0𝑥(0) = 𝑔02𝑥(0) = 𝑔03𝑥(0) = 0, 𝑔04𝑥(0) = 1,

𝑔𝑗(0) = 𝑔𝑗𝑥(0) = 𝑔𝑗2𝑥(0) = 𝑔𝑗3𝑥(0) = 𝑔𝑗4𝑥(0) = 0, ∀𝑗 ≥ 1,

we obtain, ⎧⎪⎪⎨⎪⎪⎩
𝑢(0, 𝑡) = 𝜕𝑥𝑢(0, 𝑡) = 𝜕2

𝑥𝑢(0, 𝑡) = 0,

𝜕3
𝑥𝑢(0, 𝑡) = 𝑦(𝑡), 𝜕4

𝑥𝑢(0, 𝑡) = 𝑧(𝑡),

for 𝑡 ∈ (0, 𝑇 ). This leads us to define inductively the functions {𝑓𝑗}𝑗≥0 and {𝑔𝑗}𝑗≥0 as follows:

1) 𝑓0 is the solution of the IBVP⎧⎪⎪⎨⎪⎪⎩
𝑓0𝑥 + 𝑓03𝑥 − 𝑓05𝑥 = 0,

𝑓0(0) = 𝑓0𝑥(0) = 𝑓02𝑥(0) = 𝑓04𝑥(0) = 0, 𝑓03𝑥(0) = 1.
(4.10)

and, for 𝑗 ≥ 1, 𝑓𝑗 is the solution for the IBVP⎧⎪⎪⎨⎪⎪⎩
𝑓𝑗𝑥 + 𝑓𝑗3𝑥 − 𝑓𝑗5𝑥 = −𝑓𝑗−1,

𝑓𝑗(0) = 𝑓𝑗𝑥(0) = 𝑓𝑗2𝑥(0) = 𝑓𝑗3𝑥(0) = 𝑓𝑗4𝑥(0) = 0.
(4.11)

2) 𝑔0 is the solution of the IBVP⎧⎪⎪⎨⎪⎪⎩
𝑔0𝑥 + 𝑔03𝑥 − 𝑔05𝑥 = 0,

𝑔0(0) = 𝑔0𝑥(0) = 𝑔02𝑥(0) = 𝑔03𝑥(0) = 0, 𝑔04𝑥(0) = 1.
(4.12)
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and, for 𝑗 ≥ 1, 𝑔𝑗 is the solution for the IVP⎧⎪⎪⎨⎪⎪⎩
𝑔𝑗𝑥 + 𝑔𝑗3𝑥 − 𝑔𝑗5𝑥 = −𝑔𝑗−1,

𝑔𝑗(0) = 𝑔𝑗𝑥(0) = 𝑔𝑗2𝑥(0) = 𝑔𝑗3𝑥(0) = 𝑔𝑗4𝑥(0) = 0.
(4.13)

We will prove that, given 𝑠 ∈ (1, 5), there exists a one to one correspondence between
solutions of (4.6) and pairs of functions (𝑦, 𝑧) ∈ 𝐺𝑠([0, 𝑇 ]) ×𝐺𝑠([0, 𝑇 ]), namely,

𝑢 ↦→
(︁
𝜕3

𝑥𝑦(0, ·), 𝜕4
𝑥𝑧(0, ·)

)︁
.

In the sense of this bijection, we shall say that the system (4.6) is flat. Observe that, an
expression in terms of the families {𝑓𝑗}𝑗≥0 and {𝑔𝑗}𝑗≥0 for a solution 𝑢 of (4.6) as in (4.9)
must be unique, that is, if

𝑢(𝑥, 𝑡) =
∑︁
𝑗≥0

𝑓𝑗(𝑥)𝑦(𝑗)(𝑡) +
∑︁
𝑗≥0

𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

and

𝑢(𝑥, 𝑡) =
∑︁
𝑗≥0

𝑓𝑗(𝑥)𝑦(𝑗)(𝑡) +
∑︁
𝑗≥0

𝑔𝑗(𝑥)𝑧(𝑗)(𝑡),

with 𝑦, 𝑦, 𝑧, 𝑧 ∈ 𝐺𝑠([0, 𝑇 ]), then 𝑦 = 𝑦 and 𝑧 = 𝑧.

Remark 4.2 1) Note that considering a toy model, that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝜕5
𝑥𝑢 = 0, (𝑥, 𝑡) ∈ (−1, 0) × (0, 𝑇 ),

𝑢(0, 𝑡) = 𝜕𝑥𝑢(0, 𝑡) = 𝜕2
𝑥(0, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(−1, 𝑡) = ℎ1(𝑡) 𝜕𝑥𝑢(−1, 𝑡) = ℎ2(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥),

the first equation in the systems (4.10)-(4.12) do not have the first and third derivatives
terms. Then, direct computation gives

𝑓𝑗(𝑥) = 𝑥5𝑗+3

(5𝑗 + 3)! and 𝑔𝑗(𝑥) = 𝑥5𝑗+4

(5𝑗 + 4)! , ∀ 𝑗 ≥ 0, 𝑥 ∈ [−1, 0].

2) Returning to the full system, with terms of the first and third derivatives, we have that
the solutions 𝑓0 and 𝑔0 of (4.10) and (4.12) are given by

𝑓0(𝑥) = 1√
𝑎(𝑎+ 𝑏) sinh

(︁√
𝑎𝑥
)︁

− 1√
𝑏(𝑎+ 𝑏)

sin
(︁√

𝑏𝑥
)︁

(4.14)
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and

𝑔0(𝑥) = 1
𝑎(𝑎+ 𝑏) cosh

(︁√
𝑎𝑥
)︁

+ 1
𝑏(𝑎+ 𝑏) cos

(︁√
𝑏𝑥
)︁

− 1
𝑎(𝑎+ 𝑏) − 1

𝑏(𝑎+ 𝑏) , (4.15)

respectively, where 𝑎 =
√

5+1
2 and 𝑏 =

√
5−1
2 .

To conclude that the system (4.6) is flat, it is enough to show that the solutions of (4.6)
can be expressed as in (4.9) with {𝑓𝑗}𝑗≥0 and {𝑔𝑗}𝑗≥0 given by (4.10)-(4.13). Precisely,
we will see that given 𝑦, 𝑧 ∈ 𝐺𝑠([0, 𝑇 ]), then 𝑢 given by (4.9) is well defined, belongs to
𝐺

𝑠
5 ,𝑠([−1, 0] × [0, 𝑇 ]) and it solves the problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝜕𝑥𝑢+ 𝜕3
𝑥𝑢− 𝜕5

𝑥𝑢 = 0 (𝑥, 𝑡) in (−1, 0) × (0, 𝑇 )

𝑢(0, 𝑡) = 𝜕𝑥𝑢(0, 𝑡) = 𝜕2
𝑥𝑢(0, 𝑡) = 0, 𝑡 in (0, 𝑇 )

𝜕3
𝑥𝑢(0, 𝑡) = 𝑦(𝑡), 𝜕4

𝑥𝑢(0, 𝑡) = 𝑧(𝑡) 𝑡 ∈ (0, 𝑇 ).

(4.16)

To do this, first, we need to establish estimates for the norms ‖𝑓𝑗‖𝐿∞(−1,0) and ‖𝑔𝑗‖𝐿∞(−1,0),
as suggested before. At this point, it is very useful to note that, for 𝑗 ≥ 1, 𝑓𝑗 (respectively 𝑔𝑗)
can be written in terms of 𝑓0 and 𝑓𝑗−1 (respectively 𝑔0 and 𝑔𝑗−1).

Lemma 4.1 For any 𝑗 ≥ 1 and 𝑥 ∈ [−1, 0] we have

𝑓𝑗(𝑥) =
∫︁ 𝑥

0

∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉𝑑𝑦 (4.17)

and

𝑔𝑗(𝑥) =
∫︁ 𝑥

0
𝑔0(𝑥− 𝜉)𝑔𝑗−1(𝜉)𝑑𝜉. (4.18)

Proof: Let 𝑥 ∈ [−1, 0], 𝑦 ∈ [𝑥, 0] and 𝜉 ∈ [𝑦, 0] be. From (4.11) we have

𝑓𝑗𝜉(𝜉)𝑓0(𝑦 − 𝜉) + 𝑓𝑗3𝜉(𝜉)𝑓0(𝑦 − 𝜉) − 𝑓𝑗5𝜉(𝜉)𝑓0(𝑦 − 𝜉) = −𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉).

Integrating with respect to 𝜉 we obtain∫︁ 𝑦

0
𝑓𝑗(𝜉) (𝑓0𝜉(𝑦 − 𝜉) + 𝑓03𝜉(𝑦 − 𝜉) − 𝑓05𝜉(𝑦 − 𝜉)) 𝑑𝜉 − 𝑓𝑗𝜉(𝑦) = −

∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉

and by (4.10), after some integration by parts, it follows that

𝑓 ′
𝑗(𝑦) =

∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉.

Integrating from 0 to 𝑥 with respect to 𝑦 we get

𝑓𝑗(𝑥) =
∫︁ 𝑥

0

∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉𝑑𝑦, ∀𝑥 ∈ [−1, 0],

showing (4.17). Similarly, (4.18) is verified. □

The next lemma will ensure that the series in (4.9) are convergent.
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Lemma 4.2 For every 𝑗 ≥ 0 we have

|𝑓𝑗(𝑥)| ≤ 2𝑗 |𝑥|5𝑗+1

(5𝑗 + 1)! (4.19)

and
|𝑔𝑗(𝑥)| ≤ 2𝑗 |𝑥|5𝑗+1

(5𝑗 + 1)! , (4.20)

for all 𝑗 ≥ 0 and 𝑥 ∈ [−1, 0].

Proof: Let us start to proving (4.19) by induction on 𝑗. First, we must verify the case 𝑗 = 0:

|𝑓0(𝑥)| ≤ |𝑥|, ∀𝑥 ∈ [−1, 0].

Note that 𝑓0(𝑥) ≤ 0 in [−1, 0]. Indeed, from (4.14), since cosh > 1 in R∖{0} and cos ≤ 1 in
R,

𝑓0𝑥 = 1
𝑎+ 𝑏

cosh
(︁√

𝑎𝑥
)︁

− 1
𝑎+ 𝑏

cos
(︁√

𝑏𝑥
)︁
>

1
𝑎+ 𝑏

− 1
𝑎+ 𝑏

= 0,

for all 𝑥 ∈ (−∞, 0). This implies that 𝑓0 is increasing, thus 𝑓0(𝑥) ≤ 𝑓0(0) = 0. Therefore, it
is sufficient to show that

𝑓0(𝑥) ≥ 𝑥, ∀𝑥 ∈ [−1, 0]. (4.21)

Defining 𝜙(𝑥) = 𝑓0(𝑥) − 𝑥 we have 𝜙′(𝑥) = 𝑓 ′
0(𝑥) − 1. On the other hand, we have

𝑓03𝑥(𝑥) = 𝑎

𝑎+ 𝑏
cosh

(︁√
𝑎𝑥
)︁

+ 𝑏

𝑎+ 𝑏
cos

(︁√
𝑏𝑥
)︁
>
𝑎− 𝑏

𝑎+ 𝑏
= 1√

5
> 0,

for 𝑥 ∈ (−∞, 0), and so 𝑓02𝑥 is increasing in (−∞, 0], implying that 𝑓02𝑥(𝑥) < 𝑓02𝑥(0) = 0

for 𝑥 ∈ (−∞, 0]. Consequently 𝑓0𝑥 is decreasing in (−∞, 0] which implies that

𝑓0𝑥(𝑥) < 𝑓0𝑥(−1) ≊ 0, 54 < 1, ∀ 𝑥 ∈ (−1, 0),

so 𝜙′ < 0 in (−1, 0). Hence 𝜙 is decreasing on [−1, 0] and therefore 𝜙(𝑥) ≥ 𝜙(0) = 0, for
𝑥 ∈ [−1, 0], which implies (4.21).

For the next step, we need to verify the estimate

|𝑓03𝑥(𝑥)| ≤ 2, (4.22)

when 𝑥 ∈ [−1, 0]. Note that we have

𝑓05𝑥(𝑥) = 𝑎2

𝑎+ 𝑏
cosh

(︁√
𝑎𝑥
)︁

− 𝑏2

𝑎+ 𝑏
cos

(︁√
𝑏𝑥
)︁
>
𝑎2 − 𝑏2

𝑎+ 𝑏
= 𝑎− 𝑏 = 1,
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for 𝑥 ∈ (−∞, 0). This gives us that 𝑓04𝑥 is increasing in (−∞, 0], in particular, 𝑓04𝑥(𝑥) <

𝑓04𝑥(0) = 0. Hence 𝑓03𝑥 is decreasing in (−∞, 0], and so 1 = 𝑓03𝑥(0) ≤ 𝑓03𝑥(𝑥) ≤ 𝑓03𝑥(−1) ≊

1, 59 < 2, for 𝑥 ∈ [−1, 0], getting (4.22).
Now, suppose that for some 𝑗 ≥ 1

|𝑓𝑗(𝑥)| ≤ 2𝑗−1 |𝑥|5(𝑗−1)+1

[5(𝑗 − 1) + 1]! , ∀𝑥 ∈ [−1, 0],

holds. By Lemma 4.1 we have

𝑓𝑗(𝑥) =
∫︁ 𝑥

0

∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉𝑑𝑦, ∀𝑥 ∈ [−1, 0].

Using integration by parts (with respect to 𝜉) together with the boundary conditions in (4.10)
we obtain

∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉 =

∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉) 𝑑

𝑑𝜉

∫︁ 𝜉

0
𝑓𝑗−1(𝜎)𝑑𝜎𝑑𝜉

=
[︃
𝑓0(𝑦 − 𝜉)

∫︁ 𝜉

0
𝑓𝑗−1(𝜎)𝑑𝜎

]︃𝑦

0
+
∫︁ 𝑦

0

∫︁ 𝜉

0
𝑓𝑗−1(𝜎)𝑑𝜎𝑓0𝜉(𝑦 − 𝜉)𝑑𝜉

=
∫︁ 𝑦

0
𝑓0𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0
𝑓𝑗−1(𝜎)𝑑𝜎𝑑𝜉.

Define 𝐹 (𝜉) =
∫︀ 𝜉

0 𝑓𝑗−1(𝜎)𝑑𝜎, with this, we can write
∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉 =

∫︁ 𝑦

0
𝑓0𝜉(𝑦 − 𝜉)𝐹 (𝜉)𝑑𝜉 =

∫︁ 𝑦

0
𝑓0𝜉(𝑦 − 𝜉) 𝑑

𝑑𝜉

∫︁ 𝜉

0
𝐹 (𝜏)𝑑𝜏𝑑𝜉.

Integration by parts, together with the boundary conditions given in (4.10), we get
∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉 =

[︃
𝑓0𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0
𝐹 (𝜏)𝑑𝜏

]︃𝑦

0
+
∫︁ 𝑦

0

∫︁ 𝜉

0
𝐹 (𝜏)𝑑𝜏𝑓02𝜉(𝑦 − 𝜉)𝑑𝜉

=
∫︁ 𝑦

0
𝑓02𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0
𝐹 (𝜏)𝑑𝜏𝑑𝜉.

Setting also 𝐺(𝜉) =
∫︀ 𝜉

0 𝐹 (𝜏)𝑑𝜏, and we have
∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉 =

∫︁ 𝑦

0
𝑓02𝜉(𝑦 − 𝜉)𝐺(𝜉)𝑑𝜉 =

∫︁ 𝑦

0
𝑓02𝜉(𝑦 − 𝜉) 𝑑

𝑑𝜉

∫︁ 𝜉

0
𝐺(𝜌)𝑑𝜌𝑑𝜉.

Using again integration by parts together with (4.10), it follows that
∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉 =

[︃
𝑓02𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0
𝐺(𝜌)𝑑𝜌

]︃𝑦

0
+
∫︁ 𝑦

0

∫︁ 𝜉

0
𝐺(𝜌)𝑑𝜌𝑓03𝜉(𝑦 − 𝜉)𝑑𝜉

=
∫︁ 𝑦

0
𝑓03𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0
𝐺(𝜌)𝑑𝜌𝑑𝜉.
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Therefore, the previous equality ensures that
∫︁ 𝑦

0
𝑓0(𝑦 − 𝜉)𝑓𝑗−1(𝜉)𝑑𝜉 =

∫︁ 𝑦

0
𝑓03𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0
𝐺(𝜌)𝑑𝜌𝑑𝜉

=
∫︁ 𝑦

0
𝑓03𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0

∫︁ 𝜌

0
𝐹 (𝜏)𝑑𝜏𝑑𝜌𝑑𝜉

=
∫︁ 𝑦

0
𝑓03𝜉(𝑦 − 𝜉)

∫︁ 𝜉

0

∫︁ 𝜌

0

∫︁ 𝜏

0
𝑓𝑗−1(𝜎)𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜉

=
∫︁ 𝑦

0

∫︁ 𝜉

0

∫︁ 𝜌

0

∫︁ 𝜏

0
𝑓03𝜉(𝑦 − 𝜉)𝑓𝑗−1(𝜎)𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜉,

so

𝑓𝑗(𝑥) =
∫︁ 𝑥

0

∫︁ 𝑦

0

∫︁ 𝜉

0

∫︁ 𝜌

0

∫︁ 𝜏

0
𝑓03𝜉(𝑦 − 𝜉)𝑓𝑗−1(𝜎)𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜉𝑑𝑦, ∀𝑥 ∈ [−1, 0].

Then, by the induction hypothesis, we get that

|𝑓𝑗(𝑥)| ≤
∫︁ 𝑥

0

∫︁ 𝑦

0

∫︁ 𝜉

0

∫︁ 𝜌

0

∫︁ 𝜏

0
2 · 2𝑗−1 |𝜎|5(𝑗−1)+1

[5(𝑗 − 1) + 1]!𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜉𝑑𝑦

≤ 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

∫︁ 𝑦

0

∫︁ 𝜉

0

∫︁ 𝜌

0

∫︁ 𝜏

0

|𝜎|5𝑗−4

(5𝑗 − 4)!𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜉𝑑𝑦
⃒⃒⃒⃒
⃒

= 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

∫︁ 𝑦

0

∫︁ 𝜉

0

∫︁ 𝜌

0

∫︁ 𝜏

0

(−𝜎)5𝑗−4

(5𝑗 − 4)!𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜉𝑑𝑦
⃒⃒⃒⃒
⃒ ,

for 𝑥 ∈ [−1, 0]. Pick 𝑟 = −𝜎, thus 𝑑𝑟 = −𝑑𝜎, that is,
∫︁ 𝜏

0

(−𝜎)5𝑗−4

(5𝑗 − 4)!𝑑𝜎 = −
∫︁ −𝜏

0

𝑟5𝑗−4

(5𝑗 − 4)!𝑑𝑟 =
[︃
− 𝑟5𝑗−3

(5𝑗 − 3)(5𝑗 − 4)!

]︃−𝜏

0
= −(−𝜏)5𝑗−3

(5𝑗 − 3)!

thus

|𝑓𝑗(𝑥)| ≤ 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

∫︁ 𝑦

0

∫︁ 𝜉

0

∫︁ 𝜌

0

(−𝜏)5𝑗−3

(5𝑗 − 3)!𝑑𝜏𝑑𝜌𝑑𝜉𝑑𝑦
⃒⃒⃒⃒
⃒ .

Now set 𝑟 = −𝜏 to get
∫︁ 𝜌

0

(−𝜏)5𝑗−3

(5𝑗 − 3)!𝑑𝜏 = −
∫︁ −𝜌

0

𝑟5𝑗−3

(5𝑗 − 3)!𝑑𝑟 =
[︃
− 𝑟5𝑗−2

(5𝑗 − 2)(5𝑗 − 3)!

]︃−𝜌

0
= −(−𝜌)5𝑗−2

(5𝑗 − 2)! ,

and, consequently,

|𝑓𝑗(𝑥)| ≤ 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

∫︁ 𝑦

0

∫︁ 𝜉

0

(−𝜌)5𝑗−2

(5𝑗 − 2)!𝑑𝜌𝑑𝜉𝑑𝑦
⃒⃒⃒⃒
⃒ .

Proceeding with three more integrations, we obtain

|𝑓𝑗(𝑥)| ≤ 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

∫︁ 𝑦

0

(−𝜉)5𝑗−1

(5𝑗 − 1)!𝑑𝜉𝑑𝑦
⃒⃒⃒⃒
⃒ ≤ 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

(−𝑦)5𝑗

(5𝑗)! 𝑑𝑦
⃒⃒⃒⃒
⃒ ≤ 2𝑗

⃒⃒⃒⃒
⃒(−𝑥)5𝑗+1

(5𝑗 + 1)!

⃒⃒⃒⃒
⃒ ,

for all 𝑥 ∈ [−1, 0], showing (4.19).
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Now, for (4.20), arguing similarly, we start by checking that |𝑔0(𝑥)| ≤ |𝑥|, for all 𝑥 ∈

[−1, 0]. Since cosh ≥ 1 and cos ≥ 1, from (4.15) we have 𝑔0 ≥ 0. Then it is enough to show
that 𝑔0(𝑥) ≤ −𝑥, for 𝑥 ∈ [−1, 0]. Defining 𝜓(𝑥) = 𝑔0(𝑥) + 𝑥 we have 𝜓′(𝑥) = 𝑔′

0(𝑥) + 1. On
the other hand,

𝑔02𝑥(𝑥) = 1
𝑎+ 𝑏

cosh
(︁√

𝑎𝑥
)︁

− 1
𝑎+ 𝑏

cos
(︁√

𝑏𝑥
)︁
> 0, ∀𝑥 ∈ (−∞, 0),

so 𝑔0𝑥 is increasing in (−∞, 0]. Thus 𝑔0𝑥(𝑥) > 𝑔0𝑥(−1) ≊ −0, 18 > −1, for all 𝑥 ∈ (−1, 0),
which implies that 𝜓′ > 0 in (−1, 0) and therefore 𝜓 is increasing in [−1, 0]. Consequently

𝜓(𝑥) ≤ 𝜓(0) = 0 ⇐⇒ 𝑔0(𝑥) ≤ −𝑥, ∀𝑥 ∈ [−1, 0].

In the next part, we need the estimate |𝑔04𝑥(𝑥)| < 2, for all 𝑥 ∈ [−1, 0]. This immediately
follows from (4.22) and the fact that 𝑔04𝑥 ≡ 𝑓03𝑥.

Now, assume that

|𝑔𝑗−1(𝑥)| ≤ 2𝑗−1 |𝑥|5(𝑗−1)+1

[5(𝑗 − 1) + 1]! ∀𝑥 ∈ [−1, 0],

holds for some 𝑗 ≥ 1. By Lemma 4.1 we have

𝑔𝑗(𝑥) =
∫︁ 𝑥

0
𝑔0(𝑥− 𝜉)𝑔𝑗−1(𝜉)𝑑𝜉.

Proceeding with integration by parts as in the case of 𝑓𝑗 and using the boundary conditions
in (4.13), we obtain

𝑔𝑗(𝑥) =
∫︁ 𝑥

0

∫︁ 𝜉

0

∫︁ 𝜆

0

∫︁ 𝜌

0

∫︁ 𝜏

0
𝑔04𝑥(𝑥− 𝜉)𝑔𝑗−1(𝜎)𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜆𝑑𝜉.

Then, by the induction hypothesis, we have

|𝑔𝑗(𝑥)| ≤
∫︁ 𝑥

0

∫︁ 𝜉

0

∫︁ 𝜆

0

∫︁ 𝜌

0

∫︁ 𝜏

0
2 · 2𝑗−1 |𝜎|5(𝑗−1)+1

[5(𝑗 − 1) + 1]!𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜆𝑑𝜉

≤ 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

∫︁ 𝜉

0

∫︁ 𝜆

0

∫︁ 𝜌

0

∫︁ 𝜏

0

|𝜎|5𝑗−4

(5𝑗 − 4)!𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜆𝑑𝜉
⃒⃒⃒⃒
⃒

= 2𝑗

⃒⃒⃒⃒
⃒
∫︁ 𝑥

0

∫︁ 𝜉

0

∫︁ 𝜆

0

∫︁ 𝜌

0

∫︁ 𝜏

0

(−𝜎)5𝑗−4

(5𝑗 − 4)!𝑑𝜎𝑑𝜏𝑑𝜌𝑑𝜆𝑑𝜉
⃒⃒⃒⃒
⃒ ,

for 𝑥 ∈ [−1, 0]. Using the same process of repeated integration by substitution as in the case
of 𝑓𝑗, we obtain (4.20), which concludes the proof. □

We are now in a position to solve the system (4.16).

Proposition 4.1 Let 𝑠 ∈ (1, 5), 𝑇 > 0 and 𝑦, 𝑧 ∈ 𝐺𝑠([0, 𝑇 ]). The function 𝑢(𝑥, 𝑡) defined
in (4.9) belongs to 𝐺 𝑠

5 ,𝑠([−1, 0] × [0, 𝑇 ]) and it solves (4.16). In particular, the corresponding
controls ℎ1(𝑡) := 𝑢(−1, 𝑡) and ℎ2(𝑡) := 𝜕𝑥𝑢(−1, 𝑡) are Gevrey of order 𝑠 on [0, 𝑇 ].
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Proof: Let us briefly explain our strategy to prove this result. Consider 𝑚,𝑛 ≥ 0 and (𝑥, 𝑡) ∈

[−1, 0] × [0, 𝑇 ] be given. Our task is first to derivate the series in (4.9) as follows

𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢(𝑥, 𝑡) =

∑︁
𝑗≥0

𝜕𝑛
𝑥𝜕

𝑚
𝑡

(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁
+
∑︁
𝑗≥0

𝜕𝑛
𝑥𝜕

𝑚
𝑡

(︁
𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

)︁
. (4.23)

With this, since 𝑚,𝑛 are arbitrary, we will prove that the series in (4.23) is uniformly convergent
in [−1, 0] × [0, 𝑇 ], which will ensure that 𝑢 ∈ 𝐶∞([−1, 0] × [0, 𝑇 ]). Next, to conclude that
𝑢 ∈ 𝐺

𝑠
5 ,𝑠([−1, 0] × [0, 𝑇 ]) we must prove that

|𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢(𝑥, 𝑡)| ≤ 𝐶

𝑛! 𝑠
5

𝑅𝑛
1

𝑚!𝑠

𝑅𝑚
2

for some constants 𝐶,𝑅1, 𝑅2 > 0.
Let us star, choose 𝑠 ∈ (1, 5) and 𝑦, 𝑧 ∈ 𝐺𝑠([0, 𝑇 ]). Then there exists 𝑀,𝑅 > 0 such that

⃒⃒⃒
𝑦(𝑗)(𝑡)

⃒⃒⃒
≤ 𝑀

𝑗!𝑠

𝑅𝑗
and

⃒⃒⃒
𝑧(𝑗)(𝑡)

⃒⃒⃒
≤ 𝑀

𝑗!𝑠

𝑅𝑗
∀𝑗 ≥ 0, ∀𝑡 ∈ [0, 𝑇 ]. (4.24)

For 𝑘 ≥ 0, since 𝜕𝑡 and 𝑃 commute, we have that

𝜕𝑚
𝑡 𝑃

𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁
= 𝑃 𝑘 (𝑓𝑗(𝑥)) 𝑦(𝑗+𝑚)(𝑡).

From (4.10) and (4.11) follows that 𝑃𝑓0 = 0 and 𝑃𝑓𝑗 = −𝑓𝑗−1, for 𝑗 ≥ 1. We will split our
analysis of 𝑃 𝑘(𝑓𝑗) into two cases, namely, 𝑗− 𝑘 ≥ 0 and 𝑗− 𝑘 < 0. First, suppose 𝑗− 𝑘 ≥ 0.
In this case,

𝑃 𝑘(𝑓𝑗) = (−1)1𝑃 𝑘−1(𝑓𝑗−1) = (−1)2𝑃 𝑘−2(𝑓𝑗−2) = · · · = (−1)𝑘−1𝑃 𝑘−(𝑘−1)
(︁
𝑓𝑗−(𝑘−1)

)︁
,

or equivalently,

𝑃 𝑘(𝑓𝑗) = (−1)𝑘−1𝑃 (𝑓𝑗−𝑘+1) = (−1)𝑘−1(−𝑓𝑗−𝑘) = (−1)𝑘𝑓𝑗−𝑘.

Secondly, assuming 𝑗 − 𝑘 < 0 we have 𝑘 − 𝑗 > 0 so 𝑘 − 𝑗 ≥ 1. Hence

𝑃 𝑘(𝑓𝑗) = (−1)1𝑃 𝑘−1(𝑓𝑗−1) = (−1)2𝑃 𝑘−2(𝑓𝑗−2) = · · · = (−1)𝑗𝑃 𝑘−𝑗−1(0) = 0.

Putting both information together, we get that

𝑃 𝑘(𝑓𝑗) =

⎧⎪⎪⎨⎪⎪⎩
(−1)𝑘𝑓𝑗−𝑘, if 𝑗 − 𝑘 ≥ 0.

0, if 𝑗 − 𝑘 < 0,
(4.25)
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and consequently

𝜕𝑚
𝑡 𝑃

𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁
=

⎧⎪⎪⎨⎪⎪⎩
(−1)𝑘𝑓𝑗−𝑘(𝑥)𝑦(𝑗+𝑚)(𝑡), if 𝑗 − 𝑘 ≥ 0,

0, if 𝑗 − 𝑘 < 0.
(4.26)

Assume 𝑗 ≥ 𝑘, that is, 𝑗− 𝑘 ≥ 0. Then thanks to the relation (4.26) and Lemma 4.2, the
following estimate holds
⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 2𝑗−𝑘 |𝑥|5(𝑗−𝑘)+1

[5(𝑗 − 𝑘) + 1]!𝑀
(𝑗 +𝑚)!𝑠

𝑅𝑗+𝑚
≤ 𝑀2𝑗−𝑘 (𝑗 +𝑚)!𝑠

𝑅𝑗+𝑚

1
(5(𝑗 − 𝑘) + 1)! .

Setting 𝑙 = 𝑗 − 𝑘, we can write the previous inequality as follows
⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀2𝑙 (𝑙 + 𝑘 +𝑚)!𝑠

𝑅𝑙+𝑘+𝑚

1
(5𝑙 + 1)! .

Furthermore, writing 𝑁 = 𝑘 +𝑚 yields that
⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀2𝑙 (𝑙 +𝑁)!𝑠

𝑅𝑙+𝑁

1
(5𝑙 + 1)! .

Then, using the inequality (4.8), we obtain that
⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀2𝑙 (2𝑙2𝑁 𝑙!𝑁 !)𝑠

𝑅𝑙𝑅𝑁

1
(5𝑙 + 1)! = 𝑀

2(1+𝑠)𝑙2𝑁𝑠𝑙!𝑠𝑁 !𝑠

𝑅𝑙𝑅𝑁

1
(5𝑙 + 1)! . (4.27)

Stirling’s formula gives that

𝑙! ∼
(︃
𝑙

𝑒

)︃𝑙 √
2𝜋𝑙 and (5𝑙)! ∼

(︃
5𝑙
𝑒

)︃5𝑙 √
2𝜋5𝑙.

Observer that(︃
5𝑙
𝑒

)︃5𝑙 √
2𝜋5𝑙 = 55𝑙+ 1

2

⎡⎣(︃ 𝑙
𝑒

)︃𝑙 (︁√
2𝜋𝑙

)︁⎤⎦5 (︁√
2𝜋𝑙

)︁−4
∼ 55𝑙+ 1

2
(︁√

2𝜋𝑙
)︁−4

𝑙!5

and, consequently, (5𝑙)! ∼ 55𝑙+ 1
2
(︁√

2𝜋𝑙
)︁−4

𝑙!5. Thus, from (4.27), we get the following
⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀̃

𝑙!𝑠

[2−(1+𝑠)𝑅]𝑙
𝑁 !𝑠

(2−𝑠𝑅)𝑁

1
(5𝑙 + 1)55𝑙+ 1

2
(︁√

2𝜋𝑙,
)︁−4

𝑙!5
,

for a suitable constant 𝑀̃ > 0. Since 1
(5𝑙+1)55𝑙+ 1

2
≤ 1, for 𝑙 ≥ 0, it follows that

⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀̃

𝑁 !𝑠

(2−𝑠𝑅)𝑁

(2𝜋𝑙)2

[2−(1+𝑠)𝑅]𝑙𝑙!5−𝑠
.

Using the inequality (4.8), we get that

𝑁 !𝑠

(2−𝑠𝑅)𝑁 ≤ 𝑘!𝑠(︁
𝑅
4𝑠

)︁𝑘

𝑚!𝑠(︁
𝑅
4𝑠

)︁𝑚
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and, consequently, the following holds
⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀̃4𝜋2 𝑘!𝑠

(4−𝑠𝑅)𝑘

𝑚!𝑠

(4−𝑠𝑅)𝑚

𝑙2

𝑅̃𝑙𝑙!5−𝑠
,

where 𝑅̃ = 2−(1+𝑠)𝑅. Therefore,

∑︁
𝑗≥𝑘

⃦⃦⃦
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

∞
≤ 4𝑀̃𝜋2 𝑘!𝑠

(4−𝑠𝑅)𝑘

𝑚!𝑠

(4−𝑠𝑅)𝑚

∑︁
𝑙≥0

𝑙2

𝑅̃𝑙𝑙!5−𝑠
,

for all 𝑚, 𝑘 ≥ 0. To finish this case, observe that the following series ∑︀𝑙≥0
𝑙2

𝑅̃𝑙𝑙!5−𝑠 is convergent,
so by the Weierstrass M-test, the following series

∑︁
𝑗≥𝑘

⃦⃦⃦
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

∞

is uniformly convergent on [−1, 0] × [0, 𝑇 ], for all 𝑚, 𝑘 ≥ 0. Furthermore

∑︁
𝑗≥𝑘

⃦⃦⃦
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

∞
≤ 𝑀

𝑘!𝑠

(4−𝑠𝑅)𝑘

𝑚!𝑠

(4−𝑠𝑅)𝑚 , (4.28)

for 𝑚, 𝑘 ≥ 0, where 𝑀 = 4𝑀̃𝜋2∑︀
𝑙≥0

𝑙2

𝑅̃𝑙𝑙!5−𝑠 .

Analogously, it turns out that

𝑃 𝑘(𝑔𝑗) =

⎧⎪⎪⎨⎪⎪⎩
(−1)𝑘𝑔𝑗−𝑘, if 𝑗 − 𝑘 ≥ 0,

0, if 𝑗 − 𝑘 < 0,
(4.29)

and

𝜕𝑚
𝑡 𝑃

𝑘
(︁
𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

)︁
=

⎧⎪⎪⎨⎪⎪⎩
(−1)𝑘𝑔𝑗−𝑘(𝑥)𝑧(𝑗+𝑚)(𝑡), if 𝑗 − 𝑘 ≥ 0,

0, if 𝑗 − 𝑘 < 0,
(4.30)

so that, using inequalities (4.8), (4.24), Stirling’s formula and Lemma 4.1 we get

∑︁
𝑗≥𝑘

⃦⃦⃦
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑔𝑗𝑧

(𝑗)(𝑡)
)︁⃦⃦⃦

∞
≤ 4𝑀̃𝜋2 𝑘!𝑠

(4−𝑠𝑅)𝑘

𝑚!𝑠

(4−𝑠𝑅)𝑚

∑︁
𝑙≥0

𝑙2

𝑅̃𝑙𝑙!5−𝑠
,

for all 𝑚, 𝑘 ≥ 0. Consequently the series ∑︀ ⃦⃦⃦
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑔𝑗𝑧

(𝑗)(𝑡)
)︁⃦⃦⃦

∞
is uniformly convergent in

[−1, 0] × [0, 𝑇 ], for all 𝑚, 𝑘 ≥ 0, with

∑︁
𝑗≥𝑘

⃦⃦⃦
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑔𝑗𝑧

(𝑗)(𝑡)
)︁⃦⃦⃦

∞
≤ 𝑀

𝑘!𝑠

(4−𝑠𝑅)𝑘

𝑚!𝑠

(4−𝑠𝑅)𝑚 . (4.31)

Let 𝐾3 > 0 be as in Lemma 4.5 for 𝑝 = ∞. From (4.26) and (4.28) we have
∞∑︁

𝑗=0

⃦⃦⃦
𝜕𝑚

𝑡

(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

5𝑖,∞
= 𝐾𝑖

3

𝑖∑︁
𝑘=0

∑︁
𝑗≥𝑘

⃦⃦⃦
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

∞
≤ 𝐾𝑖

3

𝑖∑︁
𝑘=0

𝑀
𝑘!𝑠

(4−𝑠𝑅)𝑘

𝑚!𝑠

(4−𝑠𝑅)𝑚 .
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Thus
∞∑︁

𝑗=0

⃦⃦⃦
𝜕𝑚

𝑡

(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

5𝑖,∞
≤ 𝐾𝑖

3𝑀𝑖!𝑠
(︃

𝑖∑︁
𝑘=0

1
(4−𝑠𝑅)𝑘

)︃
𝑚!𝑠

(4−𝑠𝑅)𝑚 .

Defining 𝑏 = 1 + 1
4−𝑠𝑅

and noting that
𝑖∑︁

𝑗=0

1
(4−𝑠𝑅)𝑘 ≤

𝑖∑︁
𝑘=0

𝑏𝑘 = 1 · 𝑏
𝑖+1 − 1
𝑏− 1 ≤ 𝑏𝑖+1

𝑏− 1 = 𝑏

𝑏− 1𝑏
𝑖,

yields
∞∑︁

𝑗=0

⃦⃦⃦
𝜕𝑚

𝑡

(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

5𝑖,∞
≤ 𝐾𝑖

3𝑀𝑖!𝑠 𝑏

𝑏− 1𝑏
𝑖 𝑚!𝑠

(4−𝑠𝑅)𝑚 .

Hence, defining 𝑀̂ = 𝑀 𝑏
𝑏−1 it follows that

∞∑︁
𝑗=0

⃦⃦⃦
𝜕𝑚

𝑡

(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

5𝑖,∞
≤ 𝑀̂

𝑖!𝑠

(𝐾−1
3 𝑏−1)𝑖

𝑚!𝑠

(4−𝑠𝑅)𝑚 , ∀𝑚, 𝑖 ≥ 0, 𝑡 ∈ [0, 𝑇 ]. (4.32)

Similarly, from (4.30), (4.31) and Lemma 4.5 we obtain
∞∑︁

𝑗=0

⃦⃦⃦
𝜕𝑚

𝑡

(︁
𝑔𝑗𝑧

(𝑗)(𝑡)
)︁⃦⃦⃦

5𝑖,∞
≤ 𝑀̂

𝑖!𝑠

(𝐾−1
3 𝑏−1)𝑖

𝑚!𝑠

(4−𝑠𝑅)𝑚 , ∀𝑚, 𝑖 ≥ 0, 𝑡 ∈ [0, 𝑇 ]. (4.33)

Given 𝑚,𝑛 ≥ 0 consider 𝑖 ≥ 0 such that 𝑛 ∈ {5𝑖− 𝑟, 𝑟 = 0, 1, 2, 3, 4} . Then from (4.32)
we get, for (𝑥, 𝑡) ∈ [−1, 0] × [0, 𝑇 ], that

∞∑︁
𝑗=0

⃒⃒⃒
𝜕𝑛

𝑥𝜕
𝑚
𝑡

(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀̂

𝑖!𝑠

(𝐾−1
3 𝑏−1)𝑖

𝑚!𝑠

(4−𝑠𝑅)𝑚 ,

and from (4.33)
∞∑︁

𝑗=0

⃒⃒⃒
𝜕𝑛

𝑥𝜕
𝑚
𝑡

(︁
𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀̂

𝑖!𝑠

(𝐾−1
3 𝑏−1)𝑖

𝑚!𝑠

(4−𝑠𝑅)𝑚 .

By the Weierstrass M-test, it follows that these series are uniformly convergent in [−1, 0] ×

[0, 𝑇 ] for all 𝑚,𝑛 ≥ 0. Thus, defining 𝑢 : [−1, 0]× [0, 𝑇 ] → R as in (4.9) we have that 𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢

is continuous. Consequently 𝑢 ∈ 𝐶∞([−1, 0] × [0, 𝑇 ]) and satisfies

|𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢(𝑥, 𝑡)| ≤ 2𝑀̂ 𝑖!𝑠

(𝐾−1
3 𝑏−1)𝑖

𝑚!𝑠

(4−𝑠𝑅)𝑚 ∀(𝑥, 𝑡) ∈ [−1, 0] × [0, 𝑇 ]. (4.34)

As seen before, Stirling’s formula gives us (5𝑖)! ∼ 55𝑖+ 1
2
(︁√

2𝜋𝑖
)︁−4

𝑖!5 = 55𝑖+ 1
2 (2𝜋𝑖)−2 𝑖!5, and

so that 𝑖!5 ∼ (2𝜋𝑖)2(5𝑖)!
55𝑖+ 1

2
. Therefore 𝑖!𝑠 ∼

[︂
(2𝜋𝑖)2(5𝑖)!

55𝑖+ 1
2

]︂ 𝑠
5
. Once we have that 𝑖2

55𝑖+ 1
2

≤ 1 ∀𝑖 ≥ 0,
we can infer that 𝑖!𝑠 ≤ 𝑀*(4𝜋2) 𝑠

5 (5𝑖)! 𝑠
5 , for some constant 𝑀* > 0. Furthermore, 𝑛 = 5𝑖−𝑟,

that is, 5𝑖 = 𝑛+ 𝑟 with 𝑟 ∈ {0, 1, 2, 3, 4}. Then, by (4.8),

𝑖!𝑠 ≤ 𝑀*
(︁
4𝜋2

)︁ 𝑠
5 (2𝑛2𝑟𝑛!𝑟!)

𝑠
5 =𝑀*

(︁
4𝜋2 · 2𝑟 · 𝑟!

)︁ 𝑠
5 (2𝑛) 𝑠

5𝑛! 𝑠
5 ≤ 𝑀 ′

(︁
2 𝑠

5
)︁𝑛
𝑛! 𝑠

5 ,
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where 𝑀 ′ = 𝑀 ′(𝑟) = 𝑀* (4𝜋2 · 2𝑟 · 𝑟!)
𝑠
5 . With this, returning to inequality (4.34) we obtain

|𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢(𝑥, 𝑡)| ≤ 2𝑀̂𝑀 ′

(︁
2 𝑠

5
)︁𝑛 𝑛! 𝑠

5(︁
𝐾−1

3 𝑏−1
)︁𝑛+𝑟

5

𝑚!𝑠

(4−𝑠𝑅)𝑚 ≤ 2𝑀̂𝑀 ′(︁
𝐾−1

3 𝑏−1
)︁ 𝑟

5

𝑛! 𝑠
5(︂

𝐾
− 1

5
3 𝑏− 1

5 2− 𝑠
5

)︂𝑛
𝑚!𝑠

(4−𝑠𝑅)𝑚 .

Finally, defining

𝑀 ′′ := max

⎧⎪⎨⎪⎩ 2𝑀̂𝑀 ′(︁
𝐾−1

3 𝑏−1
)︁ 𝑟

5
; 𝑟 = 0, 1, 2, 3, 4

⎫⎪⎬⎪⎭ , 𝑅1 := 𝐾
− 1

5
3 𝑏− 1

5 2− 𝑠
5 , and 𝑅2 := 4−𝑠𝑅,

we have

|𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢(𝑥, 𝑡)| ≤ 𝑀 ′′𝑛! 𝑠

5

𝑅𝑛
1

𝑚!𝑠

𝑅𝑚
2
, ∀𝑛,𝑚 ≥ 0, ∀(𝑥, 𝑡) ∈ [−1, 0] × [0, 𝑇 ].

Moreover, 𝑢 solves (4.16) by construction, the result follows. □

4.3.2 Estimates in 𝑊 5𝑛,𝑝(−1, 0)-norm

Let us start by remembering that the map

‖ · ‖* : 𝑊 5,𝑝(−1, 0) → R+

𝑓 ↦→ ‖𝑓‖* := ‖𝑓‖𝑝 + ‖𝑃𝑓‖𝑝

is a norm called the graph norm associated with the operator 𝑃 : 𝑊 5,𝑝(−1, 0) → 𝐿𝑝(−1, 0).

Lemma 4.3 Let 𝑝 ∈ [1,∞] be. For all 𝑛 ≥ 0 we have

‖𝑃 𝑛𝑓‖𝑝 ≤ 3𝑛‖𝑓‖5𝑛,𝑝, ∀ 𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0). (4.35)

Proof: For 𝑛 = 0, the inequality is obvious. For 𝑛 = 1, given 𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0) follows that

‖𝑃𝑓‖𝑝 = ‖𝜕𝑥𝑓 + 𝜕3
𝑥𝑓 − 𝜕5

𝑥𝑓‖𝑝 ≤ ‖𝜕𝑥𝑓‖𝑝 + ‖𝜕3
𝑥𝑓‖𝑝 + ‖𝜕5

𝑥𝑓‖𝑝 ≤ 3‖𝑓‖5,𝑝.

Suppose that (4.35) for 0, 1, ..., 𝑛− 1. Then for 𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0) we get

‖𝑃 𝑛𝑓‖𝑝 = ‖𝑃 𝑛−1𝑃𝑓‖𝑝 ≤ 3𝑛−1‖𝑃𝑓‖5𝑛−5,𝑝 ≤ 3𝑛−1

⎛⎝3
5𝑛∑︁

𝑗=0
‖𝜕𝑗

𝑥𝑓‖𝑝

⎞⎠ = 3𝑛‖𝑓‖5𝑛,𝑝,

so (4.35) is true for 𝑛, which concludes the proof. □

Lemma 4.4 Let 𝑝 ∈ [1,∞] be. There exists a constant 𝐾1 = 𝐾1(𝑝) > 0 such that

‖𝑓‖5,𝑝 ≤ 𝐾1 (‖𝑓‖𝑝 + ‖𝑃𝑓‖𝑝) , ∀ 𝑓 ∈ 𝑊 5,𝑝(−1, 0).
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Proof: We know that ‖ · ‖* is a norm in 𝑊 5,𝑝(−1, 0). We will show that (𝑊 5,𝑝(−1, 0), ‖ · ‖*)

is a Banach space. To do this, consider a Cauchy sequence in (𝑊 5,𝑝(−1, 0), ‖ · ‖*), (𝑓𝑛)𝑛≥0.
Then,

‖𝑓𝑚 − 𝑓𝑛‖* = ‖𝑓𝑚 − 𝑓𝑛‖𝑝 + ‖𝑃𝑓𝑚 − 𝑃𝑓𝑛‖𝑝 → 0 as 𝑚,𝑛 → ∞.

Since 𝐿𝑝(−1, 0) is a Banach space, there exist 𝑓, 𝑔 ∈ 𝐿𝑝(−1, 0) such that

‖𝑓𝑛 − 𝑓‖𝑝 → 0, ‖𝑃𝑓𝑛 − 𝑔‖𝑝 → 0 as 𝑛 → ∞.

Given 𝜙 ∈ 𝐶∞
0 (−1, 0) we have

⃒⃒⃒⃒∫︁ 0

−1
(𝑓𝑛 − 𝑓)𝜙

⃒⃒⃒⃒
≤
∫︁ 0

−1
|𝑓𝑛 − 𝑓 ||𝜙| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖𝑓𝑛 − 𝑓‖𝑝‖𝜙‖𝑞, 1 < 𝑝 < ∞, 1
𝑝

+ 1
𝑞

= 1

‖𝑓𝑛 − 𝑓‖1‖𝜙‖∞, 𝑝 = 1

‖𝑓𝑛 − 𝑓‖∞‖𝜙‖1, 𝑝 = ∞.

Therefore ∫︁ 0

−1
(𝑓𝑛 − 𝑓)𝜙 → 0, ∀𝜙 ∈ 𝐶∞

0 (−1, 0)

which implies that

𝑓𝑛 → 𝑓 in 𝒟′(−1, 0). (4.36)

Analogously we infer that 𝑃𝑓𝑛 → 𝑔 in 𝒟′(−1, 0). But (4.36) implies that

𝜕𝑖
𝑥𝑓𝑛 → 𝜕𝑖

𝑥𝑓 in 𝒟′(−1, 0), ∀𝑖 ∈ N ∪ {0}

and consequently 𝑃𝑓𝑛 → 𝑃𝑓 in 𝒟′(−1, 0). By the uniqueness of the limit, it follows that

𝑃𝑓 = 𝑔 in 𝒟′(−1, 0). (4.37)

Consider 𝑇1, 𝑇2 ∈ 𝐷′(−1, 0) given by 𝑇1 = 𝑓 + 𝜕2
𝑥𝑓 − 𝜕4

𝑥𝑓 and 𝑇2 = ℎ1, where

ℎ1(𝑥) =
∫︁ 𝑥

−1
𝑔(𝑡)𝑑𝑡.

Note that (4.37) implies that 𝜕𝑥𝑇1 = 𝑔 in 𝒟′(−1, 0). On the other hand, ℎ1 ∈ 𝐿𝑝(−1, 0) and

⟨𝜕𝑥𝑇2, 𝜙⟩𝒟′,𝒟 = −
∫︁ 0

−1
ℎ1(𝑥)𝜙′(𝑥)𝑑𝑥 = −

∫︁ 0

−1

(︂∫︁ 𝑥

−1
𝑔(𝑡)𝑑𝑡

)︂
𝜙′(𝑥)𝑑𝑥 = −

∫︁ 0

−1

∫︁ 𝑥

−1
𝑔(𝑡)𝜙′(𝑥)𝑑𝑡𝑑𝑥.

For −1 ≤ 𝑡 ≤ 𝑥 ≤ 0 the Fubini’s theorem gives us

⟨𝜕𝑥𝑇2, 𝜙⟩𝒟′,𝒟 = −
∫︁ 0

−1
𝑔(𝑡)(𝜙(0) − 𝜙(𝑡))𝑑𝑡 =

∫︁ 0

−1
𝑔(𝑡)𝜙(𝑡)𝑑𝑡 = ⟨𝑔, 𝜙⟩𝒟′,𝒟
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and therefore 𝜕𝑥𝑇2 = 𝑔 = 𝜕𝑥𝑇1 in 𝒟′(−1, 0). Consequently, there exists a constant 𝑘1 ∈ R

such that 𝑇1 = 𝑇2 + 𝑘1 in 𝒟′(−1, 0), that is,

𝑓 + 𝜕2
𝑥𝑓 − 𝜕4

𝑥𝑓 = ℎ1 + 𝑘1 in 𝒟′(−1, 0).

Defining ℎ̃1 = ℎ1 + 𝑘1 − 𝑓 we have ℎ̃1 ∈ 𝐿𝑝(−1, 0) and

𝜕2
𝑥𝑓 − 𝜕4

𝑥𝑓 = ℎ̃1 in 𝒟′(−1, 0). (4.38)

Now, consider 𝑇3, 𝑇4 ∈ 𝒟′(−1, 0) given by 𝑇3 = 𝜕𝑥𝑓 − 𝜕3
𝑥𝑓 and 𝑇4 = ℎ2, where ℎ2 ∈

𝐿𝑝(−1, 0) is given by

ℎ2(𝑥) =
∫︁ 𝑥

1
ℎ̃1(𝑡)𝑑𝑡.

Proceeding as done before we obtain 𝜕𝑥𝑇3 = ℎ̃1 = 𝜕𝑥𝑇4 in 𝒟′(−1, 0), thus there exists a
constant 𝑘2 ∈ R such that 𝑇3 = 𝑇4 + 𝑘2 in 𝒟′(−1, 0), or equivalently,

𝜕𝑥𝑓 − 𝜕3
𝑥𝑓 = ℎ2 + 𝑘2 in 𝒟′(−1, 0).

Defining ℎ̃2 := ℎ2 + 𝑘2 we have ℎ̃2 ∈ 𝐿𝑝(−1, 0) and

𝜕𝑥𝑓 − 𝜕3
𝑥𝑓 = ℎ̃2 in 𝒟′(−1, 0). (4.39)

Set 𝑇5, 𝑇6 ∈ 𝒟′(−1, 0) by 𝑇5 = 𝑓 − 𝜕2
𝑥𝑓 and 𝑇6 = ℎ3, where ℎ3 ∈ 𝐿𝑝(−1, 0) is given by

ℎ3(𝑥) =
∫︁ 𝑥

−1
ℎ̃2(𝑡)𝑑𝑡.

By the same argument as done before,

𝑓 − 𝜕2
𝑥𝑓 = ℎ3 + 𝑘3 in 𝒟′(−1, 0)

with 𝑘3 ∈ R. Defining ℎ̃3 = 𝑓 − ℎ3 − 𝑘3 we have ℎ̃3 ∈ 𝐿𝑝(−1, 0) and

𝜕2
𝑥𝑓 = ℎ̃3 in 𝒟′(−1, 0). (4.40)

Now define 𝑇7, 𝑇8 ∈ 𝒟′(−1, 0) by 𝑇7 = 𝜕𝑥𝑓 and 𝑇8 = ℎ4, where ℎ4 ∈ 𝐿𝑝(−1, 0) is given
by

ℎ4(𝑥) =
∫︁ 𝑡

−1
ℎ̃(𝑡)𝑑𝑡.

Again, the same argument ensures that there exists 𝑘4 ∈ R such that, defining ℎ̃4 := ℎ4 + 𝑘4

we have ℎ̃4 ∈ 𝐿𝑝(−1, 0) and

𝜕𝑥𝑓 = ℎ̃4 in 𝒟′(−1, 0). (4.41)
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Since ℎ̃1ℎ̃2, ℎ̃3, ℎ̃4 ∈ 𝐿𝑝(−1, 0), the equalities (4.37)-(4.41) gives us 𝜕𝑥𝑓, 𝜕
2
𝑥𝑓, 𝜕

3
𝑥𝑓, 𝜕

4
𝑥𝑓

and 𝜕5
𝑥𝑓 belong to 𝐿𝑝(−1, 0), so that 𝑓 ∈ 𝑊 5,𝑝(−1, 0). Furthermore,

‖𝑓𝑛 − 𝑓‖* = ‖𝑓𝑛 − 𝑓‖𝑝 + ‖𝑃𝑓𝑛 − 𝑃𝑓‖𝑝 = ‖𝑓𝑛 − 𝑓‖𝑝 + ‖𝑃𝑓𝑛 − 𝑔‖𝑝

which implies that

‖𝑓𝑛 − 𝑓‖* → 0 as 𝑛 → ∞,

that is, 𝑓𝑛 → 𝑓 in (𝑊 5,𝑝(−1, 0), ‖ · ‖*) showing that (𝑊 5,𝑝(−1, 0), ‖ · ‖*) is a Banach space.
Consider the map

𝐼 : (𝑊 5,𝑝(−1, 0), ‖ · ‖5,𝑝) → (𝑊 5,𝑝(−1, 0), ‖ · ‖*)

𝑓 ↦→ 𝐼(𝑓) = 𝑓.

Note that 𝐼 is linear and bijective and ‖𝐼(𝑓)‖* ≤ ‖𝑓‖5,𝑝, so that 𝐼 is continuous. Thus, 𝐼−1

is also continuous. Therefore, there exists 𝐾1 > 0 such that

‖𝑓‖5,𝑝 ≤ 𝐾1 (‖𝑓‖𝑝 + ‖𝑃𝑓‖𝑝) ∀𝑓 ∈ 𝑊 5,𝑝(−1, 0),

showing the result. □

Remark 4.3 As a consequence of the Lemma 4.4, we see that the norms ‖ · ‖* and ‖ · ‖5,𝑝

are equivalents in the space 𝑊 5,𝑝(−1, 0).

Lemma 4.5 Let 𝑝 ∈ [1,∞] be. There exists a constant 𝐾2 = 𝐾2(𝑝) > 0 such that, for every
𝑛 ≥ 1,

2 · 3−(𝑛+1)
𝑛∑︁

𝑖=0
‖𝑃 𝑖𝑓‖𝑝 ≤ ‖𝑓‖5𝑛,𝑝 ≤ (1 + 2𝐾2)𝑛−1𝐾2

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝, ∀ 𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0).

Consequently,

2 · 3−(𝑛+1)
𝑛∑︁

𝑖=0
‖𝑃 𝑖𝑓‖𝑝 ≤ ‖𝑓‖5𝑛,𝑝 ≤ 𝐾𝑛

3

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝, ∀ 𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0),

for every 𝑛 ≥ 0, where 𝐾3 = 𝐾3(𝑝) = 1 + 2𝐾2.

Proof: Given 𝑛 ≥ 0 and 𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0) we have 𝑓 ∈ 𝑊 5𝑖,𝑝(−1, 0) and ‖𝑓‖5𝑖,𝑝 ≤ ‖𝑓‖5𝑛,𝑝,

0 ≤ 𝑖 ≤ 𝑛. Then by Lemma 4.3 we get
𝑛∑︁

𝑖=0
‖𝑃 𝑖𝑓‖𝑝 ≤

𝑛∑︁
𝑖=0

3𝑖‖𝑓‖5𝑖,𝑝 ≤
(︃

𝑛∑︁
𝑖=0

3𝑖

)︃
‖𝑓‖5𝑛,𝑝 = 1 · 3𝑛+1 − 1

3 − 1 ‖𝑓‖5𝑛,𝑝 ≤ 3𝑛+1

2 ‖𝑓‖5𝑛,𝑝
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and therefore

2 · 3−(𝑛+1)
𝑛∑︁

𝑖=0
‖𝑃 𝑖𝑓‖𝑝 ≤ ‖𝑓‖5𝑛,𝑝, ∀𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0), ∀𝑛 ≥ 0.

To prove

‖𝑓‖5𝑛,𝑝 ≤ (1 + 2𝐾1)𝑛−1𝐾1

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝 ∀𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0), ∀𝑛 ≥ 1

we use induction on 𝑛. For 𝑛 = 1 this is true since, by Lemma 4.4,

‖𝑓‖5,𝑝 ≤ 𝐾1 (‖𝑓‖𝑝 + ‖𝑃𝑓‖𝑝) = 𝐾1

1∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝 = (1 + 2𝐾1)0𝐾1

1∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝.

Assume that, for 𝑛 ≥ 2, the inequality is true up to the rank 𝑛 − 1. Then, for any 𝑓 ∈

𝑊 5𝑛,𝑝(−1, 0) we have (setting 𝑗 = 𝑖− 5𝑛+ 5)

‖𝑓‖5𝑛,𝑝 = ‖𝑓‖5𝑛−5,𝑝 +
5∑︁

𝑗=1
‖𝜕𝑗

𝑥𝜕
5𝑛−5
𝑥 𝑓‖𝑝 ≤ ‖𝑓‖5𝑛−5,𝑝 + ‖𝜕5𝑛−5

𝑥 𝑓‖5,𝑝.

Using Lemma 4.4 and the induction hypothesis, we get

‖𝑓‖5𝑛,𝑝 ≤ (1 + 2𝐾1)(𝑛−1)−1𝐾1

𝑛−1∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝 +𝐾1
(︁
‖𝜕5𝑛−5

𝑥 𝑓‖𝑝 + ‖𝑃𝜕5𝑛−5
𝑥 𝑓‖𝑝

)︁

≤ (1 + 2𝐾1)𝑛−2𝐾1

𝑛−1∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝 +𝐾1 (‖𝑓‖5𝑛−5,𝑝 + ‖𝑃𝑓‖5𝑛−5,𝑝) .

Once again induction hypothesis yields

‖𝑓‖5𝑛,𝑝 ≤(1 + 2𝐾1)𝑛−2𝐾1

𝑛−1∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝

+𝐾1

(︃
(1 + 2𝐾1)𝑛−2𝐾1

𝑛−1∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝 + (1 + 2𝐾1)𝑛−2𝐾1

𝑛−1∑︁
𝑖=0

‖𝑃 𝑖𝑃𝑓‖𝑝

)︃
.

Then

‖𝑓‖5𝑛,𝑝 ≤ (1 + 2𝐾1)𝑛−2𝐾1

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝 + 2𝐾1(1 + 2𝐾1)𝑛−2𝐾1

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝

= (1 + 2𝐾1)𝑛−1𝐾1

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝,

from where the desired follows with 𝐾2 = 𝐾1.
Finally, consider 𝐾3 = 1 + 2𝐾2 and 𝑓 ∈ 𝑊 5𝑛,𝑝(−1, 0). For 𝑛 = 0, we see that ‖𝑓‖5𝑛,𝑝 =

𝐾𝑛
3
∑︀𝑛

𝑖=0 ‖𝑃 𝑖𝑓‖𝑝. Now, For 𝑛 ≥ 1, we have that

‖𝑓‖5𝑛,𝑝 ≤ (1 + 2𝐾2)𝑛−1𝐾2

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝 ≤ (1 + 2𝐾2)𝑛−1(1 + 2𝐾2)
𝑛∑︁

𝑖=0
‖𝑃 𝑖𝑓‖𝑝 = 𝐾𝑛

3

𝑛∑︁
𝑖=0

‖𝑃 𝑖𝑓‖𝑝.

□
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4.3.3 Smoothing property

With the previous section in hand, let us show that for any 𝑢0 ∈ 𝐿2(−1, 0), the solution of
(4.1) with ℎ1 = ℎ2 = 0 is a Gevrey unction of order 1

2 in the variable 𝑥 and 5
2 in the variable

𝑡. Precisely, we will prove the existence of positive constants 𝑀,𝑅1, and 𝑅2 such that

|𝜕𝑝
𝑥𝜕

𝑛
𝑡 𝑢(𝑥, 𝑡)| ≤ 𝑀

𝑡
5𝑛+𝑝+5

2

𝑝! 1
2

𝑅𝑝
1

𝑛! 5
2

𝑅𝑛
2
, (4.42)

for all 𝑡 ∈ (0, 𝑇 ] and for all 𝑥 ∈ [−1, 0].

To do this, using the inequality (4.42) on intervals of length one, we can assume, without
loss of generality, 𝑇 = 1. Consider the operator given by 𝐴𝑢 = −𝑃𝑢 = −𝜕𝑥𝑢 − 𝜕3

𝑥𝑢 + 𝜕5
𝑥𝑢,

with 𝐷(𝐴) = {𝑢 ∈ 𝐻5(−1, 0); 𝑢(−1) = 𝑢(0) = 𝑢𝑥(−1) = 𝑢𝑥(0) = 𝑢𝑥𝑥(0) = 0} . It has been
proven in (ARARUNA; CAPISTRANO-FILHO; DORONIN, 2012) that 𝐴 generates a semigroup of
contractions {𝑆(𝑡)}𝑡≥0 in 𝐿2(−1, 0), moreover, that smoothing effect is verified, that is, for
𝑢0 ∈ 𝐿2(−1, 0), the mild solution 𝑢(·, 𝑡) = 𝑆(𝑡)𝑢0 of (4.1) with ℎ1 = ℎ2 = 0 satisfies
𝑢 ∈ 𝐶([0, 1], 𝐿2(−1, 0)) ∩ 𝐿2(0, 1, 𝐻2(−1, 0)) and

‖𝑢‖𝐿2(0,𝑇,𝐻2(−1,0)) ≤
√

3‖𝑢0‖𝐿2(−1,0). (4.43)

Now on, we will denote the norm ‖ · ‖𝐿2(−1,0) for simplicity for ‖ · ‖𝐿2 and the spaces

𝑋0 = 𝐿2(−1, 0) 𝑋1 = 𝐻1
0 (−1, 0), 𝑋2 = 𝐻2

0 (−1, 0),

𝑋3 =
{︁
𝑢 ∈ 𝐻3(−1, 0); 𝑢(−1) = 𝑢(0) = 𝑢𝑥(−1) = 𝑢𝑥(0) = 𝑢𝑥𝑥(0) = 0

}︁
,

𝑋4 =
{︁
𝑢 ∈ 𝐻4(−1, 0); 𝑢(−1) = 𝑢(0) = 𝑢𝑥(−1) = 𝑢𝑥(0) = 𝑢𝑥𝑥(0) = 0

}︁
,

𝑋5 = 𝐷(𝐴).

For any 𝑚 ∈ {1, 2, 3, 4, 5}, (𝑋𝑚, ‖ · ‖𝐻𝑚) is a Banach space. The next propositions are
paramount in our analysis and given several estimates in the 𝑋𝑠-spaces.

Proposition 4.2 There exists some constant 𝐶1 > 0 such that for all 𝑢0 ∈ 𝐿2(−1, 0) and all
𝑡 ∈ (0, 1] it holds ‖𝑆(𝑡)𝑢0‖𝐻2 ≤ (𝐶1/

√
𝑡)‖𝑢0‖𝐿2 .

Proof: Given 𝑢0 ∈ 𝐷(𝐴), the semigroup theory ensures that 𝑆(𝑡)𝑢0 ∈ 𝐷(𝐴) with

𝑑

𝑑𝑡
𝑆(𝑡)𝑢0 = 𝐴𝑆(𝑡)𝑢0 = 𝑆(𝑡)𝐴𝑢0 (4.44)

and 𝑢 = 𝑆(·)𝑢0 ∈ 𝐶 ([0,∞), 𝐷(𝐴)) . From (4.44) we obtain ‖𝐴𝑆(𝑡)𝑢0‖𝐿2 = ‖𝑆(𝑡)𝐴𝑢0‖𝐿2

and, therefore, ‖𝑆(𝑡)𝑢0‖𝐷(𝐴) ≤ ‖𝑢0‖𝐷(𝐴).
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Using the Lemma 4.4 (see also Remark 4.3) we obtain a positive constant 𝐶 ′ > 0 (which
does not depend on 𝑡) such that ‖𝑆(𝑡)𝑢0‖𝐻5 ≤ 𝐶 ′

1‖𝑢0‖𝐻5 . Then we see that the map
𝑆(𝑡) : (𝐷(𝐴), ‖ · ‖𝐻5) → (𝐷(𝐴), ‖ · ‖𝐻5) is continuous. Since 𝑆(𝑡) : 𝐿2(−1, 0) → 𝐿2(−1, 0)

is also continuous and, by interpolation argument, [𝑋0, 𝑋5] 2
5

= 𝑋2, we have that 𝑆(𝑡) :

(𝑋2, ‖ · ‖𝐻2) → (𝑋2, ‖ · ‖𝐻2) is continuous with ‖𝑢(·, 𝑡)‖𝐻2 = ‖𝑆(𝑡)𝑢0‖𝐻2 ≤ 𝐶 ′′
1 ‖𝑢0‖𝐻2 , for

𝑢0 ∈ 𝑋2 and 𝑡 ∈ (0, 1], where 𝐶 ′′
1 = max{𝐶 ′

1, 1}.
In this way, given 𝑢0 ∈ 𝑋2, for any 𝑡 ∈ (0, 1] we have

‖𝑢(·, 𝑡)‖2
𝐻2 ≤ (𝐶 ′′

1 )2‖𝑢(·, 𝑠)‖2
𝐻2 ,

for all 𝑠 ∈ (0, 𝑡]. Integrating with respect to 𝑠 from 0 to 𝑡 we get

𝑡‖𝑢(·, 𝑡)‖2
𝐻2 ≤ (𝐶 ′′

1 )2
∫︁ 𝑡

0
‖𝑢(·, 𝑠)‖2

𝐻2𝑑𝑠 ≤ (𝐶 ′′
1 )2‖𝑢‖2

𝐿2(0,1,𝐻2(−1,0)).

Using (4.43) we obtain

‖𝑢(·, 𝑡)‖𝐻2 ≤ 𝐶 ′′
1
√

3√
𝑡

‖𝑢0‖𝐿2 ,

and the result is achieved. □

Proposition 4.3 There exists a positive constant 𝐶2 such that, for all 𝑢0 ∈ 𝐷(𝐴) and all
𝑡 ∈ (0, 1] it holds ‖𝑆(𝑡)𝑢0‖𝐻7 ≤ (𝐶2/

√
𝑡)‖𝑢0‖𝐻5 .

Proof: First, we need to check that 𝑆(𝑡)𝑢0 ∈ 𝐻7(−1, 0) whenever 𝑢0 ∈ 𝐷(𝐴). Indeed,
given 𝑢0 ∈ 𝐷(𝐴) we have 𝑢(·, 𝑡) = 𝑆(𝑡)𝑢0 ∈ 𝐷(𝐴) and (4.44) holds. Then 𝐴𝑢(·, 𝑡) =

𝐴𝑆(𝑡)𝑢0 = 𝑆(𝑡)𝐴𝑢0 ∈ 𝐻2(−1, 0) which implies that 𝜕5
𝑥𝑢(·, 𝑡) ∈ 𝐻2(−1, 0) and consequently

𝑢(·, 𝑡) ∈ 𝐻7(−1, 0). Furthermore, Proposition 4.2 gives us

‖𝑢(·, 𝑡)‖𝐻2 + ‖𝐴𝑢(·, 𝑡)‖𝐻2 ≤ 𝐶1√
𝑡

(‖𝑢0‖𝐿2 + ‖𝐴𝑢0‖𝐿2) . (4.45)

Now, let 𝑣 ∈ 𝐻7(−1, 0). Observe that 𝜕6
𝑥𝑣 = 𝜕2

𝑥𝑣 + 𝜕4
𝑥𝑣 − 𝜕𝑥𝑃𝑣 and 𝜕7

𝑥𝑣 = 𝜕3
𝑥𝑣 + 𝜕5

𝑥𝑣 −

𝜕2
𝑥𝑃𝑣. Then,

‖𝑣‖𝐻7 ≤ 𝐶 ′
2 (‖𝑣‖𝐻5 + ‖𝑃𝑣‖𝐻2) ,

for some positive constant 𝐶 ′
2. Thus, using the Lemma 4.4, we obtain

‖𝑣‖𝐻7 ≤ 𝐶 ′
2 (‖𝑣‖𝐻2 + ‖𝐴𝑣‖𝐻2) .

With this and (4.45), we get that

‖𝑢(·, 𝑡)‖𝐻7 ≤ 𝐶 ′
2𝐶1√
𝑡

(‖𝑢0‖𝐿2 + ‖𝐴𝑢0‖𝐿2) = 𝐶 ′
2𝐶1√
𝑡

‖𝑢0‖𝐷(𝐴) ≤ 𝐶2√
𝑡
‖𝑢0‖𝐻5 ,

showing the proposition. □
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Proposition 4.4 There exists a constant 𝐶3 > 1 such that, for all 𝑢0 ∈ 𝑋𝑚 and all 𝑡 ∈ (0, 1]

it holds ‖𝑆(𝑡)𝑢0‖𝐻𝑚+2 ≤ (𝐶3/
√
𝑡)‖𝑢0‖𝐻𝑚 .

Proof: By Propositions 4.2 and 4.3, the linear maps 𝑆(𝑡) : 𝐿2(−1, 0) → 𝐻2(−1, 0) and
𝑆(𝑡) : 𝐷(𝐴) → 𝐻7(−1, 0) are continuous. Moreover, there exists 𝐶3 > 1 such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖𝑆(𝑡)𝑢0‖𝐻2 ≤ 𝐶3√
𝑡
‖𝑢0‖𝐿2 , ∀ 𝑢0 ∈ 𝐿2(−1, 0),

‖𝑆(𝑡)𝑢0‖𝐻7 ≤ 𝐶3√
𝑡
‖𝑢0‖𝐻5 , ∀ 𝑢0 ∈ 𝐷(𝐴).

(4.46)

For 𝑚 = 1, 2, 3, 4, thanks to the interpolation arguments, it follows that 𝑆(𝑡)
(︁
[𝑋0, 𝑋5]𝑚

5

)︁
⊂

[𝐻2, 𝐻7]𝑚
5

, and the maps 𝑆(𝑡) : [𝑋0, 𝑋5]𝑚
5

→ [𝐻2, 𝐻7]𝑚
5

are continuous with

‖𝑆(𝑡)𝑢0‖[𝐻2,𝐻7] 𝑚
5

≤ 𝐶3√
𝑡
‖𝑢0‖[𝑋0,𝑋5] 𝑚

5
, ∀ 𝑢0 ∈ [𝑋0, 𝑋5]𝑚

5
.

Since [𝐻2, 𝐻7]𝑚
5

= 𝐻(1− 𝑚
5 )2+ 𝑚

2 7 and [𝑋0, 𝑋5]𝑚
5

= 𝑋𝑚, it follows that the maps 𝑆(𝑡) : 𝑋𝑚 →

𝐻𝑚+2 for 𝑚 = 1, 2, 3, 4, are continuous with

‖𝑆(𝑡)𝑢0‖𝐻𝑚+2 ≤ 𝐶3√
𝑡
‖𝑢0‖𝐻𝑚 , ∀ 𝑢0 ∈ 𝐻𝑚. (4.47)

From (4.46) and (4.47) we obtain the desired. □

It is convenient to remember that for 𝑛 ∈ N, we define inductively by

𝐷(𝐴𝑛) =
{︁
𝑣 ∈ 𝐿2(−1, 0); 𝑣 ∈ 𝐷(𝐴𝑛−1) and 𝐴𝑣 ∈ 𝐷(𝐴𝑛−1)

}︁
, 𝐴𝑛𝑣 = 𝐴𝑛−1(𝐴𝑣).

So, with this in hand, we have the following result.

Proposition 4.5 Let 𝑢0 ∈ 𝐿2(−1, 0) and 𝑡 ∈ (0, 1]. We have for 𝑢 = 𝑆(·)𝑢0 that:

(𝑖) 𝑢(·, 𝑡) ∈ 𝐷(𝐴) and

‖𝐴𝑢(·, 𝑡)‖𝐿2 ≤ 𝐶4

𝑡
3
2

‖𝑢0‖𝐿2

for some positive constant 𝐶4 > 1 (which does not depend on 𝑡).

(𝑖𝑖) 𝑢(·, 𝑡) ∈ 𝐷(𝐴𝑛) for every 𝑛 ∈ N and

‖𝐴𝑛𝑢(·, 𝑡)‖𝐿2 ≤ 𝐶𝑛
5

𝑡
3𝑛
2
𝑛

3𝑛
2 ‖𝑢0‖𝐿2 ,

where 𝐶5 > max{1, 𝐶4} is a constant which does not depend on 𝑡.

(𝑖𝑖𝑖) 𝑢 ∈ 𝐶((0, 1], 𝐷(𝐴𝑛)), for every 𝑛 ∈ N ∪ {0}.
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Proof: (i) Assume 𝑢0 ∈ 𝐷(𝐴). Splitting [0, 𝑡] into [0, 𝑡/3] ∪ [𝑡/3, 2𝑡/3] ∪ [2𝑡/3, 𝑡], using
Proposition 4.4 and take in mind that 𝐴𝑢(·, 𝑡) = −𝜕𝑥𝑢(·, 𝑡)−𝜕3

𝑥𝑢(·, 𝑡)+𝜕5
𝑥𝑢(·, 𝑡), we get that

‖𝐴𝑢(·, 𝑡)‖𝐿2 ≤ 𝐶4

𝑡
3
2

‖𝑢0‖𝐿2 , ∀ 𝑢0 ∈ 𝐷(𝐴), (4.48)

where 𝐶4 = 3𝐶3
3(︁√

1
3

)︁3 and 𝐶4 > 1.

Note that, thanks to the inequality (4.48), the linear operator 𝑆(𝑡) : (𝐷(𝐴), ‖ · ‖𝐿2) →

(𝐷(𝐴), ‖ · ‖𝐷(𝐴)) is a bounded linear operator. Moreover, we have

‖𝑆(𝑡)𝑢0‖𝐷(𝐴) ≤ 2𝐶4

𝑡
3
2

‖𝑢0‖𝐿2 ,

for 𝑢0 ∈ 𝐷(𝐴). Since 𝐷(𝐴) is dense in 𝐿2(−1, 0), there exists a bounded linear operator
Λ𝑡 : (𝐿2(−1, 0), ‖ · ‖𝐿2) → (𝐷(𝐴), ‖ · ‖𝐷(𝐴)) such that

Λ𝑡

⃒⃒⃒
𝐷(𝐴)

= 𝑆(𝑡) and ‖Λ𝑡𝑣‖𝐷(𝐴) ≤ 2𝐶4

𝑡
3
2

‖𝑣‖𝐿2 , ∀ 𝑣 ∈ 𝐿2(−1, 0). (4.49)

Now, given 𝑢0 ∈ 𝐿2(−1, 0), there exists (𝑢𝑘) ⊂ 𝐷(𝐴) such that 𝑢𝑘 → 𝑢0 in 𝐿2(−1, 0).
Then from (4.49),

‖Λ𝑡𝑢0 − 𝑆(𝑡)𝑢0‖𝐿2 ≤ 2𝐶4

𝑡
3
2

‖𝑢0 − 𝑢𝑘‖𝐿2 + ‖𝑢0 − 𝑢𝑘‖𝐿2 .

Making 𝑘 → ∞ we obtain Λ𝑡𝑢0 = 𝑆(𝑡)𝑢0. Therefore, 𝑆(𝑡)𝑢0 ∈ 𝐷(𝐴), for 𝑢0 ∈ 𝐿2(−1, 0),
and by (4.49)

‖𝐴𝑢(·, 𝑡)‖𝐿2 = ‖𝐴𝑆(𝑡)𝑢0‖𝐿2 ≤ ‖𝑆(𝑡)𝑢0‖𝐷(𝐴) = ‖Λ𝑡𝑢0‖𝐷(𝐴) ≤ 𝐶4

𝑡
3
2

‖𝑢0‖𝐿2 ,

where 𝐶4 = 2𝐶4, giving the iten (i).

(ii) Assume 𝑢0 ∈ 𝐷(𝐴𝑛). From the demigroup theory we have 𝑆(𝑡)𝑢0 ∈ 𝐷(𝐴𝑛) and
𝐴𝑛𝑢(·, 𝑡) = 𝐴𝑆(𝑡)𝐴𝑛−1𝑢0. Using the item (𝑖) we get

‖𝐴𝑛𝑢(·, 𝑡)‖𝐿2 = ‖𝐴𝑆(𝑡)𝐴𝑛−1𝑢0‖𝐿2 ≤ 𝐶4

𝑡
3
2

⃦⃦⃦
𝐴𝑛−1𝑢0

⃦⃦⃦
𝐿2
. (4.50)

Splitting [0, 𝑡] into [0, 𝑡] = [0, 𝑡/𝑛] ∪ [𝑡/𝑛, 2𝑡/𝑛] ∪ · · · ∪ [(𝑛− 1)𝑡/𝑛, 𝑡] and using (4.50) several
times we obtain

‖𝐴𝑛𝑢(·, 𝑡)‖𝐿2 ≤ 𝐶4

𝑡
3
2

⃦⃦⃦
𝐴𝑛−1𝑢(·, (𝑛− 1)𝑡/𝑛)

⃦⃦⃦
𝐿2

≤ · · · ≤ 𝐶4

𝑡
3
2

𝐶4(︁
𝑛−1

𝑛
𝑡
)︁ 3

2

𝐶4(︁
𝑛−2

𝑛
𝑡
)︁ 3

2
· · · 𝐶4(︁

2𝑡
𝑛

)︁ 3
2

𝐶4(︁
𝑡
𝑛

)︁ 3
2
‖𝑢0‖𝐿2

≤

⎛⎜⎜⎝ 𝐶4(︁
𝑡
𝑛

)︁ 3
2

⎞⎟⎟⎠
𝑛

‖𝑢0‖𝐿2 ,
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thus, for 𝑢0 ∈ 𝐷(𝐴𝑛), holds that

‖𝐴𝑛𝑢(·, 𝑡)‖𝐿2 ≤ 𝐶𝑛
4

𝑡
3𝑛
2
𝑛

3𝑛
2 ‖𝑢0‖𝐿2 .

Now, remark that 𝑆(𝑡) : (𝐷(𝐴𝑛), ‖ · ‖𝐿2) →
(︁
𝐷(𝐴𝑛), ‖ · ‖𝐷(𝐴𝑛)

)︁
is a bounded linear operator,

since, for 𝑢0 ∈ 𝐷(𝐴𝑛), the previous estimate ensures that

‖𝑆(𝑡)𝑢0‖𝐷(𝐴𝑛) = ‖𝑆(𝑡)𝑢0‖𝐿2 + ‖𝐴𝑛𝑆(𝑡)𝑢0‖𝐿2 ≤
(︂

1 + 𝐶𝑛
4

𝑡
3𝑛
2
𝑛

3𝑛
2

)︂
‖𝑢0‖𝐿2 .

Since𝐷(𝐴𝑛) is dense in 𝐿2(−1, 0), there exists a bounded linear operator Λ𝑡,𝑛 : (𝐿2(−1, 0), ‖ · ‖𝐿2) →(︁
𝐷(𝐴𝑛), ‖ · ‖𝐷(𝐴𝑛)

)︁
, such that

Λ𝑡,𝑛

⃒⃒⃒
𝐷(𝐴𝑛)

= 𝑆(𝑡) and ‖Λ𝑡,𝑛𝑣‖𝐷(𝐴𝑛) ≤ 𝐶𝑛
5

𝑡
3𝑛
2
𝑛

3𝑛
2 ‖𝑣‖𝐿2 , ∀𝑣 ∈ 𝐿2(−1, 0) (4.51)

for some constant 𝐶5 > max{1, 𝐶4} which does not depend on 𝑡.
Given 𝑢0 ∈ 𝐿2(−1, 0), there exists (𝑢𝑘) ⊂ 𝐷(𝐴𝑛) such that 𝑢𝑘 → 𝑢0 in 𝐿2(−1, 0). Thus,

(4.51) gives that

‖Λ𝑡,𝑛𝑢0 − 𝑆(𝑡)𝑢0‖𝐿2 ≤ ‖Λ𝑡,𝑛𝑢0 − Λ𝑡,𝑛𝑢𝑘‖𝐷(𝐴𝑛) + ‖𝑆(𝑡)𝑢𝑘 − 𝑆(𝑡)𝑢0‖𝐿2

≤ 𝐶𝑛
5

𝑡
3𝑛
2
𝑛

3𝑛
2 ‖𝑢0 − 𝑢𝑘‖𝐿2 + ‖𝑢𝑘 − 𝑢0‖𝐿2 .

Making 𝑘 → ∞ we obtain 𝑆(𝑡)𝑢0 = Λ𝑡,𝑛𝑢0. Therefore, 𝑆(𝑡)𝑢0 ∈ 𝐷(𝐴), for 𝑢0 ∈ 𝐿2(−1, 0),
and, due to (4.51),

‖𝐴𝑛𝑢(·, 𝑡)‖𝐿2 ≤ ‖𝑆(𝑡)𝑢0‖𝐷(𝐴𝑛) = ‖Λ𝑡,𝑛𝑢0‖𝐷(𝐴𝑛) ≤ 𝐶𝑛
5

𝑡
3𝑛
2
𝑛

3𝑛
2 ‖𝑢0‖𝐿2 ,

and item (ii) holds.

(iii) Let 𝑛 ∈ N and 𝜀 ∈ (0, 1) be. By the item (𝑖𝑖) we have 𝑆(𝑡)𝑢0 ∈ 𝐷(𝐴𝑛). In particular,
𝑆(𝜀)𝑢0 ∈ 𝐷(𝐴𝑛) so, from the semigroup theory, we obtain 𝑆(·)𝑢0 ∈ ⋂︀𝑛

𝑗=0 𝐶
𝑛−𝑗([𝜀, 1];𝐷(𝐴𝑗)).

Taking 𝑗 = 𝑛 we get 𝑆(·)𝑢0 ∈ 𝐶([𝜀, 1];𝐷(𝐴𝑛)), and as 𝜀 ∈ (0, 1) is arbitrary it follows that
𝑆(·)𝑢0 ∈ 𝐶((0, 1];𝐷(𝐴𝑛)), showing the item (iii), and the proof is finished. □

The last lemma will be useful to prove the main result of this section.

Lemma 4.6 For every 𝑛 ∈ N ∩ {0} we have 𝐷(𝐴𝑛) ⊂ 𝐻5𝑛(−1, 0).

Proof: The result is obvious for 𝑛 = 0 and 𝑛 = 1. For 𝑛 = 2, given 𝑣 ∈ 𝐷(𝐴2) there
exists 𝑔 ∈ 𝐷(𝐴) ⊂ 𝐻5 such that 𝐴𝑣 = 𝑔, that is, 𝜕5

𝑥𝑣 = 𝑔 + 𝜕𝑥𝑣 + 𝜕3
𝑥𝑣 ∈ 𝐻2 and

therefore 𝑣 ∈ 𝐻7. Thus, 𝜕7
𝑥𝑣 = 𝜕2

𝑥𝑔 + 𝜕3
𝑥𝑣 + 𝜕5

𝑥𝑣 ∈ 𝐻2, so 𝑣 ∈ 𝐻9. Deriving, again, we get
𝜕9

𝑥𝑣 = 𝜕4
𝑥𝑔 + 𝜕5

𝑥𝑣 + 𝜕7
𝑥𝑣 ∈ 𝐻1, and so 𝑣 ∈ 𝐻10. Therefore 𝐷(𝐴2) ⊂ 𝐻10.
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To conclude the result for any 𝑛 ∈ N, we proceed by induction. Suppose that for some
𝑛 ≥ 1 we have 𝐷(𝐴𝑛) ⊂ 𝐻5𝑛(−1, 0). Let 𝑣 ∈ 𝐷(𝐴𝑛+1), by induction hypothesis, and using
the same procedure, we have 𝑣,𝐴𝑣 ∈ 𝐻5𝑛 which implies that there exists 𝑓 ∈ 𝐻5𝑛 with
𝐴𝑣 = 𝑓 , that is, 𝜕5

𝑥𝑣 ∈ 𝐻5𝑛−3 and so 𝑣 ∈ 𝐻5𝑛+2. By deriving 𝐴𝑣 = 𝑓 twice we obtain
𝑣 ∈ 𝐻5𝑛+4. Deriving again twice it follows that 𝑣 ∈ 𝐻5𝑛+5 and therefore 𝐷(𝐴𝑛+1) ⊂ 𝐻5(𝑛+1),
which concludes the proof. □

The previous results ensure the following ones.

Proposition 4.6 For any 𝑢0 ∈ 𝐿2(−1, 0) the solution 𝑢(·, 𝑡) = 𝑆(𝑡)𝑢0 of (4.1) with ℎ1 =

ℎ2 = 0 satisfies 𝑢 ∈ 𝐶∞([−1, 0] × (0, 1]).

Proof: Consider 𝑛 ∈ N, 𝑡 ∈ (0, 1] and 𝑢0 ∈ 𝐿2(−1, 0). From Proposition 4.5 we have
𝑢(·, 𝑡) ∈ 𝐷(𝐴𝑛). Using Lemma 4.6 we obtain 𝑢(·, 𝑡) ∈ 𝐻5𝑛. The Sobolev embedding 𝐻5𝑛 →˓

𝐶5𝑛−1([−1, 0]) provides 𝑢(·, 𝑡) ∈ 𝐶5𝑛−1([−1, 0]). Since 𝑛 ∈ N is arbitrary, it follows that
𝑢(·, 𝑡) ∈ 𝐶∞([−1, 0]). On the other hand, given 𝜀 > 0 and 𝑛 ∈ N, Proposition 4.5 yields that
𝑢(·, 𝜀) ∈ 𝐷(𝐴𝑛+1) so, the semigroup theory, follows that 𝑢 ∈ ⋂︀𝑛+1

𝑗=0 𝐶
𝑛+1−𝑗 ([𝜀, 1], 𝐷(𝐴𝑗)) . In

particular, taking 𝑗 = 1, we have that 𝑢 ∈ 𝐶𝑛([𝜀, 1], 𝐷(𝐴)). Using the Lemma 4.4 and the
embedding 𝐻5 →˓ 𝐶4([−1, 0]) we obtain that 𝜕𝑖

𝑡𝑢(𝑥, ·) is continuous at 𝑡0 and, as 𝑡0 ∈ [𝜀, 1]

is arbitrary we conclude that 𝜕𝑖
𝑡𝑢(𝑥, ·) is continuous for 𝑖 = 0, 1, ..., 𝑛. Since 𝑛 ∈ N and

𝑥 ∈ [−1, 0] are arbitrary we get 𝑢(𝑥, ·) ∈ 𝐶∞([𝜀, 1]. Furthermore, 𝑢(𝑥, ·) ∈ 𝐶∞((0, 1]), and
the result holds. □

We are now in a position to prove a smooth property for the solutions of (4.1). With these
auxiliary results in hand, the main result of this section is the following one.

Proposition 4.7 Let 𝑢0 ∈ 𝐿2(−1, 0) and ℎ1(𝑡) = ℎ2(𝑡) = 0 for 𝑡 ∈ [0, 1]. Then the corre-
sponding solution 𝑢 of (4.1) satisfies 𝑢 ∈ 𝐺

1
2 , 5

2 ([−1, 0] × [𝜀, 1]), for all 𝜀 ∈ (0, 1), that is, we
can find positive constants 𝑀,𝑅1, 𝑅2 such that

|𝜕𝑝
𝑥𝜕

𝑛
𝑡 𝑢(𝑥, 𝑡)| ≤ 𝑀

𝑡
5𝑛+𝑝+5

2

𝑝! 1
2

𝑅𝑝
1

𝑛! 5
2

𝑅𝑛
2
.

Proof: Consider 𝑝 ∈ N ∪ {0} and choose 𝑛 ∈ N such that 5𝑛 − 5 ≤ 𝑝 ≤ 5𝑛 − 1. Then, the
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Sobolev embedding, Lemma 4.5 and Proposition 4.5 ensures that

‖𝜕𝑝
𝑥𝑢(·, 𝑡)‖∞ ≤ 𝐶6𝐾

𝑛
3

𝑛∑︁
𝑖=0

⃦⃦⃦
𝑃 𝑖𝑢(·, 𝑡)

⃦⃦⃦
𝐿2

= 𝐶6𝐾
𝑛
3

(︃
‖𝑢(·, 𝑡)‖𝐿2 +

𝑛∑︁
𝑖=1

⃦⃦⃦
𝐴𝑖𝑢(·, 𝑡)

⃦⃦⃦
𝐿2

)︃

≤ 𝐶6𝐾
𝑛
3

(︃
1 +

𝑛∑︁
𝑖=1

𝐶𝑖
5

𝑡
3𝑖
2
𝑖

3𝑖
2

)︃
‖𝑢0‖𝐿2

≤ 𝐶6𝐾
𝑛
3 (𝑛+ 1)𝐶

𝑛
5

𝑡
3𝑛
2
𝑛

3𝑛
2 ‖𝑢0‖𝐿2

= 𝐶6𝐾
𝑛
3 (𝑛+ 1)𝐶

𝑛
5

𝑡
5𝑛
2

(5𝑛) 5𝑛
2

5 5𝑛
2

‖𝑢0‖𝐿2 .

(4.52)

Using Stirling’s formula we get

(5𝑛)5𝑛 ∼ 𝑒5𝑛(5𝑛)!
(2𝜋) 1

2 (5𝑛) 1
2

⇐⇒ (5𝑛) 5𝑛
2 ∼ 𝑒

5𝑛
2 (5𝑛)! 1

2

(2𝜋) 1
4 (5𝑛) 1

4
⇐⇒ (5𝑛) 5𝑛

2

5 5𝑛
2

∼ 1
(2𝜋) 1

4 (5𝑛) 1
4

(︂
𝑒

5

)︂ 5𝑛
2

(5𝑛)! 1
2 ,

which implies that

(5𝑛) 5𝑛
2

5 5𝑛
2

≤ 𝐶7
1

(2𝜋) 1
4 (5𝑛) 1

4

(︂
𝑒

5

)︂ 5𝑛
2

(5𝑛)! 1
2 ≤ 𝐶7

(︂
𝑒

5

)︂ 5𝑛
2

(5𝑛)! 1
2

for some constant 𝐶7 > 0. Since (𝑛+ 1) ≤ 𝑒
5𝑛
2 , for 𝑛 ∈ N, the inequality (4.52) gives us

‖𝜕𝑝
𝑥𝑢(·, 𝑡)‖∞ ≤ 𝐶6𝐾

𝑛
3 𝑒

5𝑛
2
𝐶𝑛

5

𝑡
5𝑛
2
𝐶7

(︂
𝑒

5

)︂ 5𝑛
2

(5𝑛)! 1
2 ‖𝑢0‖𝐿2 = 𝐶6𝐶7

𝐶𝑛
5

𝑡
5𝑛
2
𝐾𝑛

3

(︃
𝑒2

5

)︃ 5𝑛
2

(5𝑛)! 1
2 ‖𝑢0‖𝐿2 .

Remember that 5𝑛− 5 ≤ 𝑝 ≤ 5𝑛− 1 which allow us write 𝑝 = 5𝑛− 𝑟 with 𝑟 ∈ {1, 2, 3, 4, 5},
that is, 5𝑛 = 𝑝+ 𝑟, with 𝑟 ∈ {1, 2, 3, 4, 5}. Using (4.8) it follows that

‖𝜕𝑝
𝑥𝑢(·, 𝑡)‖∞ ≤ 𝐶6𝐶7

𝐶
𝑝+𝑟

5
5

𝑡
𝑝+𝑟

2
𝐾

𝑝+𝑟
5

3

(︃
𝑒2

5

)︃ 𝑝+𝑟
2

(𝑝+ 𝑟)! 1
2 ‖𝑢0‖𝐿2

≤ 𝐶6𝐶7𝐶
𝑟
5
5 𝐾

𝑟
5
3

(︃
𝑒2

5

)︃ 𝑟
2 𝐶

𝑝
5
5

𝑡
𝑝+𝑟

2
𝐾

𝑝
5
3

(︃
𝑒2

5

)︃ 𝑝
2

(2𝑝2𝑟𝑝!𝑟!)
1
2 ‖𝑢0‖𝐿2

= 𝐶6𝐶7𝐶
𝑟
5
5 𝐾

𝑟
5
3

(︃
𝑒2

5

)︃ 𝑟
2

2 𝑟
2 𝑟! 1

2 ‖𝑢0‖𝐿2
1
𝑡

𝑝+𝑟
2

⎛⎝𝐶 1
5
5 𝐾

1
5
3 𝑒2

1
2

5 1
2

⎞⎠𝑝

𝑝! 1
2 .

Consequently

‖𝜕𝑝
𝑥𝑢(·, 𝑡)‖∞ ≤ 𝐶8

𝑡
𝑝+𝑟

2

⎛⎝𝐶 1
5
5 𝐾

1
5
0 𝑒2

1
2

5 1
2

⎞⎠𝑝

𝑝! 1
2 = 𝐶8

𝑡
𝑝+𝑟

2

𝑝! 1
2(︂

5 1
2𝐶

− 1
5

5 𝐾
− 1

5
0 𝑒−12− 1

2

)︂𝑝 ,

with
𝐶8 = 𝐶8(𝑟) := 𝐶6𝐶7𝐶

𝑟
5
5 𝐾

𝑟
5
3

(︃
𝑒2

5

)︃ 𝑟
2

2 𝑟
2 𝑟! 1

2 ‖𝑢0‖𝐿2 and 𝐾0 = 𝐾3 + 1.
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Defining 𝑅 = 5 1
2𝐶

− 1
5

5 𝐾
− 1

5
0 𝑒−12− 1

2 , follows that 𝑅 ∈ (0, 1) and

‖𝜕𝑝
𝑥𝑢(·, 𝑡)‖∞ ≤ 𝐶8

𝑡
𝑝+𝑟

2

𝑝! 1
2

𝑅𝑝
.

Here, 𝑝 ≥ 0, 𝑟 ∈ {1, 2, 3, 4, 5} and 𝑡 ∈ (0, 1]. Observe that, as 𝑡 ∈ (0, 1] and 0 ≤ 𝑟 ≤ 5 holds
that

‖𝜕𝑝
𝑥𝑢(·, 𝑡)‖∞ ≤ 𝐶8

𝑡
𝑝+5

2

𝑝! 1
2

𝑅𝑝
, ∀ 𝑝 ≥ 0, ∀𝑡 ∈ (0, 1]. (4.53)

Finally, for every 𝑛, 𝑝 ≥ 0 from (4.4) we have

𝜕𝑛
𝑡 𝜕

𝑝
𝑥𝑢 = 𝜕𝑝

𝑥𝜕
𝑛
𝑡 𝑢 = 𝜕𝑝

𝑥

(︁
−(−1)𝑛−1𝑃 𝑛𝑢

)︁
= 𝜕𝑝

𝑥 ((−1)𝑛𝑃 𝑛𝑢) = (−1)𝑛𝑃 𝑛𝜕𝑝
𝑥𝑢.

Using Newton’s Binomial theorem, we have that

𝑃 𝑛𝜕𝑝
𝑥𝑢 =

𝑛∑︁
𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑗=0

(︃
𝑞

𝑗

)︃
(−𝜕5

𝑥)𝑗(𝜕3
𝑥)𝑞−𝑗𝜕𝑛−𝑞

𝑥 𝜕𝑝
𝑥𝑢

=
𝑛∑︁

𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑗=0

(︃
𝑞

𝑗

)︃
(−1)𝑗𝜕5𝑗

𝑥 𝜕
3𝑞−3𝑗
𝑥 𝜕𝑛−𝑞

𝑥 𝜕𝑝
𝑥𝑢.

Thus, from (4.53), for (𝑥, 𝑡) ∈ [−1, 0] × (0, 1],

|𝜕𝑛
𝑡 𝜕

𝑝
𝑥𝑢(𝑥, 𝑡)| ≤

𝑛∑︁
𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑗=0

(︃
𝑞

𝑗

)︃ ⃒⃒⃒
𝜕𝑛+2𝑞+2𝑗+𝑝

𝑥 𝑢(𝑥, 𝑡)
⃒⃒⃒

≤
𝑛∑︁

𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑗=0

(︃
𝑞

𝑗

)︃
𝐶8

𝑡
𝑛+2𝑞+2𝑗+𝑝+5

2

(𝑛+ 2𝑞 + 2𝑗 + 𝑝)! 1
2

𝑅𝑛+2𝑞+2𝑗+𝑝
.

Once that 𝑡 ∈ (0, 1], 𝑅 < 1 and 𝑛+ 2𝑞 + 2𝑗 + 𝑝 ≤ 5𝑛+ 𝑝 it follows that

|𝜕𝑛
𝑡 𝜕

𝑝
𝑥𝑢(𝑥, 𝑡)| ≤ 𝐶8

𝑡
5𝑛+𝑝+5

2

(5𝑛+ 𝑝)! 1
2

𝑅5𝑛+𝑝

𝑛∑︁
𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑗=0

(︃
𝑞

𝑗

)︃
.

Noting that

2𝑞 = (1 + 1)𝑞 =
𝑞∑︁

𝑗=0

(︃
𝑞

𝑗

)︃
1𝑗 · 1𝑞−𝑗 =

𝑞∑︁
𝑗=0

(︃
𝑞

𝑗

)︃

and
𝑛∑︁

𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑗=0

(︃
𝑞

𝑗

)︃
=

𝑛∑︁
𝑞=0

(︃
𝑛

𝑞

)︃
2𝑞 =

𝑛∑︁
𝑞=0

(︃
𝑛

𝑞

)︃
2𝑞 · 1𝑛−𝑞 = (2 + 1)𝑛 = 3𝑛,

using (4.8) one more time, yields

|𝜕𝑛
𝑡 𝜕

𝑝
𝑥𝑢(𝑥, 𝑡)| ≤ 𝐶8

𝑡
5𝑛+𝑝+5

2

3𝑛 · 2 5𝑛
2 2 𝑝

2 (5𝑛)! 1
2𝑝! 1

2

𝑅5𝑛𝑅𝑝
.



138

Stirling’s formula gives us

(5𝑛)! ∼
(︂5𝑛
𝑒

)︂5𝑛 √
2𝜋5𝑛 = (10𝜋) 1

2

(︂5𝑛
𝑒

)︂5𝑛

𝑛
1
2 . (4.54)

Moreover, we also have 𝑛! ∼
(︁

𝑛
𝑒

)︁𝑛 √
2𝜋𝑛 = (2𝜋) 1

2
(︁

𝑛
𝑒

)︁𝑛
𝑛

1
2 , then

55𝑛𝑛!5

(2𝜋) 5
2𝑛

5
2

∼
(︂5𝑛
𝑒

)︂5𝑛

.

This previous relation together with (4.54) leads us

(5𝑛)! ∼ (10𝜋) 1
2

55𝑛𝑛!5

(2𝜋) 5
2𝑛

5
2
𝑛

1
2 = (10𝜋) 1

2

(2𝜋) 5
2

55𝑛𝑛!5

𝑛2 ∼ (10𝜋) 1
4

(2𝜋) 5
4

5 5𝑛
2 𝑛! 5

2

𝑛
.

Thus, there exists a constant 𝐶9 > 0 such that (5𝑛)! 1
2 ≤ 𝐶95

5𝑛
2 𝑛! 5

2 . Hence

|𝜕𝑛
𝑡 𝜕

𝑝
𝑥𝑢(𝑥, 𝑡)| ≤ 𝐶8𝐶9

𝑡
5𝑛+𝑝+5

2

⎛⎝3 · 2 5
2 · 5 5

2

𝑅5

⎞⎠𝑛

𝑛! 5
2

⎛⎝2 1
2

𝑅

⎞⎠𝑝

𝑝! 1
2 = 𝐶8𝐶9

𝑡
5𝑛+𝑝+5

2

𝑛! 5
2(︁

3−1 · 10− 5
2 ·𝑅5

)︁𝑛
𝑝! 1

2(︁
2− 1

2𝑅
)︁𝑝

and the result is achieved with 𝑀 = 𝐶8𝐶9, 𝑅1 = 2− 1
2𝑅 and 𝑅2 = 3−1 · 10− 5

2 ·𝑅5. □

4.3.4 Null controllability results

Let us now prove the null controllability result. Precisely, employing two flat output controls,
the solution of (4.1) satisfies 𝑢(·, 𝑇 ) = 0.
Proof of Theorem 4.1: Consider 𝑢0 ∈ 𝐿2(−1, 0) and denote by 𝑢 the solution of (4.1) for
ℎ1 = ℎ2 = 0. From Proposition 4.7 we have, for 𝜀 ∈ (0, 𝑇 ) , that 𝑢 ∈ 𝐺

1
2 , 5

2 ([−1, 0]×[𝜀, 𝑇 ]). In
particular, 𝜕3

𝑥𝑢(0, 𝑡), 𝜕4
𝑥𝑢(0, 𝑡) ∈ 𝐺

5
2 ([𝜀, 𝑇 ]) for any 𝜀 ∈ (0, 𝑇 ). Choose 𝜏 ∈ (0, 𝑇 ) and define

𝑦(𝑡) = 𝜑𝑠

(︂
𝑡− 𝜏

𝑇 − 𝜏

)︂
𝜕3

𝑥𝑢(0, 𝑡) and 𝑧(𝑡) = 𝜑𝑠

(︂
𝑡− 𝜏

𝑇 − 𝜏

)︂
𝜕4

𝑥𝑢(0, 𝑡),

where 𝜑𝑠 is the step function given by

𝜑𝑠(𝑟) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if 𝑟 ≤ 0,

0, if 𝑟 ≥ 1,

𝑒
− 𝐾

(1−𝑟)𝜎

𝑒
− 𝐾

𝑟𝜎 +𝑒
− 𝐾

(1−𝑟)𝜎
, if 𝑟 ∈ (0, 1),

with 𝐾 > 0 and 𝜎 := (𝑠 − 1)−1. As 𝜑𝑠 is Gevrey of order 𝑠 (see, for example, (MARTIN;

ROSIER; ROUCHON, 2018)) and 𝑠 ≥ 5
2 we infer that 𝑦, 𝑧 ∈ 𝐺𝑠 ([𝜀, 𝑇 ]) , ∀ 𝜀 ∈ (0, 𝑇 ). Then,

defining 𝑢 : [−1, 0] × (0, 𝑇 ] → R by

𝑢(𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑢0(𝑥), if 𝑡 = 0,∑︀

𝑖≥0 𝑓𝑖(𝑥)𝑦(𝑖)(𝑡) +∑︀
𝑖≥0 𝑔𝑖(𝑥)𝑧(𝑖)(𝑡), if 𝑡 ∈ (0, 𝑇 ],



139

the Proposition 4.1 gives us that 𝑢 satisfies (4.16) with 𝑢 ∈ 𝐺
𝑠
5 ,𝑠 ([−1, 0] × [𝜀, 𝑇 ]) for all

𝜀 ∈ (0, 𝑇 ). In particular

𝜕𝑚
𝑥 𝑢(0, 𝑡) = 0, 𝑚 = 0, 1, 2, 𝜕3

𝑥𝑢(0, 𝑡) = 𝑦(𝑡) and 𝜕4
𝑥𝑢(0, 𝑡) = 𝑧(𝑡).

Furthermore, by construction

𝜕𝑚
𝑥 𝑢(0, 𝑡) = 0, 𝑚 = 0, 1, 2

and, for 𝑡 ∈ (0, 𝜏)

𝑦(𝑡) = 𝜑𝑠

(︂
𝑡− 𝜏

𝑇 − 𝜏

)︂
⏟  ⏞  

=1

𝜕3
𝑥𝑢(0, 𝑡) = 𝜕3

𝑥𝑢(0, 𝑡),

and

𝑧(𝑡) = 𝜑𝑠

(︂
𝑡− 𝜏

𝑇 − 𝜏

)︂
⏟  ⏞  

=1

𝜕4
𝑥𝑢(0, 𝑡) = 𝜕4

𝑥𝑢(0, 𝑡).

Therefore 𝜕𝑚
𝑥 𝑢(0, 𝑡) = 𝜕𝑚

𝑥 𝑢(0, 𝑡), for 𝑚 = 0, 1, 2, 3, 4 and 𝑡 ∈ (0, 𝜏). Thanks to the Holmgren
theorem, we conclude that 𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡), for all (𝑥, 𝑡) ∈ [−1, 0] × (0, 𝜏).

0 𝑇
𝑡

𝐿2(−1, 0)

Figure 9 – Trajectories 𝑢 (in red) and 𝑢 (in blue)

Hence, 𝑢 ∈ 𝐶([0, 𝑇 ], 𝐿2(−1, 0)) and it solves the system (4.1) with

ℎ1(𝑡) =
∑︁
𝑖≥0

𝑓𝑖(−1)𝑦(𝑖)(𝑡) +
∑︁
𝑖≥0

𝑔𝑖(−1)𝑧(𝑖)(𝑡)

and

ℎ2(𝑡) =
∑︁
𝑖≥0

𝑓𝑖𝑥(−1)𝑦(𝑖)(𝑡) +
∑︁
𝑖≥0

𝑔𝑖𝑥(−1)𝑧(𝑖)(𝑡).
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Observe that ℎ1, ℎ2 ∈ 𝐺𝑠([0, 𝑇 ]) and ℎ1(𝑡) = ℎ2(𝑡) = 0 for 0 < 𝑡 < 𝜏 since⎧⎪⎪⎨⎪⎪⎩
ℎ1(𝑡) = 𝑢(−1, 𝑡) = 𝑢(−1, 𝑡) = 0,

ℎ2(𝑡) = 𝑢𝑥(−1, 𝑡) = 𝑢𝑥(−1, 𝑡) = 0,
∀ 𝑡 ∈ (0, 𝜏).

Finally, once we have supp 𝑦(𝑖) ⊂ supp 𝑦 ⊂ (−∞, 𝑇 ) and supp 𝑧(𝑖) ⊂ supp 𝑧 ⊂ (−∞, 𝑇 ),
follows that 𝑦(𝑖)(𝑇 ) = 0 and 𝑧(𝑖)(𝑇 ) = 0, for every 𝑖 ≥ 0, so that 𝑢(·, 𝑇 ) = 0, and the first
main result is showed. □

4.4 A CLASS OF REACHABLE FUNCTIONS

In this section, we will establish a class of sets that can be reachable from 0 by the system
(4.1). Our goal is to prove that, given 𝑢1 ∈ ℛ𝑅 (see the definition in (4.5)), one can find
control inputs ℎ1 and ℎ2 for which the solution of (4.1), with 𝑢0 = 0, satisfies 𝑢(𝑥, 𝑇 ) = 𝑢1(𝑥).

4.4.1 Auxiliary results

To prove what we mentioned before, we need auxiliary results. The first establishes the
flatness property for the limit case 𝑠 = 5.

Proposition 4.8 Let 𝑅 > 2 1
5 and 𝑦, 𝑧 ∈ 𝐺5([0, 𝑇 ]) with

|𝑦(𝑗)(𝑡)|, |𝑧(𝑗)(𝑡)| ≤ 𝑀
(5𝑗)!
𝑅5𝑗

, ∀𝑗 ≥ 0, ∀𝑡 ∈ [0, 𝑇 ]. (4.55)

Then, defining 𝑢(𝑥, 𝑡) as in (4.9) we have 𝑢 ∈ 𝐺1,5([−1, 0] × [0, 𝑇 ]) and it solves (4.16).

Proof: Let 𝑚, 𝑘 ≥ 0. For 𝑗 ≥ 𝑘 we have, from (4.55) and Lemma 4.2, that
∞∑︁

𝑗=0

⃒⃒⃒
𝑓𝑗−𝑘(𝑥)𝑦(𝑗+𝑚)(𝑡)

⃒⃒⃒
≤
∑︁
𝑗≥𝑘

2𝑗−𝑘 |𝑥|5(𝑗−𝑘)+1

[5(𝑗 − 𝑘) + 1]!𝑀
[5(𝑗 +𝑚)]!
𝑅5(𝑗+𝑚) .

Pick 𝑙 = 5(𝑗 − 𝑘) and 𝑁 = 5(𝑘 +𝑚) so 𝑙 +𝑁 = 5(𝑗 +𝑚), gives that
∞∑︁

𝑗=0

⃒⃒⃒
𝑓𝑗−𝑘(𝑥)𝑦(𝑗+𝑚)(𝑡)

⃒⃒⃒
≤ 𝑀

∑︁
𝑙≥0

2 𝑙
5

1
(𝑙 + 1)!

(𝑙 +𝑁)!
𝑅𝑙+𝑁

.

If 𝑁 ≤ 1 then
∞∑︁

𝑗=0

⃒⃒⃒
𝑓𝑗−𝑘(𝑥)𝑦(𝑗+𝑚)(𝑡)

⃒⃒⃒
≤ 𝑀

𝑅𝑁

∑︁
𝑙≥0

(︂ 1
𝑅 · 2− 1

5

)︂𝑙

< ∞.
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Assume 𝑁 > 1, note that (𝑙 +𝑁)! = (𝑙 +𝑁)(𝑙 +𝑁 − 1) · · · (𝑙 + 2)(𝑙 + 1)!, so that
∞∑︁

𝑗=0

⃒⃒⃒
𝑓𝑗−𝑘(𝑥)𝑦(𝑗+𝑚)(𝑡)

⃒⃒⃒
≤ 𝑀

∑︁
𝑙≥0

2 𝑙
5
(𝑙 +𝑁)(𝑙 +𝑁 − 1) · · · (𝑙 + 2)

𝑅𝑙+𝑁

≤ 𝑀
∑︁
𝑞≥0

∑︁
𝑞𝑁≤𝑙<(𝑞+1)𝑁

2 𝑙+𝑁
5 (𝑙 +𝑁)𝑁−1

𝑅𝑙+𝑁

= 𝑀
∑︁
𝑞≥0

∑︁
𝑞𝑁≤𝑙<(𝑞+1)𝑁

[(𝑞 + 2)𝑁 ]𝑁−1(︁
2− 1

5𝑅
)︁𝑙+𝑁 .

For 𝑙 > 𝑞𝑁 we have 𝑙 +𝑁 ≥ (𝑞 + 1)𝑁 and, since 2− 1
5𝑅 > 1, follows that

1(︁
2− 1

5𝑅
)︁𝑙+𝑁 ≤ 1(︁

2− 1
5𝑅
)︁(𝑞+1)𝑁 .

Thus, thanks to the relation (4.26), the following estimate
∞∑︁

𝑗=0

⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀

∑︁
𝑞≥0

∑︁
𝑞𝑁≤𝑙<(𝑞+1)𝑁

(𝑞 + 2)𝑁−1𝑁𝑁−1(︁
2− 1

5𝑅
)︁(𝑞+1)𝑁

≤ 𝑀𝑁𝑁
∑︁
𝑞≥0

(︂
𝑞 + 2
𝑅̃𝑞+1

)︂𝑁

,

is verified with 𝑅̃ = 2− 1
5𝑅. Pick any 𝜎 ∈ (0, 1) and define 𝑓𝜎(𝑥) = 𝑥+2

(𝑅̃1−𝜎)𝑥+1 . Note that

lim𝑥→∞
(︁
𝑅̃1−𝜎

)︁𝑥+1
= ∞, since 𝑅̃ > 1. The L’Hospital rule ensures that

lim
𝑥→∞

𝑓𝜎(𝑥) = lim
𝑥→∞

1
ln(𝑅̃1−𝜎)(𝑅̃1−𝜎)𝑥+1

= 0,

and so,

𝑞 + 2(︁
𝑅̃1−𝜎

)︁𝑞+1 → 0, as 𝑞 → ∞.

Defining 𝑎 := sup𝑞≥0
𝑞+2

(𝑅̃1−𝜎)𝑞+1 holds that

∑︁
𝑞≥0

(︂
𝑞 + 2
𝑅̃𝑞+1

)︂𝑁

≤ 𝑎𝑁

𝑅̃𝑁𝜎

∑︁
𝑞≥0

1
𝑅̃𝑁𝜎𝑞

= 𝑎𝑁

𝑅̃𝑁𝜎

(︃
1

1 − 1
𝑅̃𝑁𝜎

)︃
.

Once we have the following convergence

𝛼𝑁 := 1
1 − 1

𝑅̃𝑁𝜎

→ 1, as 𝑁 → ∞,

we can define 𝑀̃ := sup
𝑁>1

𝛼𝑁 to get

∑︁
𝑞≥0

(︂
𝑞 + 2
𝑅̃𝑞+1

)︂𝑁

≤ 𝑀̃
𝑎𝑁

𝑅̃𝑁𝜎
.
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Consequently
∞∑︁

𝑗=0

⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀𝑁𝑁𝑀̃

𝑎𝑁

𝑅̃𝑁𝜎
,

and using Stirling’s formula, we get that

𝑎𝑁𝑁𝑁

𝑅̃𝑁𝜎
∼ 1√

2𝜋
𝑎𝑁𝑒𝑁

𝑅̃𝑁𝜎

𝑁 !
𝑁

1
2
,

which ensures the following estimate
∞∑︁

𝑗=0

⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀 ′

(︂
𝑎𝑒

𝑅̃𝜎

)︂𝑁 𝑁 !
𝑁

1
2
,

for some constant 𝑀 ′ > 0. Moreover, noting that 𝑁 ! = (5𝑘 + 5𝑚)! ≤ 25𝑘25𝑚(5𝑘)!(5𝑚)! and
using Stirling’s formula again, namely, (5𝑚)! ∼ 55𝑚+ 1

2
(︁√

2𝜋𝑚
)︁−4

𝑚!5, follows that

∞∑︁
𝑗=0

⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤

√
5𝑀 ′′

(︂2𝑎𝑒
𝑅̃𝜎

)︂5𝑘

(5𝑘)!
(︂10𝑎𝑒
𝑅̃𝜎

)︂5𝑚

𝑚!5 1
(𝑘 + 1) 1

2
.

Now, define 𝑅1 = (2𝑎𝑒)−1𝑅̃𝜎, 𝑅2 =
[︁
(10𝑎𝑒)−1𝑅̃

]︁5
and 𝑀 ′′′ =

√
5𝑀 ′′, it follows that

∞∑︁
𝑗=0

⃒⃒⃒
𝜕𝑚

𝑡 𝑃
𝑘
(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀 ′′′ (5𝑘)!

𝑅5𝑘
1

𝑚!5

𝑅𝑚
2

1
(𝑘 + 1) 1

2
.

Observe that we can assume 𝑅1 < 1. Let 𝐾3 > 0 as in Lemma 4.5 for 𝑝 = ∞. Then, the
previous inequality yields that

∞∑︁
𝑗=0

⃦⃦⃦
𝜕𝑚

𝑡

(︁
𝑓𝑗𝑦

(𝑗)(𝑡)
)︁⃦⃦⃦

5𝑖,∞
≤ 𝑀 ′′′𝐾𝑖

3
𝑚!5

𝑅𝑚
2

(5𝑖)!
𝑅5𝑖

1

𝑖∑︁
𝑘=0

1
(𝑘 + 1) 1

2
,

for all 𝑖 ≥ 0. Given 𝑚,𝑛 ≥ 0 consider 𝑖 ≥ 0 such that 𝑛 ∈ {5𝑖− 𝑟, 𝑟 = 0, 1, 2, 3, 4}. Thus,

∞∑︁
𝑗=0

⃒⃒⃒
𝜕𝑛

𝑥𝜕
𝑚
𝑡

(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀 ′′′𝐾𝑖

3
𝑚!5

𝑅𝑚
2

(5𝑖)!
𝑅5𝑖

1

𝑖∑︁
𝑘=0

1
(𝑘 + 1) 1

2
,

for (𝑥, 𝑡) ∈ [−1, 0] × [0, 𝑇 ]. Analogously, one can see that

∞∑︁
𝑗=0

⃒⃒⃒
𝜕𝑛

𝑥𝜕
𝑚
𝑡

(︁
𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀 ′′′𝐾𝑖

3
𝑚!5

𝑅𝑚
2

(5𝑖)!
𝑅5𝑖

1

𝑖∑︁
𝑘=0

1
(𝑘 + 1) 1

2
.

Therefore these series are uniformly convergent on [−1, 0] × [0, 𝑇 ], for all 𝑚,𝑛 ≥ 0 so that,
the function 𝑢 defined by (4.9) satisfies 𝑢 ∈ 𝐶∞([−1, 0] × [0, 𝑇 ]). Furthermore,

∞∑︁
𝑗=0

⃒⃒⃒
𝜕𝑛

𝑥𝜕
𝑚
𝑡

(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡)

)︁⃒⃒⃒
+

∞∑︁
𝑗=0

⃒⃒⃒
𝜕𝑛

𝑥𝜕
𝑚
𝑡

(︁
𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

)︁⃒⃒⃒
≤ 𝑀 ′′′𝐾𝑖

3
𝑚!5

𝑅𝑚
2

(5𝑖)!
𝑅5𝑖

1

𝑖∑︁
𝑘=0

1
(𝑘 + 1) 1

2
.
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On the other hand, given 𝜌 > 1, one can get a constant 𝑐 > 0 such that
𝑖∑︁

𝑘=0

1
(𝑘 + 1) 1

2
≤ 𝑖+ 1 ≤ 𝑐𝜌𝑖.

Hence, adjusting the constants 𝑀 ′′′ and 𝐾3 we can write

|𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢(𝑥, 𝑡)| ≤ 𝑀 ′′′𝐾𝑖

3
𝑚!5

𝑅𝑚
2

(5𝑖)!
𝑅5𝑖

1
.

Since 𝑛 = 5𝑖− 𝑟 with 𝑟 ∈ {0, 1, 2, 3, 4} we have

𝐾𝑖
3

𝑅5𝑖
1

(5𝑖)! ≤ 𝐾
𝑟
5
3 · 2𝑟 · 𝑟!
𝑅𝑟

1
· 𝑛!(︂
𝐾

− 1
5

3 · 2−1 ·𝑅1

)︂𝑛 .

Defining

𝑀̂ = 2𝑀 ′′′

⎛⎝max
0≤𝑟≤4

𝐾
𝑟
5
3 · 2𝑟 · 𝑟!
𝑅𝑟

1

⎞⎠ and 𝑅′
1 = 𝐾

− 1
5

3 · 2−1 ·𝑅1

it follows that

|𝜕𝑛
𝑥𝜕

𝑚
𝑡 𝑢(𝑥, 𝑡)| ≤ 𝑀̂

𝑛!
(𝑅′

1)𝑛

𝑚!5

𝑅𝑚
2

∀ 𝑛,𝑚 ≥ 0, ∀(𝑥, 𝑡) ∈ [−1, 0] × [0, 𝑇 ],

which concludes the proof. □

The next result is a particular case of (MARTIN; ROSIER; ROUCHON, 2016b, Proposition
3.6) with 𝑎0 = 1 and 𝑎𝑝 = [5𝑝(5𝑝− 1)(5𝑝− 2)(5𝑝− 3)(5𝑝− 4)]−1, for 𝑝 ≥ 1.

Proposition 4.9 Let (𝑑𝑞)𝑞≥0 be a sequence of real numbers satisfying |𝑑𝑞| ≤ 𝐶𝐻𝑞(5𝑞)!, for
all 𝑞 ≥ 0 and for some constants 𝐻 > 0 and 𝐶 > 0. Then, for each 𝐻̃ > 𝑒𝑒−1

𝐻, one can find
a function 𝑓 ∈ 𝐶∞(R) such that 𝑓 (𝑞)(0) = 𝑑𝑞, for all 𝑞 ≥ 0, and

⃒⃒⃒
𝑓 (𝑞)(𝑥)

⃒⃒⃒
≤ 𝐶𝐻̃𝑞(5𝑞)!, ∀𝑞 ≥ 0, ∀𝑥 ∈ R.

The next lemma is a consequence of the theory of analytic functions.

Lemma 4.7 Let 𝜓 ∈ 𝐺1([−1, 0]) be such that 𝜕𝑗
𝑥𝑃

𝑛𝜓(0) = 0, ∀𝑛 ≥ 0, 𝑗 = 0, 1, 2, 3, 4.

Then 𝜓 ≡ 0.

Proof: First, remember (from the proof of Proposition 4.7) that

𝑃 𝑛 =
𝑛∑︁

𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑘=0

(︃
𝑞

𝑘

)︃
(−1)𝑘𝜕𝑛+2𝑞+2𝑘

𝑥 ∀𝑛 ≥ 0
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so

𝜕𝑗
𝑥𝑃

𝑛 =
𝑛∑︁

𝑞=0

(︃
𝑛

𝑞

)︃ 𝑞∑︁
𝑘=0

(︃
𝑞

𝑘

)︃
(−1)𝑘𝜕𝑛+2𝑞+2𝑘+𝑗

𝑥 ∀𝑛, 𝑗 ≥ 0.

We claim that for any 𝑛 ≥ 0

𝜕𝑗
𝑥𝜓(0) = 0 ∀𝑗 ∈ {0, 1, ..., 5𝑛+ 4}. (4.56)

To prove this, we use induction on 𝑛. For 𝑛 = 0, this immediately follows from the hypothesis,
since

𝜕𝑗
𝑥𝜓(0) = 𝜕𝑗

𝑥𝑃
0𝜓(0) = 0, 𝑗 = 0, 1, 2, 3, 4. (4.57)

Let us also analyze the case 𝑛 = 1. Using the hypothesis and (4.57) we obtain⎧⎪⎪⎨⎪⎪⎩
𝑃𝜓(0) = 0 ⇒ 𝜕5

𝑥𝜓(0) = 0, 𝜕𝑥𝑃𝜓(0) = 0𝜕6
𝑥𝜓(0) = 0, 𝜕2

𝑥𝑃𝜓(0) = 0 ⇒ 𝜕7
𝑥𝜓(0) = 0,

𝜕3
𝑥𝑃𝜓(0) = 0 ⇒ 𝜕8

𝑥𝜓(0) = 0, 𝜕4
𝑥𝑃𝜓(0) = 0 ⇒ 𝜕9

𝑥𝜓(0) = 0.

Combining this with (4.57) we get (4.56), for 𝑛 = 1. Now, suppose that (4.56) holds for some
𝑛 ≥ 1 and let us show that

𝜕𝑗
𝑥𝜓(0) = 0 ∀𝑗 ∈ {0, 1, ..., 5(𝑛+ 1) + 4}.

By the induction hypothesis, it is sufficient to show that 𝜕𝑗
𝑥𝜓(0) = 0 for 𝑗 = 5(𝑛 + 1) + 𝑟

with 𝑟 = 0, 1, 2, 3, 4. From hypothesis 𝑃 𝑛+1𝜓(0) = 0, that is,
𝑛+1∑︁
𝑞=0

(︃
𝑛+ 1
𝑞

)︃ 𝑞∑︁
𝑘=0

(︃
𝑞

𝑘

)︃
(−1)𝑘𝜕𝑛+1+2𝑞+2𝑘

𝑥 𝜓(0) = 0.

Thus,
𝑛∑︁

𝑞=0

(︃
𝑛+ 1
𝑞

)︃ 𝑞∑︁
𝑘=0

(︃
𝑞

𝑘

)︃
(−1)𝑘𝜕𝑛+1+2𝑞+2𝑘

𝑥 𝜓(0) +
(︃
𝑛+ 1
𝑛+ 1

)︃
𝑛+1∑︁
𝑘=0

(︃
𝑛+ 1
𝑘

)︃
(−1)𝑘𝜕𝑛+1+2(𝑛+1)+2𝑘

𝑥 𝜓(0) = 0.

Note that 𝑛 + 1 + 2𝑞 + 2𝑘 ≤ 5𝑛 + 1, for 0 ≤ 𝑘 ≤ 𝑞 ≤ 𝑛. So, from induction hypothesis it
follows that 𝜕𝑛+1+2𝑞+2𝑘

𝑥 𝜓(0) = 0 and the last equality becomes
𝑛+1∑︁
𝑘=0

(︃
𝑛+ 1
𝑘

)︃
(−1)𝑘𝜕3(𝑛+1)+2𝑘

𝑥 𝜓(0) = 0,

or, equivalently,
𝑛∑︁

𝑘=0

(︃
𝑛+ 1
𝑘

)︃
(−1)𝑘𝜕3(𝑛+1)+2𝑘

𝑥 𝜓(0) +
(︃
𝑛+ 1
𝑛+ 1

)︃
(−1)𝑛+1𝜕5(𝑛+1)

𝑥 𝜓(0) = 0.
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But, for 0 ≤ 𝑘 ≤ 𝑛 we have, 3(𝑛+ 1) + 2𝑘 ≤ 5𝑛+ 3, and the induction hypothesis gives us
𝜕3(𝑛+1)+2𝑘

𝑥 𝜓(0) = 0 and therefore, from the last equality we concludes 𝜕5(𝑛+1)
𝑥 𝜓(0) = 0. In a

similar way,

𝜕𝑟
𝑥𝑃

𝑛+1𝜓(0) = 0 =⇒ 𝜕5(𝑛+1)+𝑟
𝑥 𝜓(0) = 0, 𝑟 = 1, 2, 3, 4,

concluding the proof of (4.56), and we conclude 𝜕𝑗
𝑥𝜓(0) = 0, for all 𝑗 ≥ 0. Since 𝜓 is analytic

in [−1, 0], it follows that 𝜓 ≡ 0. □

4.4.2 Reachable states

We are now in a position to prove the second main result of the article.
Proof of Theorem 4.2: Let 𝑅 > 2𝑅0 and 𝑢1 ∈ ℛ𝑅. Later on, it will be shown that 𝑢1 can be
written in the form

𝑢1(𝑥) =
∑︁
𝑖≥0

𝑐𝑖𝑓𝑖(𝑥) +
∑︁
𝑖≥0

𝑏𝑖𝑔𝑖(𝑥), ∀𝑥 ∈ [−1, 0]. (4.58)

Assume for a moment that (4.58) holds with a convergence in 𝑊 𝑛,∞(−1, 0) for all 𝑛 ≥ 0.
Then, using (4.25) and (4.29) we obtain

𝑃 𝑛𝑢1(𝑥) = (−1)𝑛
∑︁
𝑖≥𝑛

𝑐𝑖𝑓𝑖−𝑛(𝑥) + (−1)𝑛
∑︁
𝑖≥𝑛

𝑏𝑖𝑔𝑖−𝑛(𝑥)

and

𝜕𝑗
𝑥𝑃

𝑛𝑢1(𝑥) = (−1)𝑛
∑︁
𝑖≥𝑛

𝑐𝑖𝜕
𝑗
𝑥𝑓𝑖−𝑛(𝑥) + (−1)𝑛

∑︁
𝑖≥𝑛

𝑏𝑖𝜕
𝑗
𝑥𝑔𝑖−𝑛(𝑥) ∀𝑗 ≥ 0.

From (4.10)-(4.13) it follows that

𝜕3
𝑥𝑃

𝑛𝑢1(0) = (−1)𝑛𝑐𝑛𝜕
3
𝑥𝑓0(0) + (−1)𝑛

∑︁
𝑖>𝑛

𝑐𝑖𝜕
3
𝑥𝑓𝑖−𝑛(0) + (−1)𝑛

∑︁
𝑖≥𝑛

𝑏𝑖𝜕
3
𝑥𝑔𝑖−𝑛(0) = (−1)𝑛𝑐𝑛

and

𝜕4
𝑥𝑃

𝑛𝑢1(0) = (−1)𝑛
∑︁
𝑖≥𝑛

𝑐𝑖𝜕
4
𝑥𝑓𝑖−𝑛(0) + (−1)𝑛𝑏𝑛𝜕

4
𝑥𝑔0(0) + (−1)𝑛

∑︁
𝑖>𝑛

𝑏𝑖𝜕
4
𝑥𝑔𝑖−𝑛(0) = (−1)𝑛𝑏𝑛.

This leads us to define

𝑐𝑛 = (−1)𝑛𝜕3
𝑥𝑃

𝑛𝑢1(0) and 𝑏𝑛 = (−1)𝑛𝜕4
𝑥𝑃

𝑛𝑢1(0), ∀ 𝑛 ≥ 0. (4.59)

Claim. There exist 𝑟 ∈ (𝑅0, 𝑅) and a constant 𝐾 = 𝐾(𝑟) > 0 such that

|𝜕𝑛
𝑥𝑢1(𝑥)| ≤ 𝐾

𝑛!
𝑟𝑛
, ∀ 𝑥 ∈ [−1, 0].
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Indeed, since 𝑅 > 2𝑅0 we can write 𝑅 = 2𝑅0 +𝛼 with 𝛼 > 0. Then 𝑅 > 𝑅0 +𝑅0 + 𝛼
2 , tak-

ing 𝑟 = 𝑅0+ 𝛼
2 we have 𝑟 ∈ (𝑅0, 𝑅) and 𝑅0+𝑟 < 𝑅. Consequently 𝐷(𝑤, 𝑟) ⊂ 𝐷(0, 𝑅0 + 𝑟) ⊂

𝐷(0, 𝑅), for all 𝑤 ∈ 𝐷(0, 𝑅0). Define 𝐾 := max
{︁
|𝑧(𝑤)|; 𝑤 ∈ 𝐷(0, 𝑅0 + 𝑟)

}︁
, where 𝑧 ∈

𝐻(𝐷(0, 𝑅)) is such that 𝑧|[−1,0] = 𝑢1. So, under the hypothesis of 𝑢1 ∈ ℛ, follows that

|𝜕𝑛
𝑥𝑢1(𝑥)| ≤ 𝐾

𝑛!
𝑟𝑛
, ∀ 𝑥 ∈ [−1, 0],

as desired, showing the claim.

Using Lemma 4.5, with 𝑝 = ∞, the claim, (4.8), the fact that 𝑥 ↦→ (𝑥+3)!
𝑟𝑥+3 is increasing

and that 5𝑛+ 1 ≤ 6𝑛 ≤ 6 · 2𝑛, we get

|𝑐𝑛| ≤
𝑛∑︁

𝑖=0
‖𝑃 𝑖𝜕3

𝑥𝑢1‖∞ ≤ 3𝑛+1

2 ‖𝜕3
𝑥𝑢1‖5𝑛,∞ ≤ 9 · 23 · 3!

𝑟3 𝐾 · 6𝑛 · 25𝑛

𝑟5𝑛
· (5𝑛)!

and analogously

|𝑏𝑛| ≤ 9 · 24 · 4!
𝑟4 𝐾 · 6𝑛 · 25𝑛

𝑟5𝑛
· (5𝑛)!.

Therefore

|𝑐𝑛|, |𝑏𝑛| ≤ 𝐾 ′
(︃

6 · 25

𝑟5

)︃𝑛

(5𝑛)!, ∀ 𝑛 ≥ 0,

for some positive constant 𝐾 ′ > 0.
Define 𝐻 = 6·25

𝑟5 and observe that 𝑟 > 𝑅0 implies that 𝐻𝑒𝑒−1
< 1

2 . Choose 𝐻̃ ∈(︁
𝐻𝑒𝑒−1

, 1
2

)︁
. Then, from Proposition 4.9, there exist functions 𝑓, 𝑔 ∈ 𝐶∞(R) such that

𝑓 (𝑛)(0) = 𝑐𝑛, 𝑔(𝑛)(0) = 𝑏𝑛, and
⃒⃒⃒
𝑓 (𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑔(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′𝐻̃𝑛(5𝑛)! ∀𝑡 ∈ R,

for every 𝑛 ≥ 0. Define 𝑓(𝑡) = 𝑓(𝑡− 𝑇 ) and 𝑔(𝑡) = 𝑔(𝑡− 𝑇 ). Then 𝑓, 𝑔 ∈ 𝐶∞(R) with

𝑓 (𝑛)(𝑡) = 𝑓 (𝑛)(𝑡− 𝑇 ) and 𝑔(𝑛)(𝑡) = 𝑔(𝑛)(𝑡− 𝑇 ) ∀𝑛 ≥ 0, ∀𝑡 ∈ R.

Moreover, 𝑓 (𝑛)(𝑇 ) = 𝑐𝑛, 𝑔(𝑛)(𝑇 ) = 𝑏𝑛, and
⃒⃒⃒
𝑓 (𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑔(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′𝐻̃𝑛(5𝑛)! ∀𝑛 ≥ 0, ∀𝑡 ∈ R.

From the last inequality, we have
⃒⃒⃒
𝑓 (𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑔(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′ (5𝑛)!

𝑅5𝑛
3

∀𝑛 ≥ 0, ∀𝑡 ∈ R, (4.60)
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where 𝑅3 = 𝐻̃− 1
5 > 2 1

5 . Note that (4.60) implies that 𝑓, 𝑔 ∈ 𝐺5([0, 𝑇 ]). Indeed, from Stirling’s
formula we have

(5𝑛)! ∼ 55𝑛+ 1
2
(︁√

2𝜋𝑛
)︁−4

𝑛!5 = 5 1
2 (2𝜋)−2

𝑛2 55𝑛𝑛!5.

Hence, for some positive constant 𝐾 ′′ > 0 we have
⃒⃒⃒
𝑓 (𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑔(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′ (5𝑛)!

𝑅5𝑛
3

≤ 𝐾 ′′ 55𝑛

𝑅5𝑛
3
𝑛!5 = 𝐾 ′′ 𝑛!5

(5−5𝑅5
3)𝑛 . (4.61)

Pick any 𝜏 ∈ (0, 𝑇 ) and let

𝛽(𝑡) = 1 − 𝜑2

(︂
𝑡− 𝜏

𝑇 − 𝜏

)︂
, 𝑡 ∈ [0, 𝑇 ].

Observe that

𝛽(𝑖)(𝑡) = −(𝑇 − 𝜏)−𝑖𝜑
(𝑖)
2

(︂
𝑡− 𝜏

𝑇 − 𝜏

)︂
, 𝑖 ≥ 1.

By definition we have supp 𝜑2 ⊂ (−∞, 1) so 𝛽(𝑇 ) = 1 and 𝛽(𝑖)(𝑇 ) = 0, for all 𝑖 ≥ 1. Define

𝑦(𝑡) = 𝑓(𝑡)𝛽(𝑡) and 𝑧(𝑡) = 𝑔(𝑡)𝛽(𝑡), 𝑡 ∈ [0, 𝑇 ]. (4.62)

From the Leibniz rule, we have

𝑦(𝑛)(𝑡) =
𝑛∑︁

𝑗=0

(︃
𝑛

𝑗

)︃
𝑓 (𝑗)(𝑡)𝛽(𝑛−𝑗)(𝑡) and 𝑧(𝑛)(𝑡) =

𝑛∑︁
𝑗=0

(︃
𝑛

𝑗

)︃
𝑔(𝑗)(𝑡)𝛽(𝑛−𝑗)(𝑡).

Then

𝑦(𝑛)(𝑇 ) =
𝑛∑︁

𝑗=0

(︃
𝑛

𝑗

)︃
𝑓 (𝑗)(𝑇 )𝛽(𝑛−𝑗)(𝑇 ) = 𝑓 (𝑛)(𝑇 )𝛽(𝑇 ) = 𝑐𝑛 (4.63)

and

𝑧(𝑛)(𝑇 ) =
𝑛∑︁

𝑗=0

(︃
𝑛

𝑗

)︃
𝑔(𝑗)(𝑇 )𝛽(𝑛−𝑗)(𝑇 ) = 𝑔(𝑛)(𝑇 )𝛽(𝑇 ) = 𝑏𝑛. (4.64)

On the other hand, by definition 𝜑2 ≡ 1 in (−∞, 0] so that 𝛽 ≡ 0 in (−∞, 𝜏). Consequently
𝑦(𝑛) ≡ 𝑧(𝑛) ≡ 0 in (−∞, 𝜏) for any 𝑛 ≥ 0. In particular

𝑦(𝑛)(0) = 𝑧(𝑛)(0) = 0, ∀𝑛 ≥ 0. (4.65)

Since 𝛽 ∈ 𝐺2([0, 𝑇 ]) and 𝑓, 𝑔 ∈ 𝐺5([0, 𝑇 ]) we have 𝑦, 𝑧 ∈ 𝐺5([0, 𝑇 ]). Moreover, from
(MARTIN; ROSIER; ROUCHON, 2016b, Lemma 3.7), the same constant “𝑅 ” of 𝑓 and 𝑔 in
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the definition of 𝐺5([0, 𝑇 ]) works for 𝑦 and 𝑧. Hence, from (4.61), there exists 𝐾 ′′′ > 0 such
that

⃒⃒⃒
𝑦(𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑧(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′′′ 𝑛!5

(5−5𝑅5
3)𝑛 , ∀𝑛 ≥ 0, ∀𝑡 ∈ [0, 𝑇 ].

Using Stirling’s formula we obtain (5𝑛)! ∼ 55𝑛+ 1
2
(︁√

2𝜋𝑛
)︁−4

𝑛!5, and so

𝑛!5 ∼ 5−(5𝑛+ 1
2) (︁√2𝜋𝑛

)︁4
(5𝑛)! = (2𝜋)2

5 1
2
𝑛2 (5𝑛)!

55𝑛
.

Then, there exists a constant 𝐾 > 0 such that
⃒⃒⃒
𝑦(𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑧(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′′′ 1

(5−5𝑅5
3)𝑛𝐾𝑛

2 (5𝑛)!
55𝑛

= 𝐾 ′′′𝐾 · 𝑛
2(5𝑛)!
𝑅5𝑛

3
.

Note that, since 𝑅3 > 2 1
5 we can pick 𝜌 ∈

(︁
1, 𝑅32− 1

5
)︁
, so that the sequence

(︁
𝑛2

𝜌5𝑛

)︁
𝑛∈N

is
bounded. Indeed, using the L’Hospital rule, we see that

lim
𝑥→∞

𝑥2

𝜌5𝑥
= lim

𝑥→∞

2𝑥
(5 ln 𝜌)𝜌5𝑥

= lim
𝑥→∞

2
(5 ln 𝜌)2𝜌5𝑥

= 0.

Hence, there exists 𝐾 ′
> 0 such that 𝑛2 ≤ 𝐾

′
𝜌5𝑛, and therefore

⃒⃒⃒
𝑦(𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑧(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′′′𝐾 ·𝐾 ′ · 𝜌

5𝑛(5𝑛)!
𝑅5𝑛

3
= 𝐾 ′′′𝐾 ·𝐾 ′ · (5𝑛)!

(𝑅3𝜌−1)5𝑛 .

Defining 𝐾 ′′′′ = 𝐾 ′′′𝐾 ·𝐾 ′ and 𝑅′
3 = 𝑅3

𝜌
we have 𝑅′

3 > 2 1
5 and

⃒⃒⃒
𝑦(𝑛)(𝑡)

⃒⃒⃒
,
⃒⃒⃒
𝑧(𝑛)(𝑡)

⃒⃒⃒
≤ 𝐾 ′′′′ (5𝑛)!

(𝑅′
3)

5𝑛 , ∀𝑛 ≥ 0,∀𝑡 ∈ [0, 𝑇 ]. (4.66)

Let 𝑢 be as in (4.9) corresponding to 𝑦 and 𝑧 given in (4.62). From (4.66) and by Propo-
sition 4.8 we have that 𝑦 ∈ 𝐺1,5([−1, 0] × [0, 𝑇 ]) and it solves (4.16). Furthermore, (4.65)
gives us

𝑢(𝑥, 0) =
∑︁
𝑗≥0

𝑓𝑗(𝑥)𝑦(𝑗)(0) +
∑︁
𝑗≥0

𝑔𝑗(𝑥)𝑧(𝑗)(0) = 0.

Setting ℎ1 = 𝑢(−1, 𝑡) and ℎ2 = 𝑢𝑥(−1, 𝑡), we get ℎ1, ℎ2 ∈ 𝐺5([0, 𝑇 ]) and therefore 𝑢 solves
(4.1) with ℎ1 and ℎ2 as control inputs and 𝑦0 = 0 as initial data. From the proof of Proposition
4.8 we know that for all 𝑛,𝑚 ∈ N the sequence of the series

∑︁
𝑗≥0

𝜕𝑚
𝑡 𝜕

𝑛
𝑥

(︁
𝑓𝑗(𝑥)𝑦(𝑗)(𝑡) + 𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

)︁
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converges uniformly on [−1, 0] × [0, 𝑇 ] to 𝜕𝑚
𝑡 𝜕

𝑛
𝑥𝑢 and consequently, for all 𝑛, 𝑖 ≥ 0,

𝑃 𝑛𝑢(𝑥, 𝑡) =
∑︁
𝑗≥0

𝑃 𝑛𝑓𝑗(𝑥)𝑦(𝑗)(𝑡) +
∑︁
𝑗≥0

𝑃 𝑛𝑔𝑗(𝑥)𝑧(𝑗)(𝑡)

= (−1)𝑛
∑︁
𝑗≥𝑛

𝑓𝑗−𝑛(𝑥)𝑦(𝑗)(𝑡) + (−1)𝑛
∑︁
𝑗≥𝑛

𝑔𝑗−𝑛(𝑥)𝑧(𝑗)(𝑡)

and

𝜕𝑖
𝑥𝑃

𝑛𝑢(𝑥, 𝑡) = (−1)𝑛
∑︁
𝑗≥𝑛

𝜕𝑖
𝑥𝑓𝑗−𝑛(𝑥)𝑦(𝑗)(𝑡) + (−1)𝑛

∑︁
𝑗≥𝑛

𝜕𝑖
𝑥𝑔𝑗−𝑛(𝑥)𝑧(𝑗)(𝑡),

for every (𝑥, 𝑡) ∈ [−1, 0] × [0, 𝑇 ]. In particular, (4.63) and (4.64) gives us that

𝜕𝑖
𝑥𝑃

𝑛𝑢(𝑥, 𝑇 ) = (−1)𝑛
∑︁
𝑗≥𝑛

𝑐𝑗𝜕
𝑖
𝑥𝑓𝑗−𝑛(𝑥) + (−1)𝑛

∑︁
𝑗≥𝑛

𝑏𝑗𝜕
𝑖
𝑥𝑔𝑗−𝑛(𝑥) ∀𝑖, 𝑛 ≥ 0, ∀𝑥 ∈ [−1, 0].

Thus, (4.10)-(4.13) provide us⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃 𝑛𝑢(0, 𝑇 ) = 𝜕𝑥𝑃
𝑛𝑢(0, 𝑇 ) = 𝜕2

𝑥𝑃
𝑛𝑢(0, 𝑇 ) = 0,

𝜕3
𝑥𝑃

𝑛𝑢(0, 𝑇 ) = (−1)𝑛
∑︁
𝑗≥𝑛

𝑐𝑗𝜕
3
𝑥𝑓𝑗−𝑛(0) + (−1)𝑛

∑︁
𝑗≥𝑛

𝑏𝑗𝜕
3
𝑥𝑔𝑗−𝑛(0) = (−1)𝑛𝑐𝑛,

𝜕4
𝑥𝑃

𝑛𝑢(0, 𝑇 ) = (−1)𝑛
∑︁
𝑗≥𝑛

𝑐𝑗𝜕
4
𝑥𝑓𝑗−𝑛(0) + (−1)𝑛

∑︁
𝑗≥𝑛

𝑏𝑗𝜕
4
𝑥𝑔𝑗−𝑛(0) = (−1)𝑛𝑏𝑛,

and therefore, using (4.59),⎧⎪⎨⎪⎩
𝜕𝑗

𝑥𝑃
𝑛𝑢(0, 𝑇 ) = 0, 𝑗 = 0, 1, 2,

𝜕3
𝑥𝑃

𝑛𝑢(0, 𝑇 ) = 𝜕3
𝑥𝑃

𝑛𝑢1(0), 𝜕4
𝑥𝑃

𝑛𝑢(0, 𝑇 ) = 𝜕4
𝑥𝑃

𝑛𝑢1(0).
(4.67)

Define 𝜓 ∈ 𝐺1([−1, 0]) by 𝜓(𝑥) = 𝑢(𝑥, 𝑇 )−𝑢1(𝑥), for all 𝑥 ∈ [−1, 0], and using the fact that
𝑢1 ∈ ℛ𝑅 together with (4.67), holds that 𝜕𝑗

𝑥𝑃
𝑛𝜓(0) = 0, for 𝑗 = 0, 1, 2, 3, 4. From Lemma

4.7 it follows that 𝜓 ≡ 0, that is, 𝑢(𝑥, 𝑇 ) = 𝑢1(𝑥), which concludes the proof. □

4.5 FURTHER COMMENTS

In this chapter, we study the controllability of the Kawahara equation. Using the flatiness
approach, it was possible to show that the system (4.1) is controllable to zero by using two
controls at the boundary. Furthermore, we showed that a given space of analytic functions is
reachable from zero and, consequently, system (4.1) is exactly controllable in this space. Let
us present some comments about our work.
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i. Observe that Theorem 4.2 ensures that for the linear Kawahara equation, any reachable
state can likely be extended as a holomorphic function on some open set in C. Moreover,
the reachable states corresponding to controllability of the trajectories are in𝐺 1

2 ([−1, 0]),
allowing them to be extended as functions in 𝐻(C). In contrast, the reachable functions
in Theorem 4.2 do not need to be holomorphic over the entire set C; they can have
poles outside 𝐷(0, 𝑅).

ii. As previously mentioned, several authors have applied the strategy of this article to
different systems. In our case, additional difficulties arise when dealing with a fifth-order
operator in space, specifically 𝑃𝑢 = 𝜕𝑥𝑢 + 𝜕3

𝑥𝑢 − 𝜕5
𝑥𝑢. Consequently, addressing the

smoothing properties is challenging because we are working with five sets of different
regularities, and additional terms appear. Furthermore, the set (4.5), and consequently,
Theorem 4.2, can be obtained using the strategies outlined in (MARTIN et al., 2019).
However, the Gevrey space level needs to be adjusted, and the operator’s order must be
carefully adapted to our specific case.

iii. Finally, observe that our results are verified to the Benney–Lin type equation:

𝜕𝑡𝑢+ 𝜕𝑥𝑢+ 𝜕3
𝑥𝑢+ 𝜇0𝜕

4
𝑥𝑢− 𝜕5

𝑥𝑢 = 0, (𝑥, 𝑡) ∈ (−1, 0) × (0, 𝑇 ),

with the same boundary conditions as in equation (4.1) and with 𝜇0 > 0. This equa-
tion describes the evolution of one-dimensional small but finite amplitude long waves in
various physical systems in fluid dynamics (see (BENNEY, 1966) and (LIN, 1974)). The
coefficient 𝜇0 > 0 introduces nonconservative dissipative effects to the dispersive Kawa-
hara equation (4.1) (where 𝜇0 = 0), and thus it is sometimes referred to as the strongly
dissipative Kawahara equation (ZHOU, 2019), the fifth-order Korteweg-de Vries equation
(ZHAO; ZHANG; FENG, 2018), or the generalized Kawahara equation (CHEN et al., 2022).
For more details about the Benney-Lin type equation, we encourage the reader to see
the reference (COCLITE; RUVO, 2022).
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5 PERSPECTIVES ON RESEARCH

In this chapter, we present some open questions concerning the systems studied throughout
this thesis. These questions outline possible directions for the continuation of this research,
with the expectation that new results may be obtained in the near future.

5.1 KDV EQUATION WITH NEUMANN BOUNDARY CONDITIONS

In the Chapter 2 we prove the local controllability to the nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝑦𝑥 + 𝑦𝑥𝑥𝑥 + 𝑦𝑦𝑥 = 0, in (0, 𝐿) × (0, 𝑇 ),

𝑦𝑥𝑥(0, 𝑡) = 𝑦𝑥𝑥(𝐿, 𝑡) = 0, in (0, 𝑇 ),

𝑦𝑥(𝐿, 𝑡) = ℎ(𝑡), in (0, 𝑇 ),

𝑦(𝑥, 0) = 𝑦0(𝑥), in (0, 𝐿),

(5.1)

when 𝐿 belongs to the critical lengths set associated to the corresponding linear system. We
believe that the results presented here constitute an important step toward the understanding
of the KdV equation posed on the bounded domain [0, 𝐿] under Neumann boundary condi-
tions, especially when 𝐿 belongs to the critical lengths set ℛ𝑐. We hope that this broader
understanding may contribute, shortly, to the investigation of other properties of (5.1), such
as results related to stabilization. For instance, the following question is of particular interest
to us.
Question 𝒜5: Given 𝜆 > 0 is it possible to find 𝐶 > 0, 𝑟 > 0 and a feedback control law
ℎ(𝑡) = ℎ(𝑦(·, 𝑡)) such that the corresponding solution 𝑦 of (5.1) satisfies

‖𝑦(·, 𝑡)‖𝐿2(0,𝐿 ≤ 𝐶𝑒−𝜆𝑡‖𝑦0‖𝐿2(0,𝐿), ∀𝑡 ≥ 0,

whenever ‖𝑦0‖𝐿2(0,𝐿) ≤ 𝑟?

5.2 KDV EQUATION ON STAR GRAPHS

As mentioned before, the study of KdV on graphs is relatively new and still under devel-
opment. In the particular case studied here, it could not be different. For example, regarding
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well-posedness, we believe that the notion of solution presented here for the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑗(𝑡, 𝑥) + 𝜕𝑥𝑢𝑗(𝑡, 𝑥) + 𝜕3
𝑥𝑢𝑗(𝑡, 𝑥) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, ℓ𝑗), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0), 𝑡 ∈ (0, 𝑇 ), ∀𝑗 = 2, . . . , 𝑁,
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑢𝑗(𝑡, 0) = −𝛼𝑢1(𝑡, 0) + 𝑔0(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢𝑗(𝑡, ℓ𝑗) = 𝑝𝑗(𝑡), 𝜕𝑥𝑢𝑗(𝑡, ℓ𝑗) = 𝑔𝑗(𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑗 = 1, . . . , 𝑁,

𝑢𝑗(0, 𝑥) = 𝑢0
𝑗(𝑥), 𝑥 ∈ 𝐼𝑗 := (0, 𝑙𝑗),

(5.2)

can be improved to give solutions with more regularities, say in the 𝐶([0, 𝑇 ];H𝑠(𝒯 ) ∩

𝐿2(0, 𝑇 ;H𝑠+1(𝒯 )) space for data in 𝐻𝑠(0, 𝐿). Precisely, the following question has caught
our attention.
Question ℬ5: Let 𝑠 ≥ 0. For data 𝑢0 ∈ H𝑠(𝒯 ), 𝑔 ∈

[︁
𝐻

𝑠
3 (0, 𝑇 )

]︁𝑁+1
and 𝑝 ∈

[︁
𝐻

𝑠+1
3 (0, 𝑇 )

]︁𝑁
,

does problem (5.2) admit a unique solution in 𝐶([0, 𝑇 ];H𝑠(𝒯 ))∩𝐿2(0, 𝑇 ;H𝑠+1(𝒯 )) depending
continuously on the data?

If Question ℬ5 has an affirmative answer, the well-posedness could be extended to the
nonlinear problem, as well as the controllability outside critical lengths. Thus, the question
arises concerning the controllability of the nonlinear system when 𝐿 is a critical length.
Question 𝒞5: Is the nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑗(𝑡, 𝑥) + 𝜕𝑥𝑢𝑗(𝑡, 𝑥) + 𝜕3
𝑥𝑢𝑗(𝑡, 𝑥) + 𝑢𝑗(𝑡, 𝑥)𝜕𝑥𝑢𝑗(𝑡, 𝑥) = 0,

𝑢𝑗(𝑡, 0) = 𝑢1(𝑡, 0),
𝑁∑︁

𝑗=1
𝜕2

𝑥𝑢𝑗(𝑡, 0) = −𝛼𝑢1(𝑡, 0) + 𝑔0(𝑡),

𝑢𝑗(𝑡, ℓ𝑗) = 𝑝𝑗(𝑡), 𝜕𝑥𝑢𝑗(𝑡, ℓ𝑗) = 𝑔𝑗(𝑡),

𝑢𝑗(0, 𝑥) = 𝑢0
𝑗(𝑥),

(5.3)

exactly controllable when 𝐿 is a critical lenght?
This problem could be attacked using some method already known in the literature for

these situations, for example, power series or the return method. Even in the scenario with
solutions by transposition, the linear system still has open questions, such as the case where
𝛼 ̸= 𝑁 or the edges are considered to have different lengths, giving rise to the following two
questions.
Question 𝒟5: Is the system (5.1) exactly controllable when 𝛼 ̸= 𝑁 by using 𝑁 controls?
Question ℰ5: Is the system (5.1) exactly controllable by using 𝑁 controls when there exist
𝑗, 𝑘 ∈ {1, ..., 𝑁} such that ℓ𝑗 ̸= ℓ𝑘?
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In addition, other boundary and coupling conditions can be considered. With all this in
mind, we hope to soon have new results on this topic.

5.3 KAWAHARA EQUATION AND FLATNESS APPROACH

In the Chapter 4 we prove the null controllability to the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 = 0, (𝑥, 𝑡) ∈ (−1, 0) × (0, 𝑇 ),

𝑢(0, 𝑡) = 𝑢𝑥(0, 𝑡) = 𝑢𝑥𝑥(0, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(−1, 𝑡) = ℎ1(𝑡), 𝑢𝑥(−1, 𝑡) = ℎ2(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (−1, 0),

(5.4)

Moreover, we investigate the controllability of this system in analytic function spaces. Below,
we present some significant observations concerning this study, which motivate the formulation
of new questions.

i. Our result is entirely linear and applies only to the linear system (5.4). Therefore, a
natural extension is to consider the nonlinear problem, which includes the term 𝑢𝑢𝑥.
However, it is required to modify the method used here. We believe that the strategy
used in (LAURENT; ROSIER, 2020) could be adapted to our work, though this remains
an open problem.

ii. Note that the set defined by (4.5) is an example of reachable functions, though they
are not completely understood. We believe there are other sets for which Theorem 4.2
remains valid. For instance, in (CHEN; ROSIER, 2020), the authors presented another
example for an extension of the KdV equation in a two-dimensional case. Thus, it
remains an open question to verify other sets where Theorem 4.2 holds.

In summary, these observations lead to the following problems:
Question ℱ5: Can we use the ideas contained in the flatness approach to study the control-
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lability of the nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑥 = 0, (𝑥, 𝑡) ∈ (−1, 0) × (0, 𝑇 ),

𝑢(0, 𝑡) = 𝑢𝑥(0, 𝑡) = 𝑢𝑥𝑥(0, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ),

𝑢(−1, 𝑡) = ℎ1(𝑡), 𝑢𝑥(−1, 𝑡) = ℎ2(𝑡), 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (−1, 0) ?

Question 𝒢5: Are there other spaces in which the controllability of (5.4) still holds?
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APPENDIX A – BASIC THEORY

In this chapter, we bring together important elements of the mathematical concepts that
support this thesis.

A.1 FUNCTIONAL SPACES

This section is mainly based on (ADAMS, 1975) and (BREZIS, 2011).

A.1.1 Distributions and Sobolev spaces

We refer to a domain, denoted by Ω, for a nonempty open set in 𝑛-dimensional real space
R𝑛. We will focus on the differentiability and integrability of functions defined on the set Ω.
Given 𝑛 ∈ N, if 𝛼 = (𝛼1, . . . , 𝛼𝑛) is an 𝑛-tuple of nonnegative integers 𝛼𝑗, we call 𝛼 a multi-
index and denote by 𝑥𝛼 the monomial 𝑥𝛼1

1 . . . 𝑥𝛼𝑛

𝑛 , which has degree |𝛼| = ∑︀𝑛
𝑗=1 𝛼𝑗. Moreover,

if 𝐷𝑗 = 𝜕
𝜕𝑥𝑗

, then
𝐷𝛼 = 𝐷𝛼1

1 . . . 𝐷𝛼𝑛

𝑛

denotes a differential operator of order |𝛼|. Notice that, 𝐷(0,...,0)𝑢 = 𝑢. If 𝛼 and 𝛽 are two
multi-indices, we say that 𝛽 ≤ 𝛼 provided 𝛽𝑗 ≤ 𝛼𝑗 for 1 ≤ 𝑗 ≤ 𝑛. Then 𝛼 − 𝛽 is also a
multi-index, and |𝛼− 𝛽| + |𝛽| = |𝛼|. Moreover, we also denote 𝛼! = 𝛼1! . . . 𝛼𝑛! and if 𝛽 ≤ 𝛼,(︃

𝛼

𝛽

)︃
= 𝛼!
𝛽!(𝛼− 𝛽)! .

With this, for 𝑢, 𝑣 regular enough functions, we state the Leibniz rule given by

𝐷𝛼(𝑢𝑣) =
∑︁
𝛽≤𝛼

(︃
𝛼

𝛽

)︃
𝐷𝛽𝑢(𝑥)𝐷𝛼−𝛽𝑣(𝑥).

Let Ω ⊂ R𝑛, we denote by Ω the closure of Ω in R𝑛. Let 𝑢 a function defined on Ω, we
describe the support of 𝑢 to be the set

supp(𝑢) = {𝑥 ∈ Ω : 𝑢(𝑥) ̸= 0}.

We say that 𝑢 has compact support in Ω if supp(𝑢) is compact.
For any 𝑚 ∈ N, let 𝐶𝑚(Ω) denote the vector spaces

𝐶𝑚(Ω) = {𝜑 : 𝐷𝛼𝜑, |𝛼| ≤ 𝑚 is continuous on Ω} .
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We denote 𝐶0(Ω) ≡ 𝐶(Ω). Let 𝐶∞(Ω) = ⋂︀∞
𝑚=0 𝐶

𝑚(Ω). The subspaces 𝐶0(Ω) and 𝐶∞
0 (Ω)

consists of all those functions in 𝐶(Ω) and 𝐶∞(Ω), respectively, that have compact support
in Ω.

Example A.1 Let 𝜃 : R → R defined by

𝜃(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑒−𝑥−2

, 𝑥 > 0

0, 𝑥 ≤ 0

then 𝜃 ∈ 𝐶∞(R).

The example above in R is a motivation to build classical examples of 𝐶∞
0 functions in R𝑛.

Example A.2 Let Ω ⊂ R𝑛 be an open such that 𝐵1(0) = {𝑥 ∈ R𝑛; ‖𝑥‖ < 1} is compactly
contained in Ω. Let us consider 𝑓 : Ω → R such that

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑒

1
‖𝑥‖2−1 , ‖𝑥‖ < 1

0, ‖𝑥‖ ≥ 1

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) and ‖𝑥‖ = (∑︀𝑛
𝑖=1 𝑥

2
𝑖 )

1
2 . We have 𝑓 ∈ 𝐶∞(Ω) and supp(𝑓) = 𝐵1(0)

is compact, that is, 𝑓 ∈ 𝐶∞
0 (Ω).

Definition A.1 We say that (𝜙𝑛)𝑛∈N ⊂ 𝐶∞
0 (Ω) converges to 𝜙 ∈ 𝐶∞

0 (Ω), denoted by 𝜙𝑛 →

𝜙, if

i. There exists a compact 𝐾 of Ω such that supp(𝜙) ⊂ 𝐾 and supp (𝜙𝑛) ⊂ 𝐾, ∀𝑛 ∈ N;

ii. 𝐷𝛼𝜙𝑛 → 𝐷𝛼𝜙 uniformly in 𝐾, for all multi-index 𝛼.

By 𝐷(Ω) we represent the space 𝐶∞
0 (Ω), equipped with the convergence defined above,

and will be called the space of test functions on Ω. We define a distribution over Ω, as defined
by Schwartz, to any linear form 𝑇 over 𝒟(Ω) that is continuous in the sense of convergence
defined above, that is, for every sequence (𝜙𝑛)𝑛 ⊂ 𝒟(Ω) that converges to 𝜙 ∈ 𝒟(Ω), then
(⟨𝑇, 𝜙𝑛⟩)𝑛 ⊂ K converges to ⟨𝑇, 𝜙⟩ in K1.

Remark A.1 The dual space 𝒟′(Ω) of 𝒟(Ω) is called the space of distributions on Ω, it is
endowed with the weak-star topology as the dual of 𝒟(Ω), and is a locally convex topological
vector space (TVS) with that topology.
1 Observe that K = R or C and ⟨𝑇, 𝜙⟩ is the evaluation of 𝑇 in 𝜙, i.e. 𝑇 (𝜙).
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The following example of scalar distributions plays a key role in the theory. First, recall
that a function 𝑢 defined a.e on Ω is said to be locally integrable on Ω provided 𝑢 ∈ 𝐿1(𝜔)

for every open 𝜔 compactly contained in Ω and we write 𝑢 ∈ 𝐿1
loc(Ω).

Example A.3 For every 𝑢 ∈ 𝐿1
loc (Ω) we can associate a distribution 𝑇𝑢 : 𝒟(Ω) → R, defined

by
⟨𝑇𝑢, 𝜙⟩ =

∫︁
Ω
𝑢(𝑥)𝜙(𝑥)𝑑𝑥.

Remark A.2 Not every distribution 𝑇 ∈ 𝒟′(Ω) is on the form 𝑇𝑢 for some 𝑢 ∈ 𝐿1
loc (Ω).

Indeed, if 0 ∈ Ω, there cannot exist any locally integrable function 𝛿 over Ω such that for
every 𝜙 ∈ 𝒟(Ω) ∫︁

Ω
𝛿(𝑥)𝜙(𝑥)𝑑𝑥 = 𝜙(0).

However, the linear functional 𝛿 defined on 𝒟(Ω) by ⟨𝛿, 𝜙⟩ = 𝜙(0) can be shown that is
continuous, and hence a distribution on Ω. It is called the Dirac distribution.

Lemma A.1 (Du Bois Raymond) Let 𝑢 ∈ 𝐿1
loc (Ω). Then

∫︁
Ω
𝑢(𝑥)𝜙(𝑥)𝑑𝑥 = 0,∀𝜙 ∈ 𝒟(Ω)

if and only if 𝑢 = 0 almost everywhere in Ω.

Let 𝛼 a multi-index and 𝜙 ∈ 𝒟(Ω), if 𝑢 ∈ 𝐶 |𝛼|(Ω), then integrating by parts |𝛼| times
leads to ∫︁

Ω
(𝐷𝛼𝑢(𝑥))𝜙(𝑥)𝑑𝑥 = (−1)|𝛼|

∫︁
Ω
𝑢(𝑥)𝐷𝛼𝜙(𝑥)𝑑𝑥

This motivates the definition of the derivative 𝐷𝛼𝑇 of a distribution 𝑇 ∈ 𝒟′(Ω) as being

⟨𝐷𝛼𝑇, 𝜙⟩ = (−1)|𝛼| ⟨𝑇,𝐷𝛼𝜙⟩ , ∀𝜙 ∈ 𝒟(Ω)

It is notable that:

• Each distribution 𝑇 over Ω has derivatives of all orders.

• 𝐷𝛼𝑇 is a distribution over Ω, where 𝑇 ∈ 𝒟′(Ω). It is easily seen that 𝐷𝛼𝑇 is linear.
Now, we show that it is continuous, consider (𝜙𝑛)𝑛 ⊂ 𝒟(Ω) converging to 𝜙 ∈ 𝒟(Ω).
Thus,

|⟨𝐷𝛼𝑇, 𝜙𝑛⟩ − ⟨𝐷𝛼𝑇, 𝜙⟩| ≤ |⟨𝑇,𝐷𝛼𝜙𝑛 −𝐷𝛼𝜙⟩| ⇒ 0

when 𝑛 → ∞.
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• The map 𝐷𝛼 : 𝒟′(Ω) ⇒ 𝒟′(Ω), such that 𝑇 ↦→ 𝐷𝛼𝑇 , is linear and continuous in the
sense of convergence defined in 𝒟′(Ω).

Example A.4 Let 𝑢 : R → R the Heaviside function defined by

𝑢(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, 𝑥 > 0

0, 𝑥 < 0.

Notice that 𝑢 ∈ 𝐿1
loc (R) but 𝑢′ = 𝛿 /∈ 𝐿1

loc (R). Indeed,

⟨𝑢′, 𝜙⟩ = − ⟨𝑢, 𝜙′⟩ = −
∫︁ ∞

0
𝜙′(𝑥)𝑑𝑥 = 𝜙(0) = ⟨𝛿, 𝜙⟩

for all 𝜙 ∈ 𝒟(R).

The Example A.4 shows that the derivative of a 𝐿1
loc (Ω) function is not, in general,

besides to 𝐿1
loc (Ω). This motivates the well-recognized definition of Sobolev spaces that will

be introduced later. First, for 1 ≤ 𝑝 < ∞, we denote by 𝐿𝑝(Ω) the space of (classes of)
measurable functions 𝑢 : Ω → R such that |𝑢|𝑝 is Lebesgue integrable in Ω. This is a Banach
space with the norm

‖𝑢‖𝑝
𝐿𝑝(Ω) =

∫︁
Ω

|𝑢(𝑥)|𝑝𝑑𝑥.

The space 𝐿∞(Ω) consists of all essentially bounded functions in Ω equipped with the norm

‖𝑢‖𝐿∞(Ω) = esssup𝑥∈Ω |𝑢(𝑥)| = inf{𝐶 : |𝑣(𝑥)| ≤ 𝐶 a.e. in Ω}.

which is a Banach space. When 𝑝 = 2 we have the Hilbert space 𝐿2(Ω) with the inner product

⟨𝑢, 𝑣⟩𝐿2(Ω) =
∫︁

Ω
𝑢(𝑥)𝑣(𝑥)𝑑𝑥

and induced norm
‖𝑢‖2

𝐿2(Ω) =
∫︁

Ω
|𝑢(𝑥)|2𝑑𝑥.

Given an integer 𝑚 > 0 and 1 ≤ 𝑝 ≤ ∞, the Sobolev space 𝑊𝑚,𝑝(Ω) consists of (classes
of) functions 𝑢 ∈ 𝐿𝑝(Ω) such that 𝐷𝛼𝑢 ∈ 𝐿𝑝(Ω), for every multi-index 𝛼, with |𝛼| ≤ 𝑚. Of
course 𝑊𝑚,𝑝(Ω) is a vector space. Considering the following norm

‖𝑢‖𝑝
𝑊 𝑚,𝑝(Ω) =

∑︁
|𝛼|≤𝑚

∫︁
Ω

|𝐷𝛼𝑢(𝑥)|𝑝 𝑑𝑥

when 1 ≤ 𝑝 < ∞ and
‖𝑢‖𝑊 𝑚,∞(Ω) =

∑︁
|𝛼|≤𝑚

supp𝑥∈Ω |𝐷𝛼𝑢(𝑥)|
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when 𝑝 = ∞, then Sobolev spaces 𝑊𝑚,𝑝(Ω) are Banach spaces. When 𝑝 = 2, the space
𝑊𝑚,2(Ω) is denoted by 𝐻𝑚(Ω), which equipped with the inner product

⟨𝑢, 𝑣⟩𝐻𝑚(Ω) =
∑︁

|𝛼|≤𝑚

∫︁
Ω
𝐷𝛼𝑢(𝑥)𝐷𝛼𝑣(𝑥)𝑑𝑥

is a Hilbert space.
Let us denote by 𝑊𝑚,𝑝

0 (Ω) the closure of 𝐶∞
0 (Ω) in 𝑊𝑚,𝑝(Ω) relative to the norm of the

space 𝑊𝑚,𝑝(Ω), i.e.
𝐶∞

0 (Ω)𝑊 𝑚,𝐹 (Ω) = 𝑊𝑚,𝑝
0 (Ω).

Whenever Ω is bounded at least in one direction 𝑥𝑖 of R𝑛, the norm of 𝑊𝑚,𝑝
0 (Ω) is given by

‖𝑢‖𝑝
𝑊 𝑚,𝑝

0 (Ω) =
∑︁

|𝛼|=𝑚

∫︁
Ω

|𝐷𝛼𝑢(𝑥)|𝑝 𝑑𝑥.

We denote by 𝑊−𝑚,𝑞(Ω) the topological dual of 𝑊𝑚,𝑝
0 (Ω), where 1 ≤ 𝑝 < ∞ and 𝑞 is the

Hölder conjugated index of 𝑝2. We write 𝐻−𝑚(Ω) to denote the topological dual of 𝐻𝑚
0 (Ω).

Let 𝑋 and 𝑌 be two normed vector spaces such that 𝑋 ⊆ 𝑌 . If the inclusion map i:
𝑥 ∈ 𝑋 ↦→ 𝑥 ∈ 𝑌 is continuous for every 𝑥 ∈ 𝑋, then 𝑋 is said to be continuously embedded
in 𝑌 and will be denoted 𝑋 →˓ 𝑌 .

Theorem A.1 (Sobolev embeddings) Let Ω ⊂ R𝑛 be a bounded open set with regular
boundary, and consider an integer 𝑚 ≥ 1 and 1 ≤ 𝑝 < ∞. Then,

i. If 1
𝑝

− 𝑚
𝑛
> 0, then 𝑊𝑚,𝑝(Ω) →˓ 𝐿𝑞(Ω), where 1

𝑞
= 1

𝑝
− 𝑚

𝑛
;

ii. If 1
𝑝

− 𝑚
𝑛

= 0, then 𝑊𝑚,𝑝(Ω) →˓ 𝐿𝑞(Ω), for all 𝑝 ≤ 𝑞 < +∞;

iii. If 1
𝑝

− 𝑚𝑛
𝑛
< 0, then 𝑊𝑚,𝑝(Ω) →˓ 𝐿∞(Ω).

Theorem A.2 (Rellich-Kondrachov) Let Ω ⊂ R𝑛 be a bounded open set with regular
boundary and consider 𝑛 ≥ 2. Then,

i. If 𝑝 < 𝑛, then 𝑊 1,𝑝(Ω) is compactly embedded in 𝐿𝑞(Ω), for all 1 ≤ 𝑞 < 𝑛𝑝
𝑛−𝑝

;

ii. If 𝑝 = 𝑛, then 𝑊 1,𝑝(Ω) is compactly embedded in 𝐿𝑞(Ω), for all 𝑝 ≤ 𝑞 < ∞;

iii. If 𝑝 > 𝑛 then 𝑊 1,𝑝(Ω) is compactly embedded in 𝐶(Ω).
2 𝑞 is said to be the Hölder conjugated index of 1 ≤ 𝑝 ≤ ∞ if 1

𝑝 + 1
𝑞 = 1.
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We will denote by 𝐿𝑝(0, 𝑇 ;𝑋), 1 ≤ 𝑝 < ∞, the space of Banach of (classes of) functions
𝑢, defined in (0, 𝑇 ) with values in 𝑋, that are strongly measurable and ‖𝑢(𝑡)‖𝑝

𝑋 is Lebesgue
integrable in (0, 𝑇 ), with the norm

‖𝑢(𝑡)‖𝑝
𝐿𝐹 (0,𝑇 ;𝑋) =

∫︁ 𝑇

0
‖𝑢(𝑡)‖𝑝

𝑋𝑑𝑡

Furthermore, if 𝑝 = ∞, 𝐿∞(0, 𝑇 ;𝑋) represents the Banach space of (classes of) functions
𝑢, defined in (0, 𝑇 ) with values in 𝑋, that are strongly measurable and ‖𝑢(𝑡)‖𝑋 has supreme
essential finite in (0, 𝑇 ), with the norm

‖𝑢(𝑡)‖𝐿∞(0,𝑇 ;𝑋) = ess sup
𝑡∈(0,𝑇 )

‖𝑢(𝑡)‖𝑋 .

Remark A.3 When 𝑝 = 2 and 𝑋 is a Hilbert space, the space 𝐿2(0, 𝑇 ;𝑋) is a Hilbert space,
whose inner product is given by

⟨𝑢, 𝑣⟩𝐿2(0,𝑇 ;𝑋) =
∫︁ 𝑇

0
⟨𝑢(𝑡), 𝑣(𝑡)⟩𝑋𝑑𝑡.

Consider the space 𝐿𝑝(0, 𝑇 ;𝑋), 1 < 𝑝 < ∞, with 𝑋 being Hilbert separable space. With
respect to topological dual spaces, we have the following relationship.

[𝐿𝑝(0, 𝑇 ;𝑋)]′ ≃ 𝐿𝑞 (0, 𝑇 ;𝑋 ′)

where 𝑝 and 𝑞 are Hölder conjugated index. When 𝑝 = 1, we will associate
[︁
𝐿1(0, 𝑇 ;𝑋)

]︁′
≃ 𝐿∞ (0, 𝑇 ;𝑋 ′) .

Given a Banach space 𝑋. The vector space of linear and continuous maps of 𝒟(0, 𝑇 )

on 𝑋 is called the Space of Vector Distributions on (0, 𝑇 ) with values in 𝑋 and denoted by
𝒟′(0, 𝑇 ;𝑋).

Example A.5 Given 𝑢 ∈ 𝐿𝑝(0, 𝑇 ;𝑋), 1 ≤ 𝑝 < ∞, and 𝜙 ∈ 𝒟(0, 𝑇 ) the application 𝑇𝑢 :

𝒟(0, 𝑇 ) → 𝑋, defined by
𝑇𝑢(𝜙) =

∫︁ 𝑇

0
𝑢(𝑡)𝜙(𝑡)𝑑𝑡

is a 𝑋-valued distribution on (0, 𝑇 ).

The integral in the example above is considered in the sense of Bochner (See Yosida 1980
for more details). The map

𝐿𝑝(0, 𝑇 ;𝑋) → 𝒟(0, 𝑇 )

𝑢 ↦→ 𝑇𝑢
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is injective, so we can identify 𝑢 with 𝑇𝑢 and, in this sense, we have

𝐿𝑝(0, 𝑇 ;𝑋) ⊂ 𝒟′(0, 𝑇 ;𝑋).

Given 𝑆 ∈ 𝒟(0, 𝑇 ;𝑋), inspired by the previous derivative of distribution, we define the deriva-
tive of order 𝑚 of 𝑆 as the vector distribution over (0, 𝑇 ) with values in 𝑋 given for⟨

d𝑚𝑆

d𝑡𝑛 , 𝜙
⟩

= (−1)𝑚

⟨
𝑆,

d𝑛𝜙

d𝑡𝑛

⟩
, for all 𝜙 ∈ 𝒟(0, 𝑇 )

Let us consider the Banach space

𝑊𝑚,𝑝(0, 𝑇 ;𝑋) =
{︁
𝑢 ∈ 𝐿𝑝(0, 𝑇 ;𝑋) : 𝑢(𝑗) ∈ 𝐿𝑝(0, 𝑇,𝑋), 𝑗 = 1, . . . ,𝑚

}︁
where 𝑢(𝑗) represents the 𝑗-th derivative of 𝑢 in the sense of distributions, and the space is
endowed with the norm

‖𝑢‖𝑝
𝑊 𝑚,𝑝(0,𝑇 ;𝑋) =

𝑚∑︁
𝑗=0

⃦⃦⃦
𝑢(𝑗)

⃦⃦⃦𝑝

𝐿𝑝(0,𝑇 ;𝑋)
.

When 𝑝 = 2 and 𝑋 is a Hilbert space, the space 𝑊𝑚,2(0, 𝑇 ;𝑋) is denoted by 𝐻𝑚(0, 𝑇 ;𝑋)

which, equipped with the inner product

⟨𝑢, 𝑣⟩𝐻𝑚(0,𝑇 ;𝑋) =
𝑚∑︁

𝑗=0

⟨
𝑢(𝑗), 𝑣(𝑗)

⟩
𝐿2(0,𝑇 ;𝑋)

,

is a Hilbert space. It is denoted by 𝐻𝑚
0 (0, 𝑇 ;𝑋) the closure, in 𝐻𝑚(0, 𝑇 ;𝑋), of 𝒟(0, 𝑇 ;𝑋)

and by 𝐻−𝑚(0, 𝑇 ;𝑋) the topological dual of 𝐻𝑚
0 (0, 𝑇 ;𝑋).

A.1.2 Interpolation of Sobolev spaces

Most of the results that we will enunciate in this subsection, as well as their demonstrations,
can be found in (LIONS; MAGENES, 1968).

Let 𝑋 and 𝑌 be two separable Hilbert spaces, with continuous and dense embedding,
𝑋 →˓ 𝑌 . Let ⟨·, ·⟩𝑋 and ⟨·, ·⟩𝑌 be the inner products of 𝑋 and 𝑌 , respectively. We will denote
by 𝐷(𝑆) the set of all functions 𝑢 defined in 𝑋, such that the application 𝑣 ↦→ ⟨𝑢, 𝑣⟩𝑋 , 𝑣 ∈ 𝑋,
is continuous in the topology induced by 𝑌 . Then, ⟨𝑢, 𝑣⟩𝑋 = ⟨𝑆𝑢, 𝑣⟩𝑌 defines 𝑆, as an
(unbounded) operator on 𝑌 with domain 𝐷(𝑆), dense in 𝑌 . Since 𝑆 is a self-adjoint and
strictly positive operator, by using the spectral decomposition of self-adjoint operators, we can
define 𝑆𝜃, 𝜃 ∈ R. In particular we will use 𝐴 = 𝑆

1
2 . The operator 𝐴, is self-adjoint, positive

defined on 𝑌 , with domain 𝑋 and

⟨𝑢, 𝑣⟩𝑋 = ⟨𝐴𝑢,𝐴𝑣⟩𝑌 , for all 𝑢, 𝑣 ∈ 𝑋.
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Definition A.2 Under the previous assumptions, we define the intermediate space

[𝑋, 𝑌 ]𝜃 = 𝐷
(︁
𝐴1−𝜃

)︁
, 0 ≤ 𝜃 ≤ 1

equipped with the norm

‖𝑢‖2
[𝑋,𝑌 ]𝜃 = ‖𝑢‖2

𝑌 +
⃦⃦⃦
𝐴1−𝜃𝑢

⃦⃦⃦2

𝑌

Note that:

i. 𝑋 →˓ [𝑋, 𝑌 ]𝜃 →˓ 𝑌 .

ii. ‖𝑢‖[𝑋,𝑌 ]𝜃 ≤ ‖𝑢‖1−𝜃
𝑋 ‖𝑢‖𝜃

𝑌 .

iii. If 0 < 𝜃0 < 𝜃1 < 1, then [𝑋, 𝑌 ]𝜃0 →˓ [𝑋, 𝑌 ]𝜃1 .

iv. [[𝑋, 𝑌 ]𝜃0 , [𝑋, 𝑌 ]𝜃1 ]𝜃 = [𝑋, 𝑌 ](1−𝜃)𝜃0+𝜃𝜃1 .

Throughout this thesis, the following result is quite useful.

Theorem A.3 Let Ω ⊂ R𝑛 and 𝜃1 ≥ 𝜃2 ≥ 0, 𝜃1, 𝜃2 ̸= 𝑘 + 1
2 , for any integer 𝑘. If

𝑠 = (1 − 𝜃)𝜃1 + 𝜃𝜃2 ̸= 𝑘 + 1
2 , then[︁

𝐻𝜃1
0 (Ω), 𝐻𝜃2

0 (Ω)
]︁

= 𝐻𝑠
0(Ω)

and [︁
𝐻𝑚

0 (Ω), 𝐿2(Ω)
]︁

𝜃
= 𝐻𝑠

0(Ω), 𝑠 = (1 − 𝜃)𝑚 ̸= 𝑘 + 1
2

with equivalent norms.

A.1.3 Classical remarkable results

Now, let us present a series of classical results that will be used throughout this thesis.
The results are classical, and the proofs will be omitted (see (ADAMS, 1975; BREZIS, 2011)
and references therein).

Lemma A.2 (Young’s Inequality) Let 𝑎 and 𝑏 be positive constants, 1 ≤ 𝑝, 𝑞 ≤ ∞, such
that 𝑝 and 𝑞 are Hölder conjugated index. Then

𝑎𝑏 ≤ 𝑎𝑝

𝑝
+ 𝑏𝑞

𝑞
.

Moreover, for all 𝜀 > 0,
𝑎𝑏 ≤ 𝜀𝑎𝑝 + 𝐶(𝜀)𝑏𝑞.
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Lemma A.3 (Cauchy-Schwarz’s Inequality) Let (𝐸, ⟨·, ·⟩) be a vector space with an inner
product and ‖ · ‖ the induced norm of the inner product, then

|⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖‖𝑦‖, ∀𝑥, 𝑦 ∈ 𝐸.

Furthermore, equality holds if and only if 𝑥 and 𝑦 are linearly independent.

Lemma A.4 (Hölder’s Inequality) Let 𝑓 ∈ 𝐿𝑝(Ω) and 𝑔 ∈ 𝐿𝑞(Ω), consider 1 ≤ 𝑝, 𝑞 ≤ ∞

such that 𝑝 and 𝑞 are Hölder conjugated. Then 𝑓𝑔 ∈ 𝐿1(Ω) and

‖𝑓𝑔‖𝐿1(Ω) =
∫︁

Ω
|𝑓𝑔| ≤ ‖𝑓‖𝐿𝑝(Ω)‖𝑔‖𝐿𝑞(Ω).

Lemma A.5 (Poincaré-Friedrichs inequality) Let Ω be a bounded open subset of R𝑛,
then for every 1 ≤ 𝑝 < ∞ there exists a constant 𝐶 = 𝐶(Ω, 𝑝) > 0, such that

‖𝑢‖𝐿𝑝(Ω) ≤ 𝐶‖∇𝑢‖𝐿𝑝(Ω), ∀𝑢 ∈ 𝑊 1,𝑝
0 (Ω).

Remark A.4 Poincaré’s inequality remains true if Ω has a finite measure and also if Ω has a
bounded projection on some axis.

The following result can be found in (AUBIN, 1963) and is a fundamental compactness
criterion in the study of the observability inequalities presented in this thesis.

Theorem A.4 (Aubin-Lions) Let 𝑋0, 𝑋 and 𝑋1 be Banach spaces such that 𝑋0 ⊂ 𝑋 ⊂ 𝑋1

with 𝑋0 compactly embedded in 𝑋 and 𝑋 →˓ 𝑋1. Suppose that 1 < 𝑝, 𝑞 ≤ ∞ and

𝑊 = {𝑢 ∈ 𝐿𝑝 ([0, 𝑇 ];𝑋0) : 𝑢𝑡 ∈ 𝐿𝑞 ([0, 𝑇 ];𝑋1)} .

i. If 𝑝 < ∞ then 𝑊 is compactly embedded into 𝐿𝑝([0, 𝑇 ], 𝑋).

ii. If 𝑝 = ∞ and 𝑞 > 1 then 𝑊 →˓ 𝐶([0, 𝑇 ];𝑋) is compact.

A.2 SEMIGROUP THEORY

In this section, we present the main elements of semigroup theory, which provides a frame-
work for analyzing the systems described by evolution equations. For an in-depth study, we
recommend (PAZY, 1983). In the sequel, we will denote by (𝑋, ‖ · ‖𝑋) a Banach space and by
ℒ(𝑋) the space of bounded linear operators defined from 𝑋 into itself.
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A.2.1 Basic properties and infinitesimal generator

Definition A.3 A map 𝑆 : [0,∞) −→ ℒ(𝑋) is a semigroup of bounded linear operators on
𝑋 if

(𝑖) 𝑆(0) = 𝐼, where 𝐼 is the identity operator on 𝑋.

(𝑖𝑖) 𝑆(𝑡+ 𝑠) = 𝑆(𝑡)𝑆(𝑠), ∀𝑡, 𝑠 ∈ [0,∞).

We say that the semigroup {𝑆(𝑡)}𝑡≥0 is uniformly continuous if

lim
𝑡→0+

‖𝑆(𝑡) − 𝐼‖ = 0.

Finally, {𝑆(𝑡)}𝑡≥0 is said to be strongly continuous, or of class 𝐶0 when

lim
𝑡→0+

‖(𝑆(𝑡) − 𝐼)𝑥‖ = 0, ∀𝑥 ∈ 𝑋.

In this case we can also say that {𝑆(𝑡)}𝑡≥0 is a 𝐶0-semigroup.

Example A.6 If 𝐴 ∈ ℒ(𝑋) then 𝑆(𝑡) = 𝑒𝑡𝐴 defines a 𝐶0-semigroup in 𝑋.

Example A.7 Let 𝑌 a Banach space and 𝑋 the space of the bounded and uniformly contin-
uous functions 𝑓 : R → 𝑌 . Considering in 𝑋 the norm of the supremum, it follows that 𝑋 is
a Banach space. Defining

𝑆(𝑡)𝑓(𝑠) = 𝑓(𝑡+ 𝑠),

we can see that the family {𝑆(𝑡)}𝑡≥0 is a 𝐶0-semigroup on 𝑋.

Lemma A.6 There exist 𝑀 ≥ 1 and 𝛿 > 0 such that, for 0 ≤ 𝑡 ≤ 𝛿,

‖𝑆(𝑡)‖ ≤ 𝑀.

Theorem A.5 There exist 𝑀 ≥ 1 and 𝜔 ≥ 0 such that

‖𝑆(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡, ∀𝑡 ≥ 0.

Corollary A.1 For each 𝑢 ∈ 𝑋, the map

𝑓 : [0,∞) −→ 𝑋

𝑡 ↦−→ 𝑓(𝑡) = 𝑆(𝑡)𝑢

is continuous. More precisely, for each 𝑢 ∈ 𝑋

𝑆(·)𝑢 ∈ 𝐶([0,∞);𝑋).
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Definition A.4 A 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0 is said to be uniformly bounded if there exists
𝑀 > 0 such that ‖𝑆(𝑡)‖ ≤ 𝑀 for every 𝑡 ≥ 0. In the particular case where 𝑀 = 1, we say
that {𝑆(𝑡)}𝑡≥0 is a semigroup of contractions.

Lemma A.7 For any 𝑢 ∈ 𝑋 and ℎ ≥ 0,

lim
ℎ→0+

1
ℎ

∫︁ 𝑡+ℎ

𝑡
𝑆(𝜏)𝑢 d𝜏 = 𝑆(𝑡)𝑢.

Definition A.5 The infinitesimal generator of a 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0 in 𝑋, is the linear
operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 defined by

𝐷(𝐴) =
{︃
𝑢 ∈ 𝑋; lim

𝑡→0+

𝑆(𝑡)𝑢− 𝑢

𝑡
exist

}︃
and

𝐴𝑢 = lim
𝑡→0+

𝑆(𝑡)𝑢− 𝑢

𝑡
, 𝑢 ∈ 𝐷(𝐴)

Remark A.5 (The graph norm) If 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a closed operator, then 𝐷(𝐴)

endowed with the graph norm

‖𝑢‖𝐷(𝐴) = ‖𝑢‖𝑋 + ‖𝐴𝑢‖𝑋

is a Banach space. As we will see later, if 𝐴 is an infinitesimal generator of a 𝐶0-semigroup
in 𝑋, then 𝐴 is closed. Henceforth, whenever we refer to 𝐷(𝐴) will consider it in this space.
When 𝑋 is a Hilbert space, then 𝐷(𝐴) is also a Hilbert space with inner product given by

(𝑢, 𝑣)𝐷(𝐴) = (𝑢, 𝑣)𝑋 + (𝐴𝑢,𝐴𝑣)𝑋 .

Theorem A.6 Let 𝐴 the infinitesimal generator of a 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0 and 𝑢 ∈ 𝐷(𝐴).
Then 𝑆(𝑡)𝑢 ∈ 𝐷(𝐴) for every 𝑡 ≥ 0,

𝑆(·)𝑢 ∈ 𝐶1([0,∞);𝑋) ∩ 𝐶([0,∞);𝐷(𝐴))

and
𝑑

𝑑𝑡
(𝑆(𝑡)𝑢) = 𝐴𝑆(𝑡)𝑢 = 𝑆(𝑡)𝐴𝑢.

Theorem A.7 Let 𝐴 the infinitesimal generator of a 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0 on 𝑋. Then,
for any 𝑢 ∈ 𝑋, ∫︁ 𝑡

0
𝑆(𝜏)𝑢 d𝜏 ∈ 𝐷(𝐴)

and

𝐴
(︂∫︁ 𝑡

0
𝑆(𝜏)𝑢 d𝜏

)︂
= 𝑆(𝑡)𝑢− 𝑢.
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Corollary A.2 If 𝐴 is the infinitesimal generator of the 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0 in 𝑋, then
𝐴 is closed and densely defined.

Theorem A.8 Let {𝑆1(𝑡)}𝑡≥0 and {𝑆2(𝑡)}𝑡≥0 two 𝐶0-semigroup with the same infinitesimal
generator 𝐴. Then {𝑆1(𝑡)} and {𝑆2(𝑡)} are identical.

Corollary A.3 If {𝑆(𝑡)}𝑡≥0 is a 𝐶0-semigroup whose infinitesimal generator 𝐴 is bounded,
then

𝑆(𝑡) = 𝑒𝑡𝐴.

A.2.2 The Hille-Yosida theorem

In this section, 𝐴 will always be the infinitesimal generator of a 𝐶0-semigroup of contrac-
tions. For each 𝜆 > 0 we define the operator

𝑅(𝜆) : 𝑋 −→ 𝑋

𝑢 ↦−→ 𝑅(𝜆)𝑢 =
∫︁ ∞

0
𝑒−𝜆𝜏𝑆(𝜏)𝑢 d𝜏.

One can see that 𝑅(𝜆) is well-defined, bounded and satisfies

‖𝑅(𝜆)‖ ≤ 1
𝜆
, ∀𝜆 > 0. (A.1)

Theorem A.9 If 𝐴 is an infinitesimal generator of semigroup of contractions {𝑆(𝑡)}𝑡≥0, then
(𝜆𝐼 − 𝐴) is invertible for every 𝜆 > 0 and

(𝜆𝐼 − 𝐴)−1 = 𝑅(𝜆).

Furthermore, by (A.1) we have, for each 𝜆 > 0,
⃦⃦⃦
(𝜆𝐼 − 𝐴)−1

⃦⃦⃦
≤ 1
𝜆
.

Theorem A.10 Let 𝐴 a densely defined operator such that, for any 𝜆 > 0, the operator
(𝜆𝐼 − 𝐴)−1 there exists, is linear and bounded with

⃦⃦⃦
(𝜆𝐼 − 𝐴)−1

⃦⃦⃦
≤ 1
𝜆
.

Then 𝐴 is the infinitesimal generator of a semigroup of contractions.

Theorem A.11 (Hille-Yosida) A linear operator 𝐴 in a Banach space 𝑋 is an infinitesimal
generator of a semigroup of contractions if, and only if,
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1. 𝐴 is closed;

2. 𝐴 is densely defined;

3. For each 𝜆 > 0, (𝜆𝐼 − 𝐴)−1 there exists and is a bounded linear operator with
⃦⃦⃦
(𝜆𝐼 − 𝐴)−1

⃦⃦⃦
≤ 1
𝜆
.

Theorem A.12 The operator 𝐴 is an infinitesimal generator of a 𝐶0-semigroup {𝑆(𝑡)}, with

‖𝑆(𝑡)‖ ≤ 𝑒𝜔𝑡, 𝜔 ≥ 0, ∀𝑡 ≥ 0,

if, and only if, it is closed, densely defined, and for any 𝜆 > 𝜔, there exists the inverse
(𝜆𝐼 − 𝐴)−1 and ⃦⃦⃦

(𝜆𝐼 − 𝐴)−1
⃦⃦⃦

≤ (𝜆− 𝜔)−1.

A.2.3 The Lumer Phillips theorem

We will now present another characterization of infinitesimal generators of semigroups.
Denote by 𝑋 ′ the topological dual of 𝑋. Given 𝑥′ ∈ 𝑋 ′ we use the notation

𝑥′(𝑥) = ⟨𝑥′, 𝑥⟩ = ⟨𝑥, 𝑥′⟩ , ∀𝑥 ∈ 𝑋.

For every 𝑥 ∈ 𝑋 we define the duality set 𝐹 (𝑥) ⊆ 𝑋 ′ by

𝐹 (𝑥) =
{︁
𝑥′ : 𝑥′ ∈ 𝑋 ′ and ⟨𝑥′, 𝑥⟩ = ‖𝑥‖2 = ‖𝑥′‖2}︁

.

From the Hahn-Banach theorem, it follows that 𝐹 (𝑥) ̸= ∅ for any 𝑥 ∈ 𝑋.

Definition A.6 We say that the linear operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 −→ 𝑋 is maximal if,

𝑅(𝐼 + 𝐴) = 𝑋,

that is, for every 𝑓 ∈ 𝑋 there exist 𝑢 ∈ 𝐷(𝐴) such that (𝐼 + 𝐴)𝑢 = 𝑓 .

Definition A.7 A linear operator 𝐴 is dissipative if, for every 𝑥 ∈ 𝐷(𝐴), there exists 𝑥′ ∈

𝐹 (𝑥) such that Re ⟨𝐴𝑥, 𝑥′⟩ ≤ 0. If in addition there exists 𝜆 > 0 such that 𝑅(𝜆𝐼 −𝐴) = 𝑋,
then we say that 𝐴 is maximal dissipative or simply 𝑚-dissipative
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Theorem A.13 A linear operator 𝐴 is dissipative if and only if,

‖(𝜆𝐼 − 𝐴)𝑥‖ ≥ 𝜆‖𝑥‖,

for every 𝑥 ∈ 𝐷(𝐴) and 𝜆 > 0.

Proposition A.1 If 𝐴 is 𝑚-dissipative and 𝑅 (𝜆0𝐼 − 𝐴) = 𝑋 for some 𝜆0 > 0, then:

1. 𝜆0 ∈ 𝜌(𝐴) and 𝐴 is closed.

2. (0,∞) ⊂ 𝜌(𝐴).

3. 𝑅(𝜆𝐼 − 𝐴) = 𝑋, for every 𝜆 > 0.

Theorem A.14 (Lumer-Phillips) Let 𝐴 be a linear operator with domain 𝐷(𝐴) dense in
𝑋.

(𝑎) If 𝐴 is dissipative and there exists 𝜆0 > 0such that 𝑅 (𝜆0𝐼 − 𝐴) = 𝑋, then 𝐴 is a
infinitesimal generator of a 𝐶0-semigroup of contractions 𝑋.

(𝑏) If 𝐴 is the infinitesimal generator of a 𝐶0-semigroup of contractions on 𝑋, then 𝑅(𝜆𝐼−

𝐴) = 𝑋 for every 𝜆 > 0 and 𝐴 is dissipative. Moreover, for every 𝑥 ∈ 𝐷(𝐴) and every
𝑥′ ∈ 𝐹 (𝑥), we have Re ⟨𝐴𝑥, 𝑥′⟩ ≤ 0.

Remark A.6 In summary, the Lumer-Phillips theorem says us that, a linear operator 𝐴 :

𝐷(𝐴) ⊂ 𝑋 −→ 𝑋 is the infinitesimal generator of a 𝐶0-semigroup of contractions on 𝑋 if,
and only if, 𝐴 is maximal, dissipative and densely defined.

A.2.4 Regularity for semigroups of contractions

If 𝐴 is the infinitesimal generator of a 𝐶0-semigroup, then we define

𝐷
(︁
𝐴2
)︁

= {𝑢 ∈ 𝐷(𝐴);𝐴𝑢 ∈ 𝐷(𝐴)}.

In general, for 𝑘 ≥ 2

𝐷
(︁
𝐴𝑘
)︁

=
{︁
𝑢 ∈ 𝐷

(︁
𝐴𝑘−1

)︁
;𝐴𝑢 ∈ 𝐷

(︁
𝐴𝑘−1

)︁}︁
.

Lemma A.8 Let 𝐴 be the infinitesimal generator of a semigroup of contractions {𝑆(𝑡)}.
Then
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i. 𝐷 (𝐴2) is dense in 𝐷(𝐴), with respect to the graph norm (and consequently with respect
to the norm ‖ · ‖𝑋).

ii.
∞⋂︁

𝑘=0
𝐷(𝐴𝑘) is dense in 𝑋

Theorem A.15 Let 𝑢0 ∈ 𝐷 (𝐴2), where 𝐴 is the infinitesimal generator of a semigroup of
contractions {𝑆(𝑡)}. Then

𝑆(·)𝑢0 ∈ 𝐶2([0,∞);𝑋) ∩ 𝐶1([0,∞);𝐷(𝐴)) ∩ 𝐶
(︁
[0,∞);𝐷

(︁
𝐴2
)︁)︁
.

In general, if 𝑢0 ∈ 𝐷
(︁
𝐴𝑘
)︁
, 𝑘 ≥ 2, then

𝑆(·)𝑢0 ∈
𝑘⋂︁

𝑗=0
𝐶𝑘−𝑗

(︁
[0,∞);𝐷

(︁
𝐴𝑗
)︁)︁
,

where 𝐴0 = 𝐼.

Corollary A.4 Let 𝑢0 ∈ 𝐷(𝐴), where 𝐴 is the infinitesimal generator of a semigroup of
contractions {𝑆(𝑡)}. If 𝑢(𝑡) = 𝑆(𝑡)𝑢0 then we have⃦⃦⃦⃦

⃦𝑑𝑢𝑑𝑡 (𝑡)
⃦⃦⃦⃦
⃦ ≤ ‖𝐴𝑢0‖ .

A.2.5 Semigroups of contractions in Hilbert spaces

Semigroups have more formidable properties in a Hilbert space 𝑋, since we can identify 𝑋
with its topological dual. In this subsection, we consider 𝑋 a Hilbert space with inner product
(·, ·)𝑋 .

Definition A.8 An operator 𝐹 : 𝐷(𝐹 ) ⊂ 𝑋 → 𝑋 is called monotone when (𝐹𝑢, 𝑢)𝑋 ≥ 0,
for every 𝑢 ∈ 𝐷(𝐹 ). If, in addition, 𝑅(𝐼 − 𝐹 ) = 𝑋, then 𝐹 is called maximal monotone.

Definition A.9 We say that an operator 𝐹 : 𝐷(𝐹 ) ⊂ 𝑋 → 𝑋 is dissipative when (𝐹𝑢, 𝑢)𝑋 ≤

0, for every 𝑢 ∈ 𝐷(𝐹 ). If, in addition,𝑅(𝐼−𝐹 ) = 𝑋, then we say that 𝐹 is maximal dissipative.
In other words, 𝐹 is dissipative when −𝐹 is monotone, and 𝐹 is maximal dissipative when
−𝐹 is maximal monotone.

Proposition A.2 If 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the infinitesimal generator of a 𝐶0-semigroup of
contractions, then 𝐴 is maximal dissipative.
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The next result provides the converse of this proposition above, showing that only the
infinitesimal generators of semigroups in a Hilbert space are maximal dissipative.

Theorem A.16 Let 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 be a maximal dissipative operator. Then 𝐴 is
closed, densely defined and for each 𝜆 > 0, (𝜆𝐼 − 𝐴) is invertible with

⃦⃦⃦
(𝜆𝐼 − 𝐴)−1

⃦⃦⃦
≤ 1
𝜆
.

Remark A.7 (Lumer-Phillips in Hilbert Spaces) Proposition A.2 and Theorem A.16 (to-
gether with the Hille-Yosida theorem) deal with the Lumer-Phillips theorem in the Hilbert
space context. With this in mind, to verify that 𝐴 generates a 𝐶0-semigroup, it is enough to
verify that

(𝑖) 𝐴 is dissipative;

(𝑖𝑖) 𝑅 (𝜆0𝐼 − 𝐴) = 𝑋, for some 𝜆0 > 0.

Let 𝐴 the infinitesimal generator of a 𝐶0-semigroup of contractions {𝑆(𝑡)} in 𝑋. In the
previous sections, we present results concerning the regularity of 𝑆(·)𝑢0 when 𝑢0 ∈ 𝐷(𝐴).
The next two theorems give us conditions to get similar results for 𝑢0 ∈ 𝑋.

Theorem A.17 Let 𝐴 be a maximal dissipative self-adjoint operator. If 𝑢0 ∈ 𝑋, then

𝑆(·)𝑢0 ∈ 𝐶([0,∞);𝑋) ∩ 𝐶1((0,∞);𝑋) ∩ 𝐶((0,∞);𝐷(𝐴))

Moreover ⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝑆(𝑡)𝑢0‖ ≤ ‖𝑢0‖ , 𝑡 ≥ 0⃦⃦⃦⃦
⃦ 𝑑𝑑𝑡𝑆(𝑡)𝑢0

⃦⃦⃦⃦
⃦ = ‖𝐴𝑢(𝑡)‖ ≤ 1

𝑡
‖𝑢0‖ , 𝑡 > 0.

Theorem A.18 Let 𝐴 be a maximal dissipative self-adjoint operator in 𝑋. Then, for each
𝑢0 ∈ 𝑋,

𝑆(·)𝑢0 ∈ 𝐶𝑘
(︁
(0,∞);𝐷

(︁
𝐴𝑙
)︁)︁

for any non-negative integers 𝑘 and 𝑙.



178

A.2.6 Relationships between infinitesimal generator and its adjoint

The definitions and results in this subsection can be found in (CORON, 2020). Here, 𝑋 will
always be a Hilbert space and 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 a linear operator.

Theorem A.19 Assume that 𝐴 is densely defined and closed. If 𝐴 and 𝐴* are both dissipative,
then 𝐴 is the infinitesimal generator of a 𝐶0-semigroup.

Theorem A.20 Assume that 𝐴 is densely defined and closed. If 𝐴 and 𝐴* are both dissipative,
then for each 𝑢0 ∈ 𝐷(𝐴) we have

𝑆(·)𝑢0 ∈ 𝐶1([0,∞);𝑋) ∩ 𝐶([0,∞);𝐷(𝐴)).

Furthermore ⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝑆(𝑡)𝑢0‖ ≤ ‖𝑢0‖ 𝑡 ≥ 0⃦⃦⃦⃦
⃦ 𝑑𝑑𝑡𝑆(𝑡)𝑢0

⃦⃦⃦⃦
⃦ = ‖𝐴𝑢(𝑡)‖ ≤ ‖𝐴𝑢0‖ 𝑡 ≥ 0.

Theorem A.21 Let {𝑆(𝑡)}𝑡≥0 a 𝐶0-semigroup on 𝑋 with infinitesimal generator 𝐴. Then
{𝑆(𝑡)*}𝑡≥0 is a 𝐶0-semigroup on 𝑋 with infinitesimal generator 𝐴*.

Definition A.10 (Group of bounded linear operators) A family of bounded linear oper-
ators 𝑆(𝑡) : 𝑋 → 𝑋, 𝑡 ∈ R, is a group on 𝑋 if

𝑆(0) = Id,

𝑆 (𝑡1 + 𝑡2) = 𝑆 (𝑡1) ∘ 𝑆 (𝑡2) ,∀ (𝑡1, 𝑡2) ∈ R.

Definition A.11 (𝐶0-group of bounded linear operators) Let {𝑆(𝑡)}𝑡∈R a group of bounded
linear operators in 𝑋. we say that {𝑆(𝑡)}𝑡∈R is a group strongly continuous (or a 𝐶0-group)
of bounded linear operators in 𝑋 if

lim
𝑡→0

𝑆(𝑡)𝑥 = 𝑥, ∀𝑥 ∈ 𝑋.

Definition A.12 Let {𝑆(𝑡)}𝑡∈R a group of bounded linear operators in 𝑋. The infinitesimal
generator of {𝑆(𝑡)}𝑡∈R is the linear operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 defined by

𝐷(𝐴) =
{︃
𝑥 ∈ 𝑋; lim

𝑡→0

𝑆(𝑡)𝑥− 𝑥

𝑡
exists

}︃
,

𝐴𝑥 = lim
𝑡→0

𝑆(𝑡)𝑥− 𝑥

𝑡
,∀𝑥 ∈ 𝐷(𝐴).
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The main properties of a 𝐶0-group and its infinitesimal generator are analogous to those
dealing with semigroups, with the necessary adaptations. We highlight the following.

Theorem A.22 Let {𝑆(𝑡)}𝑡∈R um 𝐶0-group on 𝑋 with infinitesimal generator 𝐴. Then
{𝑆(𝑡)*}𝑡∈R is a 𝐶0-group on 𝑋 whose infinitesimal generator is 𝐴*.

Theorem A.23 Assume that 𝐴 is densely defined and 𝐴 = −𝐴*. Then 𝐴 is the infinitesimal
generator of a 𝐶0-group of isometries on 𝑋.

Corollary A.5 Assume that 𝐴 is densely defined and that 𝐴 = −𝐴*. Then, for each 𝑢0 ∈

𝐷(𝐴), we have 𝑆(·)𝑢0 ∈ 𝐶1 (R;𝑋) ∩ 𝐶 (R;𝐷(𝐴)).

A.2.7 The abstract Cauchy problem

With the results presented above, we have in our hands powerful tools to study the abstract
problem ⎧⎪⎪⎨⎪⎪⎩

𝑑𝑢(𝑡)
𝑑𝑡

= 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 > 0

𝑢 (0) = 𝑢0

Let us start with the linear case, that is, when 𝑓 = 0.

A.2.7.1 The linear case

As a consequence of Theorem A.6, we have the existence and uniqueness of the classical
solution to the problem ⎧⎪⎪⎨⎪⎪⎩

𝑑𝑢

𝑑𝑡
(𝑡) = 𝐴𝑢(𝑡), 𝑡 ≥ 0

𝑢(0) = 𝑢0

(A.2)

when 𝐴 is a infinitesimal generator of 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0 in 𝑋 and 𝑢0 ∈ 𝐷(𝐴).

Definition A.13 We say that a function 𝑢 : [0,∞) → 𝑋 is a classical solution of (A.2) when
𝑢 ∈ 𝐶1([0,∞);𝑋) ∩ 𝐶([0,∞);𝐷(𝐴)) and it verifies (A.2).

Proposition A.3 If 𝐴 is the infinitesimal generator of a 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0, then for
every 𝑢0 ∈ 𝐷(𝐴) we have that 𝑢(𝑡) = 𝑆(𝑡)𝑢0 is the unique solution to the problem (A.2).
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Theorem A.24 (Regularity) Let 𝑢0 ∈ 𝐷 (𝐴2), where 𝐴 is the infinitesimal generator of a
semigroup of contractions {𝑆(𝑡)}.Then the solution 𝑢(𝑡) = 𝑆(𝑡)𝑢0 of the initial value problem⎧⎪⎪⎨⎪⎪⎩

𝑑𝑢

𝑑𝑡
(𝑡) = 𝐴𝑢(𝑡) 𝑡 ≥ 0

𝑢(0) = 𝑢0,

satisfies
𝑢 ∈ 𝐶2([0,∞);𝑋) ∩ 𝐶1([0,∞);𝐷(𝐴)) ∩ 𝐶

(︁
[0,∞);𝐷

(︁
𝐴2
)︁)︁
.

In general, if 𝑢0 ∈ 𝐷
(︁
𝐴𝑘
)︁
, 𝑘 ≥ 2, then 𝑢 satisfies

𝑢 ∈
𝑘⋂︁

𝑗=0
𝐶𝑘−𝑗

(︁
[0,∞);𝐷

(︁
𝐴𝑗
)︁)︁
,

where 𝐴0 = 𝐼.

Theorem A.25 Let 𝑋 a Hilbert space and 𝐴 a self-adjoint maximal dissipative operator in
𝑋. If 𝑢0 ∈ 𝑋, then there exist a unique 𝑢 such that

𝑢 ∈ 𝐶([0,∞);𝑋) ∩ 𝐶1((0,∞);𝑋) ∩ 𝐶((0,∞);𝐷(𝐴))

and ⎧⎪⎪⎨⎪⎪⎩
𝑑𝑢

𝑑𝑡
(𝑡) = 𝐴𝑢(𝑡), 𝑡 > 0

𝑢(0) = 𝑢0

Furthermore ⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝑢(𝑡)‖ ≤ ‖𝑢0‖ 𝑡 ≥ 0⃦⃦⃦⃦
⃦𝑑𝑢𝑑𝑡 (𝑡)

⃦⃦⃦⃦
⃦ = ‖𝐴𝑢(𝑡)‖ ≤ 1

𝑡
‖𝑢0‖ 𝑡 > 0

.

Theorem A.26 Let 𝑋 be a Hilbert space and 𝐴 a self-adjoint maximal dissipative operator
in 𝑋. Let 𝑢 be the solution of the following initial value problem⎧⎪⎪⎨⎪⎪⎩

𝑑𝑢

𝑑𝑡
(𝑡) = 𝐴𝑢(𝑡) 𝑡 > 0

𝑢(0) = 𝑢0,

com 𝑢0 ∈ 𝑋. Then
𝑢 ∈ 𝐶𝑘

(︁
(0,∞);𝐷

(︁
𝐴𝑙
)︁)︁

for any nonnegative integers 𝑘 and 𝑙.
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Theorem A.27 Let 𝑋 a Hilbert space and 𝐴 a closed operator densely defined in 𝑋. If 𝐴
and 𝐴* are both dissipative then for any 𝑢0 ∈ 𝐷(𝐴) there exists a unique 𝑢 such that

𝑢 ∈ 𝐶1([0,∞);𝑋) ∩ 𝐶([0,∞);𝐷(𝐴))

and ⎧⎪⎪⎨⎪⎪⎩
𝑑𝑢

𝑑𝑡
(𝑡) = 𝐴𝑢(𝑡), 𝑡 > 0

𝑢(0) = 𝑢0

Furthermore ⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝑢(𝑡)‖ ≤ ‖𝑢0‖ 𝑡 ≥ 0⃦⃦⃦⃦
⃦𝑑𝑢𝑑𝑡 (𝑡)

⃦⃦⃦⃦
⃦ = ‖𝐴𝑢(𝑡)‖ ≤ ‖𝐴𝑢0‖ 𝑡 ≥ 0.

Corollary A.6 Let 𝑋 be a Hilbert space and 𝐴 an operator densely defined in 𝑋 such that
𝐴 = −𝐴*. Then, for any 𝑢0 ∈ 𝐷(𝐴), then the Cauchy problem⎧⎪⎪⎨⎪⎪⎩

𝑑𝑢

𝑑𝑡
= 𝐴𝑢

𝑢(0) = 𝑢0

possesses a unique solution 𝑢 ∈ 𝐶1 (R;𝑋) ∩ 𝐶 (R;𝐷(𝐴)) which is given by

𝑢(𝑡) = 𝑆(𝑡)𝑢0, ∀𝑡 ∈ R.

A.2.7.2 The semi-linear case

From now on unless otherwise stated, 𝐴 is the infinitesimal generator of a 𝐶0-semigroup
{𝑆(𝑡)}𝑡≥0 in a Banach space 𝑋. Now we will study the initial value problem⎧⎪⎪⎨⎪⎪⎩

𝑑𝑢

𝑑𝑡
(𝑡) = 𝐴𝑢(𝑡) + 𝑓(𝑡), 0 < 𝑡 < 𝑇

𝑢(0) = 𝑢0,

(A.3)

where 𝑓 : [0, 𝑇 ] → 𝑋 is a given function.

Definition A.14 A function 𝑢 : [0, 𝑇 ] → 𝑋 is a classical solution to the problem (A.3) if
𝑢 is continuous in [0, 𝑇 ], continuously differentiable in (0, 𝑇 ), 𝑢(𝑡) ∈ 𝐷(𝐴) for 0 < 𝑡 < 𝑇 and
satisfies (A.3) in (0, 𝑇 ).

Definition A.15 Let 𝑢0 ∈ 𝑋 and 𝑓 ∈ 𝐿1([0, 𝑇 ];𝑋). We say that a function 𝑢 ∈ 𝐶([0, 𝑇 ];𝑋)

is a mild solution (or generalized solution) to the problem (A.3) when

𝑢(𝑡) = 𝑆(𝑡)𝑢0 +
∫︁ 𝑡

0
𝑆(𝑡− 𝑠)𝑓(𝑠)d𝑠. (A.4)
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Theorem A.28 Let 𝑓 : [0, 𝑇 ] → 𝑋 be continuous and

𝑣(𝑡) =
∫︁ 𝑡

0
𝑆(𝑡− 𝑠)𝑓(𝑠)d𝑠, 0 ≤ 𝑡 ≤ 𝑇.

If (A.3) has a (unique) classical solution for 𝑢0 ∈ 𝐷(𝐴), then 𝑣 possesses the following
properties:

(𝑖) 𝑣(𝑡) is continuously differentiable in (0, 𝑇 );

(𝑖𝑖) 𝑣(𝑡) ∈ 𝐷(𝐴) for every 𝑡 ∈ (0, 𝑇 ) and 𝐴𝑣(𝑡) is continuous in (0, 𝑇 ).

Remark A.8 The conditions (𝑖) and (𝑖𝑖) of the theorem A.28 are equivalent.

Theorem A.29 If condition (𝑖) (or equivalently (𝑖𝑖)) of Theorem A.28 holds, then the mild
solution to the problem (A.3) is a classical solution, for 𝑢0 ∈ 𝐷(𝐴).

Corollary A.7 If 𝑓 ∈ 𝐶1([0, 𝑇 ];𝑋), then the problem (A.3) has a unique classical solution,
for every 𝑢0 ∈ 𝐷(𝐴).

Corollary A.8 Let 𝑓 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) be, with 𝐷(𝐴) endowed by the norm graph. Then
the problem (A.3) possesses a unique classical solution, for every 𝑢0 ∈ 𝐷(𝐴).

Corollary A.9 Let 𝑋 be a reflexive Banach space, 𝐴 the generator of a 𝐶0-semigroup
{𝑆(𝑡)}𝑡≥0 and 𝑓 : [0, 𝑇 ] → 𝑋 a Lipschitz continuous function, that is, there exists a constant
𝐿 ≥ 0 such that

‖𝑓 (𝑡1) − 𝑓 (𝑡2)‖ ≤ 𝐿 |𝑡1 − 𝑡2| para quaisquer 𝑡1, 𝑡2 ∈ [0, 𝑇 ].

Then for every 𝑢0 ∈ 𝐷(𝐴), the problem (A.3) has a unique classical solution.

A.2.7.3 The nonlinear case

For 𝑇 > 0, consider the initial value problem⎧⎪⎪⎨⎪⎪⎩
𝑑𝑢(𝑡)
𝑑𝑡

= 𝐴𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡)), 𝑡 > 0

𝑢 (0) = 𝑢0

(A.5)

where 𝐴 is the infinitesimal generator of a 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0 in a Banach space 𝑋, and
𝑓 : [0, 𝑇 ] ×𝑋 → 𝑋 is continuous in 𝑡 and satisfies a Lipschitz condition in 𝑢.
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Definition A.16 A function 𝑢 : [0, 𝑇 ] → 𝑋 is a classical solution of (A.5) in [0, 𝑇 ] if 𝑢
satisfies (A.5) in [0, 𝑇 ] and if 𝑢 ∈ 𝐶([0, 𝑇 ];𝐷(𝐴)) ∩ 𝐶1 ((0, 𝑇 ];𝑋).

Definition A.17 A function 𝑢 ∈ 𝐶([0, 𝑇 ];𝑋) satisfying

𝑢(𝑡) = 𝑆(𝑡)𝑢0 +
∫︁ 𝑡

0
𝑆(𝑡− 𝑠)𝑓(𝑠, 𝑢(𝑠))𝑑𝑠, ∀ 𝑡 ∈ [0, 𝑇 ]

is called a mild solution of (A.5) in [0, 𝑇 ].

Proposition A.4 Every classical solution of (A.5) is a mild solution.

Theorem A.30 Let 𝑓 : [0, 𝑇 ] × 𝑋 → 𝑋 be continuous in [0, 𝑇 ] and uniformly Lipschitz
continuous (with constant 𝐿) on 𝑋. If 𝐴 is the infinitesimal generator of a 𝐶0-semigroup
{𝑆(𝑡)}𝑡≥0 in 𝑋 then, for every 𝑢0 ∈ 𝑋, the initial value problem (A.5) possesses a unique
mild solution 𝑢 ∈ 𝐶 ([0, 𝑇 ] ;𝑋). Moreover, the map 𝑢0 → 𝑢 is Lipschitz continuous from 𝑋

into 𝐶 ([0, 𝑇 ] ;𝑋).

Corollary A.10 If 𝐴 and 𝑓 satisfy the conditions of Theorem A.30, then, for each 𝑔 ∈

𝐶 ([0, 𝑇 ] ;𝑋), the integral equation

𝑤(𝑡) = 𝑔(𝑡) +
∫︁ 𝑡

0
𝑆(𝑡− 𝑠)𝑓(𝑠, 𝑤(𝑠))𝑑𝑠

has a unique solution 𝑤 ∈ 𝐶 ([0, 𝑇 ] ;𝑋).

Theorem A.31 Let 𝑓 : [0,∞) ×𝑋 → 𝑋 continuous in 𝑡 and locally Lipschitz continuous in
𝑢, uniformly in 𝑡 on bounded intervals. If 𝐴 is the infinitesimal generator of a 𝐶0-semigroup
{𝑆(𝑡)}𝑡≥0 in 𝑋, then for each 𝑢0 ∈ 𝑋 there exists 𝑡max ≤ ∞ such that, then initial value
problem ⎧⎪⎪⎨⎪⎪⎩

𝑑𝑢

𝑑𝑡
(𝑡) + 𝐴𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ≥ 0

𝑢(0) = 𝑢0

has a unique mild solution 𝑢 defined in [0, 𝑡max ). Moreover, if𝑡max < ∞ then

lim
𝑡→𝑡−

max

‖𝑢(𝑡)‖ = ∞.

Theorem A.32 (Regularity) Let 𝐴 the infinitesimal generator of a 𝐶0-semigroup {𝑆(𝑡)}𝑡≥0

on 𝑋. If 𝑓 : [0, 𝑇 ] ×𝑋 → 𝑋 is continuously differentiable from [0, 𝑇 ] ×𝑋 into 𝑋, then the
mild solution of (A.5) with 𝑢0 ∈ 𝐷(𝐴) is actually a classical solution.
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A.3 SOME CLASSICAL CONCEPTS ABOUT CONTROL AND STABILIZATION

Here, we present some definitions, tools, as well as techniques, that will be useful through-
out this manuscript and are inspired by (LIONS, 1988a), (LIONS, 1988c), (ZUAZUA, 2006), and
(CORON, 2020).

A.3.1 Control for finite-dimensional linear systems

Some essential concepts of control and stabilization come from finite-dimensional sys-
tems (ODE) and, after generalization in some sense, to infinite-dimensional systems (PDE).
Therefore, let us consider 𝑚,𝑛 ∈ N*, 𝑇 > 0 and the finite-dimensional system⎧⎪⎪⎨⎪⎪⎩

𝑥′(𝑡) = 𝐴𝑥(𝑡) +𝐵𝑣(𝑡), 0 < 𝑡 < 𝑇

𝑥(0) = 𝑥0
(A.6)

where 𝑚 ≤ 𝑛,𝐴 is a real 𝑛× 𝑛 matrix, 𝐵 is a real 𝑛×𝑚 matrix and 𝑥0 ∈ R𝑛. The function
𝑥 : [0, 𝑇 ] → R𝑛 represents the state and 𝑢 : [0, 𝑇 ] → R𝑚 are called the control. The most
desirable goal is, of course, controlling the system using a minimum number of 𝑚 controls.

Note that, by the variations of constants formula, if 𝑢 ∈ 𝐿2 (0, 𝑇 ;R𝑚) (A.6) has a unique
solution 𝑥 ∈ 𝐻1 (0, 𝑇 ;R𝑛) given by

𝑥(𝑡) = 𝑒𝐴𝑡𝑥0 +
∫︁ 𝑡

0
𝑒𝐴(𝑡−𝑠)𝐵𝑢(𝑠)𝑑𝑠, ∀𝑡 ∈ [0, 𝑇 ] (A.7)

Definition A.18 We say (A.6) is exactly controllable in time 𝑇 > 0 if given any initial and
final data 𝑥0, 𝑥1 ∈ R𝑛 there exists 𝑢 ∈ 𝐿2 (0, 𝑇 ;R𝑚) such that the solution (A.7) of (A.6)
satisfies 𝑥(𝑇 ) = 𝑥1.

• The aim of the control consists in driving the solution from the initial data 𝑥0 to the
final one 𝑥1 in time 𝑇 by acting on the system through the control 𝑢.

• It is desirable to make the number of controls 𝑚 as small as possible. However, this may
affect the control properties of the system.

Definition A.19 We say (A.6) is null controllable in time 𝑇 > 0 if given any initial and final
data 𝑥0 ∈ R𝑛 there exists 𝑢 ∈ 𝐿2 (0, 𝑇 ;R𝑚) such that the solution (A.7) of (A.6) satisfies
𝑥(𝑇 ) = 0.



185

Remark A.9 Exact and null controllability are equivalent properties in the case of finite-
dimensional linear systems. But this is not necessarily the case for nonlinear systems, or for
strongly time-irreversible infinite-dimensional systems.

A.3.2 Control as a minimization problem

Let us introduce the homogeneous adjoint system of (A.6)⎧⎪⎪⎨⎪⎪⎩
−𝜙′ = 𝐴*𝜙, 0 < 𝑡 < 𝑇,

𝜙(𝑇 ) = 𝜙𝑇 ,

(A.8)

where 𝐴* denotes the adjoint matrix of 𝐴. Next, by the adjoint properties, we have a charac-
terization of the exact controllability property.

Lemma A.9 An initial data 𝑥0 ∈ R𝑛 of (A.6) is driven to zero in time 𝑇 by using a control
𝑢 ∈ 𝐿2(0, 𝑇 ) if and only if ∫︁ 𝑇

0
⟨𝑢,𝐵*𝜙⟩ 𝑑𝑡+

⟨
𝑥0, 𝜙(0)

⟩
= 0 (A.9)

for any 𝜙𝑇 ∈ R𝑛, 𝜙 being the solution of the adjoint system (A.8).

The equality (A.9) is an optimality condition for the critical points of the functional
𝐽 : R𝑛 → R𝑛,

𝐽 (𝜙𝑇 ) = 1
2

∫︁ 𝑇

0
|𝐵*𝜙|2 𝑑𝑡+

⟨
𝑥0, 𝜙(0)

⟩
with 𝜙 the solution of the adjoint system (A.8) with initial data 𝜙𝑇 at time 𝑡 = 𝑇 . More
precisely,

Lemma A.10 Suppose that 𝐽 has a minimizer 𝜙𝑇 ∈ R𝑛 and let 𝜙 be the solution of the
adjoint system (A.8) with initial data 𝜙𝑇 . Then

𝑢 = 𝐵*𝜙

is a control of the system (A.6) with initial data 𝑥0.

The Lemma (A.10) gives a variational method to obtain the control as a minimum of the
functional 𝐽 . Remark that 𝐽 is continuous. Therefore, the existence of a minimum is ensured
if 𝐽 is coercive too, that is,

lim
|𝜙𝑇 |→∞

𝐽 (𝜙𝑇 ) = ∞. (A.10)

The coercivity of 𝐽 follows from the next concept, named observability.
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Definition A.20 We say that (A.8) is observable in time 𝑇 > 0 if there exists 𝐶 > 0 such
that ∫︁ 𝑇

0
|𝐵*𝜙|2 𝑑𝑡 ≥ 𝐶|𝜙(0)|2, ∀𝜙𝑇 ∈ R𝑛 (A.11)

where 𝜙 being the solution of (A.8).

Remark A.10 The observability inequality (A.11) is equivalent to the following assertion:
there exists 𝐶 > 0 such that∫︁ 𝑇

0
|𝐵*𝜙|2 𝑑𝑡 ≥ 𝐶 |𝜙𝑇 |2 , ∀𝜙𝑇 ∈ R𝑛 (A.12)

where 𝜙 being the solution of (A.8).

Finally, the next Theorem ensures that the exact controllability can be reduced to the study
of observability.

Theorem A.33 The system (A.6) is exactly controllable in time 𝑇 if and only if (A.8) is
observable in time 𝑇 .

A.3.3 Control and stabilization extended to infinite-dimensional systems

All of the concepts and results mentioned above can be generalized (in some sense) to
infinite-dimensional systems. Let 𝑇 > 0, 𝐻, and 𝑉 be real Hilbert spaces, and consider the
following control system ⎧⎪⎪⎨⎪⎪⎩

d𝑢
d𝑡

= 𝐴𝑢+𝐵𝑣, 0 < 𝑡 < 𝑇

𝑢(0) = 𝑢0

(A.13)

where 𝑢 denotes the states and 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑉 ) is the control. The operator 𝐴 : 𝐷(𝐴) → 𝐻

is a linear operator and 𝐵 ∈ ℒ(𝑉,𝐷(𝐴*)′)3, where 𝐷(𝐴*)′ denotes the dual space of 𝐷(𝐴*)

and 𝐴* is the adjoint of the operator 𝐴. Additionally, 𝐴* is associated with the homogeneous
adjoint system ⎧⎪⎪⎨⎪⎪⎩

𝑑𝜙

𝑑𝑡
= −𝐴*𝜙, 0 < 𝑡 < 𝑇,

𝜙(𝑇 ) = 𝜙𝑇 ,

(A.14)

Now, we state the most classical notions of controllability for the abstract system (A.13).
3 This functional setting gives the possibility to consider boundary control operators (instead of the stronger

one 𝐵 ∈ ℒ(𝑉, 𝐻))
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Definition A.21 The system (A.13) is exactly controllable in time 𝑇 > 0 if, for every initial
and final data 𝑢0, 𝑢𝑇 ∈ 𝐻, there exists 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑉 ) such that the solution of (A.13)
satisfies 𝑢(𝑇 ) = 𝑢𝑇 .

Definition A.22 The system (A.13) is null controllable in time 𝑇 > 0 if, for every initial data
𝑢0 ∈ 𝐻, there exists 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑉 ) such that the solution of (A.13) satisfies 𝑢(𝑇 ) = 0.

Definition A.23 The system (A.13) is approximately controllable in time 𝑇 > 0 if, for every
initial and final data 𝑢0, 𝑢𝑇 ∈ 𝐻, and 𝜀 > 0, there exists 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑉 ) such that the
solution of (A.13) satisfies

‖𝑢(𝑇 ) − 𝑢𝑇 ‖𝐻 ≤ 𝜀.

Similar to the mentioned for finite-dimensional, a control may be obtained from the solution
of the homogeneous system (A.14) with the initial data minimizing the functional 𝐽 : 𝐻 → R

given by
𝐽(𝜙) = 1

2

∫︁ 𝑇

0
⟨𝑢,𝐵*𝜙⟩ 𝑑𝑡+ ⟨𝑢0, 𝜙(0)⟩𝐻 − ⟨𝑢𝑇 , 𝜙𝑇 ⟩𝐻 .

Hence, the controllability is reduced to a minimization problem. To guarantee that 𝐽 has a
unique minimizer, we use the next fundamental result in the calculus of variations, which can
be found in (BREZIS, 2011).

Theorem A.34 Let 𝐻 be a reflexive Banach space, 𝐾 a closed convex subset of 𝐻 and
𝐽 : 𝐾 → R a function with the following properties:

(i) 𝐽 is convex,

(ii) 𝐽 is lower semi-continuous,

(iii) If 𝐾 is unbounded then 𝐽 is coercive, i.e.

lim
‖𝑥‖→∞

𝐽(𝑥) = ∞.

Then 𝐽 reaches its minimum in 𝐾, i.e., there exists 𝑥0 ∈ 𝐾 such that

𝐽(𝑥0) = min
𝑥∈𝐾

𝜙(𝑥)

Note that 𝐽 is continuous and convex. The existence of a minimum is ensured if 𝐽 is also
coercive, which is obtained with the observability inequality∫︁ 𝑇

0
‖𝐵*𝜙‖2

𝐻 𝑑𝑡 ≥ 𝐶‖𝜙(0)‖2
𝐻 , ∀𝜙(0) ∈ 𝐻. (A.15)
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APPENDIX B – THE SET 𝒩 † IS NON EMPTY AND COUNTABLE

In this part, we prove that the new set of critical length, defined in (3.10), is non-empty
and countable. Recall that 𝐿 ∈ 𝒩 † if it can be written as 𝐿2 = − (𝑤2

1 + 𝑤1𝑤2 + 𝑤2
2) where

(𝑤1, 𝑤2) ∈ C2, such that 𝑤2
1𝑒

𝑤1 = 𝑤2
2𝑒

𝑤2 = (𝑤1 + 𝑤2)2𝑒−(𝑤1+𝑤2). (B.1)

In particular, we show a direct relation between this set and 𝒩 *, defined in (3.9). Let (𝑤1, 𝑤2)

satisfying (B.1), take 𝑐 = 𝑤2
𝑖 𝑒

𝑤𝑖 = (𝑤1 + 𝑤2)2𝑒−(𝑤1+𝑤2), 𝑖 = 1, 2 then we have that 𝑧𝑖 =
𝑤𝑖

2 is solution of 𝑧𝑖𝑒
𝑧𝑖 = ±( 𝑐

4)1/2. Similarly, (𝑧1 + 𝑧2)2𝑒−2(𝑧1+𝑧2) = 𝑐
4 , which implies (𝑧1 +

𝑧2)𝑒−(𝑧1+𝑧2) = ±( 𝑐
4)1/2. Then, by symmetry, we have either one of the following cases

• 𝑧1𝑒
𝑧1 = 𝑧2𝑒

𝑧2 = −(𝑧1 + 𝑧2)𝑒−(𝑧1+𝑧2).

• 𝑧1𝑒
𝑧1 = −𝑧2𝑒

𝑧2 = (𝑧1 + 𝑧2)𝑒−(𝑧1+𝑧2).

• 𝑧1𝑒
𝑧1 = 𝑧2𝑒

𝑧2 = (𝑧1 + 𝑧2)𝑒−(𝑧1+𝑧2).

The first case is the equation related to the critical set 𝒩 *, therefore, it has a countable
number of solutions. For the second and third cases, we can follow (GLASS; GUERRERO, 2010,
Proposition 3 and 4) to ensure that it has a countable number of solutions.

Finally, observe that if 𝐿 ∈ 𝒩 *, then 2𝐿 ∈ 𝒩 †. In fact, for 𝐿 ∈ 𝒩 * we have 𝐿2 =

− (𝑧2
1 + 𝑧1𝑧2 + 𝑧2

2), for some (𝑧1, 𝑧2) ∈ C2 such that

𝑧1𝑒
𝑧1 = 𝑧2𝑒

𝑧2 = −(𝑧1 + 𝑧2)𝑒−(𝑧1+𝑧2).

It is easy to see that 𝑤𝑖 = 2𝑧𝑖, for 𝑖 = 1, 2, satisfy (B.1). Moreover

−
(︁
𝑤2

1 + 𝑤1𝑤2 + 𝑤2
2

)︁
= −4

(︁
𝑧2

1 + 𝑧1𝑧2 + 𝑧2
2

)︁
= (2𝐿)2.
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