Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/64857

Comparte esta pagina

Título : Inteligência artificial explicável para detecção de fissuras em concreto armado : uma abordagem pós-hoc combinando técnicas de XAI em eedes neurais convolucionais
Autor : FRAGOSO, Gabriel Arnaud de Melo
Palabras clave : Redes Neurais Convolucionais (CNN); Inteligência Artificial Explicável (XAI); Engenharia civil assistida por inteligência artificial
Fecha de publicación : 17-jul-2025
Editorial : Universidade Federal de Pernambuco
Citación : FRAGOSO, Gabriel Arnaud de Melo. Inteligência artificial explicável para detecção de fissuras em concreto armado: uma abordagem pós-hoc combinando técnicas de XAI em eedes neurais convolucionais. 2025. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2025.
Resumen : Este trabalho propõe uma abordagem inovadora para aumentar a interpretabilidade de redes neurais convolucionais (CNNs) na tarefa de detecção de fissuras em estruturas de concreto, integrando algoritmos de explicabilidade baseados em visualização, como o Grad-CAM, com técnicas de segmentação não supervisionada, a exemplo do algoritmo K-means. A metodo- logia emprega aprendizado por transferência com arquiteturas consagradas (VGG16, VGG19 e ResNet) alcançando acurácia superior a 99% nos conjuntos de treinamento e teste. Foram avaliadas estratégias de explicabilidade fundamentadas tanto em perturbação do espaço de entrada quanto nos pesos internos das camadas convolucionais. Os resultados indicam que a combinação entre Grad-CAM e K-means aprimora não apenas a acurácia na detecção de fis- suras, mas também a transparência do processo decisório, aspecto crítico para aplicações reais em monitoramento estrutural. Para mensurar objetivamente o grau de explicabilidade dos mo- delos, foi proposta uma nova métrica baseada na sobreposição entre as máscaras geradas pelos mapas de ativação das técnicas de explicabilidade e os segmentos resultantes da clusterização, permitindo avaliar a coerência espacial entre as regiões de interesse destacadas pelo modelo e as áreas efetivamente associadas às fissuras. Embora o desempenho da segmentação tenha sido majoritariamente satisfatório, foram identificadas limitações em imagens com alta com- plexidade visual. A seleção automatizada de camadas mais relevantes para análise foi validada por especialistas em engenharia civil, reforçando a viabilidade prática da proposta. Ressalta-se o ineditismo da abordagem com foco explícito em explicabilidade no contexto da classificação de fissuras em concreto, com código-fonte disponibilizado abertamente no GitHub. Como des- dobramento natural, recomenda-se a investigação de técnicas de segmentação mais robustas e a ampliação do conjunto de dados para abranger maior diversidade de padrões fissurais.
URI : https://repositorio.ufpe.br/handle/123456789/64857
Aparece en las colecciones: Dissertações de Mestrado - Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Gabriel Arnaud De Melo Fragoso.pdf5,85 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons