Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufpe.br/handle/123456789/64571

Comparte esta pagina

Título : Representação de sinais de EEG em imagens para o diagnóstico de Alzheimer: uma abordagem baseada em Deep Learning e Métodos de Interpretabilidade
Autor : SOUZA, Gabriel Miranda de
Palabras clave : Deep Learning; Doença de Alzheimer; Eletroencefalografia; ASTERI; Inteligência Artificial Explicável
Fecha de publicación : 25-mar-2025
Editorial : Universidade Federal de Pernambuco
Citación : SOUZA, Gabriel Miranda de. Representação de sinais de EEG em imagens para o diagnóstico de Alzheimer: uma abordagem baseada em Deep Learning e métodos de interpretabilidade. 2025. Dissertação (Mestrado em Engenharia Biomédica) – Universidade Federal de Pernambuco, Recife, 2025.
Resumen : A Doença de Alzheimer (DA) é um distúrbio neurodegenerativo progressivo que afeta milhões de pessoas em todo o mundo. Os métodos tradicionais de diagnóstico dependem de técnicas de neuroimagem, como PET-CT, que são caras e de difícil acesso, especialmente em regiões com poucos recursos. O eletroencefalograma (EEG) surge como uma alternativa de baixo custo e portátil para auxiliar no diagnóstico da DA. Este estudo propõe uma abordagem que transforma sinais de EEG em imagens por meio do método ASTERI, permitindo a clas sificação de DA, demência frontotemporal (DFT) e indivíduos saudáveis utilizando modelos de deep learning. Foi utilizada uma base de dados composta por EEGs de 86 indivíduos (36 DA, 23 DFT e 29 saudáveis), gerando um total de 141,063 imagens. Diferentes modelos de deep learning foram avaliados, com o modelo ConvNeXt alcançando o melhor desempenho, atingindo acurácia e F1-score de até 0,9964 com intervalo de confiança de 95%. Os métodos de Mapas de Saliência e Gradientes Integrados foram aplicados para identificar as regiões das imagens mais relevantes no processo de classificação. Ao cruzar esses resultados com os Ma pas de Influência propostos, foi possível determinar os canais de EEG que mais contribuíram para a decisão do modelo. Os resultados sugerem que os canais das regiões occipital e fron tal desempenham um papel fundamental na diferenciação entre doenças neurodegenerativas. Além disso, foram observadas diferenças de contribuição entre os hemisférios cerebrais, corro borando estudos anteriores que indicam uma deterioração mais rápida do hemisfério esquerdo em pacientes com DA. Este estudo contribui para o desenvolvimento de ferramentas diagnós ticas baseadas em inteligência artificial, reforçando o potencial do EEG como uma modalidade acessível e não invasiva para a avaliação de doenças neurológicas.
URI : https://repositorio.ufpe.br/handle/123456789/64571
Aparece en las colecciones: Dissertações de Mestrado - Engenharia Biomédica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DISSERTAÇÃO Gabriel Miranda De Souza.pdf8,28 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons